xref: /openbmc/linux/drivers/acpi/arm64/iort.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016, Semihalf
4  *	Author: Tomasz Nowicki <tn@semihalf.com>
5  *
6  * This file implements early detection/parsing of I/O mapping
7  * reported to OS through firmware via I/O Remapping Table (IORT)
8  * IORT document number: ARM DEN 0049A
9  */
10 
11 #define pr_fmt(fmt)	"ACPI: IORT: " fmt
12 
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 
22 #define IORT_TYPE_MASK(type)	(1 << (type))
23 #define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
24 #define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
25 				(1 << ACPI_IORT_NODE_SMMU_V3))
26 
27 struct iort_its_msi_chip {
28 	struct list_head	list;
29 	struct fwnode_handle	*fw_node;
30 	phys_addr_t		base_addr;
31 	u32			translation_id;
32 };
33 
34 struct iort_fwnode {
35 	struct list_head list;
36 	struct acpi_iort_node *iort_node;
37 	struct fwnode_handle *fwnode;
38 };
39 static LIST_HEAD(iort_fwnode_list);
40 static DEFINE_SPINLOCK(iort_fwnode_lock);
41 
42 /**
43  * iort_set_fwnode() - Create iort_fwnode and use it to register
44  *		       iommu data in the iort_fwnode_list
45  *
46  * @node: IORT table node associated with the IOMMU
47  * @fwnode: fwnode associated with the IORT node
48  *
49  * Returns: 0 on success
50  *          <0 on failure
51  */
52 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
53 				  struct fwnode_handle *fwnode)
54 {
55 	struct iort_fwnode *np;
56 
57 	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
58 
59 	if (WARN_ON(!np))
60 		return -ENOMEM;
61 
62 	INIT_LIST_HEAD(&np->list);
63 	np->iort_node = iort_node;
64 	np->fwnode = fwnode;
65 
66 	spin_lock(&iort_fwnode_lock);
67 	list_add_tail(&np->list, &iort_fwnode_list);
68 	spin_unlock(&iort_fwnode_lock);
69 
70 	return 0;
71 }
72 
73 /**
74  * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
75  *
76  * @node: IORT table node to be looked-up
77  *
78  * Returns: fwnode_handle pointer on success, NULL on failure
79  */
80 static inline struct fwnode_handle *iort_get_fwnode(
81 			struct acpi_iort_node *node)
82 {
83 	struct iort_fwnode *curr;
84 	struct fwnode_handle *fwnode = NULL;
85 
86 	spin_lock(&iort_fwnode_lock);
87 	list_for_each_entry(curr, &iort_fwnode_list, list) {
88 		if (curr->iort_node == node) {
89 			fwnode = curr->fwnode;
90 			break;
91 		}
92 	}
93 	spin_unlock(&iort_fwnode_lock);
94 
95 	return fwnode;
96 }
97 
98 /**
99  * iort_delete_fwnode() - Delete fwnode associated with an IORT node
100  *
101  * @node: IORT table node associated with fwnode to delete
102  */
103 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
104 {
105 	struct iort_fwnode *curr, *tmp;
106 
107 	spin_lock(&iort_fwnode_lock);
108 	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
109 		if (curr->iort_node == node) {
110 			list_del(&curr->list);
111 			kfree(curr);
112 			break;
113 		}
114 	}
115 	spin_unlock(&iort_fwnode_lock);
116 }
117 
118 /**
119  * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
120  *
121  * @fwnode: fwnode associated with device to be looked-up
122  *
123  * Returns: iort_node pointer on success, NULL on failure
124  */
125 static inline struct acpi_iort_node *iort_get_iort_node(
126 			struct fwnode_handle *fwnode)
127 {
128 	struct iort_fwnode *curr;
129 	struct acpi_iort_node *iort_node = NULL;
130 
131 	spin_lock(&iort_fwnode_lock);
132 	list_for_each_entry(curr, &iort_fwnode_list, list) {
133 		if (curr->fwnode == fwnode) {
134 			iort_node = curr->iort_node;
135 			break;
136 		}
137 	}
138 	spin_unlock(&iort_fwnode_lock);
139 
140 	return iort_node;
141 }
142 
143 typedef acpi_status (*iort_find_node_callback)
144 	(struct acpi_iort_node *node, void *context);
145 
146 /* Root pointer to the mapped IORT table */
147 static struct acpi_table_header *iort_table;
148 
149 static LIST_HEAD(iort_msi_chip_list);
150 static DEFINE_SPINLOCK(iort_msi_chip_lock);
151 
152 /**
153  * iort_register_domain_token() - register domain token along with related
154  * ITS ID and base address to the list from where we can get it back later on.
155  * @trans_id: ITS ID.
156  * @base: ITS base address.
157  * @fw_node: Domain token.
158  *
159  * Returns: 0 on success, -ENOMEM if no memory when allocating list element
160  */
161 int iort_register_domain_token(int trans_id, phys_addr_t base,
162 			       struct fwnode_handle *fw_node)
163 {
164 	struct iort_its_msi_chip *its_msi_chip;
165 
166 	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
167 	if (!its_msi_chip)
168 		return -ENOMEM;
169 
170 	its_msi_chip->fw_node = fw_node;
171 	its_msi_chip->translation_id = trans_id;
172 	its_msi_chip->base_addr = base;
173 
174 	spin_lock(&iort_msi_chip_lock);
175 	list_add(&its_msi_chip->list, &iort_msi_chip_list);
176 	spin_unlock(&iort_msi_chip_lock);
177 
178 	return 0;
179 }
180 
181 /**
182  * iort_deregister_domain_token() - Deregister domain token based on ITS ID
183  * @trans_id: ITS ID.
184  *
185  * Returns: none.
186  */
187 void iort_deregister_domain_token(int trans_id)
188 {
189 	struct iort_its_msi_chip *its_msi_chip, *t;
190 
191 	spin_lock(&iort_msi_chip_lock);
192 	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
193 		if (its_msi_chip->translation_id == trans_id) {
194 			list_del(&its_msi_chip->list);
195 			kfree(its_msi_chip);
196 			break;
197 		}
198 	}
199 	spin_unlock(&iort_msi_chip_lock);
200 }
201 
202 /**
203  * iort_find_domain_token() - Find domain token based on given ITS ID
204  * @trans_id: ITS ID.
