1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi_bus.c - ACPI Bus Driver ($Revision: 80 $) 4 * 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 */ 7 8 #define pr_fmt(fmt) "ACPI: " fmt 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/ioport.h> 13 #include <linux/kernel.h> 14 #include <linux/list.h> 15 #include <linux/sched.h> 16 #include <linux/pm.h> 17 #include <linux/device.h> 18 #include <linux/proc_fs.h> 19 #include <linux/acpi.h> 20 #include <linux/slab.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/workqueue.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #ifdef CONFIG_X86 26 #include <asm/mpspec.h> 27 #include <linux/dmi.h> 28 #endif 29 #include <linux/acpi_agdi.h> 30 #include <linux/acpi_apmt.h> 31 #include <linux/acpi_iort.h> 32 #include <linux/acpi_viot.h> 33 #include <linux/pci.h> 34 #include <acpi/apei.h> 35 #include <linux/suspend.h> 36 #include <linux/prmt.h> 37 38 #include "internal.h" 39 40 struct acpi_device *acpi_root; 41 struct proc_dir_entry *acpi_root_dir; 42 EXPORT_SYMBOL(acpi_root_dir); 43 44 #ifdef CONFIG_X86 45 #ifdef CONFIG_ACPI_CUSTOM_DSDT 46 static inline int set_copy_dsdt(const struct dmi_system_id *id) 47 { 48 return 0; 49 } 50 #else 51 static int set_copy_dsdt(const struct dmi_system_id *id) 52 { 53 pr_notice("%s detected - force copy of DSDT to local memory\n", id->ident); 54 acpi_gbl_copy_dsdt_locally = 1; 55 return 0; 56 } 57 #endif 58 59 static const struct dmi_system_id dsdt_dmi_table[] __initconst = { 60 /* 61 * Invoke DSDT corruption work-around on all Toshiba Satellite. 62 * https://bugzilla.kernel.org/show_bug.cgi?id=14679 63 */ 64 { 65 .callback = set_copy_dsdt, 66 .ident = "TOSHIBA Satellite", 67 .matches = { 68 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 69 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"), 70 }, 71 }, 72 {} 73 }; 74 #endif 75 76 /* -------------------------------------------------------------------------- 77 Device Management 78 -------------------------------------------------------------------------- */ 79 80 acpi_status acpi_bus_get_status_handle(acpi_handle handle, 81 unsigned long long *sta) 82 { 83 acpi_status status; 84 85 status = acpi_evaluate_integer(handle, "_STA", NULL, sta); 86 if (ACPI_SUCCESS(status)) 87 return AE_OK; 88 89 if (status == AE_NOT_FOUND) { 90 *sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED | 91 ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING; 92 return AE_OK; 93 } 94 return status; 95 } 96 EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle); 97 98 int acpi_bus_get_status(struct acpi_device *device) 99 { 100 acpi_status status; 101 unsigned long long sta; 102 103 if (acpi_device_override_status(device, &sta)) { 104 acpi_set_device_status(device, sta); 105 return 0; 106 } 107 108 /* Battery devices must have their deps met before calling _STA */ 109 if (acpi_device_is_battery(device) && device->dep_unmet) { 110 acpi_set_device_status(device, 0); 111 return 0; 112 } 113 114 status = acpi_bus_get_status_handle(device->handle, &sta); 115 if (ACPI_FAILURE(status)) 116 return -ENODEV; 117 118 acpi_set_device_status(device, sta); 119 120 if (device->status.functional && !device->status.present) { 121 pr_debug("Device [%s] status [%08x]: functional but not present\n", 122 device->pnp.bus_id, (u32)sta); 123 } 124 125 pr_debug("Device [%s] status [%08x]\n", device->pnp.bus_id, (u32)sta); 126 return 0; 127 } 128 EXPORT_SYMBOL(acpi_bus_get_status); 129 130 void acpi_bus_private_data_handler(acpi_handle handle, 131 void *context) 132 { 133 return; 134 } 135 EXPORT_SYMBOL(acpi_bus_private_data_handler); 136 137 int acpi_bus_attach_private_data(acpi_handle handle, void *data) 138 { 139 acpi_status status; 140 141 status = acpi_attach_data(handle, 142 acpi_bus_private_data_handler, data); 143 if (ACPI_FAILURE(status)) { 144 acpi_handle_debug(handle, "Error attaching device data\n"); 145 return -ENODEV; 146 } 147 148 return 0; 149 } 150 EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data); 151 152 int acpi_bus_get_private_data(acpi_handle handle, void **data) 153 { 154 acpi_status status; 155 156 if (!data) 157 return -EINVAL; 158 159 status = acpi_get_data(handle, acpi_bus_private_data_handler, data); 160 if (ACPI_FAILURE(status)) { 161 acpi_handle_debug(handle, "No context for object\n"); 162 return -ENODEV; 163 } 164 165 return 0; 166 } 167 EXPORT_SYMBOL_GPL(acpi_bus_get_private_data); 168 169 void acpi_bus_detach_private_data(acpi_handle handle) 170 { 171 acpi_detach_data(handle, acpi_bus_private_data_handler); 172 } 173 EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data); 174 175 static void acpi_print_osc_error(acpi_handle handle, 176 struct acpi_osc_context *context, char *error) 177 { 178 int i; 179 180 acpi_handle_debug(handle, "(%s): %s\n", context->uuid_str, error); 181 182 pr_debug("_OSC request data:"); 183 for (i = 0; i < context->cap.length; i += sizeof(u32)) 184 pr_debug(" %x", *((u32 *)(context->cap.pointer + i))); 185 186 pr_debug("\n"); 187 } 188 189 acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context) 190 { 191 acpi_status status; 192 struct acpi_object_list input; 193 union acpi_object in_params[4]; 194 union acpi_object *out_obj; 195 guid_t guid; 196 u32 errors; 197 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; 198 199 if (!context) 200 return AE_ERROR; 201 if (guid_parse(context->uuid_str, &guid)) 