1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi_bus.c - ACPI Bus Driver ($Revision: 80 $) 4 * 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 */ 7 8 #define pr_fmt(fmt) "ACPI: " fmt 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/ioport.h> 13 #include <linux/kernel.h> 14 #include <linux/list.h> 15 #include <linux/sched.h> 16 #include <linux/pm.h> 17 #include <linux/device.h> 18 #include <linux/proc_fs.h> 19 #include <linux/acpi.h> 20 #include <linux/slab.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/workqueue.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #ifdef CONFIG_X86 26 #include <asm/mpspec.h> 27 #include <linux/dmi.h> 28 #endif 29 #include <linux/acpi_viot.h> 30 #include <linux/pci.h> 31 #include <acpi/apei.h> 32 #include <linux/suspend.h> 33 #include <linux/prmt.h> 34 35 #include "internal.h" 36 37 struct acpi_device *acpi_root; 38 struct proc_dir_entry *acpi_root_dir; 39 EXPORT_SYMBOL(acpi_root_dir); 40 41 #ifdef CONFIG_X86 42 #ifdef CONFIG_ACPI_CUSTOM_DSDT 43 static inline int set_copy_dsdt(const struct dmi_system_id *id) 44 { 45 return 0; 46 } 47 #else 48 static int set_copy_dsdt(const struct dmi_system_id *id) 49 { 50 pr_notice("%s detected - force copy of DSDT to local memory\n", id->ident); 51 acpi_gbl_copy_dsdt_locally = 1; 52 return 0; 53 } 54 #endif 55 56 static const struct dmi_system_id dsdt_dmi_table[] __initconst = { 57 /* 58 * Invoke DSDT corruption work-around on all Toshiba Satellite. 59 * https://bugzilla.kernel.org/show_bug.cgi?id=14679 60 */ 61 { 62 .callback = set_copy_dsdt, 63 .ident = "TOSHIBA Satellite", 64 .matches = { 65 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 66 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"), 67 }, 68 }, 69 {} 70 }; 71 #endif 72 73 /* -------------------------------------------------------------------------- 74 Device Management 75 -------------------------------------------------------------------------- */ 76 77 acpi_status acpi_bus_get_status_handle(acpi_handle handle, 78 unsigned long long *sta) 79 { 80 acpi_status status; 81 82 status = acpi_evaluate_integer(handle, "_STA", NULL, sta); 83 if (ACPI_SUCCESS(status)) 84 return AE_OK; 85 86 if (status == AE_NOT_FOUND) { 87 *sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED | 88 ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING; 89 return AE_OK; 90 } 91 return status; 92 } 93 EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle); 94 95 int acpi_bus_get_status(struct acpi_device *device) 96 { 97 acpi_status status; 98 unsigned long long sta; 99 100 if (acpi_device_override_status(device, &sta)) { 101 acpi_set_device_status(device, sta); 102 return 0; 103 } 104 105 /* Battery devices must have their deps met before calling _STA */ 106 if (acpi_device_is_battery(device) && device->dep_unmet) { 107 acpi_set_device_status(device, 0); 108 return 0; 109 } 110 111 status = acpi_bus_get_status_handle(device->handle, &sta); 112 if (ACPI_FAILURE(status)) 113 return -ENODEV; 114 115 acpi_set_device_status(device, sta); 116 117 if (device->status.functional && !device->status.present) { 118 pr_debug("Device [%s] status [%08x]: functional but not present\n", 119 device->pnp.bus_id, (u32)sta); 120 } 121 122 pr_debug("Device [%s] status [%08x]\n", device->pnp.bus_id, (u32)sta); 123 return 0; 124 } 125 EXPORT_SYMBOL(acpi_bus_get_status); 126 127 void acpi_bus_private_data_handler(acpi_handle handle, 128 void *context) 129 { 130 return; 131 } 132 EXPORT_SYMBOL(acpi_bus_private_data_handler); 133 134 int acpi_bus_attach_private_data(acpi_handle handle, void *data) 135 { 136 acpi_status status; 137 138 status = acpi_attach_data(handle, 139 acpi_bus_private_data_handler, data); 140 if (ACPI_FAILURE(status)) { 141 acpi_handle_debug(handle, "Error attaching device data\n"); 142 return -ENODEV; 143 } 144 145 return 0; 146 } 147 EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data); 148 149 int acpi_bus_get_private_data(acpi_handle handle, void **data) 150 { 151 acpi_status status; 152 153 if (!data) 154 return -EINVAL; 155 156 status = acpi_get_data(handle, acpi_bus_private_data_handler, data); 157 if (ACPI_FAILURE(status)) { 158 acpi_handle_debug(handle, "No context for object\n"); 159 return -ENODEV; 160 } 161 162 return 0; 163 } 164 EXPORT_SYMBOL_GPL(acpi_bus_get_private_data); 165 166 void acpi_bus_detach_private_data(acpi_handle handle) 167 { 168 acpi_detach_data(handle, acpi_bus_private_data_handler); 169 } 170 EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data); 171 172 static void acpi_print_osc_error(acpi_handle handle, 173 struct acpi_osc_context *context, char *error) 174 { 175 int i; 176 177 acpi_handle_debug(handle, "(%s): %s\n", context->uuid_str, error); 178 179 pr_debug("_OSC request data:"); 180 for (i = 0; i < context->cap.length; i += sizeof(u32)) 181 pr_debug(" %x", *((u32 *)(context->cap.pointer + i))); 182 183 pr_debug("\n"); 184 } 185 186 acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context) 187 { 188 acpi_status status; 189 struct acpi_object_list input; 190 union acpi_object in_params[4]; 191 union acpi_object *out_obj; 192 guid_t guid; 193 u32 errors; 194 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; 195 196 if (!context) 197 return AE_ERROR; 198 if (guid_parse(context->uuid_str, &guid)) 