xref: /openbmc/linux/drivers/acpi/arm64/iort.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016, Semihalf
4  *	Author: Tomasz Nowicki <tn@semihalf.com>
5  *
6  * This file implements early detection/parsing of I/O mapping
7  * reported to OS through firmware via I/O Remapping Table (IORT)
8  * IORT document number: ARM DEN 0049A
9  */
10 
11 #define pr_fmt(fmt)	"ACPI: IORT: " fmt
12 
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/dma-map-ops.h>
22 
23 #define IORT_TYPE_MASK(type)	(1 << (type))
24 #define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
25 #define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
26 				(1 << ACPI_IORT_NODE_SMMU_V3))
27 
28 struct iort_its_msi_chip {
29 	struct list_head	list;
30 	struct fwnode_handle	*fw_node;
31 	phys_addr_t		base_addr;
32 	u32			translation_id;
33 };
34 
35 struct iort_fwnode {
36 	struct list_head list;
37 	struct acpi_iort_node *iort_node;
38 	struct fwnode_handle *fwnode;
39 };
40 static LIST_HEAD(iort_fwnode_list);
41 static DEFINE_SPINLOCK(iort_fwnode_lock);
42 
43 /**
44  * iort_set_fwnode() - Create iort_fwnode and use it to register
45  *		       iommu data in the iort_fwnode_list
46  *
47  * @iort_node: IORT table node associated with the IOMMU
48  * @fwnode: fwnode associated with the IORT node
49  *
50  * Returns: 0 on success
51  *          <0 on failure
52  */
53 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
54 				  struct fwnode_handle *fwnode)
55 {
56 	struct iort_fwnode *np;
57 
58 	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
59 
60 	if (WARN_ON(!np))
61 		return -ENOMEM;
62 
63 	INIT_LIST_HEAD(&np->list);
64 	np->iort_node = iort_node;
65 	np->fwnode = fwnode;
66 
67 	spin_lock(&iort_fwnode_lock);
68 	list_add_tail(&np->list, &iort_fwnode_list);
69 	spin_unlock(&iort_fwnode_lock);
70 
71 	return 0;
72 }
73 
74 /**
75  * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
76  *
77  * @node: IORT table node to be looked-up
78  *
79  * Returns: fwnode_handle pointer on success, NULL on failure
80  */
81 static inline struct fwnode_handle *iort_get_fwnode(
82 			struct acpi_iort_node *node)
83 {
84 	struct iort_fwnode *curr;
85 	struct fwnode_handle *fwnode = NULL;
86 
87 	spin_lock(&iort_fwnode_lock);
88 	list_for_each_entry(curr, &iort_fwnode_list, list) {
89 		if (curr->iort_node == node) {
90 			fwnode = curr->fwnode;
91 			break;
92 		}
93 	}
94 	spin_unlock(&iort_fwnode_lock);
95 
96 	return fwnode;
97 }
98 
99 /**
100  * iort_delete_fwnode() - Delete fwnode associated with an IORT node
101  *
102  * @node: IORT table node associated with fwnode to delete
103  */
104 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
105 {
106 	struct iort_fwnode *curr, *tmp;
107 
108 	spin_lock(&iort_fwnode_lock);
109 	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
110 		if (curr->iort_node == node) {
111 			list_del(&curr->list);
112 			kfree(curr);
113 			break;
114 		}
115 	}
116 	spin_unlock(&iort_fwnode_lock);
117 }
118 
119 /**
120  * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
121  *
122  * @fwnode: fwnode associated with device to be looked-up
123  *
124  * Returns: iort_node pointer on success, NULL on failure
125  */
126 static inline struct acpi_iort_node *iort_get_iort_node(
127 			struct fwnode_handle *fwnode)
128 {
129 	struct iort_fwnode *curr;
130 	struct acpi_iort_node *iort_node = NULL;
131 
132 	spin_lock(&iort_fwnode_lock);
133 	list_for_each_entry(curr, &iort_fwnode_list, list) {
134 		if (curr->fwnode == fwnode) {
135 			iort_node = curr->iort_node;
136 			break;
137 		}
138 	}
139 	spin_unlock(&iort_fwnode_lock);
140 
141 	return iort_node;
142 }
143 
144 typedef acpi_status (*iort_find_node_callback)
145 	(struct acpi_iort_node *node, void *context);
146 
147 /* Root pointer to the mapped IORT table */
148 static struct acpi_table_header *iort_table;
149 
150 static LIST_HEAD(iort_msi_chip_list);
151 static DEFINE_SPINLOCK(iort_msi_chip_lock);
152 
153 /**
154  * iort_register_domain_token() - register domain token along with related
155  * ITS ID and base address to the list from where we can get it back later on.
156  * @trans_id: ITS ID.
157  * @base: ITS base address.
158  * @fw_node: Domain token.
159  *
160  * Returns: 0 on success, -ENOMEM if no memory when allocating list element
161  */
162 int iort_register_domain_token(int trans_id, phys_addr_t base,
163 			       struct fwnode_handle *fw_node)
164 {
165 	struct iort_its_msi_chip *its_msi_chip;
166 
167 	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
168 	if (!its_msi_chip)
169 		return -ENOMEM;
170 
171 	its_msi_chip->fw_node = fw_node;
172 	its_msi_chip->translation_id = trans_id;
173 	its_msi_chip->base_addr = base;
174 
175 	spin_lock(&iort_msi_chip_lock);
176 	list_add(&its_msi_chip->list, &iort_msi_chip_list);
177 	spin_unlock(&iort_msi_chip_lock);
178 
179 	return 0;
180 }
181 
182 /**
183  * iort_deregister_domain_token() - Deregister domain token based on ITS ID
184  * @trans_id: ITS ID.
185  *
186  * Returns: none.
187  */
188 void iort_deregister_domain_token(int trans_id)
189 {
190 	struct iort_its_msi_chip *its_msi_chip, *t;
191 
192 	spin_lock(&iort_msi_chip_lock);
193 	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
194 		if (its_msi_chip->translation_id == trans_id) {
195 			list_del(&its_msi_chip->list);
196 			kfree(its_msi_chip);
197 			break;
198 		}
199 	}
200 	spin_unlock(&iort_msi_chip_lock);
201 }
202 
203 /**
204  * iort_find_domain_token() - Find domain token based on given ITS ID
205  * @trans_id: ITS ID.
