xref: /openbmc/linux/drivers/acpi/arm64/iort.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * Copyright (C) 2016, Semihalf
3  *	Author: Tomasz Nowicki <tn@semihalf.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * This file implements early detection/parsing of I/O mapping
15  * reported to OS through firmware via I/O Remapping Table (IORT)
16  * IORT document number: ARM DEN 0049A
17  */
18 
19 #define pr_fmt(fmt)	"ACPI: IORT: " fmt
20 
21 #include <linux/acpi_iort.h>
22 #include <linux/iommu.h>
23 #include <linux/kernel.h>
24 #include <linux/list.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 
29 #define IORT_TYPE_MASK(type)	(1 << (type))
30 #define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
31 #define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
32 				(1 << ACPI_IORT_NODE_SMMU_V3))
33 
34 struct iort_its_msi_chip {
35 	struct list_head	list;
36 	struct fwnode_handle	*fw_node;
37 	phys_addr_t		base_addr;
38 	u32			translation_id;
39 };
40 
41 struct iort_fwnode {
42 	struct list_head list;
43 	struct acpi_iort_node *iort_node;
44 	struct fwnode_handle *fwnode;
45 };
46 static LIST_HEAD(iort_fwnode_list);
47 static DEFINE_SPINLOCK(iort_fwnode_lock);
48 
49 /**
50  * iort_set_fwnode() - Create iort_fwnode and use it to register
51  *		       iommu data in the iort_fwnode_list
52  *
53  * @node: IORT table node associated with the IOMMU
54  * @fwnode: fwnode associated with the IORT node
55  *
56  * Returns: 0 on success
57  *          <0 on failure
58  */
59 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
60 				  struct fwnode_handle *fwnode)
61 {
62 	struct iort_fwnode *np;
63 
64 	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
65 
66 	if (WARN_ON(!np))
67 		return -ENOMEM;
68 
69 	INIT_LIST_HEAD(&np->list);
70 	np->iort_node = iort_node;
71 	np->fwnode = fwnode;
72 
73 	spin_lock(&iort_fwnode_lock);
74 	list_add_tail(&np->list, &iort_fwnode_list);
75 	spin_unlock(&iort_fwnode_lock);
76 
77 	return 0;
78 }
79 
80 /**
81  * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
82  *
83  * @node: IORT table node to be looked-up
84  *
85  * Returns: fwnode_handle pointer on success, NULL on failure
86  */
87 static inline struct fwnode_handle *iort_get_fwnode(
88 			struct acpi_iort_node *node)
89 {
90 	struct iort_fwnode *curr;
91 	struct fwnode_handle *fwnode = NULL;
92 
93 	spin_lock(&iort_fwnode_lock);
94 	list_for_each_entry(curr, &iort_fwnode_list, list) {
95 		if (curr->iort_node == node) {
96 			fwnode = curr->fwnode;
97 			break;
98 		}
99 	}
100 	spin_unlock(&iort_fwnode_lock);
101 
102 	return fwnode;
103 }
104 
105 /**
106  * iort_delete_fwnode() - Delete fwnode associated with an IORT node
107  *
108  * @node: IORT table node associated with fwnode to delete
109  */
110 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
111 {
112 	struct iort_fwnode *curr, *tmp;
113 
114 	spin_lock(&iort_fwnode_lock);
115 	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
116 		if (curr->iort_node == node) {
117 			list_del(&curr->list);
118 			kfree(curr);
119 			break;
120 		}
121 	}
122 	spin_unlock(&iort_fwnode_lock);
123 }
124 
125 /**
126  * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
127  *
128  * @fwnode: fwnode associated with device to be looked-up
129  *
130  * Returns: iort_node pointer on success, NULL on failure
131  */
132 static inline struct acpi_iort_node *iort_get_iort_node(
133 			struct fwnode_handle *fwnode)
134 {
135 	struct iort_fwnode *curr;
136 	struct acpi_iort_node *iort_node = NULL;
137 
138 	spin_lock(&iort_fwnode_lock);
139 	list_for_each_entry(curr, &iort_fwnode_list, list) {
140 		if (curr->fwnode == fwnode) {
141 			iort_node = curr->iort_node;
142 			break;
143 		}
144 	}
145 	spin_unlock(&iort_fwnode_lock);
146 
147 	return iort_node;
148 }
149 
150 typedef acpi_status (*iort_find_node_callback)
151 	(struct acpi_iort_node *node, void *context);
152 
153 /* Root pointer to the mapped IORT table */
154 static struct acpi_table_header *iort_table;
155 
156 static LIST_HEAD(iort_msi_chip_list);
157 static DEFINE_SPINLOCK(iort_msi_chip_lock);
158 
159 /**
160  * iort_register_domain_token() - register domain token along with related
161  * ITS ID and base address to the list from where we can get it back later on.
162  * @trans_id: ITS ID.
163  * @base: ITS base address.
164  * @fw_node: Domain token.
165  *
166  * Returns: 0 on success, -ENOMEM if no memory when allocating list element
167  */
168 int iort_register_domain_token(int trans_id, phys_addr_t base,
169 			       struct fwnode_handle *fw_node)
170 {
171 	struct iort_its_msi_chip *its_msi_chip;
172 
173 	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
174 	if (!its_msi_chip)
175 		return -ENOMEM;
176 
177 	its_msi_chip->fw_node = fw_node;
178 	its_msi_chip->translation_id = trans_id;
179 	its_msi_chip->base_addr = base;
180 
181 	spin_lock(&iort_msi_chip_lock);
182 	list_add(&its_msi_chip->list, &iort_msi_chip_list);
183 	spin_unlock(&iort_msi_chip_lock);
184 
185 	return 0;
186 }
187 
188 /**
189  * iort_deregister_domain_token() - Deregister domain token based on ITS ID
190  * @trans_id: ITS ID.
191  *
192  * Returns: none.
