1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016, Semihalf 4 * Author: Tomasz Nowicki <tn@semihalf.com> 5 * 6 * This file implements early detection/parsing of I/O mapping 7 * reported to OS through firmware via I/O Remapping Table (IORT) 8 * IORT document number: ARM DEN 0049A 9 */ 10 11 #define pr_fmt(fmt) "ACPI: IORT: " fmt 12 13 #include <linux/acpi_iort.h> 14 #include <linux/bitfield.h> 15 #include <linux/iommu.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/pci.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/dma-map-ops.h> 22 #include "init.h" 23 24 #define IORT_TYPE_MASK(type) (1 << (type)) 25 #define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP) 26 #define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \ 27 (1 << ACPI_IORT_NODE_SMMU_V3)) 28 29 struct iort_its_msi_chip { 30 struct list_head list; 31 struct fwnode_handle *fw_node; 32 phys_addr_t base_addr; 33 u32 translation_id; 34 }; 35 36 struct iort_fwnode { 37 struct list_head list; 38 struct acpi_iort_node *iort_node; 39 struct fwnode_handle *fwnode; 40 }; 41 static LIST_HEAD(iort_fwnode_list); 42 static DEFINE_SPINLOCK(iort_fwnode_lock); 43 44 /** 45 * iort_set_fwnode() - Create iort_fwnode and use it to register 46 * iommu data in the iort_fwnode_list 47 * 48 * @iort_node: IORT table node associated with the IOMMU 49 * @fwnode: fwnode associated with the IORT node 50 * 51 * Returns: 0 on success 52 * <0 on failure 53 */ 54 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node, 55 struct fwnode_handle *fwnode) 56 { 57 struct iort_fwnode *np; 58 59 np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC); 60 61 if (WARN_ON(!np)) 62 return -ENOMEM; 63 64 INIT_LIST_HEAD(&np->list); 65 np->iort_node = iort_node; 66 np->fwnode = fwnode; 67 68 spin_lock(&iort_fwnode_lock); 69 list_add_tail(&np->list, &iort_fwnode_list); 70 spin_unlock(&iort_fwnode_lock); 71 72 return 0; 73 } 74 75 /** 76 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node 77 * 78 * @node: IORT table node to be looked-up 79 * 80 * Returns: fwnode_handle pointer on success, NULL on failure 81 */ 82 static inline struct fwnode_handle *iort_get_fwnode( 83 struct acpi_iort_node *node) 84 { 85 struct iort_fwnode *curr; 86 struct fwnode_handle *fwnode = NULL; 87 88 spin_lock(&iort_fwnode_lock); 89 list_for_each_entry(curr, &iort_fwnode_list, list) { 90 if (curr->iort_node == node) { 91 fwnode = curr->fwnode; 92 break; 93 } 94 } 95 spin_unlock(&iort_fwnode_lock); 96 97 return fwnode; 98 } 99 100 /** 101 * iort_delete_fwnode() - Delete fwnode associated with an IORT node 102 * 103 * @node: IORT table node associated with fwnode to delete 104 */ 105 static inline void iort_delete_fwnode(struct acpi_iort_node *node) 106 { 107 struct iort_fwnode *curr, *tmp; 108 109 spin_lock(&iort_fwnode_lock); 110 list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) { 111 if (curr->iort_node == node) { 112 list_del(&curr->list); 113 kfree(curr); 114 break; 115 } 116 } 117 spin_unlock(&iort_fwnode_lock); 118 } 119 120 /** 121 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode 122 * 123 * @fwnode: fwnode associated with device to be looked-up 124 * 125 * Returns: iort_node pointer on success, NULL on failure 126 */ 127 static inline struct acpi_iort_node *iort_get_iort_node( 128 struct fwnode_handle *fwnode) 129 { 130 struct iort_fwnode *curr; 131 struct acpi_iort_node *iort_node = NULL; 132 133 spin_lock(&iort_fwnode_lock); 134 list_for_each_entry(curr, &iort_fwnode_list, list) { 135 if (curr->fwnode == fwnode) { 136 iort_node = curr->iort_node; 137 break; 138 } 139 } 140 spin_unlock(&iort_fwnode_lock); 141 142 return iort_node; 143 } 144 145 typedef acpi_status (*iort_find_node_callback) 146 (struct acpi_iort_node *node, void *context); 147 148 /* Root pointer to the mapped IORT table */ 149 static struct acpi_table_header *iort_table; 150 151 static LIST_HEAD(iort_msi_chip_list); 152 static DEFINE_SPINLOCK(iort_msi_chip_lock); 153 154 /** 155 * iort_register_domain_token() - register domain token along with related 156 * ITS ID and base address to the list from where we can get it back later on. 157 * @trans_id: ITS ID. 158 * @base: ITS base address. 159 * @fw_node: Domain token. 160 * 161 * Returns: 0 on success, -ENOMEM if no memory when allocating list element 162 */ 163 int iort_register_domain_token(int trans_id, phys_addr_t base, 164 struct fwnode_handle *fw_node) 165 { 166 struct iort_its_msi_chip *its_msi_chip; 167 168 its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL); 169 if (!its_msi_chip) 170 return -ENOMEM; 171 172 its_msi_chip->fw_node = fw_node; 173 its_msi_chip->translation_id = trans_id; 174 its_msi_chip->base_addr = base; 175 176 spin_lock(&iort_msi_chip_lock); 177 list_add(&its_msi_chip->list, &iort_msi_chip_list); 178 spin_unlock(&iort_msi_chip_lock); 179 180 return 0; 181 } 182 183 /** 184 * iort_deregister_domain_token() - Deregister domain token based on ITS ID 185 * @trans_id: ITS ID. 186 * 187 * Returns: none. 188 */ 189 void iort_deregister_domain_token(int trans_id) 190 { 191 struct iort_its_msi_chip *its_msi_chip, *t; 192 193 spin_lock(&iort_msi_chip_lock); 194 list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) { 195 if (its_msi_chip->translation_id == trans_id) { 196 list_del(&its_msi_chip->list); 197 kfree(its_msi_chip); 198 break; 199 } 200 } 201 spin_unlock(&iort_msi_chip_lock); 202 } 203 204 /** 205 * iort_find_domain_token() - Find domain token based on given ITS ID 206 * @trans_id: ITS ID. 207 * 208 * Returns: domain token when find on the list, NULL otherwise 209 */ 210 struct fwnode_handle *iort_find_domain_token(int trans_id) 211 { 212 struct fwnode_handle *fw_node = NULL; 213 struct iort_its_msi_chip *its_msi_chip; 214 215 spin_lock(&iort_msi_chip_lock); 216 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { 217 if (its_msi_chip->translation_id == trans_id) { 218 fw_node = its_msi_chip->fw_node; 219 break; 220 } 221 } 222 spin_unlock(&iort_msi_chip_lock); 223 224 return fw_node; 225 } 226 227 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type, 228 iort_find_node_callback callback, 229 void *context) 230 { 231 struct acpi_iort_node *iort_node, *iort_end; 232 struct acpi_table_iort *iort; 233 int i; 234 235 if (!iort_table) 236 return NULL; 237 238 /* Get the first IORT node */ 239 iort = (struct acpi_table_iort *)iort_table; 240 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 241 iort->node_offset); 242 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 243 iort_table->length); 244 245 for (i = 0; i < iort->node_count; i++) { 246 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND, 247 "IORT node pointer overflows, bad table!