1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016, Semihalf 4 * Author: Tomasz Nowicki <tn@semihalf.com> 5 * 6 * This file implements early detection/parsing of I/O mapping 7 * reported to OS through firmware via I/O Remapping Table (IORT) 8 * IORT document number: ARM DEN 0049A 9 */ 10 11 #define pr_fmt(fmt) "ACPI: IORT: " fmt 12 13 #include <linux/acpi_iort.h> 14 #include <linux/bitfield.h> 15 #include <linux/iommu.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/pci.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/dma-map-ops.h> 22 23 #define IORT_TYPE_MASK(type) (1 << (type)) 24 #define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP) 25 #define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \ 26 (1 << ACPI_IORT_NODE_SMMU_V3)) 27 28 struct iort_its_msi_chip { 29 struct list_head list; 30 struct fwnode_handle *fw_node; 31 phys_addr_t base_addr; 32 u32 translation_id; 33 }; 34 35 struct iort_fwnode { 36 struct list_head list; 37 struct acpi_iort_node *iort_node; 38 struct fwnode_handle *fwnode; 39 }; 40 static LIST_HEAD(iort_fwnode_list); 41 static DEFINE_SPINLOCK(iort_fwnode_lock); 42 43 /** 44 * iort_set_fwnode() - Create iort_fwnode and use it to register 45 * iommu data in the iort_fwnode_list 46 * 47 * @iort_node: IORT table node associated with the IOMMU 48 * @fwnode: fwnode associated with the IORT node 49 * 50 * Returns: 0 on success 51 * <0 on failure 52 */ 53 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node, 54 struct fwnode_handle *fwnode) 55 { 56 struct iort_fwnode *np; 57 58 np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC); 59 60 if (WARN_ON(!np)) 61 return -ENOMEM; 62 63 INIT_LIST_HEAD(&np->list); 64 np->iort_node = iort_node; 65 np->fwnode = fwnode; 66 67 spin_lock(&iort_fwnode_lock); 68 list_add_tail(&np->list, &iort_fwnode_list); 69 spin_unlock(&iort_fwnode_lock); 70 71 return 0; 72 } 73 74 /** 75 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node 76 * 77 * @node: IORT table node to be looked-up 78 * 79 * Returns: fwnode_handle pointer on success, NULL on failure 80 */ 81 static inline struct fwnode_handle *iort_get_fwnode( 82 struct acpi_iort_node *node) 83 { 84 struct iort_fwnode *curr; 85 struct fwnode_handle *fwnode = NULL; 86 87 spin_lock(&iort_fwnode_lock); 88 list_for_each_entry(curr, &iort_fwnode_list, list) { 89 if (curr->iort_node == node) { 90 fwnode = curr->fwnode; 91 break; 92 } 93 } 94 spin_unlock(&iort_fwnode_lock); 95 96 return fwnode; 97 } 98 99 /** 100 * iort_delete_fwnode() - Delete fwnode associated with an IORT node 101 * 102 * @node: IORT table node associated with fwnode to delete 103 */ 104 static inline void iort_delete_fwnode(struct acpi_iort_node *node) 105 { 106 struct iort_fwnode *curr, *tmp; 107 108 spin_lock(&iort_fwnode_lock); 109 list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) { 110 if (curr->iort_node == node) { 111 list_del(&curr->list); 112 kfree(curr); 113 break; 114 } 115 } 116 spin_unlock(&iort_fwnode_lock); 117 } 118 119 /** 120 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode 121 * 122 * @fwnode: fwnode associated with device to be looked-up 123 * 124 * Returns: iort_node pointer on success, NULL on failure 125 */ 126 static inline struct acpi_iort_node *iort_get_iort_node( 127 struct fwnode_handle *fwnode) 128 { 129 struct iort_fwnode *curr; 130 struct acpi_iort_node *iort_node = NULL; 131 132 spin_lock(&iort_fwnode_lock); 133 list_for_each_entry(curr, &iort_fwnode_list, list) { 134 if (curr->fwnode == fwnode) { 135 iort_node = curr->iort_node; 136 break; 137 } 138 } 139 spin_unlock(&iort_fwnode_lock); 140 141 return iort_node; 142 } 143 144 typedef acpi_status (*iort_find_node_callback) 145 (struct acpi_iort_node *node, void *context); 146 147 /* Root pointer to the mapped IORT table */ 148 static struct acpi_table_header *iort_table; 149 150 static LIST_HEAD(iort_msi_chip_list); 151 static DEFINE_SPINLOCK(iort_msi_chip_lock); 152 153 /** 154 * iort_register_domain_token() - register domain token along with related 155 * ITS ID and base address to the list from where we can get it back later on. 156 * @trans_id: ITS ID. 157 * @base: ITS base address. 158 * @fw_node: Domain token. 