xref: /openbmc/linux/drivers/acpi/arm64/iort.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016, Semihalf
4  *	Author: Tomasz Nowicki <tn@semihalf.com>
5  *
6  * This file implements early detection/parsing of I/O mapping
7  * reported to OS through firmware via I/O Remapping Table (IORT)
8  * IORT document number: ARM DEN 0049A
9  */
10 
11 #define pr_fmt(fmt)	"ACPI: IORT: " fmt
12 
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/dma-map-ops.h>
22 #include "init.h"
23 
24 #define IORT_TYPE_MASK(type)	(1 << (type))
25 #define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
26 #define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
27 				(1 << ACPI_IORT_NODE_SMMU_V3))
28 
29 struct iort_its_msi_chip {
30 	struct list_head	list;
31 	struct fwnode_handle	*fw_node;
32 	phys_addr_t		base_addr;
33 	u32			translation_id;
34 };
35 
36 struct iort_fwnode {
37 	struct list_head list;
38 	struct acpi_iort_node *iort_node;
39 	struct fwnode_handle *fwnode;
40 };
41 static LIST_HEAD(iort_fwnode_list);
42 static DEFINE_SPINLOCK(iort_fwnode_lock);
43 
44 /**
45  * iort_set_fwnode() - Create iort_fwnode and use it to register
46  *		       iommu data in the iort_fwnode_list
47  *
48  * @iort_node: IORT table node associated with the IOMMU
49  * @fwnode: fwnode associated with the IORT node
50  *
51  * Returns: 0 on success
52  *          <0 on failure
53  */
54 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
55 				  struct fwnode_handle *fwnode)
56 {
57 	struct iort_fwnode *np;
58 
59 	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
60 
61 	if (WARN_ON(!np))
62 		return -ENOMEM;
63 
64 	INIT_LIST_HEAD(&np->list);
65 	np->iort_node = iort_node;
66 	np->fwnode = fwnode;
67 
68 	spin_lock(&iort_fwnode_lock);
69 	list_add_tail(&np->list, &iort_fwnode_list);
70 	spin_unlock(&iort_fwnode_lock);
71 
72 	return 0;
73 }
74 
75 /**
76  * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
77  *
78  * @node: IORT table node to be looked-up
79  *
80  * Returns: fwnode_handle pointer on success, NULL on failure
81  */
82 static inline struct fwnode_handle *iort_get_fwnode(
83 			struct acpi_iort_node *node)
84 {
85 	struct iort_fwnode *curr;
86 	struct fwnode_handle *fwnode = NULL;
87 
88 	spin_lock(&iort_fwnode_lock);
89 	list_for_each_entry(curr, &iort_fwnode_list, list) {
90 		if (curr->iort_node == node) {
91 			fwnode = curr->fwnode;
92 			break;
93 		}
94 	}
95 	spin_unlock(&iort_fwnode_lock);
96 
97 	return fwnode;
98 }
99 
100 /**
101  * iort_delete_fwnode() - Delete fwnode associated with an IORT node
102  *
103  * @node: IORT table node associated with fwnode to delete
104  */
105 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
106 {
107 	struct iort_fwnode *curr, *tmp;
108 
109 	spin_lock(&iort_fwnode_lock);
110 	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
111 		if (curr->iort_node == node) {
112 			list_del(&curr->list);
113 			kfree(curr);
114 			break;
115 		}
116 	}
117 	spin_unlock(&iort_fwnode_lock);
118 }
119 
120 /**
121  * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
122  *
123  * @fwnode: fwnode associated with device to be looked-up
124  *
125  * Returns: iort_node pointer on success, NULL on failure
126  */
127 static inline struct acpi_iort_node *iort_get_iort_node(
128 			struct fwnode_handle *fwnode)
129 {
130 	struct iort_fwnode *curr;
131 	struct acpi_iort_node *iort_node = NULL;
132 
133 	spin_lock(&iort_fwnode_lock);
134 	list_for_each_entry(curr, &iort_fwnode_list, list) {
135 		if (curr->fwnode == fwnode) {
136 			iort_node = curr->iort_node;
137 			break;
138 		}
139 	}
140 	spin_unlock(&iort_fwnode_lock);
141 
142 	return iort_node;
143 }
144 
145 typedef acpi_status (*iort_find_node_callback)
146 	(struct acpi_iort_node *node, void *context);
147 
148 /* Root pointer to the mapped IORT table */
149 static struct acpi_table_header *iort_table;
150 
151 static LIST_HEAD(iort_msi_chip_list);
152 static DEFINE_SPINLOCK(iort_msi_chip_lock);
153 
154 /**
155  * iort_register_domain_token() - register domain token along with related
156  * ITS ID and base address to the list from where we can get it back later on.
157  * @trans_id: ITS ID.
158  * @base: ITS base address.
159  * @fw_node: Domain token.
160  *
161  * Returns: 0 on success, -ENOMEM if no memory when allocating list element
162  */
163 int iort_register_domain_token(int trans_id, phys_addr_t base,
164 			       struct fwnode_handle *fw_node)
165 {
166 	struct iort_its_msi_chip *its_msi_chip;
167 
168 	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
169 	if (!its_msi_chip)
170 		return -ENOMEM;
171 
172 	its_msi_chip->fw_node = fw_node;
173 	its_msi_chip->translation_id = trans_id;
174 	its_msi_chip->base_addr = base;
175 
176 	spin_lock(&iort_msi_chip_lock);
177 	list_add(&its_msi_chip->list, &iort_msi_chip_list);
178 	spin_unlock(&iort_msi_chip_lock);
179 
180 	return 0;
181 }
182 
183 /**
184  * iort_deregister_domain_token() - Deregister domain token based on ITS ID
185  * @trans_id: ITS ID.
186  *
187  * Returns: none.
188  */
189 void iort_deregister_domain_token(int trans_id)
190 {
191 	struct iort_its_msi_chip *its_msi_chip, *t;
192 
193 	spin_lock(&iort_msi_chip_lock);
194 	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
195 		if (its_msi_chip->translation_id == trans_id) {
196 			list_del(&its_msi_chip->list);
197 			kfree(its_msi_chip);
198 			break;
199 		}
200 	}
201 	spin_unlock(&iort_msi_chip_lock);
202 }
203 
204 /**
205  * iort_find_domain_token() - Find domain token based on given ITS ID
206  * @trans_id: ITS ID.
207  *
208  * Returns: domain token when find on the list, NULL otherwise
209  */
210 struct fwnode_handle *iort_find_domain_token(int trans_id)
211 {
212 	struct fwnode_handle *fw_node = NULL;
213 	struct iort_its_msi_chip *its_msi_chip;
214 
215 	spin_lock(&iort_msi_chip_lock);
216 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
217 		if (its_msi_chip->translation_id == trans_id) {
218 			fw_node = its_msi_chip->fw_node;
219 			break;
220 		}
221 	}
222 	spin_unlock(&iort_msi_chip_lock);
223 
224 	return fw_node;
225 }
226 
227 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
228 					     iort_find_node_callback callback,
229 					     void *context)
230 {
231 	struct acpi_iort_node *iort_node, *iort_end;
232 	struct acpi_table_iort *iort;
233 	int i;
234 
235 	if (!iort_table)
236 		return NULL;
237 
238 	/* Get the first IORT node */
239 	iort = (struct acpi_table_iort *)iort_table;
240 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
241 				 iort->node_offset);
242 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
243 				iort_table->length);
244 
245 	for (i = 0; i < iort->node_count; i++) {
246 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
247 			       "IORT node pointer overflows, bad table!\n"))
248 			return NULL;
249 
250 		if (iort_node->type == type &&
251 		    ACPI_SUCCESS(callback(iort_node, context)))
252 			return iort_node;
253 
254 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
255 					 iort_node->length);
256 	}
257 
258 	return NULL;
259 }
260 
261 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
262 					    void *context)
263 {
264 	struct device *dev = context;
265 	acpi_status status = AE_NOT_FOUND;
266 
267 	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
268 		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
269 		struct acpi_device *adev;
270 		struct acpi_iort_named_component *ncomp;
271 		struct device *nc_dev = dev;
272 
273 		/*
274 		 * Walk the device tree to find a device with an
275 		 * ACPI companion; there is no point in scanning
276 		 * IORT for a device matching a named component if
277 		 * the device does not have an ACPI companion to
278 		 * start with.