202 return AE_ERROR; 203 context->ret.length = ACPI_ALLOCATE_BUFFER; 204 context->ret.pointer = NULL; 205 206 /* Setting up input parameters */ 207 input.count = 4; 208 input.pointer = in_params; 209 in_params[0].type = ACPI_TYPE_BUFFER; 210 in_params[0].buffer.length = 16; 211 in_params[0].buffer.pointer = (u8 *)&guid; 212 in_params[1].type = ACPI_TYPE_INTEGER; 213 in_params[1].integer.value = context->rev; 214 in_params[2].type = ACPI_TYPE_INTEGER; 215 in_params[2].integer.value = context->cap.length/sizeof(u32); 216 in_params[3].type = ACPI_TYPE_BUFFER; 217 in_params[3].buffer.length = context->cap.length; 218 in_params[3].buffer.pointer = context->cap.pointer; 219 220 status = acpi_evaluate_object(handle, "_OSC", &input, &output); 221 if (ACPI_FAILURE(status)) 222 return status; 223 224 if (!output.length) 225 return AE_NULL_OBJECT; 226 227 out_obj = output.pointer; 228 if (out_obj->type != ACPI_TYPE_BUFFER 229 || out_obj->buffer.length != context->cap.length) { 230 acpi_print_osc_error(handle, context, 231 "_OSC evaluation returned wrong type"); 232 status = AE_TYPE; 233 goto out_kfree; 234 } 235 /* Need to ignore the bit0 in result code */ 236 errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0); 237 if (errors) { 238 if (errors & OSC_REQUEST_ERROR) 239 acpi_print_osc_error(handle, context, 240 "_OSC request failed"); 241 if (errors & OSC_INVALID_UUID_ERROR) 242 acpi_print_osc_error(handle, context, 243 "_OSC invalid UUID"); 244 if (errors & OSC_INVALID_REVISION_ERROR) 245 acpi_print_osc_error(handle, context, 246 "_OSC invalid revision"); 247 if (errors & OSC_CAPABILITIES_MASK_ERROR) { 248 if (((u32 *)context->cap.pointer)[OSC_QUERY_DWORD] 249 & OSC_QUERY_ENABLE) 250 goto out_success; 251 status = AE_SUPPORT; 252 goto out_kfree; 253 } 254 status = AE_ERROR; 255 goto out_kfree; 256 } 257 out_success: 258 context->ret.length = out_obj->buffer.length; 259 context->ret.pointer = kmemdup(out_obj->buffer.pointer, 260 context->ret.length, GFP_KERNEL); 261 if (!context->ret.pointer) { 262 status = AE_NO_MEMORY; 263 goto out_kfree; 264 } 265 status = AE_OK; 266 267 out_kfree: 268 kfree(output.pointer); 269 return status; 270 } 271 EXPORT_SYMBOL(acpi_run_osc); 272 273 bool osc_sb_apei_support_acked; 274 275 /* 276 * ACPI 6.0 Section 8.4.4.2 Idle State Coordination 277 * OSPM supports platform coordinated low power idle(LPI) states 278 */ 279 bool osc_pc_lpi_support_confirmed; 280 EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed); 281 282 /* 283 * ACPI 6.2 Section 6.2.11.2 'Platform-Wide OSPM Capabilities': 284 * Starting with ACPI Specification 6.2, all _CPC registers can be in 285 * PCC, System Memory, System IO, or Functional Fixed Hardware address 286 * spaces. OSPM support for this more flexible register space scheme is 287 * indicated by the “Flexible Address Space for CPPC Registers” _OSC bit. 288 * 289 * Otherwise (cf ACPI 6.1, s8.4.7.1.1.X), _CPC registers must be in: 290 * - PCC or Functional Fixed Hardware address space if defined 291 * - SystemMemory address space (NULL register) if not defined 292 */ 293 bool osc_cpc_flexible_adr_space_confirmed; 294 EXPORT_SYMBOL_GPL(osc_cpc_flexible_adr_space_confirmed); 295 296 /* 297 * ACPI 6.4 Operating System Capabilities for USB. 298 */ 299 bool osc_sb_native_usb4_support_confirmed; 300 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_support_confirmed); 301 302 bool osc_sb_cppc2_support_acked; 303 304 static u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48"; 305 static void acpi_bus_osc_negotiate_platform_control(void) 306 { 307 u32 capbuf[2], *capbuf_ret; 308 struct acpi_osc_context context = { 309 .uuid_str = sb_uuid_str, 310 .rev = 1, 311 .cap.length = 8, 312 .cap.pointer = capbuf, 313 }; 314 acpi_handle handle; 315 316 capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE; 317 capbuf[OSC_SUPPORT_DWORD] = OSC_SB_PR3_SUPPORT; /* _PR3 is in use */ 318 if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR)) 319 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PAD_SUPPORT; 320 if (IS_ENABLED(CONFIG_ACPI_PROCESSOR)) 321 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PPC_OST_SUPPORT; 322 323 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT; 324 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT; 325 if (IS_ENABLED(CONFIG_ACPI_PRMT)) 326 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PRM_SUPPORT; 327 if (IS_ENABLED(CONFIG_ACPI_FFH)) 328 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FFH_OPR_SUPPORT; 329 330 #ifdef CONFIG_ARM64 331 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT; 332 #endif 333 #ifdef CONFIG_X86 334 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT; 335 #endif 336 337 #ifdef CONFIG_ACPI_CPPC_LIB 338 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT; 339 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT; 340 #endif 341 342 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_FLEXIBLE_ADR_SPACE; 343 344 if (IS_ENABLED(CONFIG_SCHED_MC_PRIO)) 345 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT; 346 347 if (IS_ENABLED(CONFIG_USB4)) 348 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_NATIVE_USB4_SUPPORT; 349 350 if (!ghes_disable) 351 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT; 352 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) 353 return; 354 355 if (ACPI_FAILURE(acpi_run_osc(handle, &context))) 356 return; 357 358 capbuf_ret = context.ret.pointer; 359 if (context.ret.length <= OSC_SUPPORT_DWORD) { 360 kfree(context.ret.pointer); 361 return; 362 } 363 364 /* 365 * Now run _OSC again with query flag clear and with the caps 366 * supported by both the OS and the platform. 