205  *
206  * Returns: domain token when find on the list, NULL otherwise
207  */
208 struct fwnode_handle *iort_find_domain_token(int trans_id)
209 {
210 	struct fwnode_handle *fw_node = NULL;
211 	struct iort_its_msi_chip *its_msi_chip;
212 
213 	spin_lock(&iort_msi_chip_lock);
214 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
215 		if (its_msi_chip->translation_id == trans_id) {
216 			fw_node = its_msi_chip->fw_node;
217 			break;
218 		}
219 	}
220 	spin_unlock(&iort_msi_chip_lock);
221 
222 	return fw_node;
223 }
224 
225 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
226 					     iort_find_node_callback callback,
227 					     void *context)
228 {
229 	struct acpi_iort_node *iort_node, *iort_end;
230 	struct acpi_table_iort *iort;
231 	int i;
232 
233 	if (!iort_table)
234 		return NULL;
235 
236 	/* Get the first IORT node */
237 	iort = (struct acpi_table_iort *)iort_table;
238 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
239 				 iort->node_offset);
240 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
241 				iort_table->length);
242 
243 	for (i = 0; i < iort->node_count; i++) {
244 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
245 			       "IORT node pointer overflows, bad table!\n"))
246 			return NULL;
247 
248 		if (iort_node->type == type &&
249 		    ACPI_SUCCESS(callback(iort_node, context)))
250 			return iort_node;
251 
252 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
253 					 iort_node->length);
254 	}
255 
256 	return NULL;
257 }
258 
259 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
260 					    void *context)
261 {
262 	struct device *dev = context;
263 	acpi_status status = AE_NOT_FOUND;
264 
265 	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
266 		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
267 		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
268 		struct acpi_iort_named_component *ncomp;
269 
270 		if (!adev)
271 			goto out;
272 
273 		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
274 		if (ACPI_FAILURE(status)) {
275 			dev_warn(dev, "Can't get device full path name\n");
276 			goto out;
277 		}
278 
279 		ncomp = (struct acpi_iort_named_component *)node->node_data;
280 		status = !strcmp(ncomp->device_name, buf.pointer) ?
281 							AE_OK : AE_NOT_FOUND;
282 		acpi_os_free(buf.pointer);
283 	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
284 		struct acpi_iort_root_complex *pci_rc;
285 		struct pci_bus *bus;
286 
287 		bus = to_pci_bus(dev);
288 		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
289 
290 		/*
291 		 * It is assumed that PCI segment numbers maps one-to-one
292 		 * with root complexes. Each segment number can represent only
293 		 * one root complex.
294 		 */
295 		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
296 							AE_OK : AE_NOT_FOUND;
297 	}
298 out:
299 	return status;
300 }
301 
302 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
303 		       u32 *rid_out, bool check_overlap)
304 {
305 	/* Single mapping does not care for input id */
306 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
307 		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
308 		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
309 			*rid_out = map->output_base;
310 			return 0;
311 		}
312 
313 		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
314 			map, type);
315 		return -ENXIO;
316 	}
317 
318 	if (rid_in < map->input_base ||
319 	    (rid_in > map->input_base + map->id_count))
320 		return -ENXIO;
321 
322 	if (check_overlap) {
323 		/*
324 		 * We already found a mapping for this input ID at the end of
325 		 * another region. If it coincides with the start of this
326 		 * region, we assume the prior match was due to the off-by-1
327 		 * issue mentioned below, and allow it to be superseded.
328 		 * Otherwise, things are *really* broken, and we just disregard
329 		 * duplicate matches entirely to retain compatibility.
330 		 */
331 		pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
332 		       map, rid_in);
333 		if (rid_in != map->input_base)
334 			return -ENXIO;
335 
336 		pr_err(FW_BUG "applying workaround.\n");
337 	}
338 
339 	*rid_out = map->output_base + (rid_in - map->input_base);
340 
341 	/*
342 	 * Due to confusion regarding the meaning of the id_count field (which
343 	 * carries the number of IDs *minus 1*), we may have to disregard this
344 	 * match if it is at the end of the range, and overlaps with the start
345 	 * of another one.
346 	 */
347 	if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
348 		return -EAGAIN;
349 	return 0;
350 }
351 
352 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
353 					       u32 *id_out, int index)
354 {
355 	struct acpi_iort_node *parent;
356 	struct acpi_iort_id_mapping *map;
357 
358 	if (!node->mapping_offset || !node->mapping_count ||
359 				     index >= node->mapping_count)
360 		return NULL;
361 
362 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
363 			   node->mapping_offset + index * sizeof(*map));
364 
365 	/* Firmware bug! */
366 	if (!map->output_reference) {
367 		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
368 		       node, node->type);
369 		return NULL;
370 	}
371 
372 	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
373 			       map->output_reference);
374 
375 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
376 		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
377 		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
378 		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
379 		    node->type == ACPI_IORT_NODE_PMCG) {
380 			*id_out = map->output_base;
381 			return parent;
382 		}
383 	}
384 
385 	return NULL;
386 }
387 
388 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
389 {
390 	struct acpi_iort_smmu_v3 *smmu;
391 	struct acpi_iort_pmcg *pmcg;
392 
393 	switch (node->type) {
394 	case ACPI_IORT_NODE_SMMU_V3:
395 		/*
396 		 * SMMUv3 dev ID mapping index was introduced in revision 1
397 		 * table, not available in revision 0
398 		 */
399 		if (node->revision < 1)
400 			return -EINVAL;
401 
402 		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
403 		/*
404 		 * ID mapping index is only ignored if all interrupts are
405 		 * GSIV based
406 		 */
407 		if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
408 		    && smmu->sync_gsiv)
409 			return -EINVAL;
410 
411 		if (smmu->id_mapping_index >= node->mapping_count) {
412 			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
413 			       node, node->type);
414 			return -EINVAL;
415 		}
416 
417 		return smmu->id_mapping_index;
418 	case ACPI_IORT_NODE_PMCG:
419 		pmcg = (struct acpi_iort_pmcg *)node->node_data;
420 		if (pmcg->overflow_gsiv || node->mapping_count == 0)
421 			return -EINVAL;
422 
423 		return 0;
424 	default:
425 		return -EINVAL;
426 	}
427 }
428 
429 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
430 					       u32 id_in, u32 *id_out,
431 					       u8 type_mask)
432 {
433 	u32 id = id_in;
434 
435 	/* Parse the ID mapping tree to find specified node type */
436 	while (node) {
437 		struct acpi_iort_id_mapping *map;
438 		int i, index, rc = 0;
439 		u32 out_ref = 0, map_id = id;
440 
441 		if (IORT_TYPE_MASK(node->type) & type_mask) {
442 			if (id_out)
443 				*id_out = id;
444 			return node;
445 		}
446 
447 		if (!node->mapping_offset || !node->mapping_count)
448 			goto fail_map;
449 
450 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
451 				   node->mapping_offset);
452 
453 		/* Firmware bug! */
454 		if (!map->output_reference) {
455 			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
456 			       node, node->type);
457 			goto fail_map;
458 		}
459 
460 		/*
461 		 * Get the special ID mapping index (if any) and skip its
462 		 * associated ID map to prevent erroneous multi-stage
463 		 * IORT ID translations.