279 		 */
280 		do {
281 			adev = ACPI_COMPANION(nc_dev);
282 			if (adev)
283 				break;
284 
285 			nc_dev = nc_dev->parent;
286 		} while (nc_dev);
287 
288 		if (!adev)
289 			goto out;
290 
291 		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
292 		if (ACPI_FAILURE(status)) {
293 			dev_warn(nc_dev, "Can't get device full path name\n");
294 			goto out;
295 		}
296 
297 		ncomp = (struct acpi_iort_named_component *)node->node_data;
298 		status = !strcmp(ncomp->device_name, buf.pointer) ?
299 							AE_OK : AE_NOT_FOUND;
300 		acpi_os_free(buf.pointer);
301 	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
302 		struct acpi_iort_root_complex *pci_rc;
303 		struct pci_bus *bus;
304 
305 		bus = to_pci_bus(dev);
306 		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
307 
308 		/*
309 		 * It is assumed that PCI segment numbers maps one-to-one
310 		 * with root complexes. Each segment number can represent only
311 		 * one root complex.
312 		 */
313 		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
314 							AE_OK : AE_NOT_FOUND;
315 	}
316 out:
317 	return status;
318 }
319 
320 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
321 		       u32 *rid_out, bool check_overlap)
322 {
323 	/* Single mapping does not care for input id */
324 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
325 		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
326 		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
327 			*rid_out = map->output_base;
328 			return 0;
329 		}
330 
331 		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
332 			map, type);
333 		return -ENXIO;
334 	}
335 
336 	if (rid_in < map->input_base ||
337 	    (rid_in > map->input_base + map->id_count))
338 		return -ENXIO;
339 
340 	if (check_overlap) {
341 		/*
342 		 * We already found a mapping for this input ID at the end of
343 		 * another region. If it coincides with the start of this
344 		 * region, we assume the prior match was due to the off-by-1
345 		 * issue mentioned below, and allow it to be superseded.
346 		 * Otherwise, things are *really* broken, and we just disregard
347 		 * duplicate matches entirely to retain compatibility.
348 		 */
349 		pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
350 		       map, rid_in);
351 		if (rid_in != map->input_base)
352 			return -ENXIO;
353 
354 		pr_err(FW_BUG "applying workaround.\n");
355 	}
356 
357 	*rid_out = map->output_base + (rid_in - map->input_base);
358 
359 	/*
360 	 * Due to confusion regarding the meaning of the id_count field (which
361 	 * carries the number of IDs *minus 1*), we may have to disregard this
362 	 * match if it is at the end of the range, and overlaps with the start
363 	 * of another one.
364 	 */
365 	if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
366 		return -EAGAIN;
367 	return 0;
368 }
369 
370 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
371 					       u32 *id_out, int index)
372 {
373 	struct acpi_iort_node *parent;
374 	struct acpi_iort_id_mapping *map;
375 
376 	if (!node->mapping_offset || !node->mapping_count ||
377 				     index >= node->mapping_count)
378 		return NULL;
379 
380 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
381 			   node->mapping_offset + index * sizeof(*map));
382 
383 	/* Firmware bug! */
384 	if (!map->output_reference) {
385 		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
386 		       node, node->type);
387 		return NULL;
388 	}
389 
390 	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
391 			       map->output_reference);
392 
393 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
394 		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
395 		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
396 		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
397 		    node->type == ACPI_IORT_NODE_PMCG) {
398 			*id_out = map->output_base;
399 			return parent;
400 		}
401 	}
402 
403 	return NULL;
404 }
405 
406 #ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID
407 #define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4)
408 #endif
409 
410 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
411 {
412 	struct acpi_iort_smmu_v3 *smmu;
413 	struct acpi_iort_pmcg *pmcg;
414 
415 	switch (node->type) {
416 	case ACPI_IORT_NODE_SMMU_V3:
417 		/*
418 		 * SMMUv3 dev ID mapping index was introduced in revision 1
419 		 * table, not available in revision 0
420 		 */
421 		if (node->revision < 1)
422 			return -EINVAL;
423 
424 		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
425 		/*
426 		 * Until IORT E.e (node rev. 5), the ID mapping index was
427 		 * defined to be valid unless all interrupts are GSIV-based.
428 		 */
429 		if (node->revision < 5) {
430 			if (smmu->event_gsiv && smmu->pri_gsiv &&
431 			    smmu->gerr_gsiv && smmu->sync_gsiv)
432 				return -EINVAL;
433 		} else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) {
434 			return -EINVAL;
435 		}
436 
437 		if (smmu->id_mapping_index >= node->mapping_count) {
438 			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
439 			       node, node->type);
440 			return -EINVAL;
441 		}
442 
443 		return smmu->id_mapping_index;
444 	case ACPI_IORT_NODE_PMCG:
445 		pmcg = (struct acpi_iort_pmcg *)node->node_data;
446 		if (pmcg->overflow_gsiv || node->mapping_count == 0)
447 			return -EINVAL;
448 
449 		return 0;
450 	default:
451 		return -EINVAL;
452 	}
453 }
454 
455 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
456 					       u32 id_in, u32 *id_out,
457 					       u8 type_mask)
458 {
459 	u32 id = id_in;
460 
461 	/* Parse the ID mapping tree to find specified node type */
462 	while (node) {
463 		struct acpi_iort_id_mapping *map;
464 		int i, index, rc = 0;
465 		u32 out_ref = 0, map_id = id;
466 
467 		if (IORT_TYPE_MASK(node->type) & type_mask) {
468 			if (id_out)
469 				*id_out = id;
470 			return node;
471 		}
472 
473 		if (!node->mapping_offset || !node->mapping_count)
474 			goto fail_map;
475 
476 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
477 				   node->mapping_offset);
478 
479 		/* Firmware bug! */
480 		if (!map->output_reference) {
481 			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
482 			       node, node->type);
483 			goto fail_map;
484 		}
485 
486 		/*
487 		 * Get the special ID mapping index (if any) and skip its
488 		 * associated ID map to prevent erroneous multi-stage
489 		 * IORT ID translations.
490 		 */
491 		index = iort_get_id_mapping_index(node);
492 
493 		/* Do the ID translation */
494 		for (i = 0; i < node->mapping_count; i++, map++) {
495 			/* if it is special mapping index, skip it */
496 			if (i == index)
497 				continue;
498 
499 			rc = iort_id_map(map, node->type, map_id, &id, out_ref);
500 			if (!rc)
501 				break;
502 			if (rc == -EAGAIN)
503 				out_ref = map->output_reference;
504 		}
505 
506 		if (i == node->mapping_count && !out_ref)
507 			goto fail_map;
508 
509 		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
510 				    rc ? out_ref : map->output_reference);
511 	}
512 
513 fail_map:
514 	/* Map input ID to output ID unchanged on mapping failure */
515 	if (id_out)
516 		*id_out = id_in;
517 
518 	return NULL;
519 }
520 
521 static struct acpi_iort_node *iort_node_map_platform_id(
522 		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
523 		int index)
524 {
525 	struct acpi_iort_node *parent;
526 	u32 id;
527 
528 	/* step 1: retrieve the initial dev id */
529 	parent = iort_node_get_id(node, &id, index);
530 	if (!parent)
531 		return NULL;
532 
533 	/*
534 	 * optional step 2: map the initial dev id if its parent is not
535 	 * the target type we want, map it again for the use cases such
536 	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
537 	 * return the initial dev id and its parent pointer directly.