367 */ 368 capbuf[OSC_QUERY_DWORD] = 0; 369 capbuf[OSC_SUPPORT_DWORD] = capbuf_ret[OSC_SUPPORT_DWORD]; 370 kfree(context.ret.pointer); 371 372 if (ACPI_FAILURE(acpi_run_osc(handle, &context))) 373 return; 374 375 capbuf_ret = context.ret.pointer; 376 if (context.ret.length > OSC_SUPPORT_DWORD) { 377 #ifdef CONFIG_ACPI_CPPC_LIB 378 osc_sb_cppc2_support_acked = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPCV2_SUPPORT; 379 #endif 380 381 osc_sb_apei_support_acked = 382 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_APEI_SUPPORT; 383 osc_pc_lpi_support_confirmed = 384 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_PCLPI_SUPPORT; 385 osc_sb_native_usb4_support_confirmed = 386 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_NATIVE_USB4_SUPPORT; 387 osc_cpc_flexible_adr_space_confirmed = 388 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPC_FLEXIBLE_ADR_SPACE; 389 } 390 391 kfree(context.ret.pointer); 392 } 393 394 /* 395 * Native control of USB4 capabilities. If any of the tunneling bits is 396 * set it means OS is in control and we use software based connection 397 * manager. 398 */ 399 u32 osc_sb_native_usb4_control; 400 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_control); 401 402 static void acpi_bus_decode_usb_osc(const char *msg, u32 bits) 403 { 404 pr_info("%s USB3%c DisplayPort%c PCIe%c XDomain%c\n", msg, 405 (bits & OSC_USB_USB3_TUNNELING) ? '+' : '-', 406 (bits & OSC_USB_DP_TUNNELING) ? '+' : '-', 407 (bits & OSC_USB_PCIE_TUNNELING) ? '+' : '-', 408 (bits & OSC_USB_XDOMAIN) ? '+' : '-'); 409 } 410 411 static u8 sb_usb_uuid_str[] = "23A0D13A-26AB-486C-9C5F-0FFA525A575A"; 412 static void acpi_bus_osc_negotiate_usb_control(void) 413 { 414 u32 capbuf[3]; 415 struct acpi_osc_context context = { 416 .uuid_str = sb_usb_uuid_str, 417 .rev = 1, 418 .cap.length = sizeof(capbuf), 419 .cap.pointer = capbuf, 420 }; 421 acpi_handle handle; 422 acpi_status status; 423 u32 control; 424 425 if (!osc_sb_native_usb4_support_confirmed) 426 return; 427 428 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) 429 return; 430 431 control = OSC_USB_USB3_TUNNELING | OSC_USB_DP_TUNNELING | 432 OSC_USB_PCIE_TUNNELING | OSC_USB_XDOMAIN; 433 434 capbuf[OSC_QUERY_DWORD] = 0; 435 capbuf[OSC_SUPPORT_DWORD] = 0; 436 capbuf[OSC_CONTROL_DWORD] = control; 437 438 status = acpi_run_osc(handle, &context); 439 if (ACPI_FAILURE(status)) 440 return; 441 442 if (context.ret.length != sizeof(capbuf)) { 443 pr_info("USB4 _OSC: returned invalid length buffer\n"); 444 goto out_free; 445 } 446 447 osc_sb_native_usb4_control = 448 control & acpi_osc_ctx_get_pci_control(&context); 449 450 acpi_bus_decode_usb_osc("USB4 _OSC: OS supports", control); 451 acpi_bus_decode_usb_osc("USB4 _OSC: OS controls", 452 osc_sb_native_usb4_control); 453 454 out_free: 455 kfree(context.ret.pointer); 456 } 457 458 /* -------------------------------------------------------------------------- 459 Notification Handling 460 -------------------------------------------------------------------------- */ 461 462 /** 463 * acpi_bus_notify - Global system-level (0x00-0x7F) notifications handler 464 * @handle: Target ACPI object. 465 * @type: Notification type. 466 * @data: Ignored. 467 * 468 * This only handles notifications related to device hotplug. 469 */ 470 static void acpi_bus_notify(acpi_handle handle, u32 type, void *data) 471 { 472 struct acpi_device *adev; 473 474 switch (type) { 475 case ACPI_NOTIFY_BUS_CHECK: 476 acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n"); 477 break; 478 479 case ACPI_NOTIFY_DEVICE_CHECK: 480 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n"); 481 break; 482 483 case ACPI_NOTIFY_DEVICE_WAKE: 484 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n"); 485 return; 486 487 case ACPI_NOTIFY_EJECT_REQUEST: 488 acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n"); 489 break; 490 491 case ACPI_NOTIFY_DEVICE_CHECK_LIGHT: 492 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n"); 493 /* TBD: Exactly what does 'light' mean? */ 494 return; 495 496 case ACPI_NOTIFY_FREQUENCY_MISMATCH: 497 acpi_handle_err(handle, "Device cannot be configured due " 498 "to a frequency mismatch\n"); 499 return; 500 501 case ACPI_NOTIFY_BUS_MODE_MISMATCH: 502 acpi_handle_err(handle, "Device cannot be configured due " 503 "to a bus mode mismatch\n"); 504 return; 505 506 case ACPI_NOTIFY_POWER_FAULT: 507 acpi_handle_err(handle, "Device has suffered a power fault\n"); 508 return; 509 510 default: 511 acpi_handle_debug(handle, "Unknown event type 0x%x\n", type); 512 return; 513 } 514 515 adev = acpi_get_acpi_dev(handle); 516 517 if (adev && ACPI_SUCCESS(acpi_hotplug_schedule(adev, type))) 518 return; 519 520 acpi_put_acpi_dev(adev); 521 522 acpi_evaluate_ost(handle, type, ACPI_OST_SC_NON_SPECIFIC_FAILURE, NULL); 523 } 524 525 static void acpi_notify_device(acpi_handle handle, u32 event, void *data) 526 { 527 struct acpi_device *device = data; 528 struct acpi_driver *acpi_drv = to_acpi_driver(device->dev.driver); 529 530 acpi_drv->ops.notify(device, event); 531 } 532 533 static void