193  */
194 void iort_deregister_domain_token(int trans_id)
195 {
196 	struct iort_its_msi_chip *its_msi_chip, *t;
197 
198 	spin_lock(&iort_msi_chip_lock);
199 	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
200 		if (its_msi_chip->translation_id == trans_id) {
201 			list_del(&its_msi_chip->list);
202 			kfree(its_msi_chip);
203 			break;
204 		}
205 	}
206 	spin_unlock(&iort_msi_chip_lock);
207 }
208 
209 /**
210  * iort_find_domain_token() - Find domain token based on given ITS ID
211  * @trans_id: ITS ID.
212  *
213  * Returns: domain token when find on the list, NULL otherwise
214  */
215 struct fwnode_handle *iort_find_domain_token(int trans_id)
216 {
217 	struct fwnode_handle *fw_node = NULL;
218 	struct iort_its_msi_chip *its_msi_chip;
219 
220 	spin_lock(&iort_msi_chip_lock);
221 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
222 		if (its_msi_chip->translation_id == trans_id) {
223 			fw_node = its_msi_chip->fw_node;
224 			break;
225 		}
226 	}
227 	spin_unlock(&iort_msi_chip_lock);
228 
229 	return fw_node;
230 }
231 
232 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
233 					     iort_find_node_callback callback,
234 					     void *context)
235 {
236 	struct acpi_iort_node *iort_node, *iort_end;
237 	struct acpi_table_iort *iort;
238 	int i;
239 
240 	if (!iort_table)
241 		return NULL;
242 
243 	/* Get the first IORT node */
244 	iort = (struct acpi_table_iort *)iort_table;
245 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
246 				 iort->node_offset);
247 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
248 				iort_table->length);
249 
250 	for (i = 0; i < iort->node_count; i++) {
251 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
252 			       "IORT node pointer overflows, bad table!\n"))
253 			return NULL;
254 
255 		if (iort_node->type == type &&
256 		    ACPI_SUCCESS(callback(iort_node, context)))
257 			return iort_node;
258 
259 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
260 					 iort_node->length);
261 	}
262 
263 	return NULL;
264 }
265 
266 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
267 					    void *context)
268 {
269 	struct device *dev = context;
270 	acpi_status status = AE_NOT_FOUND;
271 
272 	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
273 		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
274 		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
275 		struct acpi_iort_named_component *ncomp;
276 
277 		if (!adev)
278 			goto out;
279 
280 		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
281 		if (ACPI_FAILURE(status)) {
282 			dev_warn(dev, "Can't get device full path name\n");
283 			goto out;
284 		}
285 
286 		ncomp = (struct acpi_iort_named_component *)node->node_data;
287 		status = !strcmp(ncomp->device_name, buf.pointer) ?
288 							AE_OK : AE_NOT_FOUND;
289 		acpi_os_free(buf.pointer);
290 	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
291 		struct acpi_iort_root_complex *pci_rc;
292 		struct pci_bus *bus;
293 
294 		bus = to_pci_bus(dev);
295 		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
296 
297 		/*
298 		 * It is assumed that PCI segment numbers maps one-to-one
299 		 * with root complexes. Each segment number can represent only
300 		 * one root complex.
301 		 */
302 		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
303 							AE_OK : AE_NOT_FOUND;
304 	}
305 out:
306 	return status;
307 }
308 
309 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
310 		       u32 *rid_out)
311 {
312 	/* Single mapping does not care for input id */
313 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
314 		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
315 		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
316 			*rid_out = map->output_base;
317 			return 0;
318 		}
319 
320 		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
321 			map, type);
322 		return -ENXIO;
323 	}
324 
325 	if (rid_in < map->input_base ||
326 	    (rid_in >= map->input_base + map->id_count))
327 		return -ENXIO;
328 
329 	*rid_out = map->output_base + (rid_in - map->input_base);
330 	return 0;
331 }
332 
333 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
334 					       u32 *id_out, int index)
335 {
336 	struct acpi_iort_node *parent;
337 	struct acpi_iort_id_mapping *map;
338 
339 	if (!node->mapping_offset || !node->mapping_count ||
340 				     index >= node->mapping_count)
341 		return NULL;
342 
343 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
344 			   node->mapping_offset + index * sizeof(*map));
345 
346 	/* Firmware bug! */
347 	if (!map->output_reference) {
348 		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
349 		       node, node->type);
350 		return NULL;
351 	}
352 
353 	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
354 			       map->output_reference);
355 
356 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
357 		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
358 		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
359 		    node->type == ACPI_IORT_NODE_SMMU_V3) {
360 			*id_out = map->output_base;
361 			return parent;
362 		}
363 	}
364 
365 	return NULL;
366 }
367 
368 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
369 {
370 	struct acpi_iort_smmu_v3 *smmu;
371 
372 	switch (node->type) {
373 	case ACPI_IORT_NODE_SMMU_V3:
374 		/*
375 		 * SMMUv3 dev ID mapping index was introduced in revision 1
376 		 * table, not available in revision 0
377 		 */
378 		if (node->revision < 1)
379 			return -EINVAL;
380 
381 		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
382 		/*
383 		 * ID mapping index is only ignored if all interrupts are
384 		 * GSIV based
385 		 */
386 		if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
387 		    && smmu->sync_gsiv)
388 			return -EINVAL;
389 
390 		if (smmu->id_mapping_index >= node->mapping_count) {
391 			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
392 			       node, node->type);
393 			return -EINVAL;
394 		}
395 
396 		return smmu->id_mapping_index;
397 	default:
398 		return -EINVAL;
399 	}
400 }
401 
402 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
403 					       u32 id_in, u32 *id_out,
404 					       u8 type_mask)
405 {
406 	u32 id = id_in;
407 
408 	/* Parse the ID mapping tree to find specified node type */
409 	while (node) {
410 		struct acpi_iort_id_mapping *map;
411 		int i, index;
412 
413 		if (IORT_TYPE_MASK(node->type) & type_mask) {
414 			if (id_out)
415 				*id_out = id;
416 			return node;
417 		}
418 
419 		if (!node->mapping_offset || !node->mapping_count)
420 			goto fail_map;
421 
422 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
423 				   node->mapping_offset);
424 
425 		/* Firmware bug! */
426 		if (!map->output_reference) {
427 			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
428 			       node, node->type);
429 			goto fail_map;
430 		}
431 
432 		/*
433 		 * Get the special ID mapping index (if any) and skip its
434 		 * associated ID map to prevent erroneous multi-stage
435 		 * IORT ID translations.