538 	 */
539 	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
540 		parent = iort_node_map_id(parent, id, id_out, type_mask);
541 	else
542 		if (id_out)
543 			*id_out = id;
544 
545 	return parent;
546 }
547 
548 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
549 {
550 	struct pci_bus *pbus;
551 
552 	if (!dev_is_pci(dev)) {
553 		struct acpi_iort_node *node;
554 		/*
555 		 * scan iort_fwnode_list to see if it's an iort platform
556 		 * device (such as SMMU, PMCG),its iort node already cached
557 		 * and associated with fwnode when iort platform devices
558 		 * were initialized.
559 		 */
560 		node = iort_get_iort_node(dev->fwnode);
561 		if (node)
562 			return node;
563 		/*
564 		 * if not, then it should be a platform device defined in
565 		 * DSDT/SSDT (with Named Component node in IORT)
566 		 */
567 		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
568 				      iort_match_node_callback, dev);
569 	}
570 
571 	pbus = to_pci_dev(dev)->bus;
572 
573 	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
574 			      iort_match_node_callback, &pbus->dev);
575 }
576 
577 /**
578  * iort_msi_map_id() - Map a MSI input ID for a device
579  * @dev: The device for which the mapping is to be done.
580  * @input_id: The device input ID.
581  *
582  * Returns: mapped MSI ID on success, input ID otherwise
583  */
584 u32 iort_msi_map_id(struct device *dev, u32 input_id)
585 {
586 	struct acpi_iort_node *node;
587 	u32 dev_id;
588 
589 	node = iort_find_dev_node(dev);
590 	if (!node)
591 		return input_id;
592 
593 	iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
594 	return dev_id;
595 }
596 
597 /**
598  * iort_pmsi_get_dev_id() - Get the device id for a device
599  * @dev: The device for which the mapping is to be done.
600  * @dev_id: The device ID found.
601  *
602  * Returns: 0 for successful find a dev id, -ENODEV on error
603  */
604 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
605 {
606 	int i, index;
607 	struct acpi_iort_node *node;
608 
609 	node = iort_find_dev_node(dev);
610 	if (!node)
611 		return -ENODEV;
612 
613 	index = iort_get_id_mapping_index(node);
614 	/* if there is a valid index, go get the dev_id directly */
615 	if (index >= 0) {
616 		if (iort_node_get_id(node, dev_id, index))
617 			return 0;
618 	} else {
619 		for (i = 0; i < node->mapping_count; i++) {
620 			if (iort_node_map_platform_id(node, dev_id,
621 						      IORT_MSI_TYPE, i))
622 				return 0;
623 		}
624 	}
625 
626 	return -ENODEV;
627 }
628 
629 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
630 {
631 	struct iort_its_msi_chip *its_msi_chip;
632 	int ret = -ENODEV;
633 
634 	spin_lock(&iort_msi_chip_lock);
635 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
636 		if (its_msi_chip->translation_id == its_id) {
637 			*base = its_msi_chip->base_addr;
638 			ret = 0;
639 			break;
640 		}
641 	}
642 	spin_unlock(&iort_msi_chip_lock);
643 
644 	return ret;
645 }
646 
647 /**
648  * iort_dev_find_its_id() - Find the ITS identifier for a device
649  * @dev: The device.
650  * @id: Device's ID
651  * @idx: Index of the ITS identifier list.
652  * @its_id: ITS identifier.
653  *
654  * Returns: 0 on success, appropriate error value otherwise
655  */
656 static int iort_dev_find_its_id(struct device *dev, u32 id,
657 				unsigned int idx, int *its_id)
658 {
659 	struct acpi_iort_its_group *its;
660 	struct acpi_iort_node *node;
661 
662 	node = iort_find_dev_node(dev);
663 	if (!node)
664 		return -ENXIO;
665 
666 	node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
667 	if (!node)
668 		return -ENXIO;
669 
670 	/* Move to ITS specific data */
671 	its = (struct acpi_iort_its_group *)node->node_data;
672 	if (idx >= its->its_count) {
673 		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
674 			idx, its->its_count);
675 		return -ENXIO;
676 	}
677 
678 	*its_id = its->identifiers[idx];
679 	return 0;
680 }
681 
682 /**
683  * iort_get_device_domain() - Find MSI domain related to a device
684  * @dev: The device.
685  * @id: Requester ID for the device.
686  * @bus_token: irq domain bus token.
687  *
688  * Returns: the MSI domain for this device, NULL otherwise
689  */
690 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
691 					  enum irq_domain_bus_token bus_token)
692 {
693 	struct fwnode_handle *handle;
694 	int its_id;
695 
696 	if (iort_dev_find_its_id(dev, id, 0, &its_id))
697 		return NULL;
698 
699 	handle = iort_find_domain_token(its_id);
700 	if (!handle)
701 		return NULL;
702 
703 	return irq_find_matching_fwnode(handle, bus_token);
704 }
705 
706 static void iort_set_device_domain(struct device *dev,
707 				   struct acpi_iort_node *node)
708 {
709 	struct acpi_iort_its_group *its;
710 	struct acpi_iort_node *msi_parent;
711 	struct acpi_iort_id_mapping *map;
712 	struct fwnode_handle *iort_fwnode;
713 	struct irq_domain *domain;
714 	int index;
715 
716 	index = iort_get_id_mapping_index(node);
717 	if (index < 0)
718 		return;
719 
720 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
721 			   node->mapping_offset + index * sizeof(*map));
722 
723 	/* Firmware bug! */
724 	if (!map->output_reference ||
725 	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
726 		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
727 		       node, node->type);
728 		return;
729 	}
730 
731 	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
732 				  map->output_reference);
733 
734 	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
735 		return;
736 
737 	/* Move to ITS specific data */
738 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
739 
740 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
741 	if (!iort_fwnode)
742 		return;
743 
744 	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
745 	if (domain)
746 		dev_set_msi_domain(dev, domain);
747 }
748 
749 /**
750  * iort_get_platform_device_domain() - Find MSI domain related to a
751  * platform device
752  * @dev: the dev pointer associated with the platform device
753  *
754  * Returns: the MSI domain for this device, NULL otherwise
755  */
756 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
757 {
758 	struct acpi_iort_node *node, *msi_parent = NULL;
759 	struct fwnode_handle *iort_fwnode;
760 	struct acpi_iort_its_group *its;
761 	int i;
762 
763 	/* find its associated iort node */
764 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
765 			      iort_match_node_callback, dev);
766 	if (!node)
767 		return NULL;
768 
769 	/* then find its msi parent node */
770 	for (i = 0; i < node->mapping_count; i++) {
771 		msi_parent = iort_node_map_platform_id(node, NULL,
772 						       IORT_MSI_TYPE, i);
773 		if (msi_parent)
774 			break;
775 	}
776 
777 	if (!msi_parent)
778 		return NULL;
779 
780 	/* Move to ITS specific data */
781 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
782 
783 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
784 	if (!iort_fwnode)
785 		return NULL;
786 
787 	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
788 }
789 
790 void acpi_configure_pmsi_domain(struct device *dev)
791 {
792 	struct irq_domain *msi_domain;
793 
794 	msi_domain = iort_get_platform_device_domain(dev);
795 	if (msi_domain)
796 		dev_set_msi_domain(dev, msi_domain);
797 }
798 
799 #ifdef CONFIG_IOMMU_API
800 static void iort_rmr_free(struct device *dev,
801 			  struct iommu_resv_region *region)
802 {
803 	struct iommu_iort_rmr_data *rmr_data;
804 
805 	rmr_data = container_of(region, struct iommu_iort_rmr_data, rr);
806 	kfree(rmr_data->sids);
807 	kfree(rmr_data);
808 }
809 
810 static struct iommu_iort_rmr_data *iort_rmr_alloc(
811 					struct acpi_iort_rmr_desc *rmr_desc,