206  *
207  * Returns: domain token when find on the list, NULL otherwise
208  */
209 struct fwnode_handle *iort_find_domain_token(int trans_id)
210 {
211 	struct fwnode_handle *fw_node = NULL;
212 	struct iort_its_msi_chip *its_msi_chip;
213 
214 	spin_lock(&iort_msi_chip_lock);
215 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
216 		if (its_msi_chip->translation_id == trans_id) {
217 			fw_node = its_msi_chip->fw_node;
218 			break;
219 		}
220 	}
221 	spin_unlock(&iort_msi_chip_lock);
222 
223 	return fw_node;
224 }
225 
226 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
227 					     iort_find_node_callback callback,
228 					     void *context)
229 {
230 	struct acpi_iort_node *iort_node, *iort_end;
231 	struct acpi_table_iort *iort;
232 	int i;
233 
234 	if (!iort_table)
235 		return NULL;
236 
237 	/* Get the first IORT node */
238 	iort = (struct acpi_table_iort *)iort_table;
239 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
240 				 iort->node_offset);
241 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
242 				iort_table->length);
243 
244 	for (i = 0; i < iort->node_count; i++) {
245 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
246 			       "IORT node pointer overflows, bad table!\n"))
247 			return NULL;
248 
249 		if (iort_node->type == type &&
250 		    ACPI_SUCCESS(callback(iort_node, context)))
251 			return iort_node;
252 
253 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
254 					 iort_node->length);
255 	}
256 
257 	return NULL;
258 }
259 
260 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
261 					    void *context)
262 {
263 	struct device *dev = context;
264 	acpi_status status = AE_NOT_FOUND;
265 
266 	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
267 		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
268 		struct acpi_device *adev;
269 		struct acpi_iort_named_component *ncomp;
270 		struct device *nc_dev = dev;
271 
272 		/*
273 		 * Walk the device tree to find a device with an
274 		 * ACPI companion; there is no point in scanning
275 		 * IORT for a device matching a named component if
276 		 * the device does not have an ACPI companion to
277 		 * start with.
278 		 */
279 		do {
280 			adev = ACPI_COMPANION(nc_dev);
281 			if (adev)
282 				break;
283 
284 			nc_dev = nc_dev->parent;
285 		} while (nc_dev);
286 
287 		if (!adev)
288 			goto out;
289 
290 		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
291 		if (ACPI_FAILURE(status)) {
292 			dev_warn(nc_dev, "Can't get device full path name\n");
293 			goto out;
294 		}
295 
296 		ncomp = (struct acpi_iort_named_component *)node->node_data;
297 		status = !strcmp(ncomp->device_name, buf.pointer) ?
298 							AE_OK : AE_NOT_FOUND;
299 		acpi_os_free(buf.pointer);
300 	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
301 		struct acpi_iort_root_complex *pci_rc;
302 		struct pci_bus *bus;
303 
304 		bus = to_pci_bus(dev);
305 		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
306 
307 		/*
308 		 * It is assumed that PCI segment numbers maps one-to-one
309 		 * with root complexes. Each segment number can represent only
310 		 * one root complex.
311 		 */
312 		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
313 							AE_OK : AE_NOT_FOUND;
314 	}
315 out:
316 	return status;
317 }
318 
319 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
320 		       u32 *rid_out, bool check_overlap)
321 {
322 	/* Single mapping does not care for input id */
323 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
324 		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
325 		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
326 			*rid_out = map->output_base;
327 			return 0;
328 		}
329 
330 		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
331 			map, type);
332 		return -ENXIO;
333 	}
334 
335 	if (rid_in < map->input_base ||
336 	    (rid_in > map->input_base + map->id_count))
337 		return -ENXIO;
338 
339 	if (check_overlap) {
340 		/*
341 		 * We already found a mapping for this input ID at the end of
342 		 * another region. If it coincides with the start of this
343 		 * region, we assume the prior match was due to the off-by-1
344 		 * issue mentioned below, and allow it to be superseded.
345 		 * Otherwise, things are *really* broken, and we just disregard
346 		 * duplicate matches entirely to retain compatibility.
347 		 */
348 		pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
349 		       map, rid_in);
350 		if (rid_in != map->input_base)
351 			return -ENXIO;
352 
353 		pr_err(FW_BUG "applying workaround.\n");
354 	}
355 
356 	*rid_out = map->output_base + (rid_in - map->input_base);
357 
358 	/*
359 	 * Due to confusion regarding the meaning of the id_count field (which
360 	 * carries the number of IDs *minus 1*), we may have to disregard this
361 	 * match if it is at the end of the range, and overlaps with the start
362 	 * of another one.
363 	 */
364 	if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
365 		return -EAGAIN;
366 	return 0;
367 }
368 
369 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
370 					       u32 *id_out, int index)
371 {
372 	struct acpi_iort_node *parent;
373 	struct acpi_iort_id_mapping *map;
374 
375 	if (!node->mapping_offset || !node->mapping_count ||
376 				     index >= node->mapping_count)
377 		return NULL;
378 
379 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
380 			   node->mapping_offset + index * sizeof(*map));
381 
382 	/* Firmware bug! */
383 	if (!map->output_reference) {
384 		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
385 		       node, node->type);
386 		return NULL;
387 	}
388 
389 	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
390 			       map->output_reference);
391 
392 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
393 		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
394 		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
395 		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
396 		    node->type == ACPI_IORT_NODE_PMCG) {
397 			*id_out = map->output_base;
398 			return parent;
399 		}
400 	}
401 
402 	return NULL;
403 }
404 
405 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
406 {
407 	struct acpi_iort_smmu_v3 *smmu;
408 	struct acpi_iort_pmcg *pmcg;
409 
410 	switch (node->type) {
411 	case ACPI_IORT_NODE_SMMU_V3:
412 		/*
413 		 * SMMUv3 dev ID mapping index was introduced in revision 1
414 		 * table, not available in revision 0
415 		 */
416 		if (node->revision < 1)
417 			return -EINVAL;
418 
419 		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
420 		/*
421 		 * ID mapping index is only ignored if all interrupts are
422 		 * GSIV based
423 		 */
424 		if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
425 		    && smmu->sync_gsiv)
426 			return -EINVAL;
427 
428 		if (smmu->id_mapping_index >= node->mapping_count) {
429 			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
430 			       node, node->type);
431 			return -EINVAL;
432 		}
433 
434 		return smmu->id_mapping_index;
435 	case ACPI_IORT_NODE_PMCG:
436 		pmcg = (struct acpi_iort_pmcg *)node->node_data;
437 		if (pmcg->overflow_gsiv || node->mapping_count == 0)
438 			return -EINVAL;
439 
440 		return 0;
441 	default:
442 		return -EINVAL;
443 	}
444 }
445 
446 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
447 					       u32 id_in, u32 *id_out,
448 					       u8 type_mask)
449 {
450 	u32 id = id_in;
451 
452 	/* Parse the ID mapping tree to find specified node type */
453 	while (node) {
454 		struct acpi_iort_id_mapping *map;
455 		int i, index, rc = 0;
456 		u32 out_ref = 0, map_id = id;
457 
458 		if (IORT_TYPE_MASK(node->type) & type_mask) {
459 			if (id_out)
460 				*id_out = id;
461 			return node;
462 		}
463 
464 		if (!node->mapping_offset || !node->mapping_count)
465 			goto fail_map;
466 
467 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
468 				   node->mapping_offset);
469 
470 		/* Firmware bug! */
471 		if (!map->output_reference) {
472 			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
473 			       node, node->type);
474 			goto fail_map;
475 		}
476 
477 		/*
478 		 * Get the special ID mapping index (if any) and skip its
479 		 * associated ID map to prevent erroneous multi-stage
480 		 * IORT ID translations.