acpi_notify_device_fixed(void *data) 534 { 535 struct acpi_device *device = data; 536 537 /* Fixed hardware devices have no handles */ 538 acpi_notify_device(NULL, ACPI_FIXED_HARDWARE_EVENT, device); 539 } 540 541 static u32 acpi_device_fixed_event(void *data) 542 { 543 acpi_os_execute(OSL_NOTIFY_HANDLER, acpi_notify_device_fixed, data); 544 return ACPI_INTERRUPT_HANDLED; 545 } 546 547 static int acpi_device_install_notify_handler(struct acpi_device *device, 548 struct acpi_driver *acpi_drv) 549 { 550 acpi_status status; 551 552 if (device->device_type == ACPI_BUS_TYPE_POWER_BUTTON) { 553 status = 554 acpi_install_fixed_event_handler(ACPI_EVENT_POWER_BUTTON, 555 acpi_device_fixed_event, 556 device); 557 } else if (device->device_type == ACPI_BUS_TYPE_SLEEP_BUTTON) { 558 status = 559 acpi_install_fixed_event_handler(ACPI_EVENT_SLEEP_BUTTON, 560 acpi_device_fixed_event, 561 device); 562 } else { 563 u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ? 564 ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY; 565 566 status = acpi_install_notify_handler(device->handle, type, 567 acpi_notify_device, 568 device); 569 } 570 571 if (ACPI_FAILURE(status)) 572 return -EINVAL; 573 return 0; 574 } 575 576 static void acpi_device_remove_notify_handler(struct acpi_device *device, 577 struct acpi_driver *acpi_drv) 578 { 579 if (device->device_type == ACPI_BUS_TYPE_POWER_BUTTON) { 580 acpi_remove_fixed_event_handler(ACPI_EVENT_POWER_BUTTON, 581 acpi_device_fixed_event); 582 } else if (device->device_type == ACPI_BUS_TYPE_SLEEP_BUTTON) { 583 acpi_remove_fixed_event_handler(ACPI_EVENT_SLEEP_BUTTON, 584 acpi_device_fixed_event); 585 } else { 586 u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ? 587 ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY; 588 589 acpi_remove_notify_handler(device->handle, type, 590 acpi_notify_device); 591 } 592 acpi_os_wait_events_complete(); 593 } 594 595 /* Handle events targeting \_SB device (at present only graceful shutdown) */ 596 597 #define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81 598 #define ACPI_SB_INDICATE_INTERVAL 10000 599 600 static void sb_notify_work(struct work_struct *dummy) 601 { 602 acpi_handle sb_handle; 603 604 orderly_poweroff(true); 605 606 /* 607 * After initiating graceful shutdown, the ACPI spec requires OSPM 608 * to evaluate _OST method once every 10seconds to indicate that 609 * the shutdown is in progress 610 */ 611 acpi_get_handle(NULL, "\\_SB", &sb_handle); 612 while (1) { 613 pr_info("Graceful shutdown in progress.\n"); 614 acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN, 615 ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL); 616 msleep(ACPI_SB_INDICATE_INTERVAL); 617 } 618 } 619 620 static void acpi_sb_notify(acpi_handle handle, u32 event, void *data) 621 { 622 static DECLARE_WORK(acpi_sb_work, sb_notify_work); 623 624 if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) { 625 if (!work_busy(&acpi_sb_work)) 626 schedule_work(&acpi_sb_work); 627 } else { 628 pr_warn("event %x is not supported by \\_SB device\n", event); 629 } 630 } 631 632 static int __init acpi_setup_sb_notify_handler(void) 633 { 634 acpi_handle sb_handle; 635 636 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle))) 637 return -ENXIO; 638 639 if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY, 640 acpi_sb_notify, NULL))) 641 return -EINVAL; 642 643 return 0; 644 } 645 646 /* -------------------------------------------------------------------------- 647 Device Matching 648 -------------------------------------------------------------------------- */ 649 650 /** 651 * acpi_get_first_physical_node - Get first physical node of an ACPI device 652 * @adev: ACPI device in question 653 * 654 * Return: First physical node of ACPI device @adev 655 */ 656 struct device *acpi_get_first_physical_node(struct acpi_device *adev) 657 { 658 struct mutex *physical_node_lock = &adev->physical_node_lock; 659 struct device *phys_dev; 660 661 mutex_lock(physical_node_lock); 662 if (list_empty(&adev->physical_node_list)) { 663 phys_dev = NULL; 664 } else { 665 const struct acpi_device_physical_node *node; 666 667 node = list_first_entry(&adev->physical_node_list, 668 struct acpi_device_physical_node, node); 669 670 phys_dev = node->dev; 671 } 672 mutex_unlock(physical_node_lock); 673 return phys_dev; 674 } 675 EXPORT_SYMBOL_GPL(acpi_get_first_physical_node); 676 677 static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev, 678 const struct device *dev) 679 { 680 const struct device *phys_dev = acpi_get_first_physical_node(adev); 681 682 return phys_dev && phys_dev == dev ? adev : NULL; 683 } 684 685 /** 686 * acpi_device_is_first_physical_node - Is given dev first physical node 687 * @adev: ACPI companion device 688 * @dev: Physical device to check 689 * 690 * Function checks if given @dev is the first physical devices attached to 691 * the ACPI companion device. This distinction is needed in some cases 692 * where the same companion device is shared between many physical devices. 693 * 694 * Note that the caller have to provide valid @adev pointer. 695 */ 696 bool acpi_device_is_first_physical_node(struct acpi_device *adev, 697 const struct device *dev) 698 { 699 return !!acpi_primary_dev_companion(adev, dev); 700 } 701 702 /* 703 * acpi_companion_match() - Can we match via ACPI companion device 704 * @dev: Device in question 705 * 706 * Check if the given device has an ACPI companion and if that companion has 707 * a valid list of PNP IDs, and if the device is the first (primary) physical 708 * device associated with it. Return the companion pointer if that's the case 709 * or NULL otherwise. 