812 					int prot, enum iommu_resv_type type,
813 					u32 *sids, u32 num_sids)
814 {
815 	struct iommu_iort_rmr_data *rmr_data;
816 	struct iommu_resv_region *region;
817 	u32 *sids_copy;
818 	u64 addr = rmr_desc->base_address, size = rmr_desc->length;
819 
820 	rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL);
821 	if (!rmr_data)
822 		return NULL;
823 
824 	/* Create a copy of SIDs array to associate with this rmr_data */
825 	sids_copy = kmemdup(sids, num_sids * sizeof(*sids), GFP_KERNEL);
826 	if (!sids_copy) {
827 		kfree(rmr_data);
828 		return NULL;
829 	}
830 	rmr_data->sids = sids_copy;
831 	rmr_data->num_sids = num_sids;
832 
833 	if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) {
834 		/* PAGE align base addr and size */
835 		addr &= PAGE_MASK;
836 		size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address));
837 
838 		pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n",
839 		       rmr_desc->base_address,
840 		       rmr_desc->base_address + rmr_desc->length - 1,
841 		       addr, addr + size - 1);
842 	}
843 
844 	region = &rmr_data->rr;
845 	INIT_LIST_HEAD(&region->list);
846 	region->start = addr;
847 	region->length = size;
848 	region->prot = prot;
849 	region->type = type;
850 	region->free = iort_rmr_free;
851 
852 	return rmr_data;
853 }
854 
855 static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc,
856 					u32 count)
857 {
858 	int i, j;
859 
860 	for (i = 0; i < count; i++) {
861 		u64 end, start = desc[i].base_address, length = desc[i].length;
862 
863 		if (!length) {
864 			pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n",
865 			       start);
866 			continue;
867 		}
868 
869 		end = start + length - 1;
870 
871 		/* Check for address overlap */
872 		for (j = i + 1; j < count; j++) {
873 			u64 e_start = desc[j].base_address;
874 			u64 e_end = e_start + desc[j].length - 1;
875 
876 			if (start <= e_end && end >= e_start)
877 				pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n",
878 				       start, end);
879 		}
880 	}
881 }
882 
883 /*
884  * Please note, we will keep the already allocated RMR reserve
885  * regions in case of a memory allocation failure.
886  */
887 static void iort_get_rmrs(struct acpi_iort_node *node,
888 			  struct acpi_iort_node *smmu,
889 			  u32 *sids, u32 num_sids,
890 			  struct list_head *head)
891 {
892 	struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data;
893 	struct acpi_iort_rmr_desc *rmr_desc;
894 	int i;
895 
896 	rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node,
897 				rmr->rmr_offset);
898 
899 	iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count);
900 
901 	for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) {
902 		struct iommu_iort_rmr_data *rmr_data;
903 		enum iommu_resv_type type;
904 		int prot = IOMMU_READ | IOMMU_WRITE;
905 
906 		if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED)
907 			type = IOMMU_RESV_DIRECT_RELAXABLE;
908 		else
909 			type = IOMMU_RESV_DIRECT;
910 
911 		if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE)
912 			prot |= IOMMU_PRIV;
913 
914 		/* Attributes 0x00 - 0x03 represents device memory */
915 		if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <=
916 				ACPI_IORT_RMR_ATTR_DEVICE_GRE)
917 			prot |= IOMMU_MMIO;
918 		else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) ==
919 				ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB)
920 			prot |= IOMMU_CACHE;
921 
922 		rmr_data = iort_rmr_alloc(rmr_desc, prot, type,
923 					  sids, num_sids);
924 		if (!rmr_data)
925 			return;
926 
927 		list_add_tail(&rmr_data->rr.list, head);
928 	}
929 }
930 
931 static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start,
932 				u32 new_count)
933 {
934 	u32 *new_sids;
935 	u32 total_count = count + new_count;
936 	int i;
937 
938 	new_sids = krealloc_array(sids, count + new_count,
939 				  sizeof(*new_sids), GFP_KERNEL);
940 	if (!new_sids)
941 		return NULL;
942 
943 	for (i = count; i < total_count; i++)
944 		new_sids[i] = id_start++;
945 
946 	return new_sids;
947 }
948 
949 static bool iort_rmr_has_dev(struct device *dev, u32 id_start,
950 			     u32 id_count)
951 {
952 	int i;
953 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
954 
955 	/*
956 	 * Make sure the kernel has preserved the boot firmware PCIe
957 	 * configuration. This is required to ensure that the RMR PCIe
958 	 * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5).
959 	 */
960 	if (dev_is_pci(dev)) {
961 		struct pci_dev *pdev = to_pci_dev(dev);
962 		struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
963 
964 		if (!host->preserve_config)
965 			return false;
966 	}
967 
968 	for (i = 0; i < fwspec->num_ids; i++) {
969 		if (fwspec->ids[i] >= id_start &&
970 		    fwspec->ids[i] <= id_start + id_count)
971 			return true;
972 	}
973 
974 	return false;
975 }
976 
977 static void iort_node_get_rmr_info(struct acpi_iort_node *node,
978 				   struct acpi_iort_node *iommu,
979 				   struct device *dev, struct list_head *head)
980 {
981 	struct acpi_iort_node *smmu = NULL;
982 	struct acpi_iort_rmr *rmr;
983 	struct acpi_iort_id_mapping *map;
984 	u32 *sids = NULL;
985 	u32 num_sids = 0;
986 	int i;
987 
988 	if (!node->mapping_offset || !node->mapping_count) {
989 		pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n",
990 		       node);
991 		return;
992 	}
993 
994 	rmr = (struct acpi_iort_rmr *)node->node_data;
995 	if (!rmr->rmr_offset || !rmr->rmr_count)
996 		return;
997 
998 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
999 			   node->mapping_offset);
1000 
1001 	/*
1002 	 * Go through the ID mappings and see if we have a match for SMMU
1003 	 * and dev(if !NULL). If found, get the sids for the Node.
1004 	 * Please note, id_count is equal to the number of IDs  in the
1005 	 * range minus one.
1006 	 */
1007 	for (i = 0; i < node->mapping_count; i++, map++) {
1008 		struct acpi_iort_node *parent;
1009 
1010 		parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
1011 				      map->output_reference);
1012 		if (parent != iommu)
1013 			continue;
1014 
1015 		/* If dev is valid, check RMR node corresponds to the dev SID */
1016 		if (dev && !iort_rmr_has_dev(dev, map->output_base,
1017 					     map->id_count))
1018 			continue;
1019 
1020 		/* Retrieve SIDs associated with the Node. */
1021 		sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base,
1022 					   map->id_count + 1);
1023 		if (!sids)
1024 			return;
1025 
1026 		num_sids += map->id_count + 1;
1027 	}
1028 
1029 	if (!sids)
1030 		return;
1031 
1032 	iort_get_rmrs(node, smmu, sids, num_sids, head);
1033 	kfree(sids);
1034 }
1035 
1036 static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev,
1037 			   struct list_head *head)
1038 {
1039 	struct acpi_table_iort *iort;
1040 	struct acpi_iort_node *iort_node, *iort_end;
1041 	int i;
1042 
1043 	/* Only supports ARM DEN 0049E.d onwards */
1044 	if (iort_table->revision < 5)
1045 		return;
1046 
1047 	iort = (struct acpi_table_iort *)iort_table;
1048 
1049 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1050 				 iort->node_offset);
1051 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1052 				iort_table->length);
1053 
1054 	for (i = 0; i < iort->node_count; i++) {
1055 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
1056 			       "IORT node pointer overflows, bad table!\n"))
1057 			return;
1058 
1059 		if (iort_node->type == ACPI_IORT_NODE_RMR)
1060 			iort_node_get_rmr_info(iort_node, iommu, dev, head);
1061 
1062 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1063 					 iort_node->length);
1064 	}
1065 }
1066 
1067 /*
1068  * Populate the RMR list associated with a given IOMMU and dev(if provided).