159 * 160 * Returns: 0 on success, -ENOMEM if no memory when allocating list element 161 */ 162 int iort_register_domain_token(int trans_id, phys_addr_t base, 163 struct fwnode_handle *fw_node) 164 { 165 struct iort_its_msi_chip *its_msi_chip; 166 167 its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL); 168 if (!its_msi_chip) 169 return -ENOMEM; 170 171 its_msi_chip->fw_node = fw_node; 172 its_msi_chip->translation_id = trans_id; 173 its_msi_chip->base_addr = base; 174 175 spin_lock(&iort_msi_chip_lock); 176 list_add(&its_msi_chip->list, &iort_msi_chip_list); 177 spin_unlock(&iort_msi_chip_lock); 178 179 return 0; 180 } 181 182 /** 183 * iort_deregister_domain_token() - Deregister domain token based on ITS ID 184 * @trans_id: ITS ID. 185 * 186 * Returns: none. 187 */ 188 void iort_deregister_domain_token(int trans_id) 189 { 190 struct iort_its_msi_chip *its_msi_chip, *t; 191 192 spin_lock(&iort_msi_chip_lock); 193 list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) { 194 if (its_msi_chip->translation_id == trans_id) { 195 list_del(&its_msi_chip->list); 196 kfree(its_msi_chip); 197 break; 198 } 199 } 200 spin_unlock(&iort_msi_chip_lock); 201 } 202 203 /** 204 * iort_find_domain_token() - Find domain token based on given ITS ID 205 * @trans_id: ITS ID. 206 * 207 * Returns: domain token when find on the list, NULL otherwise 208 */ 209 struct fwnode_handle *iort_find_domain_token(int trans_id) 210 { 211 struct fwnode_handle *fw_node = NULL; 212 struct iort_its_msi_chip *its_msi_chip; 213 214 spin_lock(&iort_msi_chip_lock); 215 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { 216 if (its_msi_chip->translation_id == trans_id) { 217 fw_node = its_msi_chip->fw_node; 218 break; 219 } 220 } 221 spin_unlock(&iort_msi_chip_lock); 222 223 return fw_node; 224 } 225 226 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type, 227 iort_find_node_callback callback, 228 void *context) 229 { 230 struct acpi_iort_node *iort_node, *iort_end; 231 struct acpi_table_iort *iort; 232 int i; 233 234 if (!iort_table) 235 return NULL; 236 237 /* Get the first IORT node */ 238 iort = (struct acpi_table_iort *)iort_table; 239 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 240 iort->node_offset); 241 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 242 iort_table->length); 243 244 for (i = 0; i < iort->node_count; i++) { 245 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND, 246 "IORT node pointer overflows, bad table!\n")) 247 return NULL; 248 249 if (iort_node->type == type && 250 ACPI_SUCCESS(callback(iort_node, context))) 251 return iort_node; 252 253 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 254 iort_node->length); 255 } 256 257 return NULL; 258 } 259 260 static acpi_status iort_match_node_callback(struct acpi_iort_node *node, 261 void *context) 262 { 263 struct device *dev = context; 264 acpi_status status = AE_NOT_FOUND; 265 266 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) { 267 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 268 struct acpi_device *adev; 269 struct acpi_iort_named_component *ncomp; 270 struct device *nc_dev = dev; 271 272 /* 273 * Walk the device tree to find a device with an 274 * ACPI companion; there is no point in scanning 275 * IORT for a device matching a named component if 276 * the device does not have an ACPI companion to 277 * start with. 278 */ 279 do { 280 adev = ACPI_COMPANION(nc_dev); 281 if (adev) 282 break; 283 284 nc_dev = nc_dev->parent; 285 } while (nc_dev); 286 287 if (!adev) 288 goto out; 289 290 status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf); 291 if (ACPI_FAILURE(status)) { 292 dev_warn(nc_dev, "Can't get device full path name\n"); 293 goto out; 294 } 295 296 ncomp = (struct acpi_iort_named_component *)node->node_data; 297 status = !strcmp(ncomp->device_name, buf.pointer) ? 298 AE_OK : AE_NOT_FOUND; 299 acpi_os_free(buf.pointer); 300 } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 301 struct acpi_iort_root_complex *pci_rc; 302 struct pci_bus *bus; 303 304 bus = to_pci_bus(dev); 305 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 306 307 /* 308 * It is assumed that PCI segment numbers maps one-to-one 309 * with root complexes. Each segment number can represent only 310 * one root complex. 311 */ 312 status = pci_rc->pci_segment_number == pci_domain_nr(bus) ? 