436 		 */
437 		index = iort_get_id_mapping_index(node);
438 
439 		/* Do the ID translation */
440 		for (i = 0; i < node->mapping_count; i++, map++) {
441 			/* if it is special mapping index, skip it */
442 			if (i == index)
443 				continue;
444 
445 			if (!iort_id_map(map, node->type, id, &id))
446 				break;
447 		}
448 
449 		if (i == node->mapping_count)
450 			goto fail_map;
451 
452 		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
453 				    map->output_reference);
454 	}
455 
456 fail_map:
457 	/* Map input ID to output ID unchanged on mapping failure */
458 	if (id_out)
459 		*id_out = id_in;
460 
461 	return NULL;
462 }
463 
464 static struct acpi_iort_node *iort_node_map_platform_id(
465 		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
466 		int index)
467 {
468 	struct acpi_iort_node *parent;
469 	u32 id;
470 
471 	/* step 1: retrieve the initial dev id */
472 	parent = iort_node_get_id(node, &id, index);
473 	if (!parent)
474 		return NULL;
475 
476 	/*
477 	 * optional step 2: map the initial dev id if its parent is not
478 	 * the target type we want, map it again for the use cases such
479 	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
480 	 * return the initial dev id and its parent pointer directly.
481 	 */
482 	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
483 		parent = iort_node_map_id(parent, id, id_out, type_mask);
484 	else
485 		if (id_out)
486 			*id_out = id;
487 
488 	return parent;
489 }
490 
491 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
492 {
493 	struct pci_bus *pbus;
494 
495 	if (!dev_is_pci(dev)) {
496 		struct acpi_iort_node *node;
497 		/*
498 		 * scan iort_fwnode_list to see if it's an iort platform
499 		 * device (such as SMMU, PMCG),its iort node already cached
500 		 * and associated with fwnode when iort platform devices
501 		 * were initialized.
502 		 */
503 		node = iort_get_iort_node(dev->fwnode);
504 		if (node)
505 			return node;
506 
507 		/*
508 		 * if not, then it should be a platform device defined in
509 		 * DSDT/SSDT (with Named Component node in IORT)
510 		 */
511 		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
512 				      iort_match_node_callback, dev);
513 	}
514 
515 	/* Find a PCI root bus */
516 	pbus = to_pci_dev(dev)->bus;
517 	while (!pci_is_root_bus(pbus))
518 		pbus = pbus->parent;
519 
520 	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
521 			      iort_match_node_callback, &pbus->dev);
522 }
523 
524 /**
525  * iort_msi_map_rid() - Map a MSI requester ID for a device
526  * @dev: The device for which the mapping is to be done.
527  * @req_id: The device requester ID.
528  *
529  * Returns: mapped MSI RID on success, input requester ID otherwise
530  */
531 u32 iort_msi_map_rid(struct device *dev, u32 req_id)
532 {
533 	struct acpi_iort_node *node;
534 	u32 dev_id;
535 
536 	node = iort_find_dev_node(dev);
537 	if (!node)
538 		return req_id;
539 
540 	iort_node_map_id(node, req_id, &dev_id, IORT_MSI_TYPE);
541 	return dev_id;
542 }
543 
544 /**
545  * iort_pmsi_get_dev_id() - Get the device id for a device
546  * @dev: The device for which the mapping is to be done.
547  * @dev_id: The device ID found.
548  *
549  * Returns: 0 for successful find a dev id, -ENODEV on error
550  */
551 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
552 {
553 	int i, index;
554 	struct acpi_iort_node *node;
555 
556 	node = iort_find_dev_node(dev);
557 	if (!node)
558 		return -ENODEV;
559 
560 	index = iort_get_id_mapping_index(node);
561 	/* if there is a valid index, go get the dev_id directly */
562 	if (index >= 0) {
563 		if (iort_node_get_id(node, dev_id, index))
564 			return 0;
565 	} else {
566 		for (i = 0; i < node->mapping_count; i++) {
567 			if (iort_node_map_platform_id(node, dev_id,
568 						      IORT_MSI_TYPE, i))
569 				return 0;
570 		}
571 	}
572 
573 	return -ENODEV;
574 }
575 
576 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
577 {
578 	struct iort_its_msi_chip *its_msi_chip;
579 	int ret = -ENODEV;
580 
581 	spin_lock(&iort_msi_chip_lock);
582 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
583 		if (its_msi_chip->translation_id == its_id) {
584 			*base = its_msi_chip->base_addr;
585 			ret = 0;
586 			break;
587 		}
588 	}
589 	spin_unlock(&iort_msi_chip_lock);
590 
591 	return ret;
592 }
593 
594 /**
595  * iort_dev_find_its_id() - Find the ITS identifier for a device
596  * @dev: The device.
597  * @req_id: Device's requester ID
598  * @idx: Index of the ITS identifier list.
599  * @its_id: ITS identifier.