464 		 */
465 		index = iort_get_id_mapping_index(node);
466 
467 		/* Do the ID translation */
468 		for (i = 0; i < node->mapping_count; i++, map++) {
469 			/* if it is special mapping index, skip it */
470 			if (i == index)
471 				continue;
472 
473 			rc = iort_id_map(map, node->type, map_id, &id, out_ref);
474 			if (!rc)
475 				break;
476 			if (rc == -EAGAIN)
477 				out_ref = map->output_reference;
478 		}
479 
480 		if (i == node->mapping_count && !out_ref)
481 			goto fail_map;
482 
483 		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
484 				    rc ? out_ref : map->output_reference);
485 	}
486 
487 fail_map:
488 	/* Map input ID to output ID unchanged on mapping failure */
489 	if (id_out)
490 		*id_out = id_in;
491 
492 	return NULL;
493 }
494 
495 static struct acpi_iort_node *iort_node_map_platform_id(
496 		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
497 		int index)
498 {
499 	struct acpi_iort_node *parent;
500 	u32 id;
501 
502 	/* step 1: retrieve the initial dev id */
503 	parent = iort_node_get_id(node, &id, index);
504 	if (!parent)
505 		return NULL;
506 
507 	/*
508 	 * optional step 2: map the initial dev id if its parent is not
509 	 * the target type we want, map it again for the use cases such
510 	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
511 	 * return the initial dev id and its parent pointer directly.
512 	 */
513 	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
514 		parent = iort_node_map_id(parent, id, id_out, type_mask);
515 	else
516 		if (id_out)
517 			*id_out = id;
518 
519 	return parent;
520 }
521 
522 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
523 {
524 	struct pci_bus *pbus;
525 
526 	if (!dev_is_pci(dev)) {
527 		struct acpi_iort_node *node;
528 		/*
529 		 * scan iort_fwnode_list to see if it's an iort platform
530 		 * device (such as SMMU, PMCG),its iort node already cached
531 		 * and associated with fwnode when iort platform devices
532 		 * were initialized.
533 		 */
534 		node = iort_get_iort_node(dev->fwnode);
535 		if (node)
536 			return node;
537 
538 		/*
539 		 * if not, then it should be a platform device defined in
540 		 * DSDT/SSDT (with Named Component node in IORT)
541 		 */
542 		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
543 				      iort_match_node_callback, dev);
544 	}
545 
546 	/* Find a PCI root bus */
547 	pbus = to_pci_dev(dev)->bus;
548 	while (!pci_is_root_bus(pbus))
549 		pbus = pbus->parent;
550 
551 	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
552 			      iort_match_node_callback, &pbus->dev);
553 }
554 
555 /**
556  * iort_msi_map_rid() - Map a MSI requester ID for a device
557  * @dev: The device for which the mapping is to be done.
558  * @req_id: The device requester ID.
559  *
560  * Returns: mapped MSI RID on success, input requester ID otherwise
561  */
562 u32 iort_msi_map_rid(struct device *dev, u32 req_id)
563 {
564 	struct acpi_iort_node *node;
565 	u32 dev_id;
566 
567 	node = iort_find_dev_node(dev);
568 	if (!node)
569 		return req_id;
570 
571 	iort_node_map_id(node, req_id, &dev_id, IORT_MSI_TYPE);
572 	return dev_id;
573 }
574 
575 /**
576  * iort_pmsi_get_dev_id() - Get the device id for a device
577  * @dev: The device for which the mapping is to be done.
578  * @dev_id: The device ID found.
579  *
580  * Returns: 0 for successful find a dev id, -ENODEV on error
581  */
582 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
583 {
584 	int i, index;
585 	struct acpi_iort_node *node;
586 
587 	node = iort_find_dev_node(dev);
588 	if (!node)
589 		return -ENODEV;
590 
591 	index = iort_get_id_mapping_index(node);
592 	/* if there is a valid index, go get the dev_id directly */
593 	if (index >= 0) {
594 		if (iort_node_get_id(node, dev_id, index))
595 			return 0;
596 	} else {
597 		for (i = 0; i < node->mapping_count; i++) {
598 			if (iort_node_map_platform_id(node, dev_id,
599 						      IORT_MSI_TYPE, i))
600 				return 0;
601 		}
602 	}
603 
604 	return -ENODEV;
605 }
606 
607 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
608 {
609 	struct iort_its_msi_chip *its_msi_chip;
610 	int ret = -ENODEV;
611 
612 	spin_lock(&iort_msi_chip_lock);
613 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
614 		if (its_msi_chip->translation_id == its_id) {
615 			*base = its_msi_chip->base_addr;
616 			ret = 0;
617 			break;
618 		}
619 	}
620 	spin_unlock(&iort_msi_chip_lock);
621 
622 	return ret;
623 }
624 
625 /**
626  * iort_dev_find_its_id() - Find the ITS identifier for a device
627  * @dev: The device.
628  * @req_id: Device's requester ID
629  * @idx: Index of the ITS identifier list.
630  * @its_id: ITS identifier.
631  *
632  * Returns: 0 on success, appropriate error value otherwise
633  */
634 static int iort_dev_find_its_id(struct device *dev, u32 req_id,
635 				unsigned int idx, int *its_id)
636 {
637 	struct acpi_iort_its_group *its;
638 	struct acpi_iort_node *node;
639 
640 	node = iort_find_dev_node(dev);
641 	if (!node)
642 		return -ENXIO;
643 
644 	node = iort_node_map_id(node, req_id, NULL, IORT_MSI_TYPE);
645 	if (!node)
646 		return -ENXIO;
647 
648 	/* Move to ITS specific data */
649 	its = (struct acpi_iort_its_group *)node->node_data;
650 	if (idx >= its->its_count) {
651 		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
652 			idx, its->its_count);
653 		return -ENXIO;
654 	}
655 
656 	*its_id = its->identifiers[idx];
657 	return 0;
658 }
659 
660 /**
661  * iort_get_device_domain() - Find MSI domain related to a device
662  * @dev: The device.