313 AE_OK : AE_NOT_FOUND; 314 } 315 out: 316 return status; 317 } 318 319 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in, 320 u32 *rid_out, bool check_overlap) 321 { 322 /* Single mapping does not care for input id */ 323 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { 324 if (type == ACPI_IORT_NODE_NAMED_COMPONENT || 325 type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 326 *rid_out = map->output_base; 327 return 0; 328 } 329 330 pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n", 331 map, type); 332 return -ENXIO; 333 } 334 335 if (rid_in < map->input_base || 336 (rid_in > map->input_base + map->id_count)) 337 return -ENXIO; 338 339 if (check_overlap) { 340 /* 341 * We already found a mapping for this input ID at the end of 342 * another region. If it coincides with the start of this 343 * region, we assume the prior match was due to the off-by-1 344 * issue mentioned below, and allow it to be superseded. 345 * Otherwise, things are *really* broken, and we just disregard 346 * duplicate matches entirely to retain compatibility. 347 */ 348 pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n", 349 map, rid_in); 350 if (rid_in != map->input_base) 351 return -ENXIO; 352 353 pr_err(FW_BUG "applying workaround.\n"); 354 } 355 356 *rid_out = map->output_base + (rid_in - map->input_base); 357 358 /* 359 * Due to confusion regarding the meaning of the id_count field (which 360 * carries the number of IDs *minus 1*), we may have to disregard this 361 * match if it is at the end of the range, and overlaps with the start 362 * of another one. 363 */ 364 if (map->id_count > 0 && rid_in == map->input_base + map->id_count) 365 return -EAGAIN; 366 return 0; 367 } 368 369 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node, 370 u32 *id_out, int index) 371 { 372 struct acpi_iort_node *parent; 373 struct acpi_iort_id_mapping *map; 374 375 if (!node->mapping_offset || !node->mapping_count || 376 index >= node->mapping_count) 377 return NULL; 378 379 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 380 node->mapping_offset + index * sizeof(*map)); 381 382 /* Firmware bug! */ 383 if (!map->output_reference) { 384 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", 385 node, node->type); 386 return NULL; 387 } 388 389 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 390 map->output_reference); 391 392 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { 393 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT || 394 node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX || 395 node->type == ACPI_IORT_NODE_SMMU_V3 || 396 node->type == ACPI_IORT_NODE_PMCG) { 397 *id_out = map->output_base; 398 return parent; 399 } 400 } 401 402 return NULL; 403 } 404 405 #ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID 406 #define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4) 407 #endif 408 409 static int iort_get_id_mapping_index(struct acpi_iort_node *node) 410 { 411 struct acpi_iort_smmu_v3 *smmu; 412 struct acpi_iort_pmcg *pmcg; 413 414 switch (node->type) { 415 case ACPI_IORT_NODE_SMMU_V3: 416 /* 417 * SMMUv3 dev ID mapping index was introduced in revision 1 418 * table, not available in revision 0 419 */ 420 if (node->revision < 1) 421 return -EINVAL; 422 423 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 424 /* 425 * Until IORT E.e (node rev. 5), the ID mapping index was 426 * defined to be valid unless all interrupts are GSIV-based. 427 */ 428 if (node->revision < 5) { 429 if (smmu->event_gsiv && smmu->pri_gsiv && 430 smmu->gerr_gsiv && smmu->sync_gsiv) 431 return -EINVAL; 432 } else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) { 433 return -EINVAL; 434 } 435 436 if (smmu->id_mapping_index >= node->mapping_count) { 437 pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n", 438 node, node->type); 439 return -EINVAL; 440 } 441 442 return smmu->id_mapping_index; 443 case ACPI_IORT_NODE_PMCG: 444 pmcg = (struct acpi_iort_pmcg *)node->node_data; 445 if (pmcg->overflow_gsiv || node->mapping_count == 0) 446 return -EINVAL; 447 448 return 0; 449 default: 450 return -EINVAL; 451 } 452 } 453 454 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node, 455 u32 id_in, u32 *id_out, 456 u8 type_mask) 457 { 458 u32 id = id_in; 459 460 /* Parse the ID mapping tree to find specified node type */ 461 while (node) { 462 struct acpi_iort_id_mapping *map; 