600  *
601  * Returns: 0 on success, appropriate error value otherwise
602  */
603 static int iort_dev_find_its_id(struct device *dev, u32 req_id,
604 				unsigned int idx, int *its_id)
605 {
606 	struct acpi_iort_its_group *its;
607 	struct acpi_iort_node *node;
608 
609 	node = iort_find_dev_node(dev);
610 	if (!node)
611 		return -ENXIO;
612 
613 	node = iort_node_map_id(node, req_id, NULL, IORT_MSI_TYPE);
614 	if (!node)
615 		return -ENXIO;
616 
617 	/* Move to ITS specific data */
618 	its = (struct acpi_iort_its_group *)node->node_data;
619 	if (idx > its->its_count) {
620 		dev_err(dev, "requested ITS ID index [%d] is greater than available [%d]\n",
621 			idx, its->its_count);
622 		return -ENXIO;
623 	}
624 
625 	*its_id = its->identifiers[idx];
626 	return 0;
627 }
628 
629 /**
630  * iort_get_device_domain() - Find MSI domain related to a device
631  * @dev: The device.
632  * @req_id: Requester ID for the device.
633  *
634  * Returns: the MSI domain for this device, NULL otherwise
635  */
636 struct irq_domain *iort_get_device_domain(struct device *dev, u32 req_id)
637 {
638 	struct fwnode_handle *handle;
639 	int its_id;
640 
641 	if (iort_dev_find_its_id(dev, req_id, 0, &its_id))
642 		return NULL;
643 
644 	handle = iort_find_domain_token(its_id);
645 	if (!handle)
646 		return NULL;
647 
648 	return irq_find_matching_fwnode(handle, DOMAIN_BUS_PCI_MSI);
649 }
650 
651 static void iort_set_device_domain(struct device *dev,
652 				   struct acpi_iort_node *node)
653 {
654 	struct acpi_iort_its_group *its;
655 	struct acpi_iort_node *msi_parent;
656 	struct acpi_iort_id_mapping *map;
657 	struct fwnode_handle *iort_fwnode;
658 	struct irq_domain *domain;
659 	int index;
660 
661 	index = iort_get_id_mapping_index(node);
662 	if (index < 0)
663 		return;
664 
665 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
666 			   node->mapping_offset + index * sizeof(*map));
667 
668 	/* Firmware bug! */
669 	if (!map->output_reference ||
670 	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
671 		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
672 		       node, node->type);
673 		return;
674 	}
675 
676 	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
677 				  map->output_reference);
678 
679 	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
680 		return;
681 
682 	/* Move to ITS specific data */
683 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
684 
685 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
686 	if (!iort_fwnode)
687 		return;
688 
689 	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
690 	if (domain)
691 		dev_set_msi_domain(dev, domain);
692 }
693 
694 /**
695  * iort_get_platform_device_domain() - Find MSI domain related to a
696  * platform device
697  * @dev: the dev pointer associated with the platform device
698  *
699  * Returns: the MSI domain for this device, NULL otherwise
700  */
701 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
702 {
703 	struct acpi_iort_node *node, *msi_parent = NULL;
704 	struct fwnode_handle *iort_fwnode;
705 	struct acpi_iort_its_group *its;
706 	int i;
707 
708 	/* find its associated iort node */
709 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
710 			      iort_match_node_callback, dev);
711 	if (!node)
712 		return NULL;
713 
714 	/* then find its msi parent node */
715 	for (i = 0; i < node->mapping_count; i++) {
716 		msi_parent = iort_node_map_platform_id(node, NULL,
717 						       IORT_MSI_TYPE, i);
718 		if (msi_parent)
719 			break;
720 	}
721 
722 	if (!msi_parent)
723 		return NULL;
724 
725 	/* Move to ITS specific data */
726 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
727 
728 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
729 	if (!iort_fwnode)
730 		return NULL;
731 
732 	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
733 }
734 
735 void acpi_configure_pmsi_domain(struct device *dev)
736 {
737 	struct irq_domain *msi_domain;
738 
739 	msi_domain = iort_get_platform_device_domain(dev);
740 	if (msi_domain)
741 		dev_set_msi_domain(dev, msi_domain);
742 }
743 
744 static int __maybe_unused __get_pci_rid(struct pci_dev *pdev, u16 alias,
745 					void *data)
746 {
747 	u32 *rid = data;
748 
749 	*rid = alias;
750 	return 0;
751 }
752 
753 static int arm_smmu_iort_xlate(struct device *dev, u32 streamid,
754 			       struct fwnode_handle *fwnode,
755 			       const struct iommu_ops *ops)
756 {
757 	int ret = iommu_fwspec_init(dev, fwnode, ops);
758 
759 	if (!ret)
760 		ret = iommu_fwspec_add_ids(dev, &streamid, 1);
761 
762 	return ret;
763 }
764 
765 static inline bool iort_iommu_driver_enabled(u8 type)
766 {
767 	switch (type) {
768 	case ACPI_IORT_NODE_SMMU_V3:
769 		return IS_BUILTIN(CONFIG_ARM_SMMU_V3);
770 	case ACPI_IORT_NODE_SMMU:
771 		return IS_BUILTIN(CONFIG_ARM_SMMU);
772 	default:
773 		pr_warn("IORT node type %u does not describe an SMMU\n", type);
774 		return false;
775 	}
776 }
777 
778 #ifdef CONFIG_IOMMU_API
779 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
780 {
781 	struct acpi_iort_node *iommu;
782 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
783 
784 	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
785 
786 	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
787 		struct acpi_iort_smmu_v3 *smmu;
788 
789 		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
790 		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
791 			return iommu;
792 	}
793 
794 	return NULL;
795 }
796 
797 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
798 {
799 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
800 
801 	return (fwspec && fwspec->ops) ? fwspec->ops : NULL;
802 }
803 
804 static inline int iort_add_device_replay(const struct iommu_ops *ops,
805 					 struct device *dev)
806 {
807 	int err = 0;
808 
809 	if (dev->bus && !device_iommu_mapped(dev))
810 		err = iommu_probe_device(dev);
811 
812 	return err;
813 }
814 
815 /**
816  * iort_iommu_msi_get_resv_regions - Reserved region driver helper
817  * @dev: Device from iommu_get_resv_regions()
818  * @head: Reserved region list from iommu_get_resv_regions()
819  *
820  * Returns: Number of msi reserved regions on success (0 if platform
821  *          doesn't require the reservation or no associated msi regions),
822  *          appropriate error value otherwise. The ITS interrupt translation
823  *          spaces (ITS_base + SZ_64K, SZ_64K) associated with the device
824  *          are the msi reserved regions.