\n")) 248 return NULL; 249 250 if (iort_node->type == type && 251 ACPI_SUCCESS(callback(iort_node, context))) 252 return iort_node; 253 254 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 255 iort_node->length); 256 } 257 258 return NULL; 259 } 260 261 static acpi_status iort_match_node_callback(struct acpi_iort_node *node, 262 void *context) 263 { 264 struct device *dev = context; 265 acpi_status status = AE_NOT_FOUND; 266 267 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) { 268 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 269 struct acpi_device *adev; 270 struct acpi_iort_named_component *ncomp; 271 struct device *nc_dev = dev; 272 273 /* 274 * Walk the device tree to find a device with an 275 * ACPI companion; there is no point in scanning 276 * IORT for a device matching a named component if 277 * the device does not have an ACPI companion to 278 * start with. 279 */ 280 do { 281 adev = ACPI_COMPANION(nc_dev); 282 if (adev) 283 break; 284 285 nc_dev = nc_dev->parent; 286 } while (nc_dev); 287 288 if (!adev) 289 goto out; 290 291 status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf); 292 if (ACPI_FAILURE(status)) { 293 dev_warn(nc_dev, "Can't get device full path name\n"); 294 goto out; 295 } 296 297 ncomp = (struct acpi_iort_named_component *)node->node_data; 298 status = !strcmp(ncomp->device_name, buf.pointer) ? 299 AE_OK : AE_NOT_FOUND; 300 acpi_os_free(buf.pointer); 301 } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 302 struct acpi_iort_root_complex *pci_rc; 303 struct pci_bus *bus; 304 305 bus = to_pci_bus(dev); 306 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 307 308 /* 309 * It is assumed that PCI segment numbers maps one-to-one 310 * with root complexes. Each segment number can represent only 311 * one root complex. 312 */ 313 status = pci_rc->pci_segment_number == pci_domain_nr(bus) ? 314 AE_OK : AE_NOT_FOUND; 315 } 316 out: 317 return status; 318 } 319 320 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in, 321 u32 *rid_out, bool check_overlap) 322 { 323 /* Single mapping does not care for input id */ 324 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { 325 if (type == ACPI_IORT_NODE_NAMED_COMPONENT || 326 type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 327 *rid_out = map->output_base; 328 return 0; 329 } 330 331 pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n", 332 map, type); 333 return -ENXIO; 334 } 335 336 if (rid_in < map->input_base || 337 (rid_in > map->input_base + map->id_count)) 338 return -ENXIO; 339 340 if (check_overlap) { 341 /* 342 * We already found a mapping for this input ID at the end of 343 * another region. If it coincides with the start of this 344 * region, we assume the prior match was due to the off-by-1 345 * issue mentioned below, and allow it to be superseded. 346 * Otherwise, things are *really* broken, and we just disregard 347 * duplicate matches entirely to retain compatibility. 348 */ 349 pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n", 350 map, rid_in); 351 if (rid_in != map->input_base) 352 return -ENXIO; 353 354 pr_err(FW_BUG "applying workaround.\n"); 355 } 356 357 *rid_out = map->output_base + (rid_in - map->input_base); 358 359 /* 360 * Due to confusion regarding the meaning of the id_count field (which 361 * carries the number of IDs *minus 1*), we may have to disregard this 362 * match if it is at the end of the range, and overlaps with the start 363 * of another one. 364 */ 365 if (map->id_count > 0 && rid_in == map->input_base + map->id_count) 366 return -EAGAIN; 367 return 0; 368 } 369 370 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node, 371 u32 *id_out, int index) 372 { 373 struct acpi_iort_node *parent; 374 struct acpi_iort_id_mapping *map; 375 376 if (!node->mapping_offset || !node->mapping_count || 377 index >= node->mapping_count) 378 return NULL; 379 380 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 381 node->mapping_offset + index * sizeof(*map)); 382 383 /* Firmware bug! */ 384 if (!map->output_reference) { 385 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", 386 node, node->type); 387 return NULL; 388 } 389 390 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 391 map->output_reference); 392 393 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { 394 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT || 395 node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX || 396 node->type == ACPI_IORT_NODE_SMMU_V3 || 397 node->type == ACPI_IORT_NODE_PMCG) { 398 *id_out = map->output_base; 399 return parent; 400 } 401 } 402 403 return NULL; 404 } 405 406 #ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID 407 #define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4) 408 #endif 409 410 static int iort_get_id_mapping_index(struct acpi_iort_node *node) 411 { 412 struct acpi_iort_smmu_v3 *smmu; 413 struct acpi_iort_pmcg *pmcg; 414 415 switch (node->type) { 416 case ACPI_IORT_NODE_SMMU_V3: 417 /* 418 * SMMUv3 dev ID mapping index was introduced in revision 1 419 * table, not available in revision 0 420 */ 421 if (node->revision < 1) 422 return -EINVAL; 423 424 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 425 /* 426 * Until IORT E.e (node rev. 5), the ID mapping index was 427 * defined to be valid unless all interrupts are GSIV-based. 428 */ 429 if (node->revision < 5) { 430 if (smmu->event_gsiv && smmu->pri_gsiv && 431 smmu->gerr_gsiv && smmu->sync_gsiv) 432 return -EINVAL; 433 } else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) { 434 return -EINVAL; 435 } 436 437 if (smmu->id_mapping_index >= node->mapping_count) { 438 pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n", 439 node, node->type); 440 return -EINVAL; 441 } 442 443 return smmu->id_mapping_index; 444 case ACPI_IORT_NODE_PMCG: 445 pmcg = (struct acpi_iort_pmcg *)node->node_data; 446 if (pmcg->overflow_gsiv || node->mapping_count == 0) 447 return -EINVAL; 448 449 return 0; 450 default: 451 return -EINVAL; 452 } 453 } 454 455 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node, 456 u32 id_in, u32 *id_out, 457 u8 type_mask) 458 { 459 u32 id = id_in; 460 461 /* Parse the ID mapping tree to find specified node type */ 462 while (node) { 463 struct acpi_iort_id_mapping *map; 464 int i, index, rc = 0; 465 u32 out_ref = 0, map_id = id; 466 467 if (IORT_TYPE_MASK(node->type) & type_mask) { 468 if (id_out) 469 *id_out = id; 470 return node; 471 } 472 473 if (!node->mapping_offset || !node->mapping_count) 474 goto fail_map; 475 476 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 477 node->mapping_offset); 478 479 /* Firmware bug! */ 480 if (!map->output_reference) { 481 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", 482 node, node->type); 483 goto fail_map; 484 } 485 486 /* 487 * Get the special ID mapping index (if any) and skip its 488 * associated ID map to prevent erroneous multi-stage 489 * IORT ID translations. 490 */ 491 index = iort_get_id_mapping_index(node); 492 493 /* Do the ID translation */ 494 for (i = 0; i < node->mapping_count; i++, map++) { 495 /* if it is special mapping index, skip it */ 496 if (i == index) 497 continue; 498 499 rc = iort_id_map(map, node->type, map_id, &id, out_ref); 500 if (!rc) 501 break; 502 if (rc == -EAGAIN) 503 out_ref = map->output_reference; 504 } 505 506 if (i == node->mapping_count && !out_ref) 507 goto fail_map; 508 509 node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 510 rc ? out_ref : map->output_reference); 511 } 512 513 fail_map: 514 /* Map input ID to output ID unchanged on mapping failure */ 515 if (id_out) 516 *id_out = id_in; 517 518 return NULL; 519 } 520 521 static struct acpi_iort_node *iort_node_map_platform_id( 522 struct acpi_iort_node *node, u32 *id_out, u8 type_mask, 523 int index) 524 { 525 struct acpi_iort_node *parent; 526 u32 id; 527 528 /* step 1: retrieve the initial dev id */ 529 parent = iort_node_get_id(node, &id, index); 530 if (!parent) 531 return NULL; 532 533 /* 534 * optional step 2: map the initial dev id if its parent is not 535 * the target type we want, map it again for the use cases such 536 * as NC (named component) -> SMMU -> ITS. If the type is matched, 537 * return the initial dev id and its parent pointer directly. 