199 return AE_ERROR; 200 context->ret.length = ACPI_ALLOCATE_BUFFER; 201 context->ret.pointer = NULL; 202 203 /* Setting up input parameters */ 204 input.count = 4; 205 input.pointer = in_params; 206 in_params[0].type = ACPI_TYPE_BUFFER; 207 in_params[0].buffer.length = 16; 208 in_params[0].buffer.pointer = (u8 *)&guid; 209 in_params[1].type = ACPI_TYPE_INTEGER; 210 in_params[1].integer.value = context->rev; 211 in_params[2].type = ACPI_TYPE_INTEGER; 212 in_params[2].integer.value = context->cap.length/sizeof(u32); 213 in_params[3].type = ACPI_TYPE_BUFFER; 214 in_params[3].buffer.length = context->cap.length; 215 in_params[3].buffer.pointer = context->cap.pointer; 216 217 status = acpi_evaluate_object(handle, "_OSC", &input, &output); 218 if (ACPI_FAILURE(status)) 219 return status; 220 221 if (!output.length) 222 return AE_NULL_OBJECT; 223 224 out_obj = output.pointer; 225 if (out_obj->type != ACPI_TYPE_BUFFER 226 || out_obj->buffer.length != context->cap.length) { 227 acpi_print_osc_error(handle, context, 228 "_OSC evaluation returned wrong type"); 229 status = AE_TYPE; 230 goto out_kfree; 231 } 232 /* Need to ignore the bit0 in result code */ 233 errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0); 234 if (errors) { 235 if (errors & OSC_REQUEST_ERROR) 236 acpi_print_osc_error(handle, context, 237 "_OSC request failed"); 238 if (errors & OSC_INVALID_UUID_ERROR) 239 acpi_print_osc_error(handle, context, 240 "_OSC invalid UUID"); 241 if (errors & OSC_INVALID_REVISION_ERROR) 242 acpi_print_osc_error(handle, context, 243 "_OSC invalid revision"); 244 if (errors & OSC_CAPABILITIES_MASK_ERROR) { 245 if (((u32 *)context->cap.pointer)[OSC_QUERY_DWORD] 246 & OSC_QUERY_ENABLE) 247 goto out_success; 248 status = AE_SUPPORT; 249 goto out_kfree; 250 } 251 status = AE_ERROR; 252 goto out_kfree; 253 } 254 out_success: 255 context->ret.length = out_obj->buffer.length; 256 context->ret.pointer = kmemdup(out_obj->buffer.pointer, 257 context->ret.length, GFP_KERNEL); 258 if (!context->ret.pointer) { 259 status = AE_NO_MEMORY; 260 goto out_kfree; 261 } 262 status = AE_OK; 263 264 out_kfree: 265 kfree(output.pointer); 266 return status; 267 } 268 EXPORT_SYMBOL(acpi_run_osc); 269 270 bool osc_sb_apei_support_acked; 271 272 /* 273 * ACPI 6.0 Section 8.4.4.2 Idle State Coordination 274 * OSPM supports platform coordinated low power idle(LPI) states 275 */ 276 bool osc_pc_lpi_support_confirmed; 277 EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed); 278 279 /* 280 * ACPI 6.2 Section 6.2.11.2 'Platform-Wide OSPM Capabilities': 281 * Starting with ACPI Specification 6.2, all _CPC registers can be in 282 * PCC, System Memory, System IO, or Functional Fixed Hardware address 283 * spaces. OSPM support for this more flexible register space scheme is 284 * indicated by the “Flexible Address Space for CPPC Registers” _OSC bit. 285 * 286 * Otherwise (cf ACPI 6.1, s8.4.7.1.1.X), _CPC registers must be in: 287 * - PCC or Functional Fixed Hardware address space if defined 288 * - SystemMemory address space (NULL register) if not defined 289 */ 290 bool osc_cpc_flexible_adr_space_confirmed; 291 EXPORT_SYMBOL_GPL(osc_cpc_flexible_adr_space_confirmed); 292 293 /* 294 * ACPI 6.4 Operating System Capabilities for USB. 295 */ 296 bool osc_sb_native_usb4_support_confirmed; 297 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_support_confirmed); 298 299 bool osc_sb_cppc2_support_acked; 300 301 static u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48"; 302 static void acpi_bus_osc_negotiate_platform_control(void) 303 { 304 u32 capbuf[2], *capbuf_ret; 305 struct acpi_osc_context context = { 306 .uuid_str = sb_uuid_str, 307 .rev = 1, 308 .cap.length = 8, 309 .cap.pointer = capbuf, 310 }; 311 acpi_handle handle; 312 313 capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE; 314 capbuf[OSC_SUPPORT_DWORD] = OSC_SB_PR3_SUPPORT; /* _PR3 is in use */ 315 if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR)) 316 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PAD_SUPPORT; 317 if (IS_ENABLED(CONFIG_ACPI_PROCESSOR)) 318 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PPC_OST_SUPPORT; 319 320 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT; 321 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT; 322 if (IS_ENABLED(CONFIG_ACPI_PRMT)) 323 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PRM_SUPPORT; 324 if (IS_ENABLED(CONFIG_ACPI_FFH)) 325 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FFH_OPR_SUPPORT; 326 327 #ifdef CONFIG_ARM64 328 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT; 329 #endif 330 #ifdef CONFIG_X86 331 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT; 332 #endif 333 334 #ifdef CONFIG_ACPI_CPPC_LIB 335 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT; 336 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT; 337 #endif 338 339 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_FLEXIBLE_ADR_SPACE; 340 341 if (IS_ENABLED(CONFIG_SCHED_MC_PRIO)) 342 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT; 343 344 if (IS_ENABLED(CONFIG_USB4)) 345 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_NATIVE_USB4_SUPPORT; 346 347 if (!ghes_disable) 348 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT; 349 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) 350 return; 351 352 if (ACPI_FAILURE(acpi_run_osc(handle, &context))) 353 return; 354 355 capbuf_ret = context.ret.pointer; 356 if (context.ret.length <= OSC_SUPPORT_DWORD) { 357 kfree(context.ret.pointer); 358 return; 359 } 360 361 /* 362 * Now run _OSC again with query flag clear and with the caps 363 * supported by both the OS and the platform. 