825  */
826 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
827 {
828 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
829 	struct acpi_iort_its_group *its;
830 	struct acpi_iort_node *iommu_node, *its_node = NULL;
831 	int i, resv = 0;
832 
833 	iommu_node = iort_get_msi_resv_iommu(dev);
834 	if (!iommu_node)
835 		return 0;
836 
837 	/*
838 	 * Current logic to reserve ITS regions relies on HW topologies
839 	 * where a given PCI or named component maps its IDs to only one
840 	 * ITS group; if a PCI or named component can map its IDs to
841 	 * different ITS groups through IORT mappings this function has
842 	 * to be reworked to ensure we reserve regions for all ITS groups
843 	 * a given PCI or named component may map IDs to.
844 	 */
845 
846 	for (i = 0; i < fwspec->num_ids; i++) {
847 		its_node = iort_node_map_id(iommu_node,
848 					fwspec->ids[i],
849 					NULL, IORT_MSI_TYPE);
850 		if (its_node)
851 			break;
852 	}
853 
854 	if (!its_node)
855 		return 0;
856 
857 	/* Move to ITS specific data */
858 	its = (struct acpi_iort_its_group *)its_node->node_data;
859 
860 	for (i = 0; i < its->its_count; i++) {
861 		phys_addr_t base;
862 
863 		if (!iort_find_its_base(its->identifiers[i], &base)) {
864 			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
865 			struct iommu_resv_region *region;
866 
867 			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
868 							 prot, IOMMU_RESV_MSI);
869 			if (region) {
870 				list_add_tail(&region->list, head);
871 				resv++;
872 			}
873 		}
874 	}
875 
876 	return (resv == its->its_count) ? resv : -ENODEV;
877 }
878 #else
879 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev);
880 { return NULL; }
881 static inline int iort_add_device_replay(const struct iommu_ops *ops,
882 					 struct device *dev)
883 { return 0; }
884 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
885 { return 0; }
886 #endif
887 
888 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
889 			    u32 streamid)
890 {
891 	const struct iommu_ops *ops;
892 	struct fwnode_handle *iort_fwnode;
893 
894 	if (!node)
895 		return -ENODEV;
896 
897 	iort_fwnode = iort_get_fwnode(node);
898 	if (!iort_fwnode)
899 		return -ENODEV;
900 
901 	/*
902 	 * If the ops look-up fails, this means that either
903 	 * the SMMU drivers have not been probed yet or that
904 	 * the SMMU drivers are not built in the kernel;
905 	 * Depending on whether the SMMU drivers are built-in
906 	 * in the kernel or not, defer the IOMMU configuration
907 	 * or just abort it.
908 	 */
909 	ops = iommu_ops_from_fwnode(iort_fwnode);
910 	if (!ops)
911 		return iort_iommu_driver_enabled(node->type) ?
912 		       -EPROBE_DEFER : -ENODEV;
913 
914 	return arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops);
915 }
916 
917 struct iort_pci_alias_info {
918 	struct device *dev;
919 	struct acpi_iort_node *node;
920 };
921 
922 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
923 {
924 	struct iort_pci_alias_info *info = data;
925 	struct acpi_iort_node *parent;
926 	u32 streamid;
927 
928 	parent = iort_node_map_id(info->node, alias, &streamid,
929 				  IORT_IOMMU_TYPE);
930 	return iort_iommu_xlate(info->dev, parent, streamid);
931 }
932 
933 static int nc_dma_get_range(struct device *dev, u64 *size)
934 {
935 	struct acpi_iort_node *node;
936 	struct acpi_iort_named_component *ncomp;
937 
938 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
939 			      iort_match_node_callback, dev);
940 	if (!node)
941 		return -ENODEV;
942 
943 	ncomp = (struct acpi_iort_named_component *)node->node_data;
944 
945 	*size = ncomp->memory_address_limit >= 64 ? U64_MAX :
946 			1ULL<<ncomp->memory_address_limit;
947 
948 	return 0;
949 }
950 
951 static int rc_dma_get_range(struct device *dev, u64 *size)
952 {
953 	struct acpi_iort_node *node;
954 	struct acpi_iort_root_complex *rc;
955 
956 	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
957 			      iort_match_node_callback, dev);
958 	if (!node || node->revision < 1)
959 		return -ENODEV;
960 
961 	rc = (struct acpi_iort_root_complex *)node->node_data;
962 
963 	*size = rc->memory_address_limit >= 64 ? U64_MAX :
964 			1ULL<<rc->memory_address_limit;
965 
966 	return 0;
967 }
968 
969 /**
970  * iort_dma_setup() - Set-up device DMA parameters.
971  *
972  * @dev: device to configure
973  * @dma_addr: device DMA address result pointer
974  * @size: DMA range size result pointer
975  */
976 void iort_dma_setup(struct device *dev, u64 *dma_addr, u64 *dma_size)
977 {
978 	u64 mask, dmaaddr = 0, size = 0, offset = 0;
979 	int ret, msb;
980 
981 	/*
982 	 * If @dev is expected to be DMA-capable then the bus code that created
983 	 * it should have initialised its dma_mask pointer by this point. For
984 	 * now, we'll continue the legacy behaviour of coercing it to the
985 	 * coherent mask if not, but we'll no longer do so quietly.