710 * 711 * If multiple physical devices are attached to a single ACPI companion, we need 712 * to be careful. The usage scenario for this kind of relationship is that all 713 * of the physical devices in question use resources provided by the ACPI 714 * companion. A typical case is an MFD device where all the sub-devices share 715 * the parent's ACPI companion. In such cases we can only allow the primary 716 * (first) physical device to be matched with the help of the companion's PNP 717 * IDs. 718 * 719 * Additional physical devices sharing the ACPI companion can still use 720 * resources available from it but they will be matched normally using functions 721 * provided by their bus types (and analogously for their modalias). 722 */ 723 struct acpi_device *acpi_companion_match(const struct device *dev) 724 { 725 struct acpi_device *adev; 726 727 adev = ACPI_COMPANION(dev); 728 if (!adev) 729 return NULL; 730 731 if (list_empty(&adev->pnp.ids)) 732 return NULL; 733 734 return acpi_primary_dev_companion(adev, dev); 735 } 736 737 /** 738 * acpi_of_match_device - Match device object using the "compatible" property. 739 * @adev: ACPI device object to match. 740 * @of_match_table: List of device IDs to match against. 741 * @of_id: OF ID if matched 742 * 743 * If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of 744 * identifiers and a _DSD object with the "compatible" property, use that 745 * property to match against the given list of identifiers. 746 */ 747 static bool acpi_of_match_device(struct acpi_device *adev, 748 const struct of_device_id *of_match_table, 749 const struct of_device_id **of_id) 750 { 751 const union acpi_object *of_compatible, *obj; 752 int i, nval; 753 754 if (!adev) 755 return false; 756 757 of_compatible = adev->data.of_compatible; 758 if (!of_match_table || !of_compatible) 759 return false; 760 761 if (of_compatible->type == ACPI_TYPE_PACKAGE) { 762 nval = of_compatible->package.count; 763 obj = of_compatible->package.elements; 764 } else { /* Must be ACPI_TYPE_STRING. */ 765 nval = 1; 766 obj = of_compatible; 767 } 768 /* Now we can look for the driver DT compatible strings */ 769 for (i = 0; i < nval; i++, obj++) { 770 const struct of_device_id *id; 771 772 for (id = of_match_table; id->compatible[0]; id++) 773 if (!strcasecmp(obj->string.pointer, id->compatible)) { 774 if (of_id) 775 *of_id = id; 776 return true; 777 } 778 } 779 780 return false; 781 } 782 783 static bool acpi_of_modalias(struct acpi_device *adev, 784 char *modalias, size_t len) 785 { 786 const union acpi_object *of_compatible; 787 const union acpi_object *obj; 788 const char *str, *chr; 789 790 of_compatible = adev->data.of_compatible; 791 if (!of_compatible) 792 return false; 793 794 if (of_compatible->type == ACPI_TYPE_PACKAGE) 795 obj = of_compatible->package.elements; 796 else /* Must be ACPI_TYPE_STRING. */ 797 obj = of_compatible; 798 799 str = obj->string.pointer; 800 chr = strchr(str, ','); 801 strscpy(modalias, chr ? chr + 1 : str, len); 802 803 return true; 804 } 805 806 /** 807 * acpi_set_modalias - Set modalias using "compatible" property or supplied ID 808 * @adev: ACPI device object to match 809 * @default_id: ID string to use as default if no compatible string found 810 * @modalias: Pointer to buffer that modalias value will be copied into 811 * @len: Length of modalias buffer 812 * 813 * This is a counterpart of of_alias_from_compatible() for struct acpi_device 814 * objects. If there is a compatible string for @adev, it will be copied to 815 * @modalias with the vendor prefix stripped; otherwise, @default_id will be 816 * used. 817 */ 818 void acpi_set_modalias(struct acpi_device *adev, const char *default_id, 819 char *modalias, size_t len) 820 { 821 if (!acpi_of_modalias(adev, modalias, len)) 822 strscpy(modalias, default_id, len); 823 } 824 EXPORT_SYMBOL_GPL(acpi_set_modalias); 825 826 static bool __acpi_match_device_cls(const struct acpi_device_id *id, 827 struct acpi_hardware_id *hwid) 828 { 829 int i, msk, byte_shift; 830 char buf[3]; 831 832 if (!id->cls) 833 return false; 834 835 /* Apply class-code bitmask, before checking each class-code byte */ 836 for (i = 1; i <= 3; i++) { 837 byte_shift = 8 * (3 - i); 838 msk = (id->cls_msk >> byte_shift) & 0xFF; 839 if (!msk) 840 continue; 841 842 sprintf(buf, "%02x", (id->cls >> byte_shift) & msk); 843 if (strncmp(buf, &hwid->id[(i - 1) * 2], 2)) 844 return false; 845 } 846 return true; 847 } 848 849 static bool __acpi_match_device(struct acpi_device *device, 850 const struct acpi_device_id *acpi_ids, 851 const struct of_device_id *of_ids, 852 const struct acpi_device_id **acpi_id, 853 const struct of_device_id **of_id) 854 { 855 const struct acpi_device_id *id; 856 struct acpi_hardware_id *hwid; 857 858 /* 859 * If the device is not present, it is unnecessary to load device 860 * driver for it. 861 */ 862 if (!device || !device->status.present) 863 return false; 864 865 list_for_each_entry(hwid, &device->pnp.ids, list) { 866 /* First, check the ACPI/PNP IDs provided by the caller. */ 867 if (acpi_ids) { 868 for (id = acpi_ids; id->id[0] || id->cls; id++) { 869 if (id->id[0] && !strcmp((char *)id->id, hwid->id)) 870 goto out_acpi_match; 871 if (id->cls && __acpi_match_device_cls(id, hwid)) 872 goto out_acpi_match; 873 } 874 } 875 876 /* 877 * Next, check ACPI_DT_NAMESPACE_HID and try to match the 878 * "compatible" property if found. 