481 		 */
482 		index = iort_get_id_mapping_index(node);
483 
484 		/* Do the ID translation */
485 		for (i = 0; i < node->mapping_count; i++, map++) {
486 			/* if it is special mapping index, skip it */
487 			if (i == index)
488 				continue;
489 
490 			rc = iort_id_map(map, node->type, map_id, &id, out_ref);
491 			if (!rc)
492 				break;
493 			if (rc == -EAGAIN)
494 				out_ref = map->output_reference;
495 		}
496 
497 		if (i == node->mapping_count && !out_ref)
498 			goto fail_map;
499 
500 		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
501 				    rc ? out_ref : map->output_reference);
502 	}
503 
504 fail_map:
505 	/* Map input ID to output ID unchanged on mapping failure */
506 	if (id_out)
507 		*id_out = id_in;
508 
509 	return NULL;
510 }
511 
512 static struct acpi_iort_node *iort_node_map_platform_id(
513 		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
514 		int index)
515 {
516 	struct acpi_iort_node *parent;
517 	u32 id;
518 
519 	/* step 1: retrieve the initial dev id */
520 	parent = iort_node_get_id(node, &id, index);
521 	if (!parent)
522 		return NULL;
523 
524 	/*
525 	 * optional step 2: map the initial dev id if its parent is not
526 	 * the target type we want, map it again for the use cases such
527 	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
528 	 * return the initial dev id and its parent pointer directly.
529 	 */
530 	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
531 		parent = iort_node_map_id(parent, id, id_out, type_mask);
532 	else
533 		if (id_out)
534 			*id_out = id;
535 
536 	return parent;
537 }
538 
539 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
540 {
541 	struct pci_bus *pbus;
542 
543 	if (!dev_is_pci(dev)) {
544 		struct acpi_iort_node *node;
545 		/*
546 		 * scan iort_fwnode_list to see if it's an iort platform
547 		 * device (such as SMMU, PMCG),its iort node already cached
548 		 * and associated with fwnode when iort platform devices
549 		 * were initialized.
550 		 */
551 		node = iort_get_iort_node(dev->fwnode);
552 		if (node)
553 			return node;
554 		/*
555 		 * if not, then it should be a platform device defined in
556 		 * DSDT/SSDT (with Named Component node in IORT)
557 		 */
558 		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
559 				      iort_match_node_callback, dev);
560 	}
561 
562 	pbus = to_pci_dev(dev)->bus;
563 
564 	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
565 			      iort_match_node_callback, &pbus->dev);
566 }
567 
568 /**
569  * iort_msi_map_id() - Map a MSI input ID for a device
570  * @dev: The device for which the mapping is to be done.
571  * @input_id: The device input ID.
572  *
573  * Returns: mapped MSI ID on success, input ID otherwise
574  */
575 u32 iort_msi_map_id(struct device *dev, u32 input_id)
576 {
577 	struct acpi_iort_node *node;
578 	u32 dev_id;
579 
580 	node = iort_find_dev_node(dev);
581 	if (!node)
582 		return input_id;
583 
584 	iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
585 	return dev_id;
586 }
587 
588 /**
589  * iort_pmsi_get_dev_id() - Get the device id for a device
590  * @dev: The device for which the mapping is to be done.
591  * @dev_id: The device ID found.
592  *
593  * Returns: 0 for successful find a dev id, -ENODEV on error
594  */
595 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
596 {
597 	int i, index;
598 	struct acpi_iort_node *node;
599 
600 	node = iort_find_dev_node(dev);
601 	if (!node)
602 		return -ENODEV;
603 
604 	index = iort_get_id_mapping_index(node);
605 	/* if there is a valid index, go get the dev_id directly */
606 	if (index >= 0) {
607 		if (iort_node_get_id(node, dev_id, index))
608 			return 0;
609 	} else {
610 		for (i = 0; i < node->mapping_count; i++) {
611 			if (iort_node_map_platform_id(node, dev_id,
612 						      IORT_MSI_TYPE, i))
613 				return 0;
614 		}
615 	}
616 
617 	return -ENODEV;
618 }
619 
620 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
621 {
622 	struct iort_its_msi_chip *its_msi_chip;
623 	int ret = -ENODEV;
624 
625 	spin_lock(&iort_msi_chip_lock);
626 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
627 		if (its_msi_chip->translation_id == its_id) {
628 			*base = its_msi_chip->base_addr;
629 			ret = 0;
630 			break;
631 		}
632 	}
633 	spin_unlock(&iort_msi_chip_lock);
634 
635 	return ret;
636 }
637 
638 /**
639  * iort_dev_find_its_id() - Find the ITS identifier for a device
640  * @dev: The device.
641  * @id: Device's ID
642  * @idx: Index of the ITS identifier list.
643  * @its_id: ITS identifier.
644  *
645  * Returns: 0 on success, appropriate error value otherwise
646  */
647 static int iort_dev_find_its_id(struct device *dev, u32 id,
648 				unsigned int idx, int *its_id)
649 {
650 	struct acpi_iort_its_group *its;
651 	struct acpi_iort_node *node;
652 
653 	node = iort_find_dev_node(dev);
654 	if (!node)
655 		return -ENXIO;
656 
657 	node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
658 	if (!node)
659 		return -ENXIO;
660 
661 	/* Move to ITS specific data */
662 	its = (struct acpi_iort_its_group *)node->node_data;
663 	if (idx >= its->its_count) {
664 		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
665 			idx, its->its_count);
666 		return -ENXIO;
667 	}
668 
669 	*its_id = its->identifiers[idx];
670 	return 0;
671 }
672 
673 /**
674  * iort_get_device_domain() - Find MSI domain related to a device
675  * @dev: The device.
676  * @id: Requester ID for the device.
677  * @bus_token: irq domain bus token.