463 int i, index, rc = 0; 464 u32 out_ref = 0, map_id = id; 465 466 if (IORT_TYPE_MASK(node->type) & type_mask) { 467 if (id_out) 468 *id_out = id; 469 return node; 470 } 471 472 if (!node->mapping_offset || !node->mapping_count) 473 goto fail_map; 474 475 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 476 node->mapping_offset); 477 478 /* Firmware bug! */ 479 if (!map->output_reference) { 480 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", 481 node, node->type); 482 goto fail_map; 483 } 484 485 /* 486 * Get the special ID mapping index (if any) and skip its 487 * associated ID map to prevent erroneous multi-stage 488 * IORT ID translations. 489 */ 490 index = iort_get_id_mapping_index(node); 491 492 /* Do the ID translation */ 493 for (i = 0; i < node->mapping_count; i++, map++) { 494 /* if it is special mapping index, skip it */ 495 if (i == index) 496 continue; 497 498 rc = iort_id_map(map, node->type, map_id, &id, out_ref); 499 if (!rc) 500 break; 501 if (rc == -EAGAIN) 502 out_ref = map->output_reference; 503 } 504 505 if (i == node->mapping_count && !out_ref) 506 goto fail_map; 507 508 node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 509 rc ? out_ref : map->output_reference); 510 } 511 512 fail_map: 513 /* Map input ID to output ID unchanged on mapping failure */ 514 if (id_out) 515 *id_out = id_in; 516 517 return NULL; 518 } 519 520 static struct acpi_iort_node *iort_node_map_platform_id( 521 struct acpi_iort_node *node, u32 *id_out, u8 type_mask, 522 int index) 523 { 524 struct acpi_iort_node *parent; 525 u32 id; 526 527 /* step 1: retrieve the initial dev id */ 528 parent = iort_node_get_id(node, &id, index); 529 if (!parent) 530 return NULL; 531 532 /* 533 * optional step 2: map the initial dev id if its parent is not 534 * the target type we want, map it again for the use cases such 535 * as NC (named component) -> SMMU -> ITS. If the type is matched, 536 * return the initial dev id and its parent pointer directly. 537 */ 538 if (!(IORT_TYPE_MASK(parent->type) & type_mask)) 539 parent = iort_node_map_id(parent, id, id_out, type_mask); 540 else 541 if (id_out) 542 *id_out = id; 543 544 return parent; 545 } 546 547 static struct acpi_iort_node *iort_find_dev_node(struct device *dev) 548 { 549 struct pci_bus *pbus; 550 551 if (!dev_is_pci(dev)) { 552 struct acpi_iort_node *node; 553 /* 554 * scan iort_fwnode_list to see if it's an iort platform 555 * device (such as SMMU, PMCG),its iort node already cached 556 * and associated with fwnode when iort platform devices 557 * were initialized. 558 */ 559 node = iort_get_iort_node(dev->fwnode); 560 if (node) 561 return node; 562 /* 563 * if not, then it should be a platform device defined in 564 * DSDT/SSDT (with Named Component node in IORT) 565 */ 566 return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 567 iort_match_node_callback, dev); 568 } 569 570 pbus = to_pci_dev(dev)->bus; 571 572 return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 573 iort_match_node_callback, &pbus->dev); 574 } 575 576 /** 577 * iort_msi_map_id() - Map a MSI input ID for a device 578 * @dev: The device for which the mapping is to be done. 579 * @input_id: The device input ID. 580 * 581 * Returns: mapped MSI ID on success, input ID otherwise 582 */ 583 u32 iort_msi_map_id(struct device *dev, u32 input_id) 584 { 585 struct acpi_iort_node *node; 586 u32 dev_id; 587 588 node = iort_find_dev_node(dev); 589 if (!node) 590 return input_id; 591 592 iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE); 593 return dev_id; 594 } 595 596 /** 597 * iort_pmsi_get_dev_id() - Get the device id for a device 598 * @dev: The device for which the mapping is to be done. 599 * @dev_id: The device ID found. 