1069  * If dev is NULL, the function populates all the RMRs associated with the
1070  * given IOMMU.
1071  */
1072 static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode,
1073 					    struct device *dev,
1074 					    struct list_head *head)
1075 {
1076 	struct acpi_iort_node *iommu;
1077 
1078 	iommu = iort_get_iort_node(iommu_fwnode);
1079 	if (!iommu)
1080 		return;
1081 
1082 	iort_find_rmrs(iommu, dev, head);
1083 }
1084 
1085 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
1086 {
1087 	struct acpi_iort_node *iommu;
1088 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1089 
1090 	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
1091 
1092 	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
1093 		struct acpi_iort_smmu_v3 *smmu;
1094 
1095 		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
1096 		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
1097 			return iommu;
1098 	}
1099 
1100 	return NULL;
1101 }
1102 
1103 /*
1104  * Retrieve platform specific HW MSI reserve regions.
1105  * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K)
1106  * associated with the device are the HW MSI reserved regions.
1107  */
1108 static void iort_iommu_msi_get_resv_regions(struct device *dev,
1109 					    struct list_head *head)
1110 {
1111 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1112 	struct acpi_iort_its_group *its;
1113 	struct acpi_iort_node *iommu_node, *its_node = NULL;
1114 	int i;
1115 
1116 	iommu_node = iort_get_msi_resv_iommu(dev);
1117 	if (!iommu_node)
1118 		return;
1119 
1120 	/*
1121 	 * Current logic to reserve ITS regions relies on HW topologies
1122 	 * where a given PCI or named component maps its IDs to only one
1123 	 * ITS group; if a PCI or named component can map its IDs to
1124 	 * different ITS groups through IORT mappings this function has
1125 	 * to be reworked to ensure we reserve regions for all ITS groups
1126 	 * a given PCI or named component may map IDs to.
1127 	 */
1128 
1129 	for (i = 0; i < fwspec->num_ids; i++) {
1130 		its_node = iort_node_map_id(iommu_node,
1131 					fwspec->ids[i],
1132 					NULL, IORT_MSI_TYPE);
1133 		if (its_node)
1134 			break;
1135 	}
1136 
1137 	if (!its_node)
1138 		return;
1139 
1140 	/* Move to ITS specific data */
1141 	its = (struct acpi_iort_its_group *)its_node->node_data;
1142 
1143 	for (i = 0; i < its->its_count; i++) {
1144 		phys_addr_t base;
1145 
1146 		if (!iort_find_its_base(its->identifiers[i], &base)) {
1147 			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1148 			struct iommu_resv_region *region;
1149 
1150 			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
1151 							 prot, IOMMU_RESV_MSI,
1152 							 GFP_KERNEL);
1153 			if (region)
1154 				list_add_tail(&region->list, head);
1155 		}
1156 	}
1157 }
1158 
1159 /**
1160  * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions.
1161  * @dev: Device from iommu_get_resv_regions()
1162  * @head: Reserved region list from iommu_get_resv_regions()
1163  */
1164 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1165 {
1166 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1167 
1168 	iort_iommu_msi_get_resv_regions(dev, head);
1169 	iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head);
1170 }
1171 
1172 /**
1173  * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with
1174  *                     associated StreamIDs information.
1175  * @iommu_fwnode: fwnode associated with IOMMU
1176  * @head: Resereved region list
1177  */
1178 void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode,
1179 		       struct list_head *head)
1180 {
1181 	iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head);
1182 }
1183 EXPORT_SYMBOL_GPL(iort_get_rmr_sids);
1184 
1185 /**
1186  * iort_put_rmr_sids - Free memory allocated for RMR reserved regions.
1187  * @iommu_fwnode: fwnode associated with IOMMU
1188  * @head: Resereved region list
1189  */
1190 void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode,
1191 		       struct list_head *head)
1192 {
1193 	struct iommu_resv_region *entry, *next;
1194 
1195 	list_for_each_entry_safe(entry, next, head, list)
1196 		entry->free(NULL, entry);
1197 }
1198 EXPORT_SYMBOL_GPL(iort_put_rmr_sids);
1199 
1200 static inline bool iort_iommu_driver_enabled(u8 type)
1201 {
1202 	switch (type) {
1203 	case ACPI_IORT_NODE_SMMU_V3:
1204 		return IS_ENABLED(CONFIG_ARM_SMMU_V3);
1205 	case ACPI_IORT_NODE_SMMU:
1206 		return IS_ENABLED(CONFIG_ARM_SMMU);
1207 	default:
1208 		pr_warn("IORT node type %u does not describe an SMMU\n", type);
1209 		return false;
1210 	}
1211 }
1212 
1213 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
1214 {
1215 	struct acpi_iort_root_complex *pci_rc;
1216 
1217 	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1218 	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
1219 }
1220 
1221 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
1222 			    u32 streamid)
1223 {
1224 	const struct iommu_ops *ops;
1225 	struct fwnode_handle *iort_fwnode;
1226 
1227 	if (!node)
1228 		return -ENODEV;
1229 
1230 	iort_fwnode = iort_get_fwnode(node);
1231 	if (!iort_fwnode)
1232 		return -ENODEV;
1233 
1234 	/*
1235 	 * If the ops look-up fails, this means that either
1236 	 * the SMMU drivers have not been probed yet or that
1237 	 * the SMMU drivers are not built in the kernel;
1238 	 * Depending on whether the SMMU drivers are built-in
1239 	 * in the kernel or not, defer the IOMMU configuration
1240 	 * or just abort it.
1241 	 */
1242 	ops = iommu_ops_from_fwnode(iort_fwnode);
1243 	if (!ops)
1244 		return iort_iommu_driver_enabled(node->type) ?