678  *
679  * Returns: the MSI domain for this device, NULL otherwise
680  */
681 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
682 					  enum irq_domain_bus_token bus_token)
683 {
684 	struct fwnode_handle *handle;
685 	int its_id;
686 
687 	if (iort_dev_find_its_id(dev, id, 0, &its_id))
688 		return NULL;
689 
690 	handle = iort_find_domain_token(its_id);
691 	if (!handle)
692 		return NULL;
693 
694 	return irq_find_matching_fwnode(handle, bus_token);
695 }
696 
697 static void iort_set_device_domain(struct device *dev,
698 				   struct acpi_iort_node *node)
699 {
700 	struct acpi_iort_its_group *its;
701 	struct acpi_iort_node *msi_parent;
702 	struct acpi_iort_id_mapping *map;
703 	struct fwnode_handle *iort_fwnode;
704 	struct irq_domain *domain;
705 	int index;
706 
707 	index = iort_get_id_mapping_index(node);
708 	if (index < 0)
709 		return;
710 
711 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
712 			   node->mapping_offset + index * sizeof(*map));
713 
714 	/* Firmware bug! */
715 	if (!map->output_reference ||
716 	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
717 		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
718 		       node, node->type);
719 		return;
720 	}
721 
722 	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
723 				  map->output_reference);
724 
725 	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
726 		return;
727 
728 	/* Move to ITS specific data */
729 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
730 
731 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
732 	if (!iort_fwnode)
733 		return;
734 
735 	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
736 	if (domain)
737 		dev_set_msi_domain(dev, domain);
738 }
739 
740 /**
741  * iort_get_platform_device_domain() - Find MSI domain related to a
742  * platform device
743  * @dev: the dev pointer associated with the platform device
744  *
745  * Returns: the MSI domain for this device, NULL otherwise
746  */
747 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
748 {
749 	struct acpi_iort_node *node, *msi_parent = NULL;
750 	struct fwnode_handle *iort_fwnode;
751 	struct acpi_iort_its_group *its;
752 	int i;
753 
754 	/* find its associated iort node */
755 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
756 			      iort_match_node_callback, dev);
757 	if (!node)
758 		return NULL;
759 
760 	/* then find its msi parent node */
761 	for (i = 0; i < node->mapping_count; i++) {
762 		msi_parent = iort_node_map_platform_id(node, NULL,
763 						       IORT_MSI_TYPE, i);
764 		if (msi_parent)
765 			break;
766 	}
767 
768 	if (!msi_parent)
769 		return NULL;
770 
771 	/* Move to ITS specific data */
772 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
773 
774 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
775 	if (!iort_fwnode)
776 		return NULL;
777 
778 	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
779 }
780 
781 void acpi_configure_pmsi_domain(struct device *dev)
782 {
783 	struct irq_domain *msi_domain;
784 
785 	msi_domain = iort_get_platform_device_domain(dev);
786 	if (msi_domain)
787 		dev_set_msi_domain(dev, msi_domain);
788 }
789 
790 #ifdef CONFIG_IOMMU_API
791 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
792 {
793 	struct acpi_iort_node *iommu;
794 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
795 
796 	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
797 
798 	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
799 		struct acpi_iort_smmu_v3 *smmu;
800 
801 		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
802 		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
803 			return iommu;
804 	}
805 
806 	return NULL;
807 }
808 
809 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
810 {
811 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
812 
813 	return (fwspec && fwspec->ops) ? fwspec->ops : NULL;
814 }
815 
816 static inline int iort_add_device_replay(struct device *dev)
817 {
818 	int err = 0;
819 
820 	if (dev->bus && !device_iommu_mapped(dev))
821 		err = iommu_probe_device(dev);
822 
823 	return err;
824 }
825 
826 /**
827  * iort_iommu_msi_get_resv_regions - Reserved region driver helper
828  * @dev: Device from iommu_get_resv_regions()
829  * @head: Reserved region list from iommu_get_resv_regions()
830  *
831  * Returns: Number of msi reserved regions on success (0 if platform
832  *          doesn't require the reservation or no associated msi regions),
833  *          appropriate error value otherwise. The ITS interrupt translation
834  *          spaces (ITS_base + SZ_64K, SZ_64K) associated with the device
835  *          are the msi reserved regions.
836  */
837 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
838 {
839 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
840 	struct acpi_iort_its_group *its;
841 	struct acpi_iort_node *iommu_node, *its_node = NULL;
842 	int i, resv = 0;
843 
844 	iommu_node = iort_get_msi_resv_iommu(dev);
845 	if (!iommu_node)
846 		return 0;
847 
848 	/*
849 	 * Current logic to reserve ITS regions relies on HW topologies
850 	 * where a given PCI or named component maps its IDs to only one
851 	 * ITS group; if a PCI or named component can map its IDs to
852 	 * different ITS groups through IORT mappings this function has
853 	 * to be reworked to ensure we reserve regions for all ITS groups
854 	 * a given PCI or named component may map IDs to.
855 	 */
856 
857 	for (i = 0; i < fwspec->num_ids; i++) {
858 		its_node = iort_node_map_id(iommu_node,
859 					fwspec->ids[i],
860 					NULL, IORT_MSI_TYPE);
861 		if (its_node)
862 			break;
863 	}
864 
865 	if (!its_node)
866 		return 0;
867 
868 	/* Move to ITS specific data */
869 	its = (struct acpi_iort_its_group *)its_node->node_data;
870 
871 	for (i = 0; i < its->its_count; i++) {
872 		phys_addr_t base;
873 
874 		if (!iort_find_its_base(its->identifiers[i], &base)) {
875 			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
876 			struct iommu_resv_region *region;
877 
878 			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
879 							 prot, IOMMU_RESV_MSI);
880 			if (region) {
881 				list_add_tail(&region->list, head);
882 				resv++;
883 			}
884 		}
885 	}
886 
887 	return (resv == its->its_count) ? resv : -ENODEV;
888 }
889 
890 static inline bool iort_iommu_driver_enabled(u8 type)
891 {
892 	switch (type) {
893 	case ACPI_IORT_NODE_SMMU_V3:
894 		return IS_ENABLED(CONFIG_ARM_SMMU_V3);
895 	case ACPI_IORT_NODE_SMMU:
896 		return IS_ENABLED(CONFIG_ARM_SMMU);
897 	default:
898 		pr_warn("IORT node type %u does not describe an SMMU\n", type);
899 		return false;
900 	}
901 }
902 
903 static int arm_smmu_iort_xlate(struct device *dev, u32 streamid,
904 			       struct fwnode_handle *fwnode,
905 			       const struct iommu_ops *ops)
906 {
907 	int ret = iommu_fwspec_init(dev, fwnode, ops);
908 
909 	if (!ret)
910 		ret = iommu_fwspec_add_ids(dev, &streamid, 1);
911 
912 	return ret;
913 }
914 
915 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
916 {
917 	struct acpi_iort_root_complex *pci_rc;
918 
919 	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
920 	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
921 }
922 
923 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
924 			    u32 streamid)
925 {
926 	const struct iommu_ops *ops;
927 	struct fwnode_handle *iort_fwnode;
928 
929 	if (!node)
930 		return -ENODEV;
931 
932 	iort_fwnode = iort_get_fwnode(node);
933 	if (!iort_fwnode)
934 		return -ENODEV;
935 
936 	/*
937 	 * If the ops look-up fails, this means that either
938 	 * the SMMU drivers have not been probed yet or that
939 	 * the SMMU drivers are not built in the kernel;
940 	 * Depending on whether the SMMU drivers are built-in
941 	 * in the kernel or not, defer the IOMMU configuration
942 	 * or just abort it.