600 * 601 * Returns: 0 for successful find a dev id, -ENODEV on error 602 */ 603 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id) 604 { 605 int i, index; 606 struct acpi_iort_node *node; 607 608 node = iort_find_dev_node(dev); 609 if (!node) 610 return -ENODEV; 611 612 index = iort_get_id_mapping_index(node); 613 /* if there is a valid index, go get the dev_id directly */ 614 if (index >= 0) { 615 if (iort_node_get_id(node, dev_id, index)) 616 return 0; 617 } else { 618 for (i = 0; i < node->mapping_count; i++) { 619 if (iort_node_map_platform_id(node, dev_id, 620 IORT_MSI_TYPE, i)) 621 return 0; 622 } 623 } 624 625 return -ENODEV; 626 } 627 628 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base) 629 { 630 struct iort_its_msi_chip *its_msi_chip; 631 int ret = -ENODEV; 632 633 spin_lock(&iort_msi_chip_lock); 634 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { 635 if (its_msi_chip->translation_id == its_id) { 636 *base = its_msi_chip->base_addr; 637 ret = 0; 638 break; 639 } 640 } 641 spin_unlock(&iort_msi_chip_lock); 642 643 return ret; 644 } 645 646 /** 647 * iort_dev_find_its_id() - Find the ITS identifier for a device 648 * @dev: The device. 649 * @id: Device's ID 650 * @idx: Index of the ITS identifier list. 651 * @its_id: ITS identifier. 652 * 653 * Returns: 0 on success, appropriate error value otherwise 654 */ 655 static int iort_dev_find_its_id(struct device *dev, u32 id, 656 unsigned int idx, int *its_id) 657 { 658 struct acpi_iort_its_group *its; 659 struct acpi_iort_node *node; 660 661 node = iort_find_dev_node(dev); 662 if (!node) 663 return -ENXIO; 664 665 node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE); 666 if (!node) 667 return -ENXIO; 668 669 /* Move to ITS specific data */ 670 its = (struct acpi_iort_its_group *)node->node_data; 671 if (idx >= its->its_count) { 672 dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n", 673 idx, its->its_count); 674 return -ENXIO; 675 } 676 677 *its_id = its->identifiers[idx]; 678 return 0; 679 } 680 681 /** 682 * iort_get_device_domain() - Find MSI domain related to a device 683 * @dev: The device. 684 * @id: Requester ID for the device. 685 * @bus_token: irq domain bus token. 686 * 687 * Returns: the MSI domain for this device, NULL otherwise 688 */ 689 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id, 690 enum irq_domain_bus_token bus_token) 691 { 692 struct fwnode_handle *handle; 693 int its_id; 694 695 if (iort_dev_find_its_id(dev, id, 0, &its_id)) 696 return NULL; 697 698 handle = iort_find_domain_token(its_id); 699 if (!handle) 700 return NULL; 701 702 return irq_find_matching_fwnode(handle, bus_token); 703 } 704 705 static void iort_set_device_domain(struct device *dev, 706 struct acpi_iort_node *node) 707 { 708 struct acpi_iort_its_group *its; 709 struct acpi_iort_node *msi_parent; 710 struct acpi_iort_id_mapping *map; 711 struct fwnode_handle *iort_fwnode; 712 struct irq_domain *domain; 713 int index; 714 715 index = iort_get_id_mapping_index(node); 716 if (index < 0) 717 return; 718 719 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 720 node->mapping_offset + index * sizeof(*map)); 721 722 /* Firmware bug! */ 723 if (!map->output_reference || 724 !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) { 725 pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n", 726 node, node->type); 727 return; 728 } 729 730 msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 731 map->output_reference); 732 733 if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP) 734 return; 735 736 /* Move to ITS specific data */ 737 its = (struct acpi_iort_its_group *)msi_parent->node_data; 738 739 iort_fwnode = iort_find_domain_token(its->identifiers[0]); 740 if (!iort_fwnode) 741 return; 742 743 domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); 744 if (domain) 745 dev_set_msi_domain(dev, domain); 746 } 747 748 /** 749 * iort_get_platform_device_domain() - Find MSI domain related to a 750 * platform device 751 * @dev: the dev pointer associated with the platform device 752 * 753 * Returns: the MSI domain for this device, NULL otherwise 754 */ 755 static struct irq_domain *iort_get_platform_device_domain(struct device *dev) 756 { 757 struct acpi_iort_node *node, *msi_parent = NULL; 758 struct fwnode_handle *iort_fwnode; 759 struct acpi_iort_its_group *its; 760 int i; 761 762 /* find its associated iort node */ 763 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 764 iort_match_node_callback, dev); 765 if (!node) 766 return NULL; 767 768 /* then find its msi parent node */ 769 for (i = 0; i < node->mapping_count; i++) { 770 msi_parent = iort_node_map_platform_id(node, NULL, 771 IORT_MSI_TYPE, i); 772 if (msi_parent) 773 break; 774 } 775 776 if (!msi_parent) 777 return NULL; 778 779 /* Move to ITS specific data */ 780 its = (struct acpi_iort_its_group *)msi_parent->node_data; 781 782 iort_fwnode = iort_find_domain_token(its->identifiers[0]); 783 if (!iort_fwnode) 784 return NULL; 785 786 return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); 787 } 788 789 void acpi_configure_pmsi_domain(struct device *dev) 790 { 791 struct irq_domain *msi_domain; 792 793 msi_domain = iort_get_platform_device_domain(dev); 794 if (msi_domain) 795 dev_set_msi_domain(dev, msi_domain); 796 } 797 798 #ifdef CONFIG_IOMMU_API 799 static void iort_rmr_free(struct device *dev, 800 struct iommu_resv_region *region) 801 { 802 struct iommu_iort_rmr_data *rmr_data; 803 804 rmr_data = container_of(region, struct iommu_iort_rmr_data, rr); 805 kfree(rmr_data->sids); 806 kfree(rmr_data); 807 } 808 809 static struct iommu_iort_rmr_data *iort_rmr_alloc( 810 struct acpi_iort_rmr_desc *rmr_desc, 811 int prot, enum iommu_resv_type type, 812 u32 *sids, u32 num_sids) 813 { 814 struct iommu_iort_rmr_data *rmr_data; 815 struct iommu_resv_region *region; 816 u32 *sids_copy; 817 u64 addr = rmr_desc->base_address, size = rmr_desc->length; 818 819 rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL); 820 if (!rmr_data) 821 return NULL; 822 823 /* Create a copy of SIDs array to associate with this rmr_data */ 824 sids_copy = kmemdup(sids, num_sids * sizeof(*sids), GFP_KERNEL); 825 if (!sids_copy) { 826 kfree(rmr_data); 827 return NULL; 828 } 829 rmr_data->sids = sids_copy; 830 rmr_data->num_sids = num_sids; 831 832 if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) { 833 /* PAGE align base addr and size */ 834 addr &= PAGE_MASK; 835 size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address)); 836 837 pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n", 838 rmr_desc->base_address, 839 rmr_desc->base_address + rmr_desc->length - 1, 840 addr, addr + size - 1); 841 } 842 843 region = &rmr_data->rr; 844 INIT_LIST_HEAD(®ion->list); 845 region->start = addr; 846 region->length = size; 847 region->prot = prot; 848 region->type = type; 849 region->free = iort_rmr_free; 850 851 return rmr_data; 852 } 853 854 static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc, 855 u32 count) 856 { 857 int i, j; 858 859 for (i = 0; i < count; i++) { 860 u64 end, start = desc[i].base_address, length = desc[i].length; 861 862 if (!length) { 863 pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n", 864 start); 865 continue; 866 } 867 868 end = start + length - 1; 869 870 /* Check for address overlap */ 871 for (j = i + 1; j < count; j++) { 872 u64 e_start = desc[j].base_address; 873 u64 e_end = e_start + desc[j].length - 1; 874 875 if (start <= e_end && end >= e_start) 876 pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n", 877 start, end); 878 } 879 } 880 } 881 882 /* 883 * Please note, we will keep the already allocated RMR reserve 884 * regions in case of a memory allocation failure. 885 */ 886 static void iort_get_rmrs(struct acpi_iort_node *node, 887 struct acpi_iort_node *smmu, 888 u32 *sids, u32 num_sids, 889 struct list_head *head) 890 { 891 struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data; 892 struct acpi_iort_rmr_desc *rmr_desc; 893 int i; 894 895 rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node, 896 rmr->rmr_offset); 897 898 iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count); 899 900 for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) { 901 struct iommu_iort_rmr_data *rmr_data; 902 enum iommu_resv_type type; 903 int prot = IOMMU_READ | IOMMU_WRITE; 904 905 if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED) 906 type = IOMMU_RESV_DIRECT_RELAXABLE; 907 else 908 type = IOMMU_RESV_DIRECT; 909 910 if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE) 911 prot |= IOMMU_PRIV; 912 913 /* Attributes 0x00 - 0x03 represents device memory */ 914 if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <= 915 ACPI_IORT_RMR_ATTR_DEVICE_GRE) 916 prot |= IOMMU_MMIO; 917 else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) == 918 ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB) 919 prot |= IOMMU_CACHE; 920 921 rmr_data = iort_rmr_alloc(rmr_desc, prot, type, 922 sids, num_sids); 923 if (!rmr_data) 924 return; 925 926 list_add_tail(&rmr_data->rr.list, head); 927 } 928 } 929 930 static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start, 931 u32 new_count) 932 { 933 u32 *new_sids; 934 u32 total_count = count + new_count; 935 int i; 936 937 new_sids = krealloc_array(sids, count + new_count, 938 sizeof(*new_sids), GFP_KERNEL); 939 if (!new_sids) 940 return NULL; 941 942 for (i = count; i < total_count; i++) 943 new_sids[i] = id_start++; 944 945 return new_sids; 946 } 947 948 static bool iort_rmr_has_dev(struct device *dev, u32 id_start, 949 u32 id_count) 950 { 951 int i; 952 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 953 954 /* 955 * Make sure the kernel has preserved the boot firmware PCIe 956 * configuration. This is required to ensure that the RMR PCIe 957 * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5). 