538 */ 539 if (!(IORT_TYPE_MASK(parent->type) & type_mask)) 540 parent = iort_node_map_id(parent, id, id_out, type_mask); 541 else 542 if (id_out) 543 *id_out = id; 544 545 return parent; 546 } 547 548 static struct acpi_iort_node *iort_find_dev_node(struct device *dev) 549 { 550 struct pci_bus *pbus; 551 552 if (!dev_is_pci(dev)) { 553 struct acpi_iort_node *node; 554 /* 555 * scan iort_fwnode_list to see if it's an iort platform 556 * device (such as SMMU, PMCG),its iort node already cached 557 * and associated with fwnode when iort platform devices 558 * were initialized. 559 */ 560 node = iort_get_iort_node(dev->fwnode); 561 if (node) 562 return node; 563 /* 564 * if not, then it should be a platform device defined in 565 * DSDT/SSDT (with Named Component node in IORT) 566 */ 567 return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 568 iort_match_node_callback, dev); 569 } 570 571 pbus = to_pci_dev(dev)->bus; 572 573 return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 574 iort_match_node_callback, &pbus->dev); 575 } 576 577 /** 578 * iort_msi_map_id() - Map a MSI input ID for a device 579 * @dev: The device for which the mapping is to be done. 580 * @input_id: The device input ID. 581 * 582 * Returns: mapped MSI ID on success, input ID otherwise 583 */ 584 u32 iort_msi_map_id(struct device *dev, u32 input_id) 585 { 586 struct acpi_iort_node *node; 587 u32 dev_id; 588 589 node = iort_find_dev_node(dev); 590 if (!node) 591 return input_id; 592 593 iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE); 594 return dev_id; 595 } 596 597 /** 598 * iort_pmsi_get_dev_id() - Get the device id for a device 599 * @dev: The device for which the mapping is to be done. 600 * @dev_id: The device ID found. 601 * 602 * Returns: 0 for successful find a dev id, -ENODEV on error 603 */ 604 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id) 605 { 606 int i, index; 607 struct acpi_iort_node *node; 608 609 node = iort_find_dev_node(dev); 610 if (!node) 611 return -ENODEV; 612 613 index = iort_get_id_mapping_index(node); 614 /* if there is a valid index, go get the dev_id directly */ 615 if (index >= 0) { 616 if (iort_node_get_id(node, dev_id, index)) 617 return 0; 618 } else { 619 for (i = 0; i < node->mapping_count; i++) { 620 if (iort_node_map_platform_id(node, dev_id, 621 IORT_MSI_TYPE, i)) 622 return 0; 623 } 624 } 625 626 return -ENODEV; 627 } 628 629 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base) 630 { 631 struct iort_its_msi_chip *its_msi_chip; 632 int ret = -ENODEV; 633 634 spin_lock(&iort_msi_chip_lock); 635 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { 636 if (its_msi_chip->translation_id == its_id) { 637 *base = its_msi_chip->base_addr; 638 ret = 0; 639 break; 640 } 641 } 642 spin_unlock(&iort_msi_chip_lock); 643 644 return ret; 645 } 646 647 /** 648 * iort_dev_find_its_id() - Find the ITS identifier for a device 649 * @dev: The device. 650 * @id: Device's ID 651 * @idx: Index of the ITS identifier list. 652 * @its_id: ITS identifier. 653 * 654 * Returns: 0 on success, appropriate error value otherwise 655 */ 656 static int iort_dev_find_its_id(struct device *dev, u32 id, 657 unsigned int idx, int *its_id) 658 { 659 struct acpi_iort_its_group *its; 660 struct acpi_iort_node *node; 661 662 node = iort_find_dev_node(dev); 663 if (!node) 664 return -ENXIO; 665 666 node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE); 667 if (!node) 668 return -ENXIO; 669 670 /* Move to ITS specific data */ 671 its = (struct acpi_iort_its_group *)node->node_data; 672 if (idx >= its->its_count) { 673 dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n", 674 idx, its->its_count); 675 return -ENXIO; 676 } 677 678 *its_id = its->identifiers[idx]; 679 return 0; 680 } 681 682 /** 683 * iort_get_device_domain() - Find MSI domain related to a device 684 * @dev: The device. 685 * @id: Requester ID for the device. 686 * @bus_token: irq domain bus token. 687 * 688 * Returns: the MSI domain for this device, NULL otherwise 689 */ 690 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id, 691 enum irq_domain_bus_token bus_token) 692 { 693 struct fwnode_handle *handle; 694 int its_id; 695 696 if (iort_dev_find_its_id(dev, id, 0, &its_id)) 697 return NULL; 698 699 handle = iort_find_domain_token(its_id); 700 if (!handle) 701 return NULL; 702 703 return irq_find_matching_fwnode(handle, bus_token); 704 } 705 706 static void iort_set_device_domain(struct device *dev, 707 struct acpi_iort_node *node) 708 { 709 struct acpi_iort_its_group *its; 710 struct acpi_iort_node *msi_parent; 711 struct acpi_iort_id_mapping *map; 712 struct fwnode_handle *iort_fwnode; 713 struct irq_domain *domain; 714 int index; 715 716 index = iort_get_id_mapping_index(node); 717 if (index < 0) 718 return; 719 720 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 721 node->mapping_offset + index * sizeof(*map)); 722 723 /* Firmware bug! */ 724 if (!map->output_reference || 725 !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) { 726 pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n", 727 node, node->type); 728 return; 729 } 730 731 msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 732 map->output_reference); 733 734 if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP) 735 return; 736 737 /* Move to ITS specific data */ 738 its = (struct acpi_iort_its_group *)msi_parent->node_data; 739 740 iort_fwnode = iort_find_domain_token(its->identifiers[0]); 741 if (!iort_fwnode) 742 return; 743 744 domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); 745 if (domain) 746 dev_set_msi_domain(dev, domain); 747 } 748 749 /** 750 * iort_get_platform_device_domain() - Find MSI domain related to a 751 * platform device 752 * @dev: the dev pointer associated with the platform device 753 * 754 * Returns: the MSI domain for this device, NULL otherwise 755 */ 756 static struct irq_domain *iort_get_platform_device_domain(struct device *dev) 757 { 758 struct acpi_iort_node *node, *msi_parent = NULL; 759 struct fwnode_handle *iort_fwnode; 760 struct acpi_iort_its_group *its; 761 int i; 762 763 /* find its associated iort node */ 764 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 765 iort_match_node_callback, dev); 766 if (!node) 767 return NULL; 768 769 /* then find its msi parent node */ 770 for (i = 0; i < node->mapping_count; i++) { 771 msi_parent = iort_node_map_platform_id(node, NULL, 772 IORT_MSI_TYPE, i); 773 if (msi_parent) 774 break; 775 } 776 777 if (!msi_parent) 778 return NULL; 779 780 /* Move to ITS specific data */ 781 its = (struct acpi_iort_its_group *)msi_parent->node_data; 782 783 iort_fwnode = iort_find_domain_token(its->identifiers[0]); 784 if (!iort_fwnode) 785 return NULL; 786 787 return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); 788 } 789 790 void acpi_configure_pmsi_domain(struct device *dev) 791 { 792 struct irq_domain *msi_domain; 793 794 msi_domain = iort_get_platform_device_domain(dev); 795 if (msi_domain) 796 dev_set_msi_domain(dev, msi_domain); 797 } 798 799 #ifdef CONFIG_IOMMU_API 800 static void iort_rmr_free(struct device *dev, 801 struct iommu_resv_region *region) 802 { 803 struct iommu_iort_rmr_data *rmr_data; 804 805 rmr_data = container_of(region, struct iommu_iort_rmr_data, rr); 806 kfree(rmr_data->sids); 807 kfree(rmr_data); 808 } 809 810 static struct iommu_iort_rmr_data *iort_rmr_alloc( 811 struct acpi_iort_rmr_desc *rmr_desc, 812 int prot, enum iommu_resv_type type, 813 u32 *sids, u32 num_sids) 814 { 815 struct iommu_iort_rmr_data *rmr_data; 816 struct iommu_resv_region *region; 817 u32 *sids_copy; 818 u64 addr = rmr_desc->base_address, size = rmr_desc->length; 819 820 rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL); 821 if (!rmr_data) 822 return NULL; 823 824 /* Create a copy of SIDs array to associate with this rmr_data */ 825 sids_copy = kmemdup(sids, num_sids * sizeof(*sids), GFP_KERNEL); 826 if (!sids_copy) { 827 kfree(rmr_data); 828 return NULL; 829 } 830 rmr_data->sids = sids_copy; 831 rmr_data->num_sids = num_sids; 832 833 if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) { 834 /* PAGE align base addr and size */ 835 addr &= PAGE_MASK; 836 size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address)); 837 838 pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n", 839 rmr_desc->base_address, 840 rmr_desc->base_address + rmr_desc->length - 1, 841 addr, addr + size - 1); 842 } 843 844 region = &rmr_data->rr; 845 INIT_LIST_HEAD(®ion->list); 846 region->start = addr; 847 region->length = size; 848 region->prot = prot; 849 region->type = type; 850 region->free = iort_rmr_free; 851 852 return rmr_data; 853 } 854 855 static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc, 856 u32 count) 857 { 858 int i, j; 859 860 for (i = 0; i < count; i++) { 861 u64 end, start = desc[i].base_address, length = desc[i].length; 862 863 if (!length) { 864 pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n", 865 start); 866 continue; 867 } 868 869 end = start + length - 1; 870 871 /* Check for address overlap */ 872 for (j = i + 1; j < count; j++) { 873 u64 e_start = desc[j].base_address; 874 u64 e_end = e_start + desc[j].length - 1; 875 876 if (start <= e_end && end >= e_start) 877 pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n", 878 start, end); 879 } 880 } 881 } 882 883 /* 884 * Please note, we will keep the already allocated RMR reserve 885 * regions in case of a memory allocation failure. 886 */ 887 static void iort_get_rmrs(struct acpi_iort_node *node, 888 struct acpi_iort_node *smmu, 889 u32 *sids, u32 num_sids, 890 struct list_head *head) 891 { 892 struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data; 893 struct acpi_iort_rmr_desc *rmr_desc; 894 int i; 895 896 rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node, 897 rmr->rmr_offset); 898 899 iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count); 900 901 for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) { 902 struct iommu_iort_rmr_data *rmr_data; 903 enum iommu_resv_type type; 904 int prot = IOMMU_READ | IOMMU_WRITE; 905 906 if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED) 907 type = IOMMU_RESV_DIRECT_RELAXABLE; 908 else 909 type = IOMMU_RESV_DIRECT; 910 911 if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE) 912 prot |= IOMMU_PRIV; 913 914 /* Attributes 0x00 - 0x03 represents device memory */ 915 if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <= 916 ACPI_IORT_RMR_ATTR_DEVICE_GRE) 917 prot |= IOMMU_MMIO; 918 else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) == 919 ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB) 920 prot |= IOMMU_CACHE; 921 922 rmr_data = iort_rmr_alloc(rmr_desc, prot, type, 923 sids, num_sids); 924 if (!rmr_data) 925 return; 926 927 list_add_tail(&rmr_data->rr.list, head); 928 } 929 } 930 931 static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start, 932 u32 new_count) 933 { 934 u32 *new_sids; 935 u32 total_count = count + new_count; 936 int i; 937 938 new_sids = krealloc_array(sids, count + new_count, 939 sizeof(*new_sids), GFP_KERNEL); 940 if (!new_sids) 941 return NULL; 942 943 for (i = count; i < total_count; i++) 944 new_sids[i] = id_start++; 945 946 return new_sids; 947 } 948 949 static bool iort_rmr_has_dev(struct device *dev, u32 id_start, 950 u32 id_count) 951 { 952 int i; 953 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 954 955 /* 956 * Make sure the kernel has preserved the boot firmware PCIe 957 * configuration. This is required to ensure that the RMR PCIe 958 * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5). 959 */ 960 if (dev_is_pci(dev)) { 961 struct pci_dev *pdev = to_pci_dev(dev); 962 struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus); 963 964 if (!host->preserve_config) 965 return false; 966 } 967 968 for (i = 0; i < fwspec->num_ids; i++) { 969 if (fwspec->ids[i] >= id_start && 970 fwspec->ids[i] <= id_start + id_count) 971 return true; 972 } 973 974 return false; 975 } 976 977 static void iort_node_get_rmr_info(struct acpi_iort_node *node, 978 struct acpi_iort_node *iommu, 979 struct device *dev, struct list_head *head) 980 { 981 struct acpi_iort_node *smmu = NULL; 982 struct acpi_iort_rmr *rmr; 983 struct acpi_iort_id_mapping *map; 984 u32 *sids = NULL; 985 u32 num_sids = 0; 986 int i; 987 988 if (!node->mapping_offset || !node->mapping_count) { 989 pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n", 990 node); 991 return; 992 } 993 994 rmr = (struct acpi_iort_rmr *)node->node_data; 995 if (!rmr->rmr_offset || !rmr->rmr_count) 996 return; 997 998 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 999 node->mapping_offset); 1000 1001 /* 1002 * Go through the ID mappings and see if we have a match for SMMU 1003 * and dev(if !NULL). If found, get the sids for the Node. 1004 * Please note, id_count is equal to the number of IDs in the 1005 * range minus one. 1006 */ 1007 for (i = 0; i < node->mapping_count; i++, map++) { 1008 struct acpi_iort_node *parent; 1009 1010 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 1011 map->output_reference); 1012 if (parent != iommu) 1013 continue; 1014 1015 /* If dev is valid, check RMR node corresponds to the dev SID */ 1016 if (dev && !iort_rmr_has_dev(dev, map->output_base, 1017 map->id_count)) 1018 continue; 1019 1020 /* Retrieve SIDs associated with the Node. */ 1021 sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base, 1022 map->id_count + 1); 1023 if (!sids) 1024 return; 1025 1026 num_sids += map->id_count + 1; 1027 } 1028 1029 if (!sids) 1030 return; 1031 1032 iort_get_rmrs(node, smmu, sids, num_sids, head); 1033 kfree(sids); 1034 } 1035 1036 static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev, 1037 struct list_head *head) 1038 { 1039 struct acpi_table_iort *iort; 1040 struct acpi_iort_node *iort_node, *iort_end; 1041 int i; 1042 1043 /* Only supports ARM DEN 0049E.d onwards */ 1044 if (iort_table->revision < 5) 1045 return; 1046 1047 iort = (struct acpi_table_iort *)iort_table; 1048 1049 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1050 iort->node_offset); 1051 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1052 iort_table->length); 1053 1054 for (i = 0; i < iort->node_count; i++) { 1055 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND, 1056 "IORT node pointer overflows, bad table!