943 	 */
944 	ops = iommu_ops_from_fwnode(iort_fwnode);
945 	if (!ops)
946 		return iort_iommu_driver_enabled(node->type) ?
947 		       -EPROBE_DEFER : -ENODEV;
948 
949 	return arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops);
950 }
951 
952 struct iort_pci_alias_info {
953 	struct device *dev;
954 	struct acpi_iort_node *node;
955 };
956 
957 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
958 {
959 	struct iort_pci_alias_info *info = data;
960 	struct acpi_iort_node *parent;
961 	u32 streamid;
962 
963 	parent = iort_node_map_id(info->node, alias, &streamid,
964 				  IORT_IOMMU_TYPE);
965 	return iort_iommu_xlate(info->dev, parent, streamid);
966 }
967 
968 static void iort_named_component_init(struct device *dev,
969 				      struct acpi_iort_node *node)
970 {
971 	struct acpi_iort_named_component *nc;
972 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
973 
974 	if (!fwspec)
975 		return;
976 
977 	nc = (struct acpi_iort_named_component *)node->node_data;
978 	fwspec->num_pasid_bits = FIELD_GET(ACPI_IORT_NC_PASID_BITS,
979 					   nc->node_flags);
980 }
981 
982 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
983 {
984 	struct acpi_iort_node *parent;
985 	int err = -ENODEV, i = 0;
986 	u32 streamid = 0;
987 
988 	do {
989 
990 		parent = iort_node_map_platform_id(node, &streamid,
991 						   IORT_IOMMU_TYPE,
992 						   i++);
993 
994 		if (parent)
995 			err = iort_iommu_xlate(dev, parent, streamid);
996 	} while (parent && !err);
997 
998 	return err;
999 }
1000 
1001 static int iort_nc_iommu_map_id(struct device *dev,
1002 				struct acpi_iort_node *node,
1003 				const u32 *in_id)
1004 {
1005 	struct acpi_iort_node *parent;
1006 	u32 streamid;
1007 
1008 	parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1009 	if (parent)
1010 		return iort_iommu_xlate(dev, parent, streamid);
1011 
1012 	return -ENODEV;
1013 }
1014 
1015 
1016 /**
1017  * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1018  *
1019  * @dev: device to configure
1020  * @id_in: optional input id const value pointer
1021  *
1022  * Returns: iommu_ops pointer on configuration success
1023  *          NULL on configuration failure
1024  */
1025 const struct iommu_ops *iort_iommu_configure_id(struct device *dev,
1026 						const u32 *id_in)
1027 {
1028 	struct acpi_iort_node *node;
1029 	const struct iommu_ops *ops;
1030 	int err = -ENODEV;
1031 
1032 	/*
1033 	 * If we already translated the fwspec there
1034 	 * is nothing left to do, return the iommu_ops.
1035 	 */
1036 	ops = iort_fwspec_iommu_ops(dev);
1037 	if (ops)
1038 		return ops;
1039 
1040 	if (dev_is_pci(dev)) {
1041 		struct iommu_fwspec *fwspec;
1042 		struct pci_bus *bus = to_pci_dev(dev)->bus;
1043 		struct iort_pci_alias_info info = { .dev = dev };
1044 
1045 		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1046 				      iort_match_node_callback, &bus->dev);
1047 		if (!node)
1048 			return NULL;
1049 
1050 		info.node = node;
1051 		err = pci_for_each_dma_alias(to_pci_dev(dev),
1052 					     iort_pci_iommu_init, &info);
1053 
1054 		fwspec = dev_iommu_fwspec_get(dev);
1055 		if (fwspec && iort_pci_rc_supports_ats(node))
1056 			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1057 	} else {
1058 		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1059 				      iort_match_node_callback, dev);
1060 		if (!node)
1061 			return NULL;
1062 
1063 		err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1064 			      iort_nc_iommu_map(dev, node);
1065 
1066 		if (!err)
1067 			iort_named_component_init(dev, node);
1068 	}
1069 
1070 	/*
1071 	 * If we have reason to believe the IOMMU driver missed the initial
1072 	 * add_device callback for dev, replay it to get things in order.
1073 	 */
1074 	if (!err) {
1075 		ops = iort_fwspec_iommu_ops(dev);
1076 		err = iort_add_device_replay(dev);
1077 	}
1078 
1079 	/* Ignore all other errors apart from EPROBE_DEFER */
1080 	if (err == -EPROBE_DEFER) {
1081 		ops = ERR_PTR(err);
1082 	} else if (err) {
1083 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1084 		ops = NULL;
1085 	}
1086 
1087 	return ops;
1088 }
1089 
1090 #else
1091 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
1092 { return 0; }
1093 const struct iommu_ops *iort_iommu_configure_id(struct device *dev,
1094 						const u32 *input_id)
1095 { return NULL; }
1096 #endif
1097 
1098 static int nc_dma_get_range(struct device *dev, u64 *size)
1099 {
1100 	struct acpi_iort_node *node;
1101 	struct acpi_iort_named_component *ncomp;
1102 
1103 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1104 			      iort_match_node_callback, dev);
1105 	if (!node)
1106 		return -ENODEV;
1107 
1108 	ncomp = (struct acpi_iort_named_component *)node->node_data;
1109 
1110 	if (!ncomp->memory_address_limit) {
1111 		pr_warn(FW_BUG "Named component missing memory address limit\n");
1112 		return -EINVAL;
1113 	}
1114 
1115 	*size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1116 			1ULL<<ncomp->memory_address_limit;
1117 
1118 	return 0;
1119 }
1120 
1121 static int rc_dma_get_range(struct device *dev, u64 *size)
1122 {
1123 	struct acpi_iort_node *node;
1124 	struct acpi_iort_root_complex *rc;
1125 	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1126 
1127 	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1128 			      iort_match_node_callback, &pbus->dev);
1129 	if (!node || node->revision < 1)
1130 		return -ENODEV;
1131 
1132 	rc = (struct acpi_iort_root_complex *)node->node_data;
1133 
1134 	if (!rc->memory_address_limit) {
1135 		pr_warn(FW_BUG "Root complex missing memory address limit\n");
1136 		return -EINVAL;
1137 	}
1138 
1139 	*size = rc->memory_address_limit >= 64 ? U64_MAX :
1140 			1ULL<<rc->memory_address_limit;
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  * iort_dma_setup() - Set-up device DMA parameters.