958 */ 959 if (dev_is_pci(dev)) { 960 struct pci_dev *pdev = to_pci_dev(dev); 961 struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus); 962 963 if (!host->preserve_config) 964 return false; 965 } 966 967 for (i = 0; i < fwspec->num_ids; i++) { 968 if (fwspec->ids[i] >= id_start && 969 fwspec->ids[i] <= id_start + id_count) 970 return true; 971 } 972 973 return false; 974 } 975 976 static void iort_node_get_rmr_info(struct acpi_iort_node *node, 977 struct acpi_iort_node *iommu, 978 struct device *dev, struct list_head *head) 979 { 980 struct acpi_iort_node *smmu = NULL; 981 struct acpi_iort_rmr *rmr; 982 struct acpi_iort_id_mapping *map; 983 u32 *sids = NULL; 984 u32 num_sids = 0; 985 int i; 986 987 if (!node->mapping_offset || !node->mapping_count) { 988 pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n", 989 node); 990 return; 991 } 992 993 rmr = (struct acpi_iort_rmr *)node->node_data; 994 if (!rmr->rmr_offset || !rmr->rmr_count) 995 return; 996 997 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 998 node->mapping_offset); 999 1000 /* 1001 * Go through the ID mappings and see if we have a match for SMMU 1002 * and dev(if !NULL). If found, get the sids for the Node. 1003 * Please note, id_count is equal to the number of IDs in the 1004 * range minus one. 1005 */ 1006 for (i = 0; i < node->mapping_count; i++, map++) { 1007 struct acpi_iort_node *parent; 1008 1009 if (!map->id_count) 1010 continue; 1011 1012 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 1013 map->output_reference); 1014 if (parent != iommu) 1015 continue; 1016 1017 /* If dev is valid, check RMR node corresponds to the dev SID */ 1018 if (dev && !iort_rmr_has_dev(dev, map->output_base, 1019 map->id_count)) 1020 continue; 1021 1022 /* Retrieve SIDs associated with the Node. */ 1023 sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base, 1024 map->id_count + 1); 1025 if (!sids) 1026 return; 1027 1028 num_sids += map->id_count + 1; 1029 } 1030 1031 if (!sids) 1032 return; 1033 1034 iort_get_rmrs(node, smmu, sids, num_sids, head); 1035 kfree(sids); 1036 } 1037 1038 static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev, 1039 struct list_head *head) 1040 { 1041 struct acpi_table_iort *iort; 1042 struct acpi_iort_node *iort_node, *iort_end; 1043 int i; 1044 1045 /* Only supports ARM DEN 0049E.d onwards */ 1046 if (iort_table->revision < 5) 1047 return; 1048 1049 iort = (struct acpi_table_iort *)iort_table; 1050 1051 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1052 iort->node_offset); 1053 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1054 iort_table->length); 1055 1056 for (i = 0; i < iort->node_count; i++) { 1057 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND, 1058 "IORT node pointer overflows, bad table!\n")) 1059 return; 1060 1061 if (iort_node->type == ACPI_IORT_NODE_RMR) 1062 iort_node_get_rmr_info(iort_node, iommu, dev, head); 1063 1064 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 1065 iort_node->length); 1066 } 1067 } 1068 1069 /* 1070 * Populate the RMR list associated with a given IOMMU and dev(if provided). 1071 * If dev is NULL, the function populates all the RMRs associated with the 1072 * given IOMMU. 1073 */ 1074 static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode, 1075 struct device *dev, 1076 struct list_head *head) 1077 { 1078 struct acpi_iort_node *iommu; 1079 1080 iommu = iort_get_iort_node(iommu_fwnode); 1081 if (!iommu) 1082 return; 1083 1084 iort_find_rmrs(iommu, dev, head); 1085 } 1086 1087 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev) 1088 { 1089 struct acpi_iort_node *iommu; 1090 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1091 1092 iommu = iort_get_iort_node(fwspec->iommu_fwnode); 1093 1094 if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) { 1095 struct acpi_iort_smmu_v3 *smmu; 1096 1097 smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data; 1098 if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X) 1099 return iommu; 1100 } 1101 1102 return NULL; 1103 } 1104 1105 /* 1106 * Retrieve platform specific HW MSI reserve regions. 