1245 		       -EPROBE_DEFER : -ENODEV;
1246 
1247 	return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode, ops);
1248 }
1249 
1250 struct iort_pci_alias_info {
1251 	struct device *dev;
1252 	struct acpi_iort_node *node;
1253 };
1254 
1255 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
1256 {
1257 	struct iort_pci_alias_info *info = data;
1258 	struct acpi_iort_node *parent;
1259 	u32 streamid;
1260 
1261 	parent = iort_node_map_id(info->node, alias, &streamid,
1262 				  IORT_IOMMU_TYPE);
1263 	return iort_iommu_xlate(info->dev, parent, streamid);
1264 }
1265 
1266 static void iort_named_component_init(struct device *dev,
1267 				      struct acpi_iort_node *node)
1268 {
1269 	struct property_entry props[3] = {};
1270 	struct acpi_iort_named_component *nc;
1271 
1272 	nc = (struct acpi_iort_named_component *)node->node_data;
1273 	props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
1274 				      FIELD_GET(ACPI_IORT_NC_PASID_BITS,
1275 						nc->node_flags));
1276 	if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
1277 		props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
1278 
1279 	if (device_create_managed_software_node(dev, props, NULL))
1280 		dev_warn(dev, "Could not add device properties\n");
1281 }
1282 
1283 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
1284 {
1285 	struct acpi_iort_node *parent;
1286 	int err = -ENODEV, i = 0;
1287 	u32 streamid = 0;
1288 
1289 	do {
1290 
1291 		parent = iort_node_map_platform_id(node, &streamid,
1292 						   IORT_IOMMU_TYPE,
1293 						   i++);
1294 
1295 		if (parent)
1296 			err = iort_iommu_xlate(dev, parent, streamid);
1297 	} while (parent && !err);
1298 
1299 	return err;
1300 }
1301 
1302 static int iort_nc_iommu_map_id(struct device *dev,
1303 				struct acpi_iort_node *node,
1304 				const u32 *in_id)
1305 {
1306 	struct acpi_iort_node *parent;
1307 	u32 streamid;
1308 
1309 	parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1310 	if (parent)
1311 		return iort_iommu_xlate(dev, parent, streamid);
1312 
1313 	return -ENODEV;
1314 }
1315 
1316 
1317 /**
1318  * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1319  *
1320  * @dev: device to configure
1321  * @id_in: optional input id const value pointer
1322  *
1323  * Returns: 0 on success, <0 on failure
1324  */
1325 int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
1326 {
1327 	struct acpi_iort_node *node;
1328 	int err = -ENODEV;
1329 
1330 	if (dev_is_pci(dev)) {
1331 		struct iommu_fwspec *fwspec;
1332 		struct pci_bus *bus = to_pci_dev(dev)->bus;
1333 		struct iort_pci_alias_info info = { .dev = dev };
1334 
1335 		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1336 				      iort_match_node_callback, &bus->dev);
1337 		if (!node)
1338 			return -ENODEV;
1339 
1340 		info.node = node;
1341 		err = pci_for_each_dma_alias(to_pci_dev(dev),
1342 					     iort_pci_iommu_init, &info);
1343 
1344 		fwspec = dev_iommu_fwspec_get(dev);
1345 		if (fwspec && iort_pci_rc_supports_ats(node))
1346 			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1347 	} else {
1348 		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1349 				      iort_match_node_callback, dev);
1350 		if (!node)
1351 			return -ENODEV;
1352 
1353 		err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1354 			      iort_nc_iommu_map(dev, node);
1355 
1356 		if (!err)
1357 			iort_named_component_init(dev, node);
1358 	}
1359 
1360 	return err;
1361 }
1362 
1363 #else
1364 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1365 { }
1366 int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
1367 { return -ENODEV; }
1368 #endif
1369 
1370 static int nc_dma_get_range(struct device *dev, u64 *size)
1371 {
1372 	struct acpi_iort_node *node;
1373 	struct acpi_iort_named_component *ncomp;
1374 
1375 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1376 			      iort_match_node_callback, dev);
1377 	if (!node)
1378 		return -ENODEV;
1379 
1380 	ncomp = (struct acpi_iort_named_component *)node->node_data;
1381 
1382 	if (!ncomp->memory_address_limit) {
1383 		pr_warn(FW_BUG "Named component missing memory address limit\n");
1384 		return -EINVAL;
1385 	}
1386 
1387 	*size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1388 			1ULL<<ncomp->memory_address_limit;
1389 
1390 	return 0;
1391 }
1392 
1393 static int rc_dma_get_range(struct device *dev, u64 *size)
1394 {
1395 	struct acpi_iort_node *node;
1396 	struct acpi_iort_root_complex *rc;
1397 	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1398 
1399 	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1400 			      iort_match_node_callback, &pbus->dev);
1401 	if (!node || node->revision < 1)
1402 		return -ENODEV;
1403 
1404 	rc = (struct acpi_iort_root_complex *)node->node_data;
1405 
1406 	if (!rc->memory_address_limit) {
1407 		pr_warn(FW_BUG "Root complex missing memory address limit\n");
1408 		return -EINVAL;
1409 	}
1410 
1411 	*size = rc->memory_address_limit >= 64 ? U64_MAX :
1412 			1ULL<<rc->memory_address_limit;
1413 
1414 	return 0;
1415 }
1416 
1417 /**
1418  * iort_dma_get_ranges() - Look up DMA addressing limit for the device
1419  * @dev: device to lookup
1420  * @size: DMA range size result pointer
1421  *
1422  * Return: 0 on success, an error otherwise.
1423  */
1424 int iort_dma_get_ranges(struct device *dev, u64 *size)
1425 {
1426 	if (dev_is_pci(dev))
1427 		return rc_dma_get_range(dev, size);
1428 	else
1429 		return nc_dma_get_range(dev, size);
1430 }
1431 
1432 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1433 					  int trigger,
1434 					  struct resource *res)
1435 {
1436 	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1437 				    ACPI_ACTIVE_HIGH);
1438 
1439 	if (irq <= 0) {
1440 		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1441 								      name);
1442 		return;
1443 	}
1444 
1445 	res->start = irq;
1446 	res->end = irq;
1447 	res->flags = IORESOURCE_IRQ;
1448 	res->name = name;
1449 }
1450 
1451 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1452 {
1453 	struct acpi_iort_smmu_v3 *smmu;
1454 	/* Always present mem resource */
1455 	int num_res = 1;
1456 
1457 	/* Retrieve SMMUv3 specific data */
1458 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1459 
1460 	if (smmu->event_gsiv)
1461 		num_res++;
1462 
1463 	if (smmu->pri_gsiv)
1464 		num_res++;
1465 
1466 	if (smmu->gerr_gsiv)
1467 		num_res++;
1468 
1469 	if (smmu->sync_gsiv)
1470 		num_res++;
1471 
1472 	return num_res;
1473 }
1474 
1475 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1476 {
1477 	/*
1478 	 * Cavium ThunderX2 implementation doesn't not support unique
1479 	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1480 	 */
1481 	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1482 		return false;
1483 
1484 	/*
1485 	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1486 	 * SPI numbers here.
1487 	 */
1488 	return smmu->event_gsiv == smmu->pri_gsiv &&
1489 	       smmu->event_gsiv == smmu->gerr_gsiv &&
1490 	       smmu->event_gsiv == smmu->sync_gsiv;
1491 }
1492 
1493 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1494 {
1495 	/*
1496 	 * Override the size, for Cavium ThunderX2 implementation
1497 	 * which doesn't support the page 1 SMMU register space.