1147  *
1148  * @dev: device to configure
1149  * @dma_addr: device DMA address result pointer
1150  * @dma_size: DMA range size result pointer
1151  */
1152 void iort_dma_setup(struct device *dev, u64 *dma_addr, u64 *dma_size)
1153 {
1154 	u64 end, mask, dmaaddr = 0, size = 0, offset = 0;
1155 	int ret;
1156 
1157 	/*
1158 	 * If @dev is expected to be DMA-capable then the bus code that created
1159 	 * it should have initialised its dma_mask pointer by this point. For
1160 	 * now, we'll continue the legacy behaviour of coercing it to the
1161 	 * coherent mask if not, but we'll no longer do so quietly.
1162 	 */
1163 	if (!dev->dma_mask) {
1164 		dev_warn(dev, "DMA mask not set\n");
1165 		dev->dma_mask = &dev->coherent_dma_mask;
1166 	}
1167 
1168 	if (dev->coherent_dma_mask)
1169 		size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1);
1170 	else
1171 		size = 1ULL << 32;
1172 
1173 	ret = acpi_dma_get_range(dev, &dmaaddr, &offset, &size);
1174 	if (ret == -ENODEV)
1175 		ret = dev_is_pci(dev) ? rc_dma_get_range(dev, &size)
1176 				      : nc_dma_get_range(dev, &size);
1177 
1178 	if (!ret) {
1179 		/*
1180 		 * Limit coherent and dma mask based on size retrieved from
1181 		 * firmware.
1182 		 */
1183 		end = dmaaddr + size - 1;
1184 		mask = DMA_BIT_MASK(ilog2(end) + 1);
1185 		dev->bus_dma_limit = end;
1186 		dev->coherent_dma_mask = min(dev->coherent_dma_mask, mask);
1187 		*dev->dma_mask = min(*dev->dma_mask, mask);
1188 	}
1189 
1190 	*dma_addr = dmaaddr;
1191 	*dma_size = size;
1192 
1193 	ret = dma_direct_set_offset(dev, dmaaddr + offset, dmaaddr, size);
1194 
1195 	dev_dbg(dev, "dma_offset(%#08llx)%s\n", offset, ret ? " failed!" : "");
1196 }
1197 
1198 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1199 					  int trigger,
1200 					  struct resource *res)
1201 {
1202 	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1203 				    ACPI_ACTIVE_HIGH);
1204 
1205 	if (irq <= 0) {
1206 		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1207 								      name);
1208 		return;
1209 	}
1210 
1211 	res->start = irq;
1212 	res->end = irq;
1213 	res->flags = IORESOURCE_IRQ;
1214 	res->name = name;
1215 }
1216 
1217 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1218 {
1219 	struct acpi_iort_smmu_v3 *smmu;
1220 	/* Always present mem resource */
1221 	int num_res = 1;
1222 
1223 	/* Retrieve SMMUv3 specific data */
1224 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1225 
1226 	if (smmu->event_gsiv)
1227 		num_res++;
1228 
1229 	if (smmu->pri_gsiv)
1230 		num_res++;
1231 
1232 	if (smmu->gerr_gsiv)
1233 		num_res++;
1234 
1235 	if (smmu->sync_gsiv)
1236 		num_res++;
1237 
1238 	return num_res;
1239 }
1240 
1241 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1242 {
1243 	/*
1244 	 * Cavium ThunderX2 implementation doesn't not support unique
1245 	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1246 	 */
1247 	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1248 		return false;
1249 
1250 	/*
1251 	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1252 	 * SPI numbers here.
1253 	 */
1254 	return smmu->event_gsiv == smmu->pri_gsiv &&
1255 	       smmu->event_gsiv == smmu->gerr_gsiv &&
1256 	       smmu->event_gsiv == smmu->sync_gsiv;
1257 }
1258 
1259 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1260 {
1261 	/*
1262 	 * Override the size, for Cavium ThunderX2 implementation
1263 	 * which doesn't support the page 1 SMMU register space.
1264 	 */
1265 	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1266 		return SZ_64K;
1267 
1268 	return SZ_128K;
1269 }
1270 
1271 static void __init arm_smmu_v3_init_resources(struct resource *res,
1272 					      struct acpi_iort_node *node)
1273 {
1274 	struct acpi_iort_smmu_v3 *smmu;
1275 	int num_res = 0;
1276 
1277 	/* Retrieve SMMUv3 specific data */
1278 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1279 
1280 	res[num_res].start = smmu->base_address;
1281 	res[num_res].end = smmu->base_address +
1282 				arm_smmu_v3_resource_size(smmu) - 1;
1283 	res[num_res].flags = IORESOURCE_MEM;
1284 
1285 	num_res++;
1286 	if (arm_smmu_v3_is_combined_irq(smmu)) {
1287 		if (smmu->event_gsiv)
1288 			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1289 					       ACPI_EDGE_SENSITIVE,
1290 					       &res[num_res++]);
1291 	} else {
1292 
1293 		if (smmu->event_gsiv)
1294 			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1295 					       ACPI_EDGE_SENSITIVE,
1296 					       &res[num_res++]);
1297 
1298 		if (smmu->pri_gsiv)
1299 			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1300 					       ACPI_EDGE_SENSITIVE,
1301 					       &res[num_res++]);
1302 
1303 		if (smmu->gerr_gsiv)
1304 			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1305 					       ACPI_EDGE_SENSITIVE,
1306 					       &res[num_res++]);
1307 
1308 		if (smmu->sync_gsiv)
1309 			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1310 					       ACPI_EDGE_SENSITIVE,
1311 					       &res[num_res++]);
1312 	}
1313 }
1314 
1315 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1316 					     struct acpi_iort_node *node)
1317 {
1318 	struct acpi_iort_smmu_v3 *smmu;
1319 	enum dev_dma_attr attr;
1320 
1321 	/* Retrieve SMMUv3 specific data */
1322 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1323 
1324 	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1325 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1326 
1327 	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1328 	dev->dma_mask = &dev->coherent_dma_mask;
1329 
1330 	/* Configure DMA for the page table walker */
1331 	acpi_dma_configure(dev, attr);
1332 }
1333 
1334 #if defined(CONFIG_ACPI_NUMA)
1335 /*
1336  * set numa proximity domain for smmuv3 device
1337  */
1338 static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1339 					      struct acpi_iort_node *node)
1340 {
1341 	struct acpi_iort_smmu_v3 *smmu;
1342 
1343 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1344 	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1345 		int dev_node = pxm_to_node(smmu->pxm);
1346 
1347 		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1348 			return -EINVAL;
1349 
1350 		set_dev_node(dev, dev_node);
1351 		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1352 			smmu->base_address,
1353 			smmu->pxm);
1354 	}
1355 	return 0;
1356 }
1357 #else
1358 #define arm_smmu_v3_set_proximity NULL
1359 #endif
1360 
1361 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1362 {
1363 	struct acpi_iort_smmu *smmu;
1364 
1365 	/* Retrieve SMMU specific data */
1366 	smmu = (struct acpi_iort_smmu *)node->node_data;
1367 
1368 	/*
1369 	 * Only consider the global fault interrupt and ignore the
1370 	 * configuration access interrupt.