879 */ 880 if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id)) 881 return acpi_of_match_device(device, of_ids, of_id); 882 } 883 return false; 884 885 out_acpi_match: 886 if (acpi_id) 887 *acpi_id = id; 888 return true; 889 } 890 891 /** 892 * acpi_match_device - Match a struct device against a given list of ACPI IDs 893 * @ids: Array of struct acpi_device_id object to match against. 894 * @dev: The device structure to match. 895 * 896 * Check if @dev has a valid ACPI handle and if there is a struct acpi_device 897 * object for that handle and use that object to match against a given list of 898 * device IDs. 899 * 900 * Return a pointer to the first matching ID on success or %NULL on failure. 901 */ 902 const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids, 903 const struct device *dev) 904 { 905 const struct acpi_device_id *id = NULL; 906 907 __acpi_match_device(acpi_companion_match(dev), ids, NULL, &id, NULL); 908 return id; 909 } 910 EXPORT_SYMBOL_GPL(acpi_match_device); 911 912 static const void *acpi_of_device_get_match_data(const struct device *dev) 913 { 914 struct acpi_device *adev = ACPI_COMPANION(dev); 915 const struct of_device_id *match = NULL; 916 917 if (!acpi_of_match_device(adev, dev->driver->of_match_table, &match)) 918 return NULL; 919 920 return match->data; 921 } 922 923 const void *acpi_device_get_match_data(const struct device *dev) 924 { 925 const struct acpi_device_id *acpi_ids = dev->driver->acpi_match_table; 926 const struct acpi_device_id *match; 927 928 if (!acpi_ids) 929 return acpi_of_device_get_match_data(dev); 930 931 match = acpi_match_device(acpi_ids, dev); 932 if (!match) 933 return NULL; 934 935 return (const void *)match->driver_data; 936 } 937 EXPORT_SYMBOL_GPL(acpi_device_get_match_data); 938 939 int acpi_match_device_ids(struct acpi_device *device, 940 const struct acpi_device_id *ids) 941 { 942 return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT; 943 } 944 EXPORT_SYMBOL(acpi_match_device_ids); 945 946 bool acpi_driver_match_device(struct device *dev, 947 const struct device_driver *drv) 948 { 949 const struct acpi_device_id *acpi_ids = drv->acpi_match_table; 950 const struct of_device_id *of_ids = drv->of_match_table; 951 952 if (!acpi_ids) 953 return acpi_of_match_device(ACPI_COMPANION(dev), of_ids, NULL); 954 955 return __acpi_match_device(acpi_companion_match(dev), acpi_ids, of_ids, NULL, NULL); 956 } 957 EXPORT_SYMBOL_GPL(acpi_driver_match_device); 958 959 /* -------------------------------------------------------------------------- 960 ACPI Driver Management 961 -------------------------------------------------------------------------- */ 962 963 /** 964 * acpi_bus_register_driver - register a driver with the ACPI bus 965 * @driver: driver being registered 966 * 967 * Registers a driver with the ACPI bus. Searches the namespace for all 968 * devices that match the driver's criteria and binds. Returns zero for 969 * success or a negative error status for failure. 970 */ 971 int acpi_bus_register_driver(struct acpi_driver *driver) 972 { 973 if (acpi_disabled) 974 return -ENODEV; 975 driver->drv.name = driver->name; 976 driver->drv.bus = &acpi_bus_type; 977 driver->drv.owner = driver->owner; 978 979 return driver_register(&driver->drv); 980 } 981 982 EXPORT_SYMBOL(acpi_bus_register_driver); 983 984 /** 985 * acpi_bus_unregister_driver - unregisters a driver with the ACPI bus 986 * @driver: driver to unregister 987 * 988 * Unregisters a driver with the ACPI bus. Searches the namespace for all 989 * devices that match the driver's criteria and unbinds. 990 */ 991 void acpi_bus_unregister_driver(struct acpi_driver *driver) 992 { 993 driver_unregister(&driver->drv); 994 } 995 996 EXPORT_SYMBOL(acpi_bus_unregister_driver); 997 998 /* -------------------------------------------------------------------------- 999 ACPI Bus operations 1000 -------------------------------------------------------------------------- */ 1001 1002 static int acpi_bus_match(struct device *dev, struct device_driver *drv) 1003 { 1004 struct acpi_device *acpi_dev = to_acpi_device(dev); 1005 struct acpi_driver *acpi_drv = to_acpi_driver(drv); 1006 1007 return acpi_dev->flags.match_driver 1008 && !acpi_match_device_ids(acpi_dev, acpi_drv->ids); 1009 } 1010 1011 static int acpi_device_uevent(const struct device *dev, struct kobj_uevent_env *env) 1012 { 1013 return __acpi_device_uevent_modalias(to_acpi_device(dev), env); 1014 } 1015 1016 static int acpi_device_probe(struct device *dev) 1017 { 1018 struct acpi_device *acpi_dev = to_acpi_device(dev); 1019 struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); 1020 int ret; 1021 1022 if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev)) 1023 return -EINVAL; 1024 1025 if (!acpi_drv->ops.add) 1026 return -ENOSYS; 1027 1028 ret = acpi_drv->ops.add(acpi_dev); 1029 if (ret) 1030 return ret; 1031 1032 pr_debug("Driver [%s] successfully bound to device [%s]\n", 1033 acpi_drv->name, acpi_dev->pnp.bus_id); 1034 1035 if (acpi_drv->ops.notify) { 1036 ret = acpi_device_install_notify_handler(acpi_dev, acpi_drv); 