663  * @req_id: Requester ID for the device.
664  *
665  * Returns: the MSI domain for this device, NULL otherwise
666  */
667 struct irq_domain *iort_get_device_domain(struct device *dev, u32 req_id)
668 {
669 	struct fwnode_handle *handle;
670 	int its_id;
671 
672 	if (iort_dev_find_its_id(dev, req_id, 0, &its_id))
673 		return NULL;
674 
675 	handle = iort_find_domain_token(its_id);
676 	if (!handle)
677 		return NULL;
678 
679 	return irq_find_matching_fwnode(handle, DOMAIN_BUS_PCI_MSI);
680 }
681 
682 static void iort_set_device_domain(struct device *dev,
683 				   struct acpi_iort_node *node)
684 {
685 	struct acpi_iort_its_group *its;
686 	struct acpi_iort_node *msi_parent;
687 	struct acpi_iort_id_mapping *map;
688 	struct fwnode_handle *iort_fwnode;
689 	struct irq_domain *domain;
690 	int index;
691 
692 	index = iort_get_id_mapping_index(node);
693 	if (index < 0)
694 		return;
695 
696 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
697 			   node->mapping_offset + index * sizeof(*map));
698 
699 	/* Firmware bug! */
700 	if (!map->output_reference ||
701 	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
702 		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
703 		       node, node->type);
704 		return;
705 	}
706 
707 	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
708 				  map->output_reference);
709 
710 	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
711 		return;
712 
713 	/* Move to ITS specific data */
714 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
715 
716 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
717 	if (!iort_fwnode)
718 		return;
719 
720 	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
721 	if (domain)
722 		dev_set_msi_domain(dev, domain);
723 }
724 
725 /**
726  * iort_get_platform_device_domain() - Find MSI domain related to a
727  * platform device
728  * @dev: the dev pointer associated with the platform device
729  *
730  * Returns: the MSI domain for this device, NULL otherwise
731  */
732 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
733 {
734 	struct acpi_iort_node *node, *msi_parent = NULL;
735 	struct fwnode_handle *iort_fwnode;
736 	struct acpi_iort_its_group *its;
737 	int i;
738 
739 	/* find its associated iort node */
740 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
741 			      iort_match_node_callback, dev);
742 	if (!node)
743 		return NULL;
744 
745 	/* then find its msi parent node */
746 	for (i = 0; i < node->mapping_count; i++) {
747 		msi_parent = iort_node_map_platform_id(node, NULL,
748 						       IORT_MSI_TYPE, i);
749 		if (msi_parent)
750 			break;
751 	}
752 
753 	if (!msi_parent)
754 		return NULL;
755 
756 	/* Move to ITS specific data */
757 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
758 
759 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
760 	if (!iort_fwnode)
761 		return NULL;
762 
763 	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
764 }
765 
766 void acpi_configure_pmsi_domain(struct device *dev)
767 {
768 	struct irq_domain *msi_domain;
769 
770 	msi_domain = iort_get_platform_device_domain(dev);
771 	if (msi_domain)
772 		dev_set_msi_domain(dev, msi_domain);
773 }
774 
775 #ifdef CONFIG_IOMMU_API
776 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
777 {
778 	struct acpi_iort_node *iommu;
779 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
780 
781 	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
782 
783 	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
784 		struct acpi_iort_smmu_v3 *smmu;
785 
786 		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
787 		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
788 			return iommu;
789 	}
790 
791 	return NULL;
792 }
793 
794 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
795 {
796 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
797 
798 	return (fwspec && fwspec->ops) ? fwspec->ops : NULL;
799 }
800 
801 static inline int iort_add_device_replay(const struct iommu_ops *ops,
802 					 struct device *dev)
803 {
804 	int err = 0;
805 
806 	if (dev->bus && !device_iommu_mapped(dev))
807 		err = iommu_probe_device(dev);
808 
809 	return err;
810 }
811 
812 /**
813  * iort_iommu_msi_get_resv_regions - Reserved region driver helper
814  * @dev: Device from iommu_get_resv_regions()
815  * @head: Reserved region list from iommu_get_resv_regions()
816  *
817  * Returns: Number of msi reserved regions on success (0 if platform
818  *          doesn't require the reservation or no associated msi regions),
819  *          appropriate error value otherwise. The ITS interrupt translation
820  *          spaces (ITS_base + SZ_64K, SZ_64K) associated with the device
821  *          are the msi reserved regions.
822  */
823 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
824 {
825 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
826 	struct acpi_iort_its_group *its;
827 	struct acpi_iort_node *iommu_node, *its_node = NULL;
828 	int i, resv = 0;
829 
830 	iommu_node = iort_get_msi_resv_iommu(dev);
831 	if (!iommu_node)
832 		return 0;
833 
834 	/*
835 	 * Current logic to reserve ITS regions relies on HW topologies
836 	 * where a given PCI or named component maps its IDs to only one
837 	 * ITS group; if a PCI or named component can map its IDs to
838 	 * different ITS groups through IORT mappings this function has
839 	 * to be reworked to ensure we reserve regions for all ITS groups
840 	 * a given PCI or named component may map IDs to.