1371 	 *
1372 	 * MMIO address and global fault interrupt resources are always
1373 	 * present so add them to the context interrupt count as a static
1374 	 * value.
1375 	 */
1376 	return smmu->context_interrupt_count + 2;
1377 }
1378 
1379 static void __init arm_smmu_init_resources(struct resource *res,
1380 					   struct acpi_iort_node *node)
1381 {
1382 	struct acpi_iort_smmu *smmu;
1383 	int i, hw_irq, trigger, num_res = 0;
1384 	u64 *ctx_irq, *glb_irq;
1385 
1386 	/* Retrieve SMMU specific data */
1387 	smmu = (struct acpi_iort_smmu *)node->node_data;
1388 
1389 	res[num_res].start = smmu->base_address;
1390 	res[num_res].end = smmu->base_address + smmu->span - 1;
1391 	res[num_res].flags = IORESOURCE_MEM;
1392 	num_res++;
1393 
1394 	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1395 	/* Global IRQs */
1396 	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1397 	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1398 
1399 	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1400 				     &res[num_res++]);
1401 
1402 	/* Context IRQs */
1403 	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1404 	for (i = 0; i < smmu->context_interrupt_count; i++) {
1405 		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1406 		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1407 
1408 		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1409 				       &res[num_res++]);
1410 	}
1411 }
1412 
1413 static void __init arm_smmu_dma_configure(struct device *dev,
1414 					  struct acpi_iort_node *node)
1415 {
1416 	struct acpi_iort_smmu *smmu;
1417 	enum dev_dma_attr attr;
1418 
1419 	/* Retrieve SMMU specific data */
1420 	smmu = (struct acpi_iort_smmu *)node->node_data;
1421 
1422 	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1423 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1424 
1425 	/* We expect the dma masks to be equivalent for SMMU set-ups */
1426 	dev->dma_mask = &dev->coherent_dma_mask;
1427 
1428 	/* Configure DMA for the page table walker */
1429 	acpi_dma_configure(dev, attr);
1430 }
1431 
1432 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1433 {
1434 	struct acpi_iort_pmcg *pmcg;
1435 
1436 	/* Retrieve PMCG specific data */
1437 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1438 
1439 	/*
1440 	 * There are always 2 memory resources.
1441 	 * If the overflow_gsiv is present then add that for a total of 3.
1442 	 */
1443 	return pmcg->overflow_gsiv ? 3 : 2;
1444 }
1445 
1446 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1447 						   struct acpi_iort_node *node)
1448 {
1449 	struct acpi_iort_pmcg *pmcg;
1450 
1451 	/* Retrieve PMCG specific data */
1452 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1453 
1454 	res[0].start = pmcg->page0_base_address;
1455 	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1456 	res[0].flags = IORESOURCE_MEM;
1457 	res[1].start = pmcg->page1_base_address;
1458 	res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1459 	res[1].flags = IORESOURCE_MEM;
1460 
1461 	if (pmcg->overflow_gsiv)
1462 		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1463 				       ACPI_EDGE_SENSITIVE, &res[2]);
1464 }
1465 
1466 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1467 	/* HiSilicon Hip08 Platform */
1468 	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1469 	 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
1470 	{ }
1471 };
1472 
1473 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1474 {
1475 	u32 model;
1476 	int idx;
1477 
1478 	idx = acpi_match_platform_list(pmcg_plat_info);
1479 	if (idx >= 0)
1480 		model = pmcg_plat_info[idx].data;
1481 	else
1482 		model = IORT_SMMU_V3_PMCG_GENERIC;
1483 
1484 	return platform_device_add_data(pdev, &model, sizeof(model));
1485 }
1486 
1487 struct iort_dev_config {
1488 	const char *name;
1489 	int (*dev_init)(struct acpi_iort_node *node);
1490 	void (*dev_dma_configure)(struct device *dev,
1491 				  struct acpi_iort_node *node);
1492 	int (*dev_count_resources)(struct acpi_iort_node *node);
1493 	void (*dev_init_resources)(struct resource *res,
1494 				     struct acpi_iort_node *node);
1495 	int (*dev_set_proximity)(struct device *dev,
1496 				    struct acpi_iort_node *node);
1497 	int (*dev_add_platdata)(struct platform_device *pdev);
1498 };
1499 
1500 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1501 	.name = "arm-smmu-v3",
1502 	.dev_dma_configure = arm_smmu_v3_dma_configure,
1503 	.dev_count_resources = arm_smmu_v3_count_resources,
1504 	.dev_init_resources = arm_smmu_v3_init_resources,
1505 	.dev_set_proximity = arm_smmu_v3_set_proximity,
1506 };
1507 
1508 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1509 	.name = "arm-smmu",
1510 	.dev_dma_configure = arm_smmu_dma_configure,
1511 	.dev_count_resources = arm_smmu_count_resources,
1512 	.dev_init_resources = arm_smmu_init_resources,
1513 };
1514 
1515 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1516 	.name = "arm-smmu-v3-pmcg",
1517 	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1518 	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1519 	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1520 };
1521 
1522 static __init const struct iort_dev_config *iort_get_dev_cfg(
1523 			struct acpi_iort_node *node)
1524 {
1525 	switch (node->type) {
1526 	case ACPI_IORT_NODE_SMMU_V3:
1527 		return &iort_arm_smmu_v3_cfg;
1528 	case ACPI_IORT_NODE_SMMU:
1529 		return &iort_arm_smmu_cfg;
1530 	case ACPI_IORT_NODE_PMCG:
1531 		return &iort_arm_smmu_v3_pmcg_cfg;
1532 	default:
1533 		return NULL;
1534 	}
1535 }
1536 
1537 /**
1538  * iort_add_platform_device() - Allocate a platform device for IORT node
1539  * @node: Pointer to device ACPI IORT node
1540  * @ops: Pointer to IORT device config struct
1541  *
1542  * Returns: 0 on success, <0 failure
1543  */
1544 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1545 					   const struct iort_dev_config *ops)
1546 {
1547 	struct fwnode_handle *fwnode;
1548 	struct platform_device *pdev;
1549 	struct resource *r;
1550 	int ret, count;
1551 
1552 	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1553 	if (!pdev)
1554 		return -ENOMEM;
1555 
1556 	if (ops->dev_set_proximity) {
1557 		ret = ops->dev_set_proximity(&pdev->dev, node);
1558 		if (ret)
1559 			goto dev_put;
1560 	}
1561 
1562 	count = ops->dev_count_resources(node);
1563 
1564 	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1565 	if (!r) {
1566 		ret = -ENOMEM;
1567 		goto dev_put;
1568 	}
1569 
1570 	ops->dev_init_resources(r, node);
1571 
1572 	ret = platform_device_add_resources(pdev, r, count);
1573 	/*
1574 	 * Resources are duplicated in platform_device_add_resources,
1575 	 * free their allocated memory
1576 	 */
1577 	kfree(r);
1578 
1579 	if (ret)
1580 		goto dev_put;
1581 
1582 	/*
1583 	 * Platform devices based on PMCG nodes uses platform_data to
1584 	 * pass the hardware model info to the driver. For others, add
1585 	 * a copy of IORT node pointer to platform_data to be used to
1586 	 * retrieve IORT data information.