1037 if (ret) { 1038 if (acpi_drv->ops.remove) 1039 acpi_drv->ops.remove(acpi_dev); 1040 1041 acpi_dev->driver_data = NULL; 1042 return ret; 1043 } 1044 } 1045 1046 pr_debug("Found driver [%s] for device [%s]\n", acpi_drv->name, 1047 acpi_dev->pnp.bus_id); 1048 1049 get_device(dev); 1050 return 0; 1051 } 1052 1053 static void acpi_device_remove(struct device *dev) 1054 { 1055 struct acpi_device *acpi_dev = to_acpi_device(dev); 1056 struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); 1057 1058 if (acpi_drv->ops.notify) 1059 acpi_device_remove_notify_handler(acpi_dev, acpi_drv); 1060 1061 if (acpi_drv->ops.remove) 1062 acpi_drv->ops.remove(acpi_dev); 1063 1064 acpi_dev->driver_data = NULL; 1065 1066 put_device(dev); 1067 } 1068 1069 struct bus_type acpi_bus_type = { 1070 .name = "acpi", 1071 .match = acpi_bus_match, 1072 .probe = acpi_device_probe, 1073 .remove = acpi_device_remove, 1074 .uevent = acpi_device_uevent, 1075 }; 1076 1077 int acpi_bus_for_each_dev(int (*fn)(struct device *, void *), void *data) 1078 { 1079 return bus_for_each_dev(&acpi_bus_type, NULL, data, fn); 1080 } 1081 EXPORT_SYMBOL_GPL(acpi_bus_for_each_dev); 1082 1083 struct acpi_dev_walk_context { 1084 int (*fn)(struct acpi_device *, void *); 1085 void *data; 1086 }; 1087 1088 static int acpi_dev_for_one_check(struct device *dev, void *context) 1089 { 1090 struct acpi_dev_walk_context *adwc = context; 1091 1092 if (dev->bus != &acpi_bus_type) 1093 return 0; 1094 1095 return adwc->fn(to_acpi_device(dev), adwc->data); 1096 } 1097 EXPORT_SYMBOL_GPL(acpi_dev_for_each_child); 1098 1099 int acpi_dev_for_each_child(struct acpi_device *adev, 1100 int (*fn)(struct acpi_device *, void *), void *data) 1101 { 1102 struct acpi_dev_walk_context adwc = { 1103 .fn = fn, 1104 .data = data, 1105 }; 1106 1107 return device_for_each_child(&adev->dev, &adwc, acpi_dev_for_one_check); 1108 } 1109 1110 int acpi_dev_for_each_child_reverse(struct acpi_device *adev, 1111 int (*fn)(struct acpi_device *, void *), 1112 void *data) 1113 { 1114 struct acpi_dev_walk_context adwc = { 1115 .fn = fn, 1116 .data = data, 1117 }; 1118 1119 return device_for_each_child_reverse(&adev->dev, &adwc, acpi_dev_for_one_check); 1120 } 1121 1122 /* -------------------------------------------------------------------------- 1123 Initialization/Cleanup 1124 -------------------------------------------------------------------------- */ 1125 1126 static int __init acpi_bus_init_irq(void) 1127 { 1128 acpi_status status; 1129 char *message = NULL; 1130 1131 1132 /* 1133 * Let the system know what interrupt model we are using by 1134 * evaluating the \_PIC object, if exists. 1135 */ 1136 1137 switch (acpi_irq_model) { 1138 case ACPI_IRQ_MODEL_PIC: 1139 message = "PIC"; 1140 break; 1141 case ACPI_IRQ_MODEL_IOAPIC: 1142 message = "IOAPIC"; 1143 break; 1144 case ACPI_IRQ_MODEL_IOSAPIC: 1145 message = "IOSAPIC"; 1146 break; 1147 case ACPI_IRQ_MODEL_GIC: 1148 message = "GIC"; 1149 break; 1150 case ACPI_IRQ_MODEL_PLATFORM: 1151 message = "platform specific model"; 1152 break; 1153 case ACPI_IRQ_MODEL_LPIC: 1154 message = "LPIC"; 1155 break; 1156 default: 1157 pr_info("Unknown interrupt routing model\n"); 1158 return -ENODEV; 1159 } 1160 1161 pr_info("Using %s for interrupt routing\n", message); 1162 1163 status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model); 1164 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 1165 pr_info("_PIC evaluation failed: %s\n", acpi_format_exception(status)); 1166 return -ENODEV; 1167 } 1168 1169 return 0; 1170 } 1171 1172 /** 1173 * acpi_early_init - Initialize ACPICA and populate the ACPI namespace. 1174 * 1175 * The ACPI tables are accessible after this, but the handling of events has not 1176 * been initialized and the global lock is not available yet, so AML should not 1177 * be executed at this point. 1178 * 1179 * Doing this before switching the EFI runtime services to virtual mode allows 1180 * the EfiBootServices memory to be freed slightly earlier on boot. 1181 */ 1182 void __init acpi_early_init(void) 1183 { 1184 acpi_status status; 1185 1186 if (acpi_disabled) 1187 return; 1188 1189 pr_info("Core revision %08x\n", ACPI_CA_VERSION); 1190 1191 /* enable workarounds, unless strict ACPI spec. compliance */ 1192 if (!acpi_strict) 1193 acpi_gbl_enable_interpreter_slack = TRUE; 1194 1195 acpi_permanent_mmap = true; 1196 1197 #ifdef CONFIG_X86 1198 /* 1199 * If the machine falls into the DMI check table, 1200 * DSDT will be copied to memory. 1201 * Note that calling dmi_check_system() here on other architectures 1202 * would not be OK because only x86 initializes dmi early enough. 1203 * Thankfully only x86 systems need such quirks for now. 1204 */ 1205 dmi_check_system(dsdt_dmi_table); 1206 #endif 1207 1208 status = acpi_reallocate_root_table(); 1209 if (ACPI_FAILURE(status)) { 1210 pr_err("Unable to reallocate ACPI tables\n"); 1211 goto error0; 1212 } 1213 1214 status = acpi_initialize_subsystem(); 1215 if (ACPI_FAILURE(status)) { 1216 pr_err("Unable to initialize the ACPI Interpreter\n"); 1217 goto error0; 1218 } 1219 1220 #ifdef CONFIG_X86 1221 if (!acpi_ioapic) { 1222 /* compatible (0) means level (3) */ 1223 if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) { 1224 acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK; 1225 acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL; 1226 } 1227 /* Set PIC-mode SCI trigger type */ 1228 acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt, 1229 (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2); 1230 } else { 1231 /* 1232 * now that acpi_gbl_FADT is initialized, 1233 * update it with result from INT_SRC_OVR parsing 1234 */ 1235 acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi; 1236 } 1237 #endif 1238 return; 1239 1240 error0: 1241 disable_acpi(); 1242 } 1243 1244 /** 1245 * acpi_subsystem_init - Finalize the early initialization of ACPI. 1246 * 1247 * Switch over the platform to the ACPI mode (if possible). 