1498 	 */
1499 	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1500 		return SZ_64K;
1501 
1502 	return SZ_128K;
1503 }
1504 
1505 static void __init arm_smmu_v3_init_resources(struct resource *res,
1506 					      struct acpi_iort_node *node)
1507 {
1508 	struct acpi_iort_smmu_v3 *smmu;
1509 	int num_res = 0;
1510 
1511 	/* Retrieve SMMUv3 specific data */
1512 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1513 
1514 	res[num_res].start = smmu->base_address;
1515 	res[num_res].end = smmu->base_address +
1516 				arm_smmu_v3_resource_size(smmu) - 1;
1517 	res[num_res].flags = IORESOURCE_MEM;
1518 
1519 	num_res++;
1520 	if (arm_smmu_v3_is_combined_irq(smmu)) {
1521 		if (smmu->event_gsiv)
1522 			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1523 					       ACPI_EDGE_SENSITIVE,
1524 					       &res[num_res++]);
1525 	} else {
1526 
1527 		if (smmu->event_gsiv)
1528 			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1529 					       ACPI_EDGE_SENSITIVE,
1530 					       &res[num_res++]);
1531 
1532 		if (smmu->pri_gsiv)
1533 			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1534 					       ACPI_EDGE_SENSITIVE,
1535 					       &res[num_res++]);
1536 
1537 		if (smmu->gerr_gsiv)
1538 			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1539 					       ACPI_EDGE_SENSITIVE,
1540 					       &res[num_res++]);
1541 
1542 		if (smmu->sync_gsiv)
1543 			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1544 					       ACPI_EDGE_SENSITIVE,
1545 					       &res[num_res++]);
1546 	}
1547 }
1548 
1549 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1550 					     struct acpi_iort_node *node)
1551 {
1552 	struct acpi_iort_smmu_v3 *smmu;
1553 	enum dev_dma_attr attr;
1554 
1555 	/* Retrieve SMMUv3 specific data */
1556 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1557 
1558 	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1559 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1560 
1561 	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1562 	dev->dma_mask = &dev->coherent_dma_mask;
1563 
1564 	/* Configure DMA for the page table walker */
1565 	acpi_dma_configure(dev, attr);
1566 }
1567 
1568 #if defined(CONFIG_ACPI_NUMA)
1569 /*
1570  * set numa proximity domain for smmuv3 device
1571  */
1572 static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1573 					      struct acpi_iort_node *node)
1574 {
1575 	struct acpi_iort_smmu_v3 *smmu;
1576 
1577 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1578 	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1579 		int dev_node = pxm_to_node(smmu->pxm);
1580 
1581 		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1582 			return -EINVAL;
1583 
1584 		set_dev_node(dev, dev_node);
1585 		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1586 			smmu->base_address,
1587 			smmu->pxm);
1588 	}
1589 	return 0;
1590 }
1591 #else
1592 #define arm_smmu_v3_set_proximity NULL
1593 #endif
1594 
1595 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1596 {
1597 	struct acpi_iort_smmu *smmu;
1598 
1599 	/* Retrieve SMMU specific data */
1600 	smmu = (struct acpi_iort_smmu *)node->node_data;
1601 
1602 	/*
1603 	 * Only consider the global fault interrupt and ignore the
1604 	 * configuration access interrupt.
1605 	 *
1606 	 * MMIO address and global fault interrupt resources are always
1607 	 * present so add them to the context interrupt count as a static
1608 	 * value.
1609 	 */
1610 	return smmu->context_interrupt_count + 2;
1611 }
1612 
1613 static void __init arm_smmu_init_resources(struct resource *res,
1614 					   struct acpi_iort_node *node)
1615 {
1616 	struct acpi_iort_smmu *smmu;
1617 	int i, hw_irq, trigger, num_res = 0;
1618 	u64 *ctx_irq, *glb_irq;
1619 
1620 	/* Retrieve SMMU specific data */
1621 	smmu = (struct acpi_iort_smmu *)node->node_data;
1622 
1623 	res[num_res].start = smmu->base_address;
1624 	res[num_res].end = smmu->base_address + smmu->span - 1;
1625 	res[num_res].flags = IORESOURCE_MEM;
1626 	num_res++;
1627 
1628 	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1629 	/* Global IRQs */
1630 	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1631 	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1632 
1633 	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1634 				     &res[num_res++]);
1635 
1636 	/* Context IRQs */
1637 	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1638 	for (i = 0; i < smmu->context_interrupt_count; i++) {
1639 		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1640 		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1641 
1642 		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1643 				       &res[num_res++]);
1644 	}
1645 }
1646 
1647 static void __init arm_smmu_dma_configure(struct device *dev,
1648 					  struct acpi_iort_node *node)
1649 {
1650 	struct acpi_iort_smmu *smmu;
1651 	enum dev_dma_attr attr;
1652 
1653 	/* Retrieve SMMU specific data */
1654 	smmu = (struct acpi_iort_smmu *)node->node_data;
1655 
1656 	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1657 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1658 
1659 	/* We expect the dma masks to be equivalent for SMMU set-ups */
1660 	dev->dma_mask = &dev->coherent_dma_mask;
1661 
1662 	/* Configure DMA for the page table walker */
1663 	acpi_dma_configure(dev, attr);
1664 }
1665 
1666 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1667 {
1668 	struct acpi_iort_pmcg *pmcg;
1669 
1670 	/* Retrieve PMCG specific data */
1671 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1672 
1673 	/*
1674 	 * There are always 2 memory resources.
1675 	 * If the overflow_gsiv is present then add that for a total of 3.
1676 	 */
1677 	return pmcg->overflow_gsiv ? 3 : 2;
1678 }
1679 
1680 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1681 						   struct acpi_iort_node *node)
1682 {
1683 	struct acpi_iort_pmcg *pmcg;
1684 
1685 	/* Retrieve PMCG specific data */
1686 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1687 
1688 	res[0].start = pmcg->page0_base_address;
1689 	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1690 	res[0].flags = IORESOURCE_MEM;
1691 	/*
1692 	 * The initial version in DEN0049C lacked a way to describe register
1693 	 * page 1, which makes it broken for most PMCG implementations; in
1694 	 * that case, just let the driver fail gracefully if it expects to
1695 	 * find a second memory resource.
1696 	 */
1697 	if (node->revision > 0) {
1698 		res[1].start = pmcg->page1_base_address;
1699 		res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1700 		res[1].flags = IORESOURCE_MEM;
1701 	}
1702 
1703 	if (pmcg->overflow_gsiv)
1704 		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1705 				       ACPI_EDGE_SENSITIVE, &res[2]);
1706 }
1707 
1708 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1709 	/* HiSilicon Hip08 Platform */
1710 	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1711 	 "Erratum #162001800, Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP08},
1712 	/* HiSilicon Hip09 Platform */
1713 	{"HISI  ", "HIP09   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1714 	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1715 	{ }
1716 };
1717 
1718 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1719 {
1720 	u32 model;
1721 	int idx;
1722 
1723 	idx = acpi_match_platform_list(pmcg_plat_info);
1724 	if (idx >= 0)
1725 		model = pmcg_plat_info[idx].data;
1726 	else
1727 		model = IORT_SMMU_V3_PMCG_GENERIC;
1728 
1729 	return platform_device_add_data(pdev, &model, sizeof(model));
1730 }
1731 
1732 struct iort_dev_config {
1733 	const char *name;
1734 	int (*dev_init)(struct acpi_iort_node *node);
1735 	void (*dev_dma_configure)(struct device *dev,
1736 				  struct acpi_iort_node *node);
1737 	int (*dev_count_resources)(struct acpi_iort_node *node);
1738 	void (*dev_init_resources)(struct resource *res,
1739 				     struct acpi_iort_node *node);
1740 	int (*dev_set_proximity)(struct device *dev,
1741 				    struct acpi_iort_node *node);
1742 	int (*dev_add_platdata)(struct platform_device *pdev);
1743 };
1744 
1745 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1746 	.name = "arm-smmu-v3",
1747 	.dev_dma_configure = arm_smmu_v3_dma_configure,
1748 	.dev_count_resources = arm_smmu_v3_count_resources,
1749 	.dev_init_resources = arm_smmu_v3_init_resources,
1750 	.dev_set_proximity = arm_smmu_v3_set_proximity,
1751 };
1752 
1753 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1754 	.name = "arm-smmu",
1755 	.dev_dma_configure = arm_smmu_dma_configure,
1756 	.dev_count_resources = arm_smmu_count_resources,
1757 	.dev_init_resources = arm_smmu_init_resources,
1758 };
1759 
1760 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1761 	.name = "arm-smmu-v3-pmcg",
1762 	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1763 	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1764 	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1765 };
1766 
1767 static __init const struct iort_dev_config *iort_get_dev_cfg(
1768 			struct acpi_iort_node *node)
1769 {
1770 	switch (node->type) {
1771 	case ACPI_IORT_NODE_SMMU_V3:
1772 		return &iort_arm_smmu_v3_cfg;
1773 	case ACPI_IORT_NODE_SMMU:
1774 		return &iort_arm_smmu_cfg;
1775 	case ACPI_IORT_NODE_PMCG:
1776 		return &iort_arm_smmu_v3_pmcg_cfg;
1777 	default:
1778 		return NULL;
1779 	}
1780 }
1781 
1782 /**
1783  * iort_add_platform_device() - Allocate a platform device for IORT node
1784  * @node: Pointer to device ACPI IORT node
1785  * @ops: Pointer to IORT device config struct
1786  *
1787  * Returns: 0 on success, <0 failure
1788  */
1789 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1790 					   const struct iort_dev_config *ops)
1791 {
1792 	struct fwnode_handle *fwnode;
1793 	struct platform_device *pdev;
1794 	struct resource *r;
1795 	int ret, count;
1796 
1797 	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1798 	if (!pdev)
1799 		return -ENOMEM;
1800 
1801 	if (ops->dev_set_proximity) {
1802 		ret = ops->dev_set_proximity(&pdev->dev, node);
1803 		if (ret)
1804 			goto dev_put;
1805 	}
1806 
1807 	count = ops->dev_count_resources(node);
1808 
1809 	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1810 	if (!r) {
1811 		ret = -ENOMEM;
1812 		goto dev_put;
1813 	}
1814 
1815 	ops->dev_init_resources(r, node);
1816 
1817 	ret = platform_device_add_resources(pdev, r, count);
1818 	/*
1819 	 * Resources are duplicated in platform_device_add_resources,
1820 	 * free their allocated memory
1821 	 */
1822 	kfree(r);
1823 
1824 	if (ret)
1825 		goto dev_put;
1826 
1827 	/*
1828 	 * Platform devices based on PMCG nodes uses platform_data to
1829 	 * pass the hardware model info to the driver. For others, add
1830 	 * a copy of IORT node pointer to platform_data to be used to
1831 	 * retrieve IORT data information.