1587 	 */
1588 	if (ops->dev_add_platdata)
1589 		ret = ops->dev_add_platdata(pdev);
1590 	else
1591 		ret = platform_device_add_data(pdev, &node, sizeof(node));
1592 
1593 	if (ret)
1594 		goto dev_put;
1595 
1596 	fwnode = iort_get_fwnode(node);
1597 
1598 	if (!fwnode) {
1599 		ret = -ENODEV;
1600 		goto dev_put;
1601 	}
1602 
1603 	pdev->dev.fwnode = fwnode;
1604 
1605 	if (ops->dev_dma_configure)
1606 		ops->dev_dma_configure(&pdev->dev, node);
1607 
1608 	iort_set_device_domain(&pdev->dev, node);
1609 
1610 	ret = platform_device_add(pdev);
1611 	if (ret)
1612 		goto dma_deconfigure;
1613 
1614 	return 0;
1615 
1616 dma_deconfigure:
1617 	arch_teardown_dma_ops(&pdev->dev);
1618 dev_put:
1619 	platform_device_put(pdev);
1620 
1621 	return ret;
1622 }
1623 
1624 #ifdef CONFIG_PCI
1625 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1626 {
1627 	static bool acs_enabled __initdata;
1628 
1629 	if (acs_enabled)
1630 		return;
1631 
1632 	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1633 		struct acpi_iort_node *parent;
1634 		struct acpi_iort_id_mapping *map;
1635 		int i;
1636 
1637 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1638 				   iort_node->mapping_offset);
1639 
1640 		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1641 			if (!map->output_reference)
1642 				continue;
1643 
1644 			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1645 					iort_table,  map->output_reference);
1646 			/*
1647 			 * If we detect a RC->SMMU mapping, make sure
1648 			 * we enable ACS on the system.
1649 			 */
1650 			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1651 				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1652 				pci_request_acs();
1653 				acs_enabled = true;
1654 				return;
1655 			}
1656 		}
1657 	}
1658 }
1659 #else
1660 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1661 #endif
1662 
1663 static void __init iort_init_platform_devices(void)
1664 {
1665 	struct acpi_iort_node *iort_node, *iort_end;
1666 	struct acpi_table_iort *iort;
1667 	struct fwnode_handle *fwnode;
1668 	int i, ret;
1669 	const struct iort_dev_config *ops;
1670 
1671 	/*
1672 	 * iort_table and iort both point to the start of IORT table, but
1673 	 * have different struct types
1674 	 */
1675 	iort = (struct acpi_table_iort *)iort_table;
1676 
1677 	/* Get the first IORT node */
1678 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1679 				 iort->node_offset);
1680 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1681 				iort_table->length);
1682 
1683 	for (i = 0; i < iort->node_count; i++) {
1684 		if (iort_node >= iort_end) {
1685 			pr_err("iort node pointer overflows, bad table\n");
1686 			return;
1687 		}
1688 
1689 		iort_enable_acs(iort_node);
1690 
1691 		ops = iort_get_dev_cfg(iort_node);
1692 		if (ops) {
1693 			fwnode = acpi_alloc_fwnode_static();
1694 			if (!fwnode)
1695 				return;
1696 
1697 			iort_set_fwnode(iort_node, fwnode);
1698 
1699 			ret = iort_add_platform_device(iort_node, ops);
1700 			if (ret) {
1701 				iort_delete_fwnode(iort_node);
1702 				acpi_free_fwnode_static(fwnode);
1703 				return;
1704 			}
1705 		}
1706 
1707 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1708 					 iort_node->length);
1709 	}
1710 }
1711 
1712 void __init acpi_iort_init(void)
1713 {
1714 	acpi_status status;
1715 
1716 	/* iort_table will be used at runtime after the iort init,
1717 	 * so we don't need to call acpi_put_table() to release
1718 	 * the IORT table mapping.
1719 	 */
1720 	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1721 	if (ACPI_FAILURE(status)) {
1722 		if (status != AE_NOT_FOUND) {
1723 			const char *msg = acpi_format_exception(status);
1724 
1725 			pr_err("Failed to get table, %s\n", msg);
1726 		}
1727 
1728 		return;
1729 	}
1730 
1731 	iort_init_platform_devices();
1732 }
1733 
1734 #ifdef CONFIG_ZONE_DMA
1735 /*
1736  * Extract the highest CPU physical address accessible to all DMA masters in
1737  * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1738  */
1739 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1740 {
1741 	phys_addr_t limit = PHYS_ADDR_MAX;
1742 	struct acpi_iort_node *node, *end;
1743 	struct acpi_table_iort *iort;
1744 	acpi_status status;
1745 	int i;
1746 
1747 	if (acpi_disabled)
1748 		return limit;
1749 
1750 	status = acpi_get_table(ACPI_SIG_IORT, 0,
1751 				(struct acpi_table_header **)&iort);
1752 	if (ACPI_FAILURE(status))
1753 		return limit;
1754 
1755 	node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
1756 	end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
1757 
1758 	for (i = 0; i < iort->node_count; i++) {
1759 		if (node >= end)
1760 			break;
1761 
1762 		switch (node->type) {
1763 			struct acpi_iort_named_component *ncomp;
1764 			struct acpi_iort_root_complex *rc;
1765 			phys_addr_t local_limit;
1766 
1767 		case ACPI_IORT_NODE_NAMED_COMPONENT:
1768 			ncomp = (struct acpi_iort_named_component *)node->node_data;
1769 			local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
1770 			limit = min_not_zero(limit, local_limit);
1771 			break;
1772 
1773 		case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
1774 			if (node->revision < 1)
1775 				break;
1776 
1777 			rc = (struct acpi_iort_root_complex *)node->node_data;
1778 			local_limit = DMA_BIT_MASK(rc->memory_address_limit);
1779 			limit = min_not_zero(limit, local_limit);
1780 			break;
1781 		}
1782 		node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
1783 	}
1784 	acpi_put_table(&iort->header);
1785 	return limit;
1786 }
1787 #endif
1788