986 	 */
987 	if (!dev->dma_mask) {
988 		dev_warn(dev, "DMA mask not set\n");
989 		dev->dma_mask = &dev->coherent_dma_mask;
990 	}
991 
992 	if (dev->coherent_dma_mask)
993 		size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1);
994 	else
995 		size = 1ULL << 32;
996 
997 	if (dev_is_pci(dev)) {
998 		ret = acpi_dma_get_range(dev, &dmaaddr, &offset, &size);
999 		if (ret == -ENODEV)
1000 			ret = rc_dma_get_range(dev, &size);
1001 	} else {
1002 		ret = nc_dma_get_range(dev, &size);
1003 	}
1004 
1005 	if (!ret) {
1006 		msb = fls64(dmaaddr + size - 1);
1007 		/*
1008 		 * Round-up to the power-of-two mask or set
1009 		 * the mask to the whole 64-bit address space
1010 		 * in case the DMA region covers the full
1011 		 * memory window.
1012 		 */
1013 		mask = msb == 64 ? U64_MAX : (1ULL << msb) - 1;
1014 		/*
1015 		 * Limit coherent and dma mask based on size
1016 		 * retrieved from firmware.
1017 		 */
1018 		dev->bus_dma_mask = mask;
1019 		dev->coherent_dma_mask = mask;
1020 		*dev->dma_mask = mask;
1021 	}
1022 
1023 	*dma_addr = dmaaddr;
1024 	*dma_size = size;
1025 
1026 	dev->dma_pfn_offset = PFN_DOWN(offset);
1027 	dev_dbg(dev, "dma_pfn_offset(%#08llx)\n", offset);
1028 }
1029 
1030 /**
1031  * iort_iommu_configure - Set-up IOMMU configuration for a device.
1032  *
1033  * @dev: device to configure
1034  *
1035  * Returns: iommu_ops pointer on configuration success
1036  *          NULL on configuration failure
1037  */
1038 const struct iommu_ops *iort_iommu_configure(struct device *dev)
1039 {
1040 	struct acpi_iort_node *node, *parent;
1041 	const struct iommu_ops *ops;
1042 	u32 streamid = 0;
1043 	int err = -ENODEV;
1044 
1045 	/*
1046 	 * If we already translated the fwspec there
1047 	 * is nothing left to do, return the iommu_ops.
1048 	 */
1049 	ops = iort_fwspec_iommu_ops(dev);
1050 	if (ops)
1051 		return ops;
1052 
1053 	if (dev_is_pci(dev)) {
1054 		struct pci_bus *bus = to_pci_dev(dev)->bus;
1055 		struct iort_pci_alias_info info = { .dev = dev };
1056 
1057 		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1058 				      iort_match_node_callback, &bus->dev);
1059 		if (!node)
1060 			return NULL;
1061 
1062 		info.node = node;
1063 		err = pci_for_each_dma_alias(to_pci_dev(dev),
1064 					     iort_pci_iommu_init, &info);
1065 	} else {
1066 		int i = 0;
1067 
1068 		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1069 				      iort_match_node_callback, dev);
1070 		if (!node)
1071 			return NULL;
1072 
1073 		do {
1074 			parent = iort_node_map_platform_id(node, &streamid,
1075 							   IORT_IOMMU_TYPE,
1076 							   i++);
1077 
1078 			if (parent)
1079 				err = iort_iommu_xlate(dev, parent, streamid);
1080 		} while (parent && !err);
1081 	}
1082 
1083 	/*
1084 	 * If we have reason to believe the IOMMU driver missed the initial
1085 	 * add_device callback for dev, replay it to get things in order.
1086 	 */
1087 	if (!err) {
1088 		ops = iort_fwspec_iommu_ops(dev);
1089 		err = iort_add_device_replay(ops, dev);
1090 	}
1091 
1092 	/* Ignore all other errors apart from EPROBE_DEFER */
1093 	if (err == -EPROBE_DEFER) {
1094 		ops = ERR_PTR(err);
1095 	} else if (err) {
1096 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1097 		ops = NULL;
1098 	}
1099 
1100 	return ops;
1101 }
1102 
1103 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1104 					  int trigger,
1105 					  struct resource *res)
1106 {
1107 	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1108 				    ACPI_ACTIVE_HIGH);
1109 
1110 	if (irq <= 0) {
1111 		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1112 								      name);
1113 		return;
1114 	}
1115 
1116 	res->start = irq;
1117 	res->end = irq;
1118 	res->flags = IORESOURCE_IRQ;
1119 	res->name = name;
1120 }
1121 
1122 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1123 {
1124 	struct acpi_iort_smmu_v3 *smmu;
1125 	/* Always present mem resource */
1126 	int num_res = 1;
1127 
1128 	/* Retrieve SMMUv3 specific data */
1129 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1130 
1131 	if (smmu->event_gsiv)
1132 		num_res++;
1133 
1134 	if (smmu->pri_gsiv)
1135 		num_res++;
1136 
1137 	if (smmu->gerr_gsiv)
1138 		num_res++;
1139 
1140 	if (smmu->sync_gsiv)
1141 		num_res++;
1142 
1143 	return num_res;
1144 }
1145 
1146 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1147 {
1148 	/*
1149 	 * Cavium ThunderX2 implementation doesn't not support unique
1150 	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1151 	 */
1152 	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1153 		return false;
1154 
1155 	/*
1156 	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1157 	 * SPI numbers here.
1158 	 */
1159 	return smmu->event_gsiv == smmu->pri_gsiv &&
1160 	       smmu->event_gsiv == smmu->gerr_gsiv &&
1161 	       smmu->event_gsiv == smmu->sync_gsiv;
1162 }
1163 
1164 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1165 {
1166 	/*
1167 	 * Override the size, for Cavium ThunderX2 implementation
1168 	 * which doesn't support the page 1 SMMU register space.