\n")) 1057 return; 1058 1059 if (iort_node->type == ACPI_IORT_NODE_RMR) 1060 iort_node_get_rmr_info(iort_node, iommu, dev, head); 1061 1062 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 1063 iort_node->length); 1064 } 1065 } 1066 1067 /* 1068 * Populate the RMR list associated with a given IOMMU and dev(if provided). 1069 * If dev is NULL, the function populates all the RMRs associated with the 1070 * given IOMMU. 1071 */ 1072 static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode, 1073 struct device *dev, 1074 struct list_head *head) 1075 { 1076 struct acpi_iort_node *iommu; 1077 1078 iommu = iort_get_iort_node(iommu_fwnode); 1079 if (!iommu) 1080 return; 1081 1082 iort_find_rmrs(iommu, dev, head); 1083 } 1084 1085 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev) 1086 { 1087 struct acpi_iort_node *iommu; 1088 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1089 1090 iommu = iort_get_iort_node(fwspec->iommu_fwnode); 1091 1092 if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) { 1093 struct acpi_iort_smmu_v3 *smmu; 1094 1095 smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data; 1096 if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X) 1097 return iommu; 1098 } 1099 1100 return NULL; 1101 } 1102 1103 /* 1104 * Retrieve platform specific HW MSI reserve regions. 1105 * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K) 1106 * associated with the device are the HW MSI reserved regions. 1107 */ 1108 static void iort_iommu_msi_get_resv_regions(struct device *dev, 1109 struct list_head *head) 1110 { 1111 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1112 struct acpi_iort_its_group *its; 1113 struct acpi_iort_node *iommu_node, *its_node = NULL; 1114 int i; 1115 1116 iommu_node = iort_get_msi_resv_iommu(dev); 1117 if (!iommu_node) 1118 return; 1119 1120 /* 1121 * Current logic to reserve ITS regions relies on HW topologies 1122 * where a given PCI or named component maps its IDs to only one 1123 * ITS group; if a PCI or named component can map its IDs to 1124 * different ITS groups through IORT mappings this function has 1125 * to be reworked to ensure we reserve regions for all ITS groups 1126 * a given PCI or named component may map IDs to. 1127 */ 1128 1129 for (i = 0; i < fwspec->num_ids; i++) { 1130 its_node = iort_node_map_id(iommu_node, 1131 fwspec->ids[i], 1132 NULL, IORT_MSI_TYPE); 1133 if (its_node) 1134 break; 1135 } 1136 1137 if (!its_node) 1138 return; 1139 1140 /* Move to ITS specific data */ 1141 its = (struct acpi_iort_its_group *)its_node->node_data; 1142 1143 for (i = 0; i < its->its_count; i++) { 1144 phys_addr_t base; 1145 1146 if (!iort_find_its_base(its->identifiers[i], &base)) { 1147 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1148 struct iommu_resv_region *region; 1149 1150 region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K, 1151 prot, IOMMU_RESV_MSI, 1152 GFP_KERNEL); 1153 if (region) 1154 list_add_tail(®ion->list, head); 1155 } 1156 } 1157 } 1158 1159 /** 1160 * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions. 1161 * @dev: Device from iommu_get_resv_regions() 1162 * @head: Reserved region list from iommu_get_resv_regions() 1163 */ 1164 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head) 1165 { 1166 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1167 1168 iort_iommu_msi_get_resv_regions(dev, head); 1169 iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head); 1170 } 1171 1172 /** 1173 * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with 1174 * associated StreamIDs information. 1175 * @iommu_fwnode: fwnode associated with IOMMU 1176 * @head: Resereved region list 1177 */ 1178 void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode, 1179 struct list_head *head) 1180 { 1181 iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head); 1182 } 1183 EXPORT_SYMBOL_GPL(iort_get_rmr_sids); 1184 1185 /** 1186 * iort_put_rmr_sids - Free memory allocated for RMR reserved regions. 1187 * @iommu_fwnode: fwnode associated with IOMMU 1188 * @head: Resereved region list 1189 */ 1190 void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode, 1191 struct list_head *head) 1192 { 1193 struct iommu_resv_region *entry, *next; 1194 1195 list_for_each_entry_safe(entry, next, head, list) 1196 entry->free(NULL, entry); 1197 } 1198 EXPORT_SYMBOL_GPL(iort_put_rmr_sids); 1199 1200 static inline bool iort_iommu_driver_enabled(u8 type) 1201 { 1202 switch (type) { 1203 case ACPI_IORT_NODE_SMMU_V3: 1204 return IS_ENABLED(CONFIG_ARM_SMMU_V3); 1205 case ACPI_IORT_NODE_SMMU: 1206 return IS_ENABLED(CONFIG_ARM_SMMU); 1207 default: 1208 pr_warn("IORT node type %u does not describe an SMMU\n", type); 1209 return false; 1210 } 1211 } 1212 1213 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node) 1214 { 1215 struct acpi_iort_root_complex *pci_rc; 1216 1217 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 1218 return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED; 1219 } 1220 1221 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node, 1222 u32 streamid) 1223 { 1224 const struct iommu_ops *ops; 1225 struct fwnode_handle *iort_fwnode; 1226 1227 if (!node) 1228 return -ENODEV; 1229 1230 iort_fwnode = iort_get_fwnode(node); 1231 if (!iort_fwnode) 1232 return -ENODEV; 1233 1234 /* 1235 * If the ops look-up fails, this means that either 1236 * the SMMU drivers have not been probed yet or that 1237 * the SMMU drivers are not built in the kernel; 1238 * Depending on whether the SMMU drivers are built-in 1239 * in the kernel or not, defer the IOMMU configuration 1240 * or just abort it. 1241 */ 1242 ops = iommu_ops_from_fwnode(iort_fwnode); 1243 if (!ops) 1244 return iort_iommu_driver_enabled(node->type) ? 