364 */ 365 capbuf[OSC_QUERY_DWORD] = 0; 366 capbuf[OSC_SUPPORT_DWORD] = capbuf_ret[OSC_SUPPORT_DWORD]; 367 kfree(context.ret.pointer); 368 369 if (ACPI_FAILURE(acpi_run_osc(handle, &context))) 370 return; 371 372 capbuf_ret = context.ret.pointer; 373 if (context.ret.length > OSC_SUPPORT_DWORD) { 374 #ifdef CONFIG_ACPI_CPPC_LIB 375 osc_sb_cppc2_support_acked = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPCV2_SUPPORT; 376 #endif 377 378 osc_sb_apei_support_acked = 379 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_APEI_SUPPORT; 380 osc_pc_lpi_support_confirmed = 381 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_PCLPI_SUPPORT; 382 osc_sb_native_usb4_support_confirmed = 383 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_NATIVE_USB4_SUPPORT; 384 osc_cpc_flexible_adr_space_confirmed = 385 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPC_FLEXIBLE_ADR_SPACE; 386 } 387 388 kfree(context.ret.pointer); 389 } 390 391 /* 392 * Native control of USB4 capabilities. If any of the tunneling bits is 393 * set it means OS is in control and we use software based connection 394 * manager. 395 */ 396 u32 osc_sb_native_usb4_control; 397 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_control); 398 399 static void acpi_bus_decode_usb_osc(const char *msg, u32 bits) 400 { 401 pr_info("%s USB3%c DisplayPort%c PCIe%c XDomain%c\n", msg, 402 (bits & OSC_USB_USB3_TUNNELING) ? '+' : '-', 403 (bits & OSC_USB_DP_TUNNELING) ? '+' : '-', 404 (bits & OSC_USB_PCIE_TUNNELING) ? '+' : '-', 405 (bits & OSC_USB_XDOMAIN) ? '+' : '-'); 406 } 407 408 static u8 sb_usb_uuid_str[] = "23A0D13A-26AB-486C-9C5F-0FFA525A575A"; 409 static void acpi_bus_osc_negotiate_usb_control(void) 410 { 411 u32 capbuf[3]; 412 struct acpi_osc_context context = { 413 .uuid_str = sb_usb_uuid_str, 414 .rev = 1, 415 .cap.length = sizeof(capbuf), 416 .cap.pointer = capbuf, 417 }; 418 acpi_handle handle; 419 acpi_status status; 420 u32 control; 421 422 if (!osc_sb_native_usb4_support_confirmed) 423 return; 424 425 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) 426 return; 427 428 control = OSC_USB_USB3_TUNNELING | OSC_USB_DP_TUNNELING | 429 OSC_USB_PCIE_TUNNELING | OSC_USB_XDOMAIN; 430 431 capbuf[OSC_QUERY_DWORD] = 0; 432 capbuf[OSC_SUPPORT_DWORD] = 0; 433 capbuf[OSC_CONTROL_DWORD] = control; 434 435 status = acpi_run_osc(handle, &context); 436 if (ACPI_FAILURE(status)) 437 return; 438 439 if (context.ret.length != sizeof(capbuf)) { 440 pr_info("USB4 _OSC: returned invalid length buffer\n"); 441 goto out_free; 442 } 443 444 osc_sb_native_usb4_control = 445 control & acpi_osc_ctx_get_pci_control(&context); 446 447 acpi_bus_decode_usb_osc("USB4 _OSC: OS supports", control); 448 acpi_bus_decode_usb_osc("USB4 _OSC: OS controls", 449 osc_sb_native_usb4_control); 450 451 out_free: 452 kfree(context.ret.pointer); 453 } 454 455 /* -------------------------------------------------------------------------- 456 Notification Handling 457 -------------------------------------------------------------------------- */ 458 459 /** 460 * acpi_bus_notify - Global system-level (0x00-0x7F) notifications handler 461 * @handle: Target ACPI object. 462 * @type: Notification type. 463 * @data: Ignored. 464 * 465 * This only handles notifications related to device hotplug. 466 */ 467 static void acpi_bus_notify(acpi_handle handle, u32 type, void *data) 468 { 469 struct acpi_device *adev; 470 471 switch (type) { 472 case ACPI_NOTIFY_BUS_CHECK: 473 acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n"); 474 break; 475 476 case ACPI_NOTIFY_DEVICE_CHECK: 477 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n"); 478 break; 479 480 case ACPI_NOTIFY_DEVICE_WAKE: 481 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n"); 482 return; 483 484 case ACPI_NOTIFY_EJECT_REQUEST: 485 acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n"); 486 break; 487 488 case ACPI_NOTIFY_DEVICE_CHECK_LIGHT: 489 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n"); 490 /* TBD: Exactly what does 'light' mean? */ 491 return; 492 493 case ACPI_NOTIFY_FREQUENCY_MISMATCH: 494 acpi_handle_err(handle, "Device cannot be configured due " 495 "to a frequency mismatch\n"); 496 return; 497 498 case ACPI_NOTIFY_BUS_MODE_MISMATCH: 499 acpi_handle_err(handle, "Device cannot be configured due " 500 "to a bus mode mismatch\n"); 501 return; 502 503 case ACPI_NOTIFY_POWER_FAULT: 504 acpi_handle_err(handle, "Device has suffered a power fault\n"); 505 return; 506 507 default: 508 acpi_handle_debug(handle, "Unknown event type 0x%x\n", type); 509 return; 510 } 511 512 adev = acpi_get_acpi_dev(handle); 513 514 if (adev && ACPI_SUCCESS(acpi_hotplug_schedule(adev, type))) 515 return; 516 517 acpi_put_acpi_dev(adev); 518 519 acpi_evaluate_ost(handle, type, ACPI_OST_SC_NON_SPECIFIC_FAILURE, NULL); 520 } 521 522 static void acpi_notify_device(acpi_handle handle, u32 event, void *data) 523 { 524 struct acpi_device *device = data; 525 struct acpi_driver *acpi_drv = to_acpi_driver(device->dev.driver); 526 527 acpi_drv->ops.notify(device, event); 528 } 529 530 static int acpi_device_install_notify_handler(struct acpi_device *device, 531 struct acpi_driver *acpi_drv) 532 { 533 u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ? 