841 	 */
842 
843 	for (i = 0; i < fwspec->num_ids; i++) {
844 		its_node = iort_node_map_id(iommu_node,
845 					fwspec->ids[i],
846 					NULL, IORT_MSI_TYPE);
847 		if (its_node)
848 			break;
849 	}
850 
851 	if (!its_node)
852 		return 0;
853 
854 	/* Move to ITS specific data */
855 	its = (struct acpi_iort_its_group *)its_node->node_data;
856 
857 	for (i = 0; i < its->its_count; i++) {
858 		phys_addr_t base;
859 
860 		if (!iort_find_its_base(its->identifiers[i], &base)) {
861 			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
862 			struct iommu_resv_region *region;
863 
864 			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
865 							 prot, IOMMU_RESV_MSI);
866 			if (region) {
867 				list_add_tail(&region->list, head);
868 				resv++;
869 			}
870 		}
871 	}
872 
873 	return (resv == its->its_count) ? resv : -ENODEV;
874 }
875 
876 static inline bool iort_iommu_driver_enabled(u8 type)
877 {
878 	switch (type) {
879 	case ACPI_IORT_NODE_SMMU_V3:
880 		return IS_ENABLED(CONFIG_ARM_SMMU_V3);
881 	case ACPI_IORT_NODE_SMMU:
882 		return IS_ENABLED(CONFIG_ARM_SMMU);
883 	default:
884 		pr_warn("IORT node type %u does not describe an SMMU\n", type);
885 		return false;
886 	}
887 }
888 
889 static int arm_smmu_iort_xlate(struct device *dev, u32 streamid,
890 			       struct fwnode_handle *fwnode,
891 			       const struct iommu_ops *ops)
892 {
893 	int ret = iommu_fwspec_init(dev, fwnode, ops);
894 
895 	if (!ret)
896 		ret = iommu_fwspec_add_ids(dev, &streamid, 1);
897 
898 	return ret;
899 }
900 
901 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
902 {
903 	struct acpi_iort_root_complex *pci_rc;
904 
905 	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
906 	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
907 }
908 
909 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
910 			    u32 streamid)
911 {
912 	const struct iommu_ops *ops;
913 	struct fwnode_handle *iort_fwnode;
914 
915 	if (!node)
916 		return -ENODEV;
917 
918 	iort_fwnode = iort_get_fwnode(node);
919 	if (!iort_fwnode)
920 		return -ENODEV;
921 
922 	/*
923 	 * If the ops look-up fails, this means that either
924 	 * the SMMU drivers have not been probed yet or that
925 	 * the SMMU drivers are not built in the kernel;
926 	 * Depending on whether the SMMU drivers are built-in
927 	 * in the kernel or not, defer the IOMMU configuration
928 	 * or just abort it.
929 	 */
930 	ops = iommu_ops_from_fwnode(iort_fwnode);
931 	if (!ops)
932 		return iort_iommu_driver_enabled(node->type) ?
933 		       -EPROBE_DEFER : -ENODEV;
934 
935 	return arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops);
936 }
937 
938 struct iort_pci_alias_info {
939 	struct device *dev;
940 	struct acpi_iort_node *node;
941 };
942 
943 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
944 {
945 	struct iort_pci_alias_info *info = data;
946 	struct acpi_iort_node *parent;
947 	u32 streamid;
948 
949 	parent = iort_node_map_id(info->node, alias, &streamid,
950 				  IORT_IOMMU_TYPE);
951 	return iort_iommu_xlate(info->dev, parent, streamid);
952 }
953 
954 static void iort_named_component_init(struct device *dev,
955 				      struct acpi_iort_node *node)
956 {
957 	struct acpi_iort_named_component *nc;
958 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
959 
960 	if (!fwspec)
961 		return;
962 
963 	nc = (struct acpi_iort_named_component *)node->node_data;
964 	fwspec->num_pasid_bits = FIELD_GET(ACPI_IORT_NC_PASID_BITS,
965 					   nc->node_flags);
966 }
967 
968 /**
969  * iort_iommu_configure - Set-up IOMMU configuration for a device.
970  *
971  * @dev: device to configure
972  *
973  * Returns: iommu_ops pointer on configuration success
974  *          NULL on configuration failure
975  */
976 const struct iommu_ops *iort_iommu_configure(struct device *dev)
977 {
978 	struct acpi_iort_node *node, *parent;
979 	const struct iommu_ops *ops;
980 	u32 streamid = 0;
981 	int err = -ENODEV;
982 
983 	/*
984 	 * If we already translated the fwspec there
985 	 * is nothing left to do, return the iommu_ops.
986 	 */
987 	ops = iort_fwspec_iommu_ops(dev);
988 	if (ops)
989 		return ops;
990 
991 	if (dev_is_pci(dev)) {
992 		struct iommu_fwspec *fwspec;
993 		struct pci_bus *bus = to_pci_dev(dev)->bus;
994 		struct iort_pci_alias_info info = { .dev = dev };
995 
996 		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
997 				      iort_match_node_callback, &bus->dev);
998 		if (!node)
999 			return NULL;
1000 
1001 		info.node = node;
1002 		err = pci_for_each_dma_alias(to_pci_dev(dev),
1003 					     iort_pci_iommu_init, &info);
1004 
1005 		fwspec = dev_iommu_fwspec_get(dev);
1006 		if (fwspec && iort_pci_rc_supports_ats(node))
1007 			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1008 	} else {
1009 		int i = 0;
1010 
1011 		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1012 				      iort_match_node_callback, dev);
1013 		if (!node)
1014 			return NULL;
1015 
1016 		do {
1017 			parent = iort_node_map_platform_id(node, &streamid,
1018 							   IORT_IOMMU_TYPE,
1019 							   i++);
1020 
1021 			if (parent)
1022 				err = iort_iommu_xlate(dev, parent, streamid);
1023 		} while (parent && !err);
1024 
1025 		if (!err)
1026 			iort_named_component_init(dev, node);
1027 	}
1028 
1029 	/*
1030 	 * If we have reason to believe the IOMMU driver missed the initial
1031 	 * add_device callback for dev, replay it to get things in order.
1032 	 */
1033 	if (!err) {
1034 		ops = iort_fwspec_iommu_ops(dev);
1035 		err = iort_add_device_replay(ops, dev);
1036 	}
1037 
1038 	/* Ignore all other errors apart from EPROBE_DEFER */
1039 	if (err == -EPROBE_DEFER) {
1040 		ops = ERR_PTR(err);
1041 	} else if (err) {
1042 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1043 		ops = NULL;
1044 	}
1045 
1046 	return ops;
1047 }
1048 #else
1049 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
1050 { return NULL; }
1051 static inline int iort_add_device_replay(const struct iommu_ops *ops,
1052 					 struct device *dev)
1053 { return 0; }
1054 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
1055 { return 0; }
1056 const struct iommu_ops *iort_iommu_configure(struct device *dev)
1057 { return NULL; }
1058 #endif
1059 
1060 static int nc_dma_get_range(struct device *dev, u64 *size)
1061 {
1062 	struct acpi_iort_node *node;
1063 	struct acpi_iort_named_component *ncomp;
1064 
1065 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1066 			      iort_match_node_callback, dev);
1067 	if (!node)
1068 		return -ENODEV;
1069 
1070 	ncomp = (struct acpi_iort_named_component *)node->node_data;
1071 
1072 	*size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1073 			1ULL<<ncomp->memory_address_limit;
1074 
1075 	return 0;
1076 }
1077 
1078 static int rc_dma_get_range(struct device *dev, u64 *size)
1079 {
1080 	struct acpi_iort_node *node;
1081 	struct acpi_iort_root_complex *rc;
1082 	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1083 
1084 	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1085 			      iort_match_node_callback, &pbus->dev);
1086 	if (!node || node->revision < 1)
1087 		return -ENODEV;
1088 
1089 	rc = (struct acpi_iort_root_complex *)node->node_data;
1090 
1091 	*size = rc->memory_address_limit >= 64 ? U64_MAX :
1092 			1ULL<<rc->memory_address_limit;
1093 
1094 	return 0;
1095 }
1096 
1097 /**
1098  * iort_dma_setup() - Set-up device DMA parameters.