1245 -EPROBE_DEFER : -ENODEV; 1246 1247 return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode, ops); 1248 } 1249 1250 struct iort_pci_alias_info { 1251 struct device *dev; 1252 struct acpi_iort_node *node; 1253 }; 1254 1255 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data) 1256 { 1257 struct iort_pci_alias_info *info = data; 1258 struct acpi_iort_node *parent; 1259 u32 streamid; 1260 1261 parent = iort_node_map_id(info->node, alias, &streamid, 1262 IORT_IOMMU_TYPE); 1263 return iort_iommu_xlate(info->dev, parent, streamid); 1264 } 1265 1266 static void iort_named_component_init(struct device *dev, 1267 struct acpi_iort_node *node) 1268 { 1269 struct property_entry props[3] = {}; 1270 struct acpi_iort_named_component *nc; 1271 1272 nc = (struct acpi_iort_named_component *)node->node_data; 1273 props[0] = PROPERTY_ENTRY_U32("pasid-num-bits", 1274 FIELD_GET(ACPI_IORT_NC_PASID_BITS, 1275 nc->node_flags)); 1276 if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED) 1277 props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall"); 1278 1279 if (device_create_managed_software_node(dev, props, NULL)) 1280 dev_warn(dev, "Could not add device properties\n"); 1281 } 1282 1283 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node) 1284 { 1285 struct acpi_iort_node *parent; 1286 int err = -ENODEV, i = 0; 1287 u32 streamid = 0; 1288 1289 do { 1290 1291 parent = iort_node_map_platform_id(node, &streamid, 1292 IORT_IOMMU_TYPE, 1293 i++); 1294 1295 if (parent) 1296 err = iort_iommu_xlate(dev, parent, streamid); 1297 } while (parent && !err); 1298 1299 return err; 1300 } 1301 1302 static int iort_nc_iommu_map_id(struct device *dev, 1303 struct acpi_iort_node *node, 1304 const u32 *in_id) 1305 { 1306 struct acpi_iort_node *parent; 1307 u32 streamid; 1308 1309 parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE); 1310 if (parent) 1311 return iort_iommu_xlate(dev, parent, streamid); 1312 1313 return -ENODEV; 1314 } 1315 1316 1317 /** 1318 * iort_iommu_configure_id - Set-up IOMMU configuration for a device. 1319 * 1320 * @dev: device to configure 1321 * @id_in: optional input id const value pointer 1322 * 1323 * Returns: 0 on success, <0 on failure 1324 */ 1325 int iort_iommu_configure_id(struct device *dev, const u32 *id_in) 1326 { 1327 struct acpi_iort_node *node; 1328 int err = -ENODEV; 1329 1330 if (dev_is_pci(dev)) { 1331 struct iommu_fwspec *fwspec; 1332 struct pci_bus *bus = to_pci_dev(dev)->bus; 1333 struct iort_pci_alias_info info = { .dev = dev }; 1334 1335 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 1336 iort_match_node_callback, &bus->dev); 1337 if (!node) 1338 return -ENODEV; 1339 1340 info.node = node; 1341 err = pci_for_each_dma_alias(to_pci_dev(dev), 1342 iort_pci_iommu_init, &info); 1343 1344 fwspec = dev_iommu_fwspec_get(dev); 1345 if (fwspec && iort_pci_rc_supports_ats(node)) 1346 fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS; 1347 } else { 1348 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 1349 iort_match_node_callback, dev); 1350 if (!node) 1351 return -ENODEV; 1352 1353 err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) : 1354 iort_nc_iommu_map(dev, node); 1355 1356 if (!err) 1357 iort_named_component_init(dev, node); 1358 } 1359 1360 return err; 1361 } 1362 1363 #else 1364 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head) 1365 { } 1366 int iort_iommu_configure_id(struct device *dev, const u32 *input_id) 1367 { return -ENODEV; } 1368 #endif 1369 1370 static int nc_dma_get_range(struct device *dev, u64 *size) 1371 { 1372 struct acpi_iort_node *node; 1373 struct acpi_iort_named_component *ncomp; 1374 1375 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 1376 iort_match_node_callback, dev); 1377 if (!node) 1378 return -ENODEV; 1379 1380 ncomp = (struct acpi_iort_named_component *)node->node_data; 1381 1382 if (!ncomp->memory_address_limit) { 1383 pr_warn(FW_BUG "Named component missing memory address limit\n"); 1384 return -EINVAL; 1385 } 1386 1387 *size = ncomp->memory_address_limit >= 64 ? U64_MAX : 1388 1ULL<<ncomp->memory_address_limit; 1389 1390 return 0; 1391 } 1392 1393 static int rc_dma_get_range(struct device *dev, u64 *size) 1394 { 1395 struct acpi_iort_node *node; 1396 struct acpi_iort_root_complex *rc; 1397 struct pci_bus *pbus = to_pci_dev(dev)->bus; 1398 1399 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 1400 iort_match_node_callback, &pbus->dev); 1401 if (!node || node->revision < 1) 1402 return -ENODEV; 1403 1404 rc = (struct acpi_iort_root_complex *)node->node_data; 1405 1406 if (!rc->memory_address_limit) { 1407 pr_warn(FW_BUG "Root complex missing memory address limit\n"); 1408 return -EINVAL; 1409 } 1410 1411 *size = rc->memory_address_limit >= 64 ? U64_MAX : 1412 1ULL<<rc->memory_address_limit; 1413 1414 return 0; 1415 } 1416 1417 /** 1418 * iort_dma_get_ranges() - Look up DMA addressing limit for the device 1419 * @dev: device to lookup 1420 * @size: DMA range size result pointer 1421 * 1422 * Return: 0 on success, an error otherwise. 1423 */ 1424 int iort_dma_get_ranges(struct device *dev, u64 *size) 1425 { 1426 if (dev_is_pci(dev)) 1427 return rc_dma_get_range(dev, size); 1428 else 1429 return nc_dma_get_range(dev, size); 1430 } 1431 1432 static void __init acpi_iort_register_irq(int hwirq, const char *name, 1433 int trigger, 1434 struct resource *res) 1435 { 1436 int irq = acpi_register_gsi(NULL, hwirq, trigger, 1437 ACPI_ACTIVE_HIGH); 1438 1439 if (irq <= 0) { 1440 pr_err("could not register gsi hwirq %d name [%s]\n", hwirq, 1441 name); 1442 return; 1443 } 1444 1445 res->start = irq; 1446 res->end = irq; 1447 res->flags = IORESOURCE_IRQ; 1448 res->name = name; 1449 } 1450 1451 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node) 1452 { 1453 struct acpi_iort_smmu_v3 *smmu; 1454 /* Always present mem resource */ 1455 int num_res = 1; 1456 1457 /* Retrieve SMMUv3 specific data */ 1458 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1459 1460 if (smmu->event_gsiv) 1461 num_res++; 1462 1463 if (smmu->pri_gsiv) 1464 num_res++; 1465 1466 if (smmu->gerr_gsiv) 1467 num_res++; 1468 1469 if (smmu->sync_gsiv) 1470 num_res++; 1471 1472 return num_res; 1473 } 1474 1475 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu) 1476 { 1477 /* 1478 * Cavium ThunderX2 implementation doesn't not support unique 1479 * irq line. Use single irq line for all the SMMUv3 interrupts. 1480 */ 1481 if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) 1482 return false; 1483 1484 /* 1485 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking 1486 * SPI numbers here. 1487 */ 1488 return smmu->event_gsiv == smmu->pri_gsiv && 1489 smmu->event_gsiv == smmu->gerr_gsiv && 1490 smmu->event_gsiv == smmu->sync_gsiv; 1491 } 1492 1493 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu) 1494 { 1495 /* 1496 * Override the size, for Cavium ThunderX2 implementation 1497 * which doesn't support the page 1 SMMU register space. 1498 */ 1499 if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) 1500 return SZ_64K; 1501 1502 return SZ_128K; 1503 } 1504 1505 static void __init arm_smmu_v3_init_resources(struct resource *res, 1506 struct acpi_iort_node *node) 1507 { 1508 struct acpi_iort_smmu_v3 *smmu; 1509 int num_res = 0; 1510 1511 /* Retrieve SMMUv3 specific data */ 1512 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1513 1514 res[num_res].start = smmu->base_address; 1515 res[num_res].end = smmu->base_address + 1516 arm_smmu_v3_resource_size(smmu) - 1; 1517 res[num_res].flags = IORESOURCE_MEM; 1518 1519 num_res++; 1520 if (arm_smmu_v3_is_combined_irq(smmu)) { 1521 if (smmu->event_gsiv) 1522 acpi_iort_register_irq(smmu->event_gsiv, "combined", 1523 ACPI_EDGE_SENSITIVE, 1524 &res[num_res++]); 1525 } else { 1526 1527 if (smmu->event_gsiv) 1528 acpi_iort_register_irq(smmu->event_gsiv, "eventq", 1529 ACPI_EDGE_SENSITIVE, 1530 &res[num_res++]); 1531 1532 if (smmu->pri_gsiv) 1533 acpi_iort_register_irq(smmu->pri_gsiv, "priq", 1534 ACPI_EDGE_SENSITIVE, 1535 &res[num_res++]); 1536 1537 if (smmu->gerr_gsiv) 1538 acpi_iort_register_irq(smmu->gerr_gsiv, "gerror", 1539 ACPI_EDGE_SENSITIVE, 1540 &res[num_res++]); 1541 1542 if (smmu->sync_gsiv) 1543 acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync", 1544 ACPI_EDGE_SENSITIVE, 1545 &res[num_res++]); 1546 } 1547 } 1548 1549 static void __init arm_smmu_v3_dma_configure(struct device *dev, 1550 struct acpi_iort_node *node) 1551 { 1552 struct acpi_iort_smmu_v3 *smmu; 1553 enum dev_dma_attr attr; 1554 1555 /* Retrieve SMMUv3 specific data */ 1556 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1557 1558 attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ? 