534 ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY; 535 acpi_status status; 536 537 status = acpi_install_notify_handler(device->handle, type, 538 acpi_notify_device, device); 539 if (ACPI_FAILURE(status)) 540 return -EINVAL; 541 542 return 0; 543 } 544 545 static void acpi_device_remove_notify_handler(struct acpi_device *device, 546 struct acpi_driver *acpi_drv) 547 { 548 u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ? 549 ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY; 550 551 acpi_remove_notify_handler(device->handle, type, 552 acpi_notify_device); 553 554 acpi_os_wait_events_complete(); 555 } 556 557 /* Handle events targeting \_SB device (at present only graceful shutdown) */ 558 559 #define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81 560 #define ACPI_SB_INDICATE_INTERVAL 10000 561 562 static void sb_notify_work(struct work_struct *dummy) 563 { 564 acpi_handle sb_handle; 565 566 orderly_poweroff(true); 567 568 /* 569 * After initiating graceful shutdown, the ACPI spec requires OSPM 570 * to evaluate _OST method once every 10seconds to indicate that 571 * the shutdown is in progress 572 */ 573 acpi_get_handle(NULL, "\\_SB", &sb_handle); 574 while (1) { 575 pr_info("Graceful shutdown in progress.\n"); 576 acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN, 577 ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL); 578 msleep(ACPI_SB_INDICATE_INTERVAL); 579 } 580 } 581 582 static void acpi_sb_notify(acpi_handle handle, u32 event, void *data) 583 { 584 static DECLARE_WORK(acpi_sb_work, sb_notify_work); 585 586 if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) { 587 if (!work_busy(&acpi_sb_work)) 588 schedule_work(&acpi_sb_work); 589 } else { 590 pr_warn("event %x is not supported by \\_SB device\n", event); 591 } 592 } 593 594 static int __init acpi_setup_sb_notify_handler(void) 595 { 596 acpi_handle sb_handle; 597 598 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle))) 599 return -ENXIO; 600 601 if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY, 602 acpi_sb_notify, NULL))) 603 return -EINVAL; 604 605 return 0; 606 } 607 608 /* -------------------------------------------------------------------------- 609 Device Matching 610 -------------------------------------------------------------------------- */ 611 612 /** 613 * acpi_get_first_physical_node - Get first physical node of an ACPI device 614 * @adev: ACPI device in question 615 * 616 * Return: First physical node of ACPI device @adev 617 */ 618 struct device *acpi_get_first_physical_node(struct acpi_device *adev) 619 { 620 struct mutex *physical_node_lock = &adev->physical_node_lock; 621 struct device *phys_dev; 622 623 mutex_lock(physical_node_lock); 624 if (list_empty(&adev->physical_node_list)) { 625 phys_dev = NULL; 626 } else { 627 const struct acpi_device_physical_node *node; 628 629 node = list_first_entry(&adev->physical_node_list, 630 struct acpi_device_physical_node, node); 631 632 phys_dev = node->dev; 633 } 634 mutex_unlock(physical_node_lock); 635 return phys_dev; 636 } 637 EXPORT_SYMBOL_GPL(acpi_get_first_physical_node); 638 639 static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev, 640 const struct device *dev) 641 { 642 const struct device *phys_dev = acpi_get_first_physical_node(adev); 643 644 return phys_dev && phys_dev == dev ? adev : NULL; 645 } 646 647 /** 648 * acpi_device_is_first_physical_node - Is given dev first physical node 649 * @adev: ACPI companion device 650 * @dev: Physical device to check 651 * 652 * Function checks if given @dev is the first physical devices attached to 653 * the ACPI companion device. This distinction is needed in some cases 654 * where the same companion device is shared between many physical devices. 655 * 656 * Note that the caller have to provide valid @adev pointer. 657 */ 658 bool acpi_device_is_first_physical_node(struct acpi_device *adev, 659 const struct device *dev) 660 { 661 return !!acpi_primary_dev_companion(adev, dev); 662 } 663 664 /* 665 * acpi_companion_match() - Can we match via ACPI companion device 666 * @dev: Device in question 667 * 668 * Check if the given device has an ACPI companion and if that companion has 669 * a valid list of PNP IDs, and if the device is the first (primary) physical 670 * device associated with it. Return the companion pointer if that's the case 671 * or NULL otherwise. 672 * 673 * If multiple physical devices are attached to a single ACPI companion, we need 674 * to be careful. The usage scenario for this kind of relationship is that all 675 * of the physical devices in question use resources provided by the ACPI 676 * companion. A typical case is an MFD device where all the sub-devices share 677 * the parent's ACPI companion. In such cases we can only allow the primary 678 * (first) physical device to be matched with the help of the companion's PNP 679 * IDs. 680 * 681 * Additional physical devices sharing the ACPI companion can still use 682 * resources available from it but they will be matched normally using functions 683 * provided by their bus types (and analogously for their modalias). 