1099  *
1100  * @dev: device to configure
1101  * @dma_addr: device DMA address result pointer
1102  * @size: DMA range size result pointer
1103  */
1104 void iort_dma_setup(struct device *dev, u64 *dma_addr, u64 *dma_size)
1105 {
1106 	u64 end, mask, dmaaddr = 0, size = 0, offset = 0;
1107 	int ret;
1108 
1109 	/*
1110 	 * If @dev is expected to be DMA-capable then the bus code that created
1111 	 * it should have initialised its dma_mask pointer by this point. For
1112 	 * now, we'll continue the legacy behaviour of coercing it to the
1113 	 * coherent mask if not, but we'll no longer do so quietly.
1114 	 */
1115 	if (!dev->dma_mask) {
1116 		dev_warn(dev, "DMA mask not set\n");
1117 		dev->dma_mask = &dev->coherent_dma_mask;
1118 	}
1119 
1120 	if (dev->coherent_dma_mask)
1121 		size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1);
1122 	else
1123 		size = 1ULL << 32;
1124 
1125 	ret = acpi_dma_get_range(dev, &dmaaddr, &offset, &size);
1126 	if (ret == -ENODEV)
1127 		ret = dev_is_pci(dev) ? rc_dma_get_range(dev, &size)
1128 				      : nc_dma_get_range(dev, &size);
1129 
1130 	if (!ret) {
1131 		/*
1132 		 * Limit coherent and dma mask based on size retrieved from
1133 		 * firmware.
1134 		 */
1135 		end = dmaaddr + size - 1;
1136 		mask = DMA_BIT_MASK(ilog2(end) + 1);
1137 		dev->bus_dma_limit = end;
1138 		dev->coherent_dma_mask = mask;
1139 		*dev->dma_mask = mask;
1140 	}
1141 
1142 	*dma_addr = dmaaddr;
1143 	*dma_size = size;
1144 
1145 	dev->dma_pfn_offset = PFN_DOWN(offset);
1146 	dev_dbg(dev, "dma_pfn_offset(%#08llx)\n", offset);
1147 }
1148 
1149 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1150 					  int trigger,
1151 					  struct resource *res)
1152 {
1153 	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1154 				    ACPI_ACTIVE_HIGH);
1155 
1156 	if (irq <= 0) {
1157 		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1158 								      name);
1159 		return;
1160 	}
1161 
1162 	res->start = irq;
1163 	res->end = irq;
1164 	res->flags = IORESOURCE_IRQ;
1165 	res->name = name;
1166 }
1167 
1168 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1169 {
1170 	struct acpi_iort_smmu_v3 *smmu;
1171 	/* Always present mem resource */
1172 	int num_res = 1;
1173 
1174 	/* Retrieve SMMUv3 specific data */
1175 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1176 
1177 	if (smmu->event_gsiv)
1178 		num_res++;
1179 
1180 	if (smmu->pri_gsiv)
1181 		num_res++;
1182 
1183 	if (smmu->gerr_gsiv)
1184 		num_res++;
1185 
1186 	if (smmu->sync_gsiv)
1187 		num_res++;
1188 
1189 	return num_res;
1190 }
1191 
1192 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1193 {
1194 	/*
1195 	 * Cavium ThunderX2 implementation doesn't not support unique
1196 	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1197 	 */
1198 	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1199 		return false;
1200 
1201 	/*
1202 	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1203 	 * SPI numbers here.
1204 	 */
1205 	return smmu->event_gsiv == smmu->pri_gsiv &&
1206 	       smmu->event_gsiv == smmu->gerr_gsiv &&
1207 	       smmu->event_gsiv == smmu->sync_gsiv;
1208 }
1209 
1210 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1211 {
1212 	/*
1213 	 * Override the size, for Cavium ThunderX2 implementation
1214 	 * which doesn't support the page 1 SMMU register space.
1215 	 */
1216 	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1217 		return SZ_64K;
1218 
1219 	return SZ_128K;
1220 }
1221 
1222 static void __init arm_smmu_v3_init_resources(struct resource *res,
1223 					      struct acpi_iort_node *node)
1224 {
1225 	struct acpi_iort_smmu_v3 *smmu;
1226 	int num_res = 0;
1227 
1228 	/* Retrieve SMMUv3 specific data */
1229 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1230 
1231 	res[num_res].start = smmu->base_address;
1232 	res[num_res].end = smmu->base_address +
1233 				arm_smmu_v3_resource_size(smmu) - 1;
1234 	res[num_res].flags = IORESOURCE_MEM;
1235 
1236 	num_res++;
1237 	if (arm_smmu_v3_is_combined_irq(smmu)) {
1238 		if (smmu->event_gsiv)
1239 			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1240 					       ACPI_EDGE_SENSITIVE,
1241 					       &res[num_res++]);
1242 	} else {
1243 
1244 		if (smmu->event_gsiv)
1245 			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1246 					       ACPI_EDGE_SENSITIVE,
1247 					       &res[num_res++]);
1248 
1249 		if (smmu->pri_gsiv)
1250 			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1251 					       ACPI_EDGE_SENSITIVE,
1252 					       &res[num_res++]);
1253 
1254 		if (smmu->gerr_gsiv)
1255 			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1256 					       ACPI_EDGE_SENSITIVE,
1257 					       &res[num_res++]);
1258 
1259 		if (smmu->sync_gsiv)
1260 			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1261 					       ACPI_EDGE_SENSITIVE,
1262 					       &res[num_res++]);
1263 	}
1264 }
1265 
1266 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1267 					     struct acpi_iort_node *node)
1268 {
1269 	struct acpi_iort_smmu_v3 *smmu;
1270 	enum dev_dma_attr attr;
1271 
1272 	/* Retrieve SMMUv3 specific data */
1273 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1274 
1275 	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1276 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1277 
1278 	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1279 	dev->dma_mask = &dev->coherent_dma_mask;
1280 
1281 	/* Configure DMA for the page table walker */
1282 	acpi_dma_configure(dev, attr);
1283 }
1284 
1285 #if defined(CONFIG_ACPI_NUMA)
1286 /*
1287  * set numa proximity domain for smmuv3 device
1288  */
1289 static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1290 					      struct acpi_iort_node *node)
1291 {
1292 	struct acpi_iort_smmu_v3 *smmu;
1293 
1294 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1295 	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1296 		int dev_node = acpi_map_pxm_to_node(smmu->pxm);
1297 
1298 		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1299 			return -EINVAL;
1300 
1301 		set_dev_node(dev, dev_node);
1302 		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1303 			smmu->base_address,
1304 			smmu->pxm);
1305 	}
1306 	return 0;
1307 }
1308 #else
1309 #define arm_smmu_v3_set_proximity NULL
1310 #endif
1311 
1312 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1313 {
1314 	struct acpi_iort_smmu *smmu;
1315 
1316 	/* Retrieve SMMU specific data */
1317 	smmu = (struct acpi_iort_smmu *)node->node_data;
1318 
1319 	/*
1320 	 * Only consider the global fault interrupt and ignore the
1321 	 * configuration access interrupt.