1169 	 */
1170 	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1171 		return SZ_64K;
1172 
1173 	return SZ_128K;
1174 }
1175 
1176 static void __init arm_smmu_v3_init_resources(struct resource *res,
1177 					      struct acpi_iort_node *node)
1178 {
1179 	struct acpi_iort_smmu_v3 *smmu;
1180 	int num_res = 0;
1181 
1182 	/* Retrieve SMMUv3 specific data */
1183 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1184 
1185 	res[num_res].start = smmu->base_address;
1186 	res[num_res].end = smmu->base_address +
1187 				arm_smmu_v3_resource_size(smmu) - 1;
1188 	res[num_res].flags = IORESOURCE_MEM;
1189 
1190 	num_res++;
1191 	if (arm_smmu_v3_is_combined_irq(smmu)) {
1192 		if (smmu->event_gsiv)
1193 			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1194 					       ACPI_EDGE_SENSITIVE,
1195 					       &res[num_res++]);
1196 	} else {
1197 
1198 		if (smmu->event_gsiv)
1199 			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1200 					       ACPI_EDGE_SENSITIVE,
1201 					       &res[num_res++]);
1202 
1203 		if (smmu->pri_gsiv)
1204 			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1205 					       ACPI_EDGE_SENSITIVE,
1206 					       &res[num_res++]);
1207 
1208 		if (smmu->gerr_gsiv)
1209 			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1210 					       ACPI_EDGE_SENSITIVE,
1211 					       &res[num_res++]);
1212 
1213 		if (smmu->sync_gsiv)
1214 			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1215 					       ACPI_EDGE_SENSITIVE,
1216 					       &res[num_res++]);
1217 	}
1218 }
1219 
1220 static bool __init arm_smmu_v3_is_coherent(struct acpi_iort_node *node)
1221 {
1222 	struct acpi_iort_smmu_v3 *smmu;
1223 
1224 	/* Retrieve SMMUv3 specific data */
1225 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1226 
1227 	return smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE;
1228 }
1229 
1230 #if defined(CONFIG_ACPI_NUMA)
1231 /*
1232  * set numa proximity domain for smmuv3 device
1233  */
1234 static void  __init arm_smmu_v3_set_proximity(struct device *dev,
1235 					      struct acpi_iort_node *node)
1236 {
1237 	struct acpi_iort_smmu_v3 *smmu;
1238 
1239 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1240 	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1241 		set_dev_node(dev, acpi_map_pxm_to_node(smmu->pxm));
1242 		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1243 			smmu->base_address,
1244 			smmu->pxm);
1245 	}
1246 }
1247 #else
1248 #define arm_smmu_v3_set_proximity NULL
1249 #endif
1250 
1251 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1252 {
1253 	struct acpi_iort_smmu *smmu;
1254 
1255 	/* Retrieve SMMU specific data */
1256 	smmu = (struct acpi_iort_smmu *)node->node_data;
1257 
1258 	/*
1259 	 * Only consider the global fault interrupt and ignore the
1260 	 * configuration access interrupt.
1261 	 *
1262 	 * MMIO address and global fault interrupt resources are always
1263 	 * present so add them to the context interrupt count as a static
1264 	 * value.
1265 	 */
1266 	return smmu->context_interrupt_count + 2;
1267 }
1268 
1269 static void __init arm_smmu_init_resources(struct resource *res,
1270 					   struct acpi_iort_node *node)
1271 {
1272 	struct acpi_iort_smmu *smmu;
1273 	int i, hw_irq, trigger, num_res = 0;
1274 	u64 *ctx_irq, *glb_irq;
1275 
1276 	/* Retrieve SMMU specific data */
1277 	smmu = (struct acpi_iort_smmu *)node->node_data;
1278 
1279 	res[num_res].start = smmu->base_address;
1280 	res[num_res].end = smmu->base_address + smmu->span - 1;
1281 	res[num_res].flags = IORESOURCE_MEM;
1282 	num_res++;
1283 
1284 	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1285 	/* Global IRQs */
1286 	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1287 	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1288 
1289 	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1290 				     &res[num_res++]);
1291 
1292 	/* Context IRQs */
1293 	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1294 	for (i = 0; i < smmu->context_interrupt_count; i++) {
1295 		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1296 		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1297 
1298 		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1299 				       &res[num_res++]);
1300 	}
1301 }
1302 
1303 static bool __init arm_smmu_is_coherent(struct acpi_iort_node *node)
1304 {
1305 	struct acpi_iort_smmu *smmu;
1306 
1307 	/* Retrieve SMMU specific data */
1308 	smmu = (struct acpi_iort_smmu *)node->node_data;
1309 
1310 	return smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK;
1311 }
1312 
1313 struct iort_dev_config {
1314 	const char *name;
1315 	int (*dev_init)(struct acpi_iort_node *node);
1316 	bool (*dev_is_coherent)(struct acpi_iort_node *node);
1317 	int (*dev_count_resources)(struct acpi_iort_node *node);
1318 	void (*dev_init_resources)(struct resource *res,
1319 				     struct acpi_iort_node *node);
1320 	void (*dev_set_proximity)(struct device *dev,
1321 				    struct acpi_iort_node *node);
1322 };
1323 
1324 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1325 	.name = "arm-smmu-v3",
1326 	.dev_is_coherent = arm_smmu_v3_is_coherent,
1327 	.dev_count_resources = arm_smmu_v3_count_resources,
1328 	.dev_init_resources = arm_smmu_v3_init_resources,
1329 	.dev_set_proximity = arm_smmu_v3_set_proximity,
1330 };
1331 
1332 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1333 	.name = "arm-smmu",
1334 	.dev_is_coherent = arm_smmu_is_coherent,
1335 	.dev_count_resources = arm_smmu_count_resources,
1336 	.dev_init_resources = arm_smmu_init_resources
1337 };
1338 
1339 static __init const struct iort_dev_config *iort_get_dev_cfg(
1340 			struct acpi_iort_node *node)
1341 {
1342 	switch (node->type) {
1343 	case ACPI_IORT_NODE_SMMU_V3:
1344 		return &iort_arm_smmu_v3_cfg;
1345 	case ACPI_IORT_NODE_SMMU:
1346 		return &iort_arm_smmu_cfg;
1347 	default:
1348 		return NULL;
1349 	}
1350 }
1351 
1352 /**
1353  * iort_add_platform_device() - Allocate a platform device for IORT node
1354  * @node: Pointer to device ACPI IORT node
1355  *
1356  * Returns: 0 on success, <0 failure
1357  */
1358 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1359 					   const struct iort_dev_config *ops)
1360 {
1361 	struct fwnode_handle *fwnode;
1362 	struct platform_device *pdev;
1363 	struct resource *r;
1364 	enum dev_dma_attr attr;
1365 	int ret, count;
1366 
1367 	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1368 	if (!pdev)
1369 		return -ENOMEM;
1370 
1371 	if (ops->dev_set_proximity)
1372 		ops->dev_set_proximity(&pdev->dev, node);
1373 
1374 	count = ops->dev_count_resources(node);
1375 
1376 	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1377 	if (!r) {
1378 		ret = -ENOMEM;
1379 		goto dev_put;
1380 	}
1381 
1382 	ops->dev_init_resources(r, node);
1383 
1384 	ret = platform_device_add_resources(pdev, r, count);
1385 	/*
1386 	 * Resources are duplicated in platform_device_add_resources,
1387 	 * free their allocated memory
1388 	 */
1389 	kfree(r);
1390 
1391 	if (ret)
1392 		goto dev_put;
1393 
1394 	/*
1395 	 * Add a copy of IORT node pointer to platform_data to
1396 	 * be used to retrieve IORT data information.