684 */ 685 const struct acpi_device *acpi_companion_match(const struct device *dev) 686 { 687 struct acpi_device *adev; 688 689 adev = ACPI_COMPANION(dev); 690 if (!adev) 691 return NULL; 692 693 if (list_empty(&adev->pnp.ids)) 694 return NULL; 695 696 return acpi_primary_dev_companion(adev, dev); 697 } 698 699 /** 700 * acpi_of_match_device - Match device object using the "compatible" property. 701 * @adev: ACPI device object to match. 702 * @of_match_table: List of device IDs to match against. 703 * @of_id: OF ID if matched 704 * 705 * If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of 706 * identifiers and a _DSD object with the "compatible" property, use that 707 * property to match against the given list of identifiers. 708 */ 709 static bool acpi_of_match_device(const struct acpi_device *adev, 710 const struct of_device_id *of_match_table, 711 const struct of_device_id **of_id) 712 { 713 const union acpi_object *of_compatible, *obj; 714 int i, nval; 715 716 if (!adev) 717 return false; 718 719 of_compatible = adev->data.of_compatible; 720 if (!of_match_table || !of_compatible) 721 return false; 722 723 if (of_compatible->type == ACPI_TYPE_PACKAGE) { 724 nval = of_compatible->package.count; 725 obj = of_compatible->package.elements; 726 } else { /* Must be ACPI_TYPE_STRING. */ 727 nval = 1; 728 obj = of_compatible; 729 } 730 /* Now we can look for the driver DT compatible strings */ 731 for (i = 0; i < nval; i++, obj++) { 732 const struct of_device_id *id; 733 734 for (id = of_match_table; id->compatible[0]; id++) 735 if (!strcasecmp(obj->string.pointer, id->compatible)) { 736 if (of_id) 737 *of_id = id; 738 return true; 739 } 740 } 741 742 return false; 743 } 744 745 static bool acpi_of_modalias(struct acpi_device *adev, 746 char *modalias, size_t len) 747 { 748 const union acpi_object *of_compatible; 749 const union acpi_object *obj; 750 const char *str, *chr; 751 752 of_compatible = adev->data.of_compatible; 753 if (!of_compatible) 754 return false; 755 756 if (of_compatible->type == ACPI_TYPE_PACKAGE) 757 obj = of_compatible->package.elements; 758 else /* Must be ACPI_TYPE_STRING. */ 759 obj = of_compatible; 760 761 str = obj->string.pointer; 762 chr = strchr(str, ','); 763 strscpy(modalias, chr ? chr + 1 : str, len); 764 765 return true; 766 } 767 768 /** 769 * acpi_set_modalias - Set modalias using "compatible" property or supplied ID 770 * @adev: ACPI device object to match 771 * @default_id: ID string to use as default if no compatible string found 772 * @modalias: Pointer to buffer that modalias value will be copied into 773 * @len: Length of modalias buffer 774 * 775 * This is a counterpart of of_alias_from_compatible() for struct acpi_device 776 * objects. If there is a compatible string for @adev, it will be copied to 777 * @modalias with the vendor prefix stripped; otherwise, @default_id will be 778 * used. 779 */ 780 void acpi_set_modalias(struct acpi_device *adev, const char *default_id, 781 char *modalias, size_t len) 782 { 783 if (!acpi_of_modalias(adev, modalias, len)) 784 strscpy(modalias, default_id, len); 785 } 786 EXPORT_SYMBOL_GPL(acpi_set_modalias); 787 788 static bool __acpi_match_device_cls(const struct acpi_device_id *id, 789 struct acpi_hardware_id *hwid) 790 { 791 int i, msk, byte_shift; 792 char buf[3]; 793 794 if (!id->cls) 795 return false; 796 797 /* Apply class-code bitmask, before checking each class-code byte */ 798 for (i = 1; i <= 3; i++) { 799 byte_shift = 8 * (3 - i); 800 msk = (id->cls_msk >> byte_shift) & 0xFF; 801 if (!msk) 802 continue; 803 804 sprintf(buf, "%02x", (id->cls >> byte_shift) & msk); 805 if (strncmp(buf, &hwid->id[(i - 1) * 2], 2)) 806 return false; 807 } 808 return true; 809 } 810 811 static bool __acpi_match_device(const struct acpi_device *device, 812 const struct acpi_device_id *acpi_ids, 813 const struct of_device_id *of_ids, 814 const struct acpi_device_id **acpi_id, 815 const struct of_device_id **of_id) 816 { 817 const struct acpi_device_id *id; 818 struct acpi_hardware_id *hwid; 819 820 /* 821 * If the device is not present, it is unnecessary to load device 822 * driver for it. 823 */ 824 if (!device || !device->status.present) 825 return false; 826 827 list_for_each_entry(hwid, &device->pnp.ids, list) { 828 /* First, check the ACPI/PNP IDs provided by the caller. */ 829 if (acpi_ids) { 830 for (id = acpi_ids; id->id[0] || id->cls; id++) { 831 if (id->id[0] && !strcmp((char *)id->id, hwid->id)) 832 goto out_acpi_match; 833 if (id->cls && __acpi_match_device_cls(id, hwid)) 834 goto out_acpi_match; 835 } 836 } 837 838 /* 839 * Next, check ACPI_DT_NAMESPACE_HID and try to match the 840 * "compatible" property if found. 841 */ 842 if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id)) 843 return acpi_of_match_device(device, of_ids, of_id); 844 } 845 return false; 846 847 out_acpi_match: 848 if (acpi_id) 849 *acpi_id = id; 850 return true; 851 } 852 853 /** 854 * acpi_match_acpi_device - Match an ACPI device against a given list of ACPI IDs 855 * @ids: Array of struct acpi_device_id objects to match against. 856 * @adev: The ACPI device pointer to match. 