1832 	 */
1833 	if (ops->dev_add_platdata)
1834 		ret = ops->dev_add_platdata(pdev);
1835 	else
1836 		ret = platform_device_add_data(pdev, &node, sizeof(node));
1837 
1838 	if (ret)
1839 		goto dev_put;
1840 
1841 	fwnode = iort_get_fwnode(node);
1842 
1843 	if (!fwnode) {
1844 		ret = -ENODEV;
1845 		goto dev_put;
1846 	}
1847 
1848 	pdev->dev.fwnode = fwnode;
1849 
1850 	if (ops->dev_dma_configure)
1851 		ops->dev_dma_configure(&pdev->dev, node);
1852 
1853 	iort_set_device_domain(&pdev->dev, node);
1854 
1855 	ret = platform_device_add(pdev);
1856 	if (ret)
1857 		goto dma_deconfigure;
1858 
1859 	return 0;
1860 
1861 dma_deconfigure:
1862 	arch_teardown_dma_ops(&pdev->dev);
1863 dev_put:
1864 	platform_device_put(pdev);
1865 
1866 	return ret;
1867 }
1868 
1869 #ifdef CONFIG_PCI
1870 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1871 {
1872 	static bool acs_enabled __initdata;
1873 
1874 	if (acs_enabled)
1875 		return;
1876 
1877 	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1878 		struct acpi_iort_node *parent;
1879 		struct acpi_iort_id_mapping *map;
1880 		int i;
1881 
1882 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1883 				   iort_node->mapping_offset);
1884 
1885 		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1886 			if (!map->output_reference)
1887 				continue;
1888 
1889 			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1890 					iort_table,  map->output_reference);
1891 			/*
1892 			 * If we detect a RC->SMMU mapping, make sure
1893 			 * we enable ACS on the system.
1894 			 */
1895 			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1896 				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1897 				pci_request_acs();
1898 				acs_enabled = true;
1899 				return;
1900 			}
1901 		}
1902 	}
1903 }
1904 #else
1905 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1906 #endif
1907 
1908 static void __init iort_init_platform_devices(void)
1909 {
1910 	struct acpi_iort_node *iort_node, *iort_end;
1911 	struct acpi_table_iort *iort;
1912 	struct fwnode_handle *fwnode;
1913 	int i, ret;
1914 	const struct iort_dev_config *ops;
1915 
1916 	/*
1917 	 * iort_table and iort both point to the start of IORT table, but
1918 	 * have different struct types
1919 	 */
1920 	iort = (struct acpi_table_iort *)iort_table;
1921 
1922 	/* Get the first IORT node */
1923 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1924 				 iort->node_offset);
1925 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1926 				iort_table->length);
1927 
1928 	for (i = 0; i < iort->node_count; i++) {
1929 		if (iort_node >= iort_end) {
1930 			pr_err("iort node pointer overflows, bad table\n");
1931 			return;
1932 		}
1933 
1934 		iort_enable_acs(iort_node);
1935 
1936 		ops = iort_get_dev_cfg(iort_node);
1937 		if (ops) {
1938 			fwnode = acpi_alloc_fwnode_static();
1939 			if (!fwnode)
1940 				return;
1941 
1942 			iort_set_fwnode(iort_node, fwnode);
1943 
1944 			ret = iort_add_platform_device(iort_node, ops);
1945 			if (ret) {
1946 				iort_delete_fwnode(iort_node);
1947 				acpi_free_fwnode_static(fwnode);
1948 				return;
1949 			}
1950 		}
1951 
1952 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1953 					 iort_node->length);
1954 	}
1955 }
1956 
1957 void __init acpi_iort_init(void)
1958 {
1959 	acpi_status status;
1960 
1961 	/* iort_table will be used at runtime after the iort init,
1962 	 * so we don't need to call acpi_put_table() to release
1963 	 * the IORT table mapping.
1964 	 */
1965 	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1966 	if (ACPI_FAILURE(status)) {
1967 		if (status != AE_NOT_FOUND) {
1968 			const char *msg = acpi_format_exception(status);
1969 
1970 			pr_err("Failed to get table, %s\n", msg);
1971 		}
1972 
1973 		return;
1974 	}
1975 
1976 	iort_init_platform_devices();
1977 }
1978 
1979 #ifdef CONFIG_ZONE_DMA
1980 /*
1981  * Extract the highest CPU physical address accessible to all DMA masters in
1982  * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1983  */
1984 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1985 {
1986 	phys_addr_t limit = PHYS_ADDR_MAX;
1987 	struct acpi_iort_node *node, *end;
1988 	struct acpi_table_iort *iort;
1989 	acpi_status status;
1990 	int i;
1991 
1992 	if (acpi_disabled)
1993 		return limit;
1994 
1995 	status = acpi_get_table(ACPI_SIG_IORT, 0,
1996 				(struct acpi_table_header **)&iort);
1997 	if (ACPI_FAILURE(status))
1998 		return limit;
1999 
2000 	node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
2001 	end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
2002 
2003 	for (i = 0; i < iort->node_count; i++) {
2004 		if (node >= end)
2005 			break;
2006 
2007 		switch (node->type) {
2008 			struct acpi_iort_named_component *ncomp;
2009 			struct acpi_iort_root_complex *rc;
2010 			phys_addr_t local_limit;
2011 
2012 		case ACPI_IORT_NODE_NAMED_COMPONENT:
2013 			ncomp = (struct acpi_iort_named_component *)node->node_data;
2014 			local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
2015 			limit = min_not_zero(limit, local_limit);
2016 			break;
2017 
2018 		case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
2019 			if (node->revision < 1)
2020 				break;
2021 
2022 			rc = (struct acpi_iort_root_complex *)node->node_data;
2023 			local_limit = DMA_BIT_MASK(rc->memory_address_limit);
2024 			limit = min_not_zero(limit, local_limit);
2025 			break;
2026 		}
2027 		node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
2028 	}
2029 	acpi_put_table(&iort->header);
2030 	return limit;
2031 }
2032 #endif
2033