1397 	 */
1398 	ret = platform_device_add_data(pdev, &node, sizeof(node));
1399 	if (ret)
1400 		goto dev_put;
1401 
1402 	/*
1403 	 * We expect the dma masks to be equivalent for
1404 	 * all SMMUs set-ups
1405 	 */
1406 	pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask;
1407 
1408 	fwnode = iort_get_fwnode(node);
1409 
1410 	if (!fwnode) {
1411 		ret = -ENODEV;
1412 		goto dev_put;
1413 	}
1414 
1415 	pdev->dev.fwnode = fwnode;
1416 
1417 	attr = ops->dev_is_coherent && ops->dev_is_coherent(node) ?
1418 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1419 
1420 	/* Configure DMA for the page table walker */
1421 	acpi_dma_configure(&pdev->dev, attr);
1422 
1423 	iort_set_device_domain(&pdev->dev, node);
1424 
1425 	ret = platform_device_add(pdev);
1426 	if (ret)
1427 		goto dma_deconfigure;
1428 
1429 	return 0;
1430 
1431 dma_deconfigure:
1432 	arch_teardown_dma_ops(&pdev->dev);
1433 dev_put:
1434 	platform_device_put(pdev);
1435 
1436 	return ret;
1437 }
1438 
1439 #ifdef CONFIG_PCI
1440 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1441 {
1442 	static bool acs_enabled __initdata;
1443 
1444 	if (acs_enabled)
1445 		return;
1446 
1447 	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1448 		struct acpi_iort_node *parent;
1449 		struct acpi_iort_id_mapping *map;
1450 		int i;
1451 
1452 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1453 				   iort_node->mapping_offset);
1454 
1455 		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1456 			if (!map->output_reference)
1457 				continue;
1458 
1459 			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1460 					iort_table,  map->output_reference);
1461 			/*
1462 			 * If we detect a RC->SMMU mapping, make sure
1463 			 * we enable ACS on the system.
1464 			 */
1465 			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1466 				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1467 				pci_request_acs();
1468 				acs_enabled = true;
1469 				return;
1470 			}
1471 		}
1472 	}
1473 }
1474 #else
1475 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1476 #endif
1477 
1478 static void __init iort_init_platform_devices(void)
1479 {
1480 	struct acpi_iort_node *iort_node, *iort_end;
1481 	struct acpi_table_iort *iort;
1482 	struct fwnode_handle *fwnode;
1483 	int i, ret;
1484 	const struct iort_dev_config *ops;
1485 
1486 	/*
1487 	 * iort_table and iort both point to the start of IORT table, but
1488 	 * have different struct types
1489 	 */
1490 	iort = (struct acpi_table_iort *)iort_table;
1491 
1492 	/* Get the first IORT node */
1493 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1494 				 iort->node_offset);
1495 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1496 				iort_table->length);
1497 
1498 	for (i = 0; i < iort->node_count; i++) {
1499 		if (iort_node >= iort_end) {
1500 			pr_err("iort node pointer overflows, bad table\n");
1501 			return;
1502 		}
1503 
1504 		iort_enable_acs(iort_node);
1505 
1506 		ops = iort_get_dev_cfg(iort_node);
1507 		if (ops) {
1508 			fwnode = acpi_alloc_fwnode_static();
1509 			if (!fwnode)
1510 				return;
1511 
1512 			iort_set_fwnode(iort_node, fwnode);
1513 
1514 			ret = iort_add_platform_device(iort_node, ops);
1515 			if (ret) {
1516 				iort_delete_fwnode(iort_node);
1517 				acpi_free_fwnode_static(fwnode);
1518 				return;
1519 			}
1520 		}
1521 
1522 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1523 					 iort_node->length);
1524 	}
1525 }
1526 
1527 void __init acpi_iort_init(void)
1528 {
1529 	acpi_status status;
1530 
1531 	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1532 	if (ACPI_FAILURE(status)) {
1533 		if (status != AE_NOT_FOUND) {
1534 			const char *msg = acpi_format_exception(status);
1535 
1536 			pr_err("Failed to get table, %s\n", msg);
1537 		}
1538 
1539 		return;
1540 	}
1541 
1542 	iort_init_platform_devices();
1543 }
1544