857 * 858 * Match the ACPI device @adev against a given list of ACPI IDs @ids. 859 * 860 * Return: 861 * a pointer to the first matching ACPI ID on success or %NULL on failure. 862 */ 863 const struct acpi_device_id *acpi_match_acpi_device(const struct acpi_device_id *ids, 864 const struct acpi_device *adev) 865 { 866 const struct acpi_device_id *id = NULL; 867 868 __acpi_match_device(adev, ids, NULL, &id, NULL); 869 return id; 870 } 871 EXPORT_SYMBOL_GPL(acpi_match_acpi_device); 872 873 /** 874 * acpi_match_device - Match a struct device against a given list of ACPI IDs 875 * @ids: Array of struct acpi_device_id object to match against. 876 * @dev: The device structure to match. 877 * 878 * Check if @dev has a valid ACPI handle and if there is a struct acpi_device 879 * object for that handle and use that object to match against a given list of 880 * device IDs. 881 * 882 * Return a pointer to the first matching ID on success or %NULL on failure. 883 */ 884 const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids, 885 const struct device *dev) 886 { 887 return acpi_match_acpi_device(ids, acpi_companion_match(dev)); 888 } 889 EXPORT_SYMBOL_GPL(acpi_match_device); 890 891 static const void *acpi_of_device_get_match_data(const struct device *dev) 892 { 893 struct acpi_device *adev = ACPI_COMPANION(dev); 894 const struct of_device_id *match = NULL; 895 896 if (!acpi_of_match_device(adev, dev->driver->of_match_table, &match)) 897 return NULL; 898 899 return match->data; 900 } 901 902 const void *acpi_device_get_match_data(const struct device *dev) 903 { 904 const struct acpi_device_id *acpi_ids = dev->driver->acpi_match_table; 905 const struct acpi_device_id *match; 906 907 if (!acpi_ids) 908 return acpi_of_device_get_match_data(dev); 909 910 match = acpi_match_device(acpi_ids, dev); 911 if (!match) 912 return NULL; 913 914 return (const void *)match->driver_data; 915 } 916 EXPORT_SYMBOL_GPL(acpi_device_get_match_data); 917 918 int acpi_match_device_ids(struct acpi_device *device, 919 const struct acpi_device_id *ids) 920 { 921 return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT; 922 } 923 EXPORT_SYMBOL(acpi_match_device_ids); 924 925 bool acpi_driver_match_device(struct device *dev, 926 const struct device_driver *drv) 927 { 928 const struct acpi_device_id *acpi_ids = drv->acpi_match_table; 929 const struct of_device_id *of_ids = drv->of_match_table; 930 931 if (!acpi_ids) 932 return acpi_of_match_device(ACPI_COMPANION(dev), of_ids, NULL); 933 934 return __acpi_match_device(acpi_companion_match(dev), acpi_ids, of_ids, NULL, NULL); 935 } 936 EXPORT_SYMBOL_GPL(acpi_driver_match_device); 937 938 /* -------------------------------------------------------------------------- 939 ACPI Driver Management 940 -------------------------------------------------------------------------- */ 941 942 /** 943 * acpi_bus_register_driver - register a driver with the ACPI bus 944 * @driver: driver being registered 945 * 946 * Registers a driver with the ACPI bus. Searches the namespace for all 947 * devices that match the driver's criteria and binds. Returns zero for 948 * success or a negative error status for failure. 949 */ 950 int acpi_bus_register_driver(struct acpi_driver *driver) 951 { 952 if (acpi_disabled) 953 return -ENODEV; 954 driver->drv.name = driver->name; 955 driver->drv.bus = &acpi_bus_type; 956 driver->drv.owner = driver->owner; 957 958 return driver_register(&driver->drv); 959 } 960 961 EXPORT_SYMBOL(acpi_bus_register_driver); 962 963 /** 964 * acpi_bus_unregister_driver - unregisters a driver with the ACPI bus 965 * @driver: driver to unregister 966 * 967 * Unregisters a driver with the ACPI bus. Searches the namespace for all 968 * devices that match the driver's criteria and unbinds. 969 */ 970 void acpi_bus_unregister_driver(struct acpi_driver *driver) 971 { 972 driver_unregister(&driver->drv); 973 } 974 975 EXPORT_SYMBOL(acpi_bus_unregister_driver); 976 977 /* -------------------------------------------------------------------------- 978 ACPI Bus operations 979 -------------------------------------------------------------------------- */ 980 981 static int acpi_bus_match(struct device *dev, struct device_driver *drv) 982 { 983 struct acpi_device *acpi_dev = to_acpi_device(dev); 984 struct acpi_driver *acpi_drv = to_acpi_driver(drv); 985 986 return acpi_dev->flags.match_driver 987 && !acpi_match_device_ids(acpi_dev, acpi_drv->ids); 988 } 989 990 static int acpi_device_uevent(const struct device *dev, struct kobj_uevent_env *env) 991 { 992 return __acpi_device_uevent_modalias(to_acpi_device(dev), env); 993 } 994 995 static int acpi_device_probe(struct device *dev) 996 { 997 struct acpi_device *acpi_dev = to_acpi_device(dev); 998 struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); 999 int ret; 1000 1001 if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev)) 1002 return -EINVAL; 1003 1004 if (!acpi_drv->ops.add) 1005 return -ENOSYS; 1006 1007 ret = acpi_drv->ops.add(acpi_dev); 1008 if (ret) 1009 return ret; 1010 1011 pr_debug("Driver [%s] successfully bound to device [%s]\n", 1012 acpi_drv->name, acpi_dev->pnp.bus_id); 1013 1014 if (acpi_drv->ops.notify) { 1015 ret = acpi_device_install_notify_handler(acpi_dev, acpi_drv); 1016 if (ret) { 1017 if (acpi_drv->ops.remove) 1018 acpi_drv->ops.remove(acpi_dev); 1019 1020 acpi_dev->driver_data = NULL; 1021 return ret; 1022 } 1023 } 1024 1025 pr_debug("Found driver [%s] for device [%s]\n", acpi_drv->name, 1026 acpi_dev->pnp.bus_id); 1027 1028 get_device(dev); 1029 return 0; 1030 } 1031 1032 static void acpi_device_remove(struct device *dev) 1033 { 1034 struct acpi_device *acpi_dev = to_acpi_device(dev); 1035 struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); 1036 1037 if (acpi_drv->ops.notify) 1038 acpi_device_remove_notify_handler(acpi_dev, acpi_drv); 1039 1040 if (acpi_drv->ops.remove) 1041 acpi_drv->ops.remove(acpi_dev); 1042 1043 acpi_dev->driver_data = NULL; 1044 1045 put_device(dev); 1046 } 1047 1048 struct bus_type acpi_bus_type = { 1049 .name = "acpi", 1050 .match = acpi_bus_match, 1051 .probe = acpi_device_probe, 1052 .remove = acpi_device_remove, 1053 .uevent = acpi_device_uevent, 1054 }; 1055 1056 int acpi_bus_for_each_dev(int (*fn)(struct device *, void *), void *data) 1057 { 1058 return bus_for_each_dev(&acpi_bus_type, NULL, data, fn); 1059 } 1060 EXPORT_SYMBOL_GPL(acpi_bus_for_each_dev); 1061 1062 struct acpi_dev_walk_context { 1063 int (*fn)(struct acpi_device *, void *); 1064 void *data; 1065 }; 1066 1067 static int acpi_dev_for_one_check(struct device *dev, void *context) 1068 { 1069 struct acpi_dev_walk_context *adwc = context; 1070 1071 if (dev->bus != &acpi_bus_type) 1072 return 0; 1073 1074 return adwc->fn(to_acpi_device(dev), adwc->data); 1075 } 1076 EXPORT_SYMBOL_GPL(acpi_dev_for_each_child); 1077 1078 int acpi_dev_for_each_child(struct acpi_device *adev, 1079 int (*fn)(struct acpi_device *, void *), void *data) 1080 { 1081 struct acpi_dev_walk_context adwc = { 1082 .fn = fn, 1083 .data = data, 1084 }; 1085 1086 return device_for_each_child(&adev->dev, &adwc, acpi_dev_for_one_check); 1087 } 1088 1089 int acpi_dev_for_each_child_reverse(struct acpi_device *adev, 1090 int (*fn)(struct acpi_device *, void *), 1091 void *data) 1092 { 1093 struct acpi_dev_walk_context adwc = { 1094 .fn = fn, 1095 .data = data, 1096 }; 1097 1098 return device_for_each_child_reverse(&adev->dev, &adwc, acpi_dev_for_one_check); 1099 } 1100 1101 /* -------------------------------------------------------------------------- 1102 Initialization/Cleanup 1103 -------------------------------------------------------------------------- */ 1104 1105 static int __init acpi_bus_init_irq(void) 1106 { 1107 acpi_status status; 1108 char *message = NULL; 1109 1110 1111 /* 1112 * Let the system know what interrupt model we are using by 1113 * evaluating the \_PIC object, if exists. 1114 */ 1115 1116 switch (acpi_irq_model) { 1117 case ACPI_IRQ_MODEL_PIC: 1118 message = "PIC"; 1119 break; 1120 case ACPI_IRQ_MODEL_IOAPIC: 1121 message = "IOAPIC"; 1122 break; 1123 case ACPI_IRQ_MODEL_IOSAPIC: 1124 message = "IOSAPIC"; 1125 break; 1126 case ACPI_IRQ_MODEL_GIC: 1127 message = "GIC"; 1128 break; 1129 case ACPI_IRQ_MODEL_PLATFORM: 1130 message = "platform specific model"; 1131 break; 1132 case ACPI_IRQ_MODEL_LPIC: 1133 message = "LPIC"; 1134 break; 1135 default: 1136 pr_info("Unknown interrupt routing model\n"); 1137 return -ENODEV; 1138 } 1139 1140 pr_info("Using %s for interrupt routing\n", message); 1141 1142 status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model); 1143 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 1144 pr_info("_PIC evaluation failed: %s\n", acpi_format_exception(status)); 1145 return -ENODEV; 1146 } 1147 1148 return 0; 1149 } 1150 1151 /** 1152 * acpi_early_init - Initialize ACPICA and populate the ACPI namespace. 1153 * 1154 * The ACPI tables are accessible after this, but the handling of events has not 1155 * been initialized and the global lock is not available yet, so AML should not 1156 * be executed at this point. 1157 * 1158 * Doing this before switching the EFI runtime services to virtual mode allows 1159 * the EfiBootServices memory to be freed slightly earlier on boot. 1160 */ 1161 void __init acpi_early_init(void) 1162 { 1163 acpi_status status; 1164 1165 if (acpi_disabled) 1166 return; 1167 1168 pr_info("Core revision %08x\n", ACPI_CA_VERSION); 1169 1170 /* enable workarounds, unless strict ACPI spec. compliance */ 1171 if (!acpi_strict) 1172 acpi_gbl_enable_interpreter_slack = TRUE; 1173 1174 acpi_permanent_mmap = true; 1175 1176 #ifdef CONFIG_X86 1177 /* 1178 * If the machine falls into the DMI check table, 1179 * DSDT will be copied to memory. 1180 * Note that calling dmi_check_system() here on other architectures 1181 * would not be OK because only x86 initializes dmi early enough. 1182 * Thankfully only x86 systems need such quirks for now. 1183 */ 1184 dmi_check_system(dsdt_dmi_table); 1185 #endif 1186 1187 status = acpi_reallocate_root_table(); 1188 if (ACPI_FAILURE(status)) { 1189 pr_err("Unable to reallocate ACPI tables\n"); 1190 goto error0; 1191 } 1192 1193 status = acpi_initialize_subsystem(); 1194 if (ACPI_FAILURE(status)) { 1195 pr_err("Unable to initialize the ACPI Interpreter\n"); 1196 goto error0; 1197 } 1198 1199 #ifdef CONFIG_X86 1200 if (!acpi_ioapic) { 1201 /* compatible (0) means level (3) */ 1202 if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) { 1203 acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK; 1204 acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL; 1205 } 1206 /* Set PIC-mode SCI trigger type */ 1207 acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt, 1208 (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2); 1209 } else { 1210 /* 1211 * now that acpi_gbl_FADT is initialized, 1212 * update it with result from INT_SRC_OVR parsing 1213 */ 1214 acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi; 1215 } 1216 #endif 1217 return; 1218 1219 error0: 1220 disable_acpi(); 1221 } 1222 1223 /** 1224 * acpi_subsystem_init - Finalize the early initialization of ACPI. 1225 * 1226 * Switch over the platform to the ACPI mode (if possible). 