1559 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; 1560 1561 /* We expect the dma masks to be equivalent for all SMMUv3 set-ups */ 1562 dev->dma_mask = &dev->coherent_dma_mask; 1563 1564 /* Configure DMA for the page table walker */ 1565 acpi_dma_configure(dev, attr); 1566 } 1567 1568 #if defined(CONFIG_ACPI_NUMA) 1569 /* 1570 * set numa proximity domain for smmuv3 device 1571 */ 1572 static int __init arm_smmu_v3_set_proximity(struct device *dev, 1573 struct acpi_iort_node *node) 1574 { 1575 struct acpi_iort_smmu_v3 *smmu; 1576 1577 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1578 if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) { 1579 int dev_node = pxm_to_node(smmu->pxm); 1580 1581 if (dev_node != NUMA_NO_NODE && !node_online(dev_node)) 1582 return -EINVAL; 1583 1584 set_dev_node(dev, dev_node); 1585 pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n", 1586 smmu->base_address, 1587 smmu->pxm); 1588 } 1589 return 0; 1590 } 1591 #else 1592 #define arm_smmu_v3_set_proximity NULL 1593 #endif 1594 1595 static int __init arm_smmu_count_resources(struct acpi_iort_node *node) 1596 { 1597 struct acpi_iort_smmu *smmu; 1598 1599 /* Retrieve SMMU specific data */ 1600 smmu = (struct acpi_iort_smmu *)node->node_data; 1601 1602 /* 1603 * Only consider the global fault interrupt and ignore the 1604 * configuration access interrupt. 1605 * 1606 * MMIO address and global fault interrupt resources are always 1607 * present so add them to the context interrupt count as a static 1608 * value. 1609 */ 1610 return smmu->context_interrupt_count + 2; 1611 } 1612 1613 static void __init arm_smmu_init_resources(struct resource *res, 1614 struct acpi_iort_node *node) 1615 { 1616 struct acpi_iort_smmu *smmu; 1617 int i, hw_irq, trigger, num_res = 0; 1618 u64 *ctx_irq, *glb_irq; 1619 1620 /* Retrieve SMMU specific data */ 1621 smmu = (struct acpi_iort_smmu *)node->node_data; 1622 1623 res[num_res].start = smmu->base_address; 1624 res[num_res].end = smmu->base_address + smmu->span - 1; 1625 res[num_res].flags = IORESOURCE_MEM; 1626 num_res++; 1627 1628 glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset); 1629 /* Global IRQs */ 1630 hw_irq = IORT_IRQ_MASK(glb_irq[0]); 1631 trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]); 1632 1633 acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger, 1634 &res[num_res++]); 1635 1636 /* Context IRQs */ 1637 ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset); 1638 for (i = 0; i < smmu->context_interrupt_count; i++) { 1639 hw_irq = IORT_IRQ_MASK(ctx_irq[i]); 1640 trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]); 1641 1642 acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger, 1643 &res[num_res++]); 1644 } 1645 } 1646 1647 static void __init arm_smmu_dma_configure(struct device *dev, 1648 struct acpi_iort_node *node) 1649 { 1650 struct acpi_iort_smmu *smmu; 1651 enum dev_dma_attr attr; 1652 1653 /* Retrieve SMMU specific data */ 1654 smmu = (struct acpi_iort_smmu *)node->node_data; 1655 1656 attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ? 1657 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; 1658 1659 /* We expect the dma masks to be equivalent for SMMU set-ups */ 1660 dev->dma_mask = &dev->coherent_dma_mask; 1661 1662 /* Configure DMA for the page table walker */ 1663 acpi_dma_configure(dev, attr); 1664 } 1665 1666 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node) 1667 { 1668 struct acpi_iort_pmcg *pmcg; 1669 1670 /* Retrieve PMCG specific data */ 1671 pmcg = (struct acpi_iort_pmcg *)node->node_data; 1672 1673 /* 1674 * There are always 2 memory resources. 1675 * If the overflow_gsiv is present then add that for a total of 3. 1676 */ 1677 return pmcg->overflow_gsiv ? 3 : 2; 1678 } 1679 1680 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res, 1681 struct acpi_iort_node *node) 1682 { 1683 struct acpi_iort_pmcg *pmcg; 1684 1685 /* Retrieve PMCG specific data */ 1686 pmcg = (struct acpi_iort_pmcg *)node->node_data; 1687 1688 res[0].start = pmcg->page0_base_address; 1689 res[0].end = pmcg->page0_base_address + SZ_4K - 1; 1690 res[0].flags = IORESOURCE_MEM; 1691 /* 1692 * The initial version in DEN0049C lacked a way to describe register 1693 * page 1, which makes it broken for most PMCG implementations; in 1694 * that case, just let the driver fail gracefully if it expects to 1695 * find a second memory resource. 1696 */ 1697 if (node->revision > 0) { 1698 res[1].start = pmcg->page1_base_address; 1699 res[1].end = pmcg->page1_base_address + SZ_4K - 1; 1700 res[1].flags = IORESOURCE_MEM; 1701 } 1702 1703 if (pmcg->overflow_gsiv) 1704 acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow", 1705 ACPI_EDGE_SENSITIVE, &res[2]); 1706 } 1707 1708 static struct acpi_platform_list pmcg_plat_info[] __initdata = { 1709 /* HiSilicon Hip08 Platform */ 1710 {"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal, 1711 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08}, 1712 { } 1713 }; 1714 1715 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev) 1716 { 1717 u32 model; 1718 int idx; 1719 1720 idx = acpi_match_platform_list(pmcg_plat_info); 1721 if (idx >= 0) 1722 model = pmcg_plat_info[idx].data; 1723 else 1724 model = IORT_SMMU_V3_PMCG_GENERIC; 1725 1726 return platform_device_add_data(pdev, &model, sizeof(model)); 1727 } 1728 1729 struct iort_dev_config { 1730 const char *name; 1731 int (*dev_init)(struct acpi_iort_node *node); 1732 void (*dev_dma_configure)(struct device *dev, 1733 struct acpi_iort_node *node); 1734 int (*dev_count_resources)(struct acpi_iort_node *node); 1735 void (*dev_init_resources)(struct resource *res, 1736 struct acpi_iort_node *node); 1737 int (*dev_set_proximity)(struct device *dev, 1738 struct acpi_iort_node *node); 1739 int (*dev_add_platdata)(struct platform_device *pdev); 1740 }; 1741 1742 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = { 1743 .name = "arm-smmu-v3", 1744 .dev_dma_configure = arm_smmu_v3_dma_configure, 1745 .dev_count_resources = arm_smmu_v3_count_resources, 1746 .dev_init_resources = arm_smmu_v3_init_resources, 1747 .dev_set_proximity = arm_smmu_v3_set_proximity, 1748 }; 1749 1750 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = { 1751 .name = "arm-smmu", 1752 .dev_dma_configure = arm_smmu_dma_configure, 1753 .dev_count_resources = arm_smmu_count_resources, 1754 .dev_init_resources = arm_smmu_init_resources, 1755 }; 1756 1757 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = { 1758 .name = "arm-smmu-v3-pmcg", 1759 .dev_count_resources = arm_smmu_v3_pmcg_count_resources, 1760 .dev_init_resources = arm_smmu_v3_pmcg_init_resources, 1761 .dev_add_platdata = arm_smmu_v3_pmcg_add_platdata, 1762 }; 1763 1764 static __init const struct iort_dev_config *iort_get_dev_cfg( 1765 struct acpi_iort_node *node) 1766 { 1767 switch (node->type) { 1768 case ACPI_IORT_NODE_SMMU_V3: 1769 return &iort_arm_smmu_v3_cfg; 1770 case ACPI_IORT_NODE_SMMU: 1771 return &iort_arm_smmu_cfg; 1772 case ACPI_IORT_NODE_PMCG: 1773 return &iort_arm_smmu_v3_pmcg_cfg; 1774 default: 1775 return NULL; 1776 } 1777 } 1778 1779 /** 1780 * iort_add_platform_device() - Allocate a platform device for IORT node 1781 * @node: Pointer to device ACPI IORT node 1782 * @ops: Pointer to IORT device config struct 1783 * 1784 * Returns: 0 on success, <0 failure 1785 */ 1786 static int __init iort_add_platform_device(struct acpi_iort_node *node, 1787 const struct iort_dev_config *ops) 1788 { 1789 struct fwnode_handle *fwnode; 1790 struct platform_device *pdev; 1791 struct resource *r; 1792 int ret, count; 1793 1794 pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO); 1795 if (!pdev) 1796 return -ENOMEM; 1797 1798 if (ops->dev_set_proximity) { 1799 ret = ops->dev_set_proximity(&pdev->dev, node); 1800 if (ret) 1801 goto dev_put; 1802 } 1803 1804 count = ops->dev_count_resources(node); 1805 1806 r = kcalloc(count, sizeof(*r), GFP_KERNEL); 1807 if (!r) { 1808 ret = -ENOMEM; 1809 goto dev_put; 1810 } 1811 1812 ops->dev_init_resources(r, node); 1813 1814 ret = platform_device_add_resources(pdev, r, count); 1815 /* 1816 * Resources are duplicated in platform_device_add_resources, 1817 * free their allocated memory 1818 */ 1819 kfree(r); 1820 1821 if (ret) 1822 goto dev_put; 1823 1824 /* 1825 * Platform devices based on PMCG nodes uses platform_data to 1826 * pass the hardware model info to the driver. For others, add 1827 * a copy of IORT node pointer to platform_data to be used to 1828 * retrieve IORT data information. 1829 */ 1830 if (ops->dev_add_platdata) 1831 ret = ops->dev_add_platdata(pdev); 1832 else 1833 ret = platform_device_add_data(pdev, &node, sizeof(node)); 1834 1835 if (ret) 1836 goto dev_put; 1837 1838 fwnode = iort_get_fwnode(node); 1839 1840 if (!fwnode) { 1841 ret = -ENODEV; 1842 goto dev_put; 1843 } 1844 1845 pdev->dev.fwnode = fwnode; 1846 1847 if (ops->dev_dma_configure) 1848 ops->dev_dma_configure(&pdev->dev, node); 1849 1850 iort_set_device_domain(&pdev->dev, node); 1851 1852 ret = platform_device_add(pdev); 1853 if (ret) 1854 goto dma_deconfigure; 1855 1856 return 0; 1857 1858 dma_deconfigure: 1859 arch_teardown_dma_ops(&pdev->dev); 1860 dev_put: 1861 platform_device_put(pdev); 1862 1863 return ret; 1864 } 1865 1866 #ifdef CONFIG_PCI 1867 static void __init iort_enable_acs(struct acpi_iort_node *iort_node) 1868 { 1869 static bool acs_enabled __initdata; 1870 1871 if (acs_enabled) 1872 return; 1873 1874 if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 1875 struct acpi_iort_node *parent; 1876 struct acpi_iort_id_mapping *map; 1877 int i; 1878 1879 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node, 1880 iort_node->mapping_offset); 1881 1882 for (i = 0; i < iort_node->mapping_count; i++, map++) { 1883 if (!map->output_reference) 1884 continue; 1885 1886 parent = ACPI_ADD_PTR(struct acpi_iort_node, 1887 iort_table, map->output_reference); 1888 /* 1889 * If we detect a RC->SMMU mapping, make sure 1890 * we enable ACS on the system. 1891 */ 1892 if ((parent->type == ACPI_IORT_NODE_SMMU) || 1893 (parent->type == ACPI_IORT_NODE_SMMU_V3)) { 1894 pci_request_acs(); 1895 acs_enabled = true; 1896 return; 1897 } 1898 } 1899 } 1900 } 1901 #else 1902 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { } 1903 #endif 1904 1905 static void __init iort_init_platform_devices(void) 1906 { 1907 struct acpi_iort_node *iort_node, *iort_end; 1908 struct acpi_table_iort *iort; 1909 struct fwnode_handle *fwnode; 1910 int i, ret; 1911 const struct iort_dev_config *ops; 1912 1913 /* 1914 * iort_table and iort both point to the start of IORT table, but 1915 * have different struct types 1916 */ 1917 iort = (struct acpi_table_iort *)iort_table; 1918 1919 /* Get the first IORT node */ 1920 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1921 iort->node_offset); 1922 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1923 iort_table->length); 1924 1925 for (i = 0; i < iort->node_count; i++) { 1926 if (iort_node >= iort_end) { 1927 pr_err("iort node pointer overflows, bad table\n"); 1928 return; 1929 } 1930 1931 iort_enable_acs(iort_node); 1932 1933 ops = iort_get_dev_cfg(iort_node); 1934 if (ops) { 1935 fwnode = acpi_alloc_fwnode_static(); 1936 if (!fwnode) 1937 return; 1938 1939 iort_set_fwnode(iort_node, fwnode); 1940 1941 ret = iort_add_platform_device(iort_node, ops); 1942 if (ret) { 1943 iort_delete_fwnode(iort_node); 1944 acpi_free_fwnode_static(fwnode); 1945 return; 1946 } 1947 } 1948 1949 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 1950 iort_node->length); 1951 } 1952 } 1953 1954 void __init acpi_iort_init(void) 1955 { 1956 acpi_status status; 1957 1958 /* iort_table will be used at runtime after the iort init, 1959 * so we don't need to call acpi_put_table() to release 1960 * the IORT table mapping. 1961 */ 1962 status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table); 1963 if (ACPI_FAILURE(status)) { 1964 if (status != AE_NOT_FOUND) { 1965 const char *msg = acpi_format_exception(status); 1966 1967 pr_err("Failed to get table, %s\n", msg); 1968 } 1969 1970 return; 1971 } 1972 1973 iort_init_platform_devices(); 1974 } 1975 1976 #ifdef CONFIG_ZONE_DMA 1977 /* 1978 * Extract the highest CPU physical address accessible to all DMA masters in 1979 * the system. PHYS_ADDR_MAX is returned when no constrained device is found. 1980 */ 1981 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void) 1982 { 1983 phys_addr_t limit = PHYS_ADDR_MAX; 1984 struct acpi_iort_node *node, *end; 1985 struct acpi_table_iort *iort; 1986 acpi_status status; 1987 int i; 1988 1989 if (acpi_disabled) 1990 return limit; 1991 1992 status = acpi_get_table(ACPI_SIG_IORT, 0, 1993 (struct acpi_table_header **)&iort); 1994 if (ACPI_FAILURE(status)) 1995 return limit; 1996 1997 node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset); 1998 end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length); 1999 2000 for (i = 0; i < iort->node_count; i++) { 2001 if (node >= end) 2002 break; 2003 2004 switch (node->type) { 2005 struct acpi_iort_named_component *ncomp; 2006 struct acpi_iort_root_complex *rc; 2007 phys_addr_t local_limit; 2008 2009 case ACPI_IORT_NODE_NAMED_COMPONENT: 2010 ncomp = (struct acpi_iort_named_component *)node->node_data; 2011 local_limit = DMA_BIT_MASK(ncomp->memory_address_limit); 2012 limit = min_not_zero(limit, local_limit); 2013 break; 2014 2015 case ACPI_IORT_NODE_PCI_ROOT_COMPLEX: 2016 if (node->revision < 1) 2017 break; 2018 2019 rc = (struct acpi_iort_root_complex *)node->node_data; 2020 local_limit = DMA_BIT_MASK(rc->memory_address_limit); 2021 limit = min_not_zero(limit, local_limit); 2022 break; 2023 } 2024 node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length); 2025 } 2026 acpi_put_table(&iort->header); 2027 return limit; 2028 } 2029 #endif 2030