1322 	 *
1323 	 * MMIO address and global fault interrupt resources are always
1324 	 * present so add them to the context interrupt count as a static
1325 	 * value.
1326 	 */
1327 	return smmu->context_interrupt_count + 2;
1328 }
1329 
1330 static void __init arm_smmu_init_resources(struct resource *res,
1331 					   struct acpi_iort_node *node)
1332 {
1333 	struct acpi_iort_smmu *smmu;
1334 	int i, hw_irq, trigger, num_res = 0;
1335 	u64 *ctx_irq, *glb_irq;
1336 
1337 	/* Retrieve SMMU specific data */
1338 	smmu = (struct acpi_iort_smmu *)node->node_data;
1339 
1340 	res[num_res].start = smmu->base_address;
1341 	res[num_res].end = smmu->base_address + smmu->span - 1;
1342 	res[num_res].flags = IORESOURCE_MEM;
1343 	num_res++;
1344 
1345 	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1346 	/* Global IRQs */
1347 	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1348 	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1349 
1350 	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1351 				     &res[num_res++]);
1352 
1353 	/* Context IRQs */
1354 	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1355 	for (i = 0; i < smmu->context_interrupt_count; i++) {
1356 		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1357 		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1358 
1359 		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1360 				       &res[num_res++]);
1361 	}
1362 }
1363 
1364 static void __init arm_smmu_dma_configure(struct device *dev,
1365 					  struct acpi_iort_node *node)
1366 {
1367 	struct acpi_iort_smmu *smmu;
1368 	enum dev_dma_attr attr;
1369 
1370 	/* Retrieve SMMU specific data */
1371 	smmu = (struct acpi_iort_smmu *)node->node_data;
1372 
1373 	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1374 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1375 
1376 	/* We expect the dma masks to be equivalent for SMMU set-ups */
1377 	dev->dma_mask = &dev->coherent_dma_mask;
1378 
1379 	/* Configure DMA for the page table walker */
1380 	acpi_dma_configure(dev, attr);
1381 }
1382 
1383 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1384 {
1385 	struct acpi_iort_pmcg *pmcg;
1386 
1387 	/* Retrieve PMCG specific data */
1388 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1389 
1390 	/*
1391 	 * There are always 2 memory resources.
1392 	 * If the overflow_gsiv is present then add that for a total of 3.
1393 	 */
1394 	return pmcg->overflow_gsiv ? 3 : 2;
1395 }
1396 
1397 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1398 						   struct acpi_iort_node *node)
1399 {
1400 	struct acpi_iort_pmcg *pmcg;
1401 
1402 	/* Retrieve PMCG specific data */
1403 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1404 
1405 	res[0].start = pmcg->page0_base_address;
1406 	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1407 	res[0].flags = IORESOURCE_MEM;
1408 	res[1].start = pmcg->page1_base_address;
1409 	res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1410 	res[1].flags = IORESOURCE_MEM;
1411 
1412 	if (pmcg->overflow_gsiv)
1413 		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1414 				       ACPI_EDGE_SENSITIVE, &res[2]);
1415 }
1416 
1417 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1418 	/* HiSilicon Hip08 Platform */
1419 	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1420 	 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
1421 	{ }
1422 };
1423 
1424 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1425 {
1426 	u32 model;
1427 	int idx;
1428 
1429 	idx = acpi_match_platform_list(pmcg_plat_info);
1430 	if (idx >= 0)
1431 		model = pmcg_plat_info[idx].data;
1432 	else
1433 		model = IORT_SMMU_V3_PMCG_GENERIC;
1434 
1435 	return platform_device_add_data(pdev, &model, sizeof(model));
1436 }
1437 
1438 struct iort_dev_config {
1439 	const char *name;
1440 	int (*dev_init)(struct acpi_iort_node *node);
1441 	void (*dev_dma_configure)(struct device *dev,
1442 				  struct acpi_iort_node *node);
1443 	int (*dev_count_resources)(struct acpi_iort_node *node);
1444 	void (*dev_init_resources)(struct resource *res,
1445 				     struct acpi_iort_node *node);
1446 	int (*dev_set_proximity)(struct device *dev,
1447 				    struct acpi_iort_node *node);
1448 	int (*dev_add_platdata)(struct platform_device *pdev);
1449 };
1450 
1451 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1452 	.name = "arm-smmu-v3",
1453 	.dev_dma_configure = arm_smmu_v3_dma_configure,
1454 	.dev_count_resources = arm_smmu_v3_count_resources,
1455 	.dev_init_resources = arm_smmu_v3_init_resources,
1456 	.dev_set_proximity = arm_smmu_v3_set_proximity,
1457 };
1458 
1459 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1460 	.name = "arm-smmu",
1461 	.dev_dma_configure = arm_smmu_dma_configure,
1462 	.dev_count_resources = arm_smmu_count_resources,
1463 	.dev_init_resources = arm_smmu_init_resources,
1464 };
1465 
1466 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1467 	.name = "arm-smmu-v3-pmcg",
1468 	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1469 	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1470 	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1471 };
1472 
1473 static __init const struct iort_dev_config *iort_get_dev_cfg(
1474 			struct acpi_iort_node *node)
1475 {
1476 	switch (node->type) {
1477 	case ACPI_IORT_NODE_SMMU_V3:
1478 		return &iort_arm_smmu_v3_cfg;
1479 	case ACPI_IORT_NODE_SMMU:
1480 		return &iort_arm_smmu_cfg;
1481 	case ACPI_IORT_NODE_PMCG:
1482 		return &iort_arm_smmu_v3_pmcg_cfg;
1483 	default:
1484 		return NULL;
1485 	}
1486 }
1487 
1488 /**
1489  * iort_add_platform_device() - Allocate a platform device for IORT node
1490  * @node: Pointer to device ACPI IORT node
1491  *
1492  * Returns: 0 on success, <0 failure
1493  */
1494 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1495 					   const struct iort_dev_config *ops)
1496 {
1497 	struct fwnode_handle *fwnode;
1498 	struct platform_device *pdev;
1499 	struct resource *r;
1500 	int ret, count;
1501 
1502 	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1503 	if (!pdev)
1504 		return -ENOMEM;
1505 
1506 	if (ops->dev_set_proximity) {
1507 		ret = ops->dev_set_proximity(&pdev->dev, node);
1508 		if (ret)
1509 			goto dev_put;
1510 	}
1511 
1512 	count = ops->dev_count_resources(node);
1513 
1514 	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1515 	if (!r) {
1516 		ret = -ENOMEM;
1517 		goto dev_put;
1518 	}
1519 
1520 	ops->dev_init_resources(r, node);
1521 
1522 	ret = platform_device_add_resources(pdev, r, count);
1523 	/*
1524 	 * Resources are duplicated in platform_device_add_resources,
1525 	 * free their allocated memory
1526 	 */
1527 	kfree(r);
1528 
1529 	if (ret)
1530 		goto dev_put;
1531 
1532 	/*
1533 	 * Platform devices based on PMCG nodes uses platform_data to
1534 	 * pass the hardware model info to the driver. For others, add
1535 	 * a copy of IORT node pointer to platform_data to be used to
1536 	 * retrieve IORT data information.
1537 	 */
1538 	if (ops->dev_add_platdata)
1539 		ret = ops->dev_add_platdata(pdev);
1540 	else
1541 		ret = platform_device_add_data(pdev, &node, sizeof(node));
1542 
1543 	if (ret)
1544 		goto dev_put;
1545 
1546 	fwnode = iort_get_fwnode(node);
1547 
1548 	if (!fwnode) {
1549 		ret = -ENODEV;
1550 		goto dev_put;
1551 	}
1552 
1553 	pdev->dev.fwnode = fwnode;
1554 
1555 	if (ops->dev_dma_configure)
1556 		ops->dev_dma_configure(&pdev->dev, node);
1557 
1558 	iort_set_device_domain(&pdev->dev, node);
1559 
1560 	ret = platform_device_add(pdev);
1561 	if (ret)
1562 		goto dma_deconfigure;
1563 
1564 	return 0;
1565 
1566 dma_deconfigure:
1567 	arch_teardown_dma_ops(&pdev->dev);
1568 dev_put:
1569 	platform_device_put(pdev);
1570 
1571 	return ret;
1572 }
1573 
1574 #ifdef CONFIG_PCI
1575 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1576 {
1577 	static bool acs_enabled __initdata;
1578 
1579 	if (acs_enabled)
1580 		return;
1581 
1582 	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1583 		struct acpi_iort_node *parent;
1584 		struct acpi_iort_id_mapping *map;
1585 		int i;
1586 
1587 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1588 				   iort_node->mapping_offset);
1589 
1590 		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1591 			if (!map->output_reference)
1592 				continue;
1593 
1594 			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1595 					iort_table,  map->output_reference);
1596 			/*
1597 			 * If we detect a RC->SMMU mapping, make sure
1598 			 * we enable ACS on the system.
1599 			 */
1600 			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1601 				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1602 				pci_request_acs();
1603 				acs_enabled = true;
1604 				return;
1605 			}
1606 		}
1607 	}
1608 }
1609 #else
1610 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1611 #endif
1612 
1613 static void __init iort_init_platform_devices(void)
1614 {
1615 	struct acpi_iort_node *iort_node, *iort_end;
1616 	struct acpi_table_iort *iort;
1617 	struct fwnode_handle *fwnode;
1618 	int i, ret;
1619 	const struct iort_dev_config *ops;
1620 
1621 	/*
1622 	 * iort_table and iort both point to the start of IORT table, but
1623 	 * have different struct types
1624 	 */
1625 	iort = (struct acpi_table_iort *)iort_table;
1626 
1627 	/* Get the first IORT node */
1628 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1629 				 iort->node_offset);
1630 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1631 				iort_table->length);
1632 
1633 	for (i = 0; i < iort->node_count; i++) {
1634 		if (iort_node >= iort_end) {
1635 			pr_err("iort node pointer overflows, bad table\n");
1636 			return;
1637 		}
1638 
1639 		iort_enable_acs(iort_node);
1640 
1641 		ops = iort_get_dev_cfg(iort_node);
1642 		if (ops) {
1643 			fwnode = acpi_alloc_fwnode_static();
1644 			if (!fwnode)
1645 				return;
1646 
1647 			iort_set_fwnode(iort_node, fwnode);
1648 
1649 			ret = iort_add_platform_device(iort_node, ops);
1650 			if (ret) {
1651 				iort_delete_fwnode(iort_node);
1652 				acpi_free_fwnode_static(fwnode);
1653 				return;
1654 			}
1655 		}
1656 
1657 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1658 					 iort_node->length);
1659 	}
1660 }
1661 
1662 void __init acpi_iort_init(void)
1663 {
1664 	acpi_status status;
1665 
1666 	/* iort_table will be used at runtime after the iort init,
1667 	 * so we don't need to call acpi_put_table() to release
1668 	 * the IORT table mapping.
1669 	 */
1670 	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1671 	if (ACPI_FAILURE(status)) {
1672 		if (status != AE_NOT_FOUND) {
1673 			const char *msg = acpi_format_exception(status);
1674 
1675 			pr_err("Failed to get table, %s\n", msg);
1676 		}
1677 
1678 		return;
1679 	}
1680 
1681 	iort_init_platform_devices();
1682 }
1683