1248 * 1249 * Doing this too early is generally unsafe, but at the same time it needs to be 1250 * done before all things that really depend on ACPI. The right spot appears to 1251 * be before finalizing the EFI initialization. 1252 */ 1253 void __init acpi_subsystem_init(void) 1254 { 1255 acpi_status status; 1256 1257 if (acpi_disabled) 1258 return; 1259 1260 status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE); 1261 if (ACPI_FAILURE(status)) { 1262 pr_err("Unable to enable ACPI\n"); 1263 disable_acpi(); 1264 } else { 1265 /* 1266 * If the system is using ACPI then we can be reasonably 1267 * confident that any regulators are managed by the firmware 1268 * so tell the regulator core it has everything it needs to 1269 * know. 1270 */ 1271 regulator_has_full_constraints(); 1272 } 1273 } 1274 1275 static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context) 1276 { 1277 if (event == ACPI_TABLE_EVENT_LOAD) 1278 acpi_scan_table_notify(); 1279 1280 return acpi_sysfs_table_handler(event, table, context); 1281 } 1282 1283 static int __init acpi_bus_init(void) 1284 { 1285 int result; 1286 acpi_status status; 1287 1288 acpi_os_initialize1(); 1289 1290 status = acpi_load_tables(); 1291 if (ACPI_FAILURE(status)) { 1292 pr_err("Unable to load the System Description Tables\n"); 1293 goto error1; 1294 } 1295 1296 /* 1297 * ACPI 2.0 requires the EC driver to be loaded and work before the EC 1298 * device is found in the namespace. 1299 * 1300 * This is accomplished by looking for the ECDT table and getting the EC 1301 * parameters out of that. 1302 * 1303 * Do that before calling acpi_initialize_objects() which may trigger EC 1304 * address space accesses. 1305 */ 1306 acpi_ec_ecdt_probe(); 1307 1308 status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE); 1309 if (ACPI_FAILURE(status)) { 1310 pr_err("Unable to start the ACPI Interpreter\n"); 1311 goto error1; 1312 } 1313 1314 status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION); 1315 if (ACPI_FAILURE(status)) { 1316 pr_err("Unable to initialize ACPI objects\n"); 1317 goto error1; 1318 } 1319 1320 /* Set capability bits for _OSC under processor scope */ 1321 acpi_early_processor_osc(); 1322 1323 /* 1324 * _OSC method may exist in module level code, 1325 * so it must be run after ACPI_FULL_INITIALIZATION 1326 */ 1327 acpi_bus_osc_negotiate_platform_control(); 1328 acpi_bus_osc_negotiate_usb_control(); 1329 1330 /* 1331 * _PDC control method may load dynamic SSDT tables, 1332 * and we need to install the table handler before that. 1333 */ 1334 status = acpi_install_table_handler(acpi_bus_table_handler, NULL); 1335 1336 acpi_sysfs_init(); 1337 1338 acpi_early_processor_set_pdc(); 1339 1340 /* 1341 * Maybe EC region is required at bus_scan/acpi_get_devices. So it 1342 * is necessary to enable it as early as possible. 1343 */ 1344 acpi_ec_dsdt_probe(); 1345 1346 pr_info("Interpreter enabled\n"); 1347 1348 /* Initialize sleep structures */ 1349 acpi_sleep_init(); 1350 1351 /* 1352 * Get the system interrupt model and evaluate \_PIC. 1353 */ 1354 result = acpi_bus_init_irq(); 1355 if (result) 1356 goto error1; 1357 1358 /* 1359 * Register the for all standard device notifications. 1360 */ 1361 status = 1362 acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY, 1363 &acpi_bus_notify, NULL); 1364 if (ACPI_FAILURE(status)) { 1365 pr_err("Unable to register for system notifications\n"); 1366 goto error1; 1367 } 1368 1369 /* 1370 * Create the top ACPI proc directory 1371 */ 1372 acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL); 1373 1374 result = bus_register(&acpi_bus_type); 1375 if (!result) 1376 return 0; 1377 1378 /* Mimic structured exception handling */ 1379 error1: 1380 acpi_terminate(); 1381 return -ENODEV; 1382 } 1383 1384 struct kobject *acpi_kobj; 1385 EXPORT_SYMBOL_GPL(acpi_kobj); 1386 1387 static int __init acpi_init(void) 1388 { 1389 int result; 1390 1391 if (acpi_disabled) { 1392 pr_info("Interpreter disabled.\n"); 1393 return -ENODEV; 1394 } 1395 1396 acpi_kobj = kobject_create_and_add("acpi", firmware_kobj); 1397 if (!acpi_kobj) 1398 pr_debug("%s: kset create error\n", __func__); 1399 1400 init_prmt(); 1401 acpi_init_pcc(); 1402 result = acpi_bus_init(); 1403 if (result) { 1404 kobject_put(acpi_kobj); 1405 disable_acpi(); 1406 return result; 1407 } 1408 acpi_init_ffh(); 1409 1410 pci_mmcfg_late_init(); 1411 acpi_iort_init(); 1412 acpi_viot_early_init(); 1413 acpi_hest_init(); 1414 acpi_ghes_init(); 1415 acpi_scan_init(); 1416 acpi_ec_init(); 1417 acpi_debugfs_init(); 1418 acpi_sleep_proc_init(); 1419 acpi_wakeup_device_init(); 1420 acpi_debugger_init(); 1421 acpi_setup_sb_notify_handler(); 1422 acpi_viot_init(); 1423 acpi_agdi_init(); 1424 acpi_apmt_init(); 1425 return 0; 1426 } 1427 1428 subsys_initcall(acpi_init); 1429