1227 * 1228 * Doing this too early is generally unsafe, but at the same time it needs to be 1229 * done before all things that really depend on ACPI. The right spot appears to 1230 * be before finalizing the EFI initialization. 1231 */ 1232 void __init acpi_subsystem_init(void) 1233 { 1234 acpi_status status; 1235 1236 if (acpi_disabled) 1237 return; 1238 1239 status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE); 1240 if (ACPI_FAILURE(status)) { 1241 pr_err("Unable to enable ACPI\n"); 1242 disable_acpi(); 1243 } else { 1244 /* 1245 * If the system is using ACPI then we can be reasonably 1246 * confident that any regulators are managed by the firmware 1247 * so tell the regulator core it has everything it needs to 1248 * know. 1249 */ 1250 regulator_has_full_constraints(); 1251 } 1252 } 1253 1254 static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context) 1255 { 1256 if (event == ACPI_TABLE_EVENT_LOAD) 1257 acpi_scan_table_notify(); 1258 1259 return acpi_sysfs_table_handler(event, table, context); 1260 } 1261 1262 static int __init acpi_bus_init(void) 1263 { 1264 int result; 1265 acpi_status status; 1266 1267 acpi_os_initialize1(); 1268 1269 status = acpi_load_tables(); 1270 if (ACPI_FAILURE(status)) { 1271 pr_err("Unable to load the System Description Tables\n"); 1272 goto error1; 1273 } 1274 1275 /* 1276 * ACPI 2.0 requires the EC driver to be loaded and work before the EC 1277 * device is found in the namespace. 1278 * 1279 * This is accomplished by looking for the ECDT table and getting the EC 1280 * parameters out of that. 1281 * 1282 * Do that before calling acpi_initialize_objects() which may trigger EC 1283 * address space accesses. 1284 */ 1285 acpi_ec_ecdt_probe(); 1286 1287 status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE); 1288 if (ACPI_FAILURE(status)) { 1289 pr_err("Unable to start the ACPI Interpreter\n"); 1290 goto error1; 1291 } 1292 1293 status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION); 1294 if (ACPI_FAILURE(status)) { 1295 pr_err("Unable to initialize ACPI objects\n"); 1296 goto error1; 1297 } 1298 1299 /* Set capability bits for _OSC under processor scope */ 1300 acpi_early_processor_osc(); 1301 1302 /* 1303 * _OSC method may exist in module level code, 1304 * so it must be run after ACPI_FULL_INITIALIZATION 1305 */ 1306 acpi_bus_osc_negotiate_platform_control(); 1307 acpi_bus_osc_negotiate_usb_control(); 1308 1309 /* 1310 * _PDC control method may load dynamic SSDT tables, 1311 * and we need to install the table handler before that. 1312 */ 1313 status = acpi_install_table_handler(acpi_bus_table_handler, NULL); 1314 1315 acpi_sysfs_init(); 1316 1317 acpi_early_processor_set_pdc(); 1318 1319 /* 1320 * Maybe EC region is required at bus_scan/acpi_get_devices. So it 1321 * is necessary to enable it as early as possible. 1322 */ 1323 acpi_ec_dsdt_probe(); 1324 1325 pr_info("Interpreter enabled\n"); 1326 1327 /* Initialize sleep structures */ 1328 acpi_sleep_init(); 1329 1330 /* 1331 * Get the system interrupt model and evaluate \_PIC. 1332 */ 1333 result = acpi_bus_init_irq(); 1334 if (result) 1335 goto error1; 1336 1337 /* 1338 * Register the for all standard device notifications. 1339 */ 1340 status = 1341 acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY, 1342 &acpi_bus_notify, NULL); 1343 if (ACPI_FAILURE(status)) { 1344 pr_err("Unable to register for system notifications\n"); 1345 goto error1; 1346 } 1347 1348 /* 1349 * Create the top ACPI proc directory 1350 */ 1351 acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL); 1352 1353 result = bus_register(&acpi_bus_type); 1354 if (!result) 1355 return 0; 1356 1357 /* Mimic structured exception handling */ 1358 error1: 1359 acpi_terminate(); 1360 return -ENODEV; 1361 } 1362 1363 struct kobject *acpi_kobj; 1364 EXPORT_SYMBOL_GPL(acpi_kobj); 1365 1366 static int __init acpi_init(void) 1367 { 1368 int result; 1369 1370 if (acpi_disabled) { 1371 pr_info("Interpreter disabled.\n"); 1372 return -ENODEV; 1373 } 1374 1375 acpi_kobj = kobject_create_and_add("acpi", firmware_kobj); 1376 if (!acpi_kobj) 1377 pr_debug("%s: kset create error\n", __func__); 1378 1379 init_prmt(); 1380 acpi_init_pcc(); 1381 result = acpi_bus_init(); 1382 if (result) { 1383 kobject_put(acpi_kobj); 1384 disable_acpi(); 1385 return result; 1386 } 1387 acpi_init_ffh(); 1388 1389 pci_mmcfg_late_init(); 1390 acpi_arm_init(); 1391 acpi_viot_early_init(); 1392 acpi_hest_init(); 1393 acpi_ghes_init(); 1394 acpi_scan_init(); 1395 acpi_ec_init(); 1396 acpi_debugfs_init(); 1397 acpi_sleep_proc_init(); 1398 acpi_wakeup_device_init(); 1399 acpi_debugger_init(); 1400 acpi_setup_sb_notify_handler(); 1401 acpi_viot_init(); 1402 return 0; 1403 } 1404 1405 subsys_initcall(acpi_init); 1406