1107 * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K) 1108 * associated with the device are the HW MSI reserved regions. 1109 */ 1110 static void iort_iommu_msi_get_resv_regions(struct device *dev, 1111 struct list_head *head) 1112 { 1113 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1114 struct acpi_iort_its_group *its; 1115 struct acpi_iort_node *iommu_node, *its_node = NULL; 1116 int i; 1117 1118 iommu_node = iort_get_msi_resv_iommu(dev); 1119 if (!iommu_node) 1120 return; 1121 1122 /* 1123 * Current logic to reserve ITS regions relies on HW topologies 1124 * where a given PCI or named component maps its IDs to only one 1125 * ITS group; if a PCI or named component can map its IDs to 1126 * different ITS groups through IORT mappings this function has 1127 * to be reworked to ensure we reserve regions for all ITS groups 1128 * a given PCI or named component may map IDs to. 1129 */ 1130 1131 for (i = 0; i < fwspec->num_ids; i++) { 1132 its_node = iort_node_map_id(iommu_node, 1133 fwspec->ids[i], 1134 NULL, IORT_MSI_TYPE); 1135 if (its_node) 1136 break; 1137 } 1138 1139 if (!its_node) 1140 return; 1141 1142 /* Move to ITS specific data */ 1143 its = (struct acpi_iort_its_group *)its_node->node_data; 1144 1145 for (i = 0; i < its->its_count; i++) { 1146 phys_addr_t base; 1147 1148 if (!iort_find_its_base(its->identifiers[i], &base)) { 1149 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1150 struct iommu_resv_region *region; 1151 1152 region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K, 1153 prot, IOMMU_RESV_MSI, 1154 GFP_KERNEL); 1155 if (region) 1156 list_add_tail(®ion->list, head); 1157 } 1158 } 1159 } 1160 1161 /** 1162 * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions. 1163 * @dev: Device from iommu_get_resv_regions() 1164 * @head: Reserved region list from iommu_get_resv_regions() 1165 */ 1166 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head) 1167 { 1168 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1169 1170 iort_iommu_msi_get_resv_regions(dev, head); 1171 iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head); 1172 } 1173 1174 /** 1175 * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with 1176 * associated StreamIDs information. 1177 * @iommu_fwnode: fwnode associated with IOMMU 1178 * @head: Resereved region list 1179 */ 1180 void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode, 1181 struct list_head *head) 1182 { 1183 iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head); 1184 } 1185 EXPORT_SYMBOL_GPL(iort_get_rmr_sids); 1186 1187 /** 1188 * iort_put_rmr_sids - Free memory allocated for RMR reserved regions. 1189 * @iommu_fwnode: fwnode associated with IOMMU 1190 * @head: Resereved region list 1191 */ 1192 void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode, 1193 struct list_head *head) 1194 { 1195 struct iommu_resv_region *entry, *next; 1196 1197 list_for_each_entry_safe(entry, next, head, list) 1198 entry->free(NULL, entry); 1199 } 1200 EXPORT_SYMBOL_GPL(iort_put_rmr_sids); 1201 1202 static inline bool iort_iommu_driver_enabled(u8 type) 1203 { 1204 switch (type) { 1205 case ACPI_IORT_NODE_SMMU_V3: 1206 return IS_ENABLED(CONFIG_ARM_SMMU_V3); 1207 case ACPI_IORT_NODE_SMMU: 1208 return IS_ENABLED(CONFIG_ARM_SMMU); 1209 default: 1210 pr_warn("IORT node type %u does not describe an SMMU\n", type); 1211 return false; 1212 } 1213 } 1214 1215 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node) 1216 { 1217 struct acpi_iort_root_complex *pci_rc; 1218 1219 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 1220 return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED; 1221 } 1222 1223 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node, 1224 u32 streamid) 1225 { 1226 const struct iommu_ops *ops; 1227 struct fwnode_handle *iort_fwnode; 1228 1229 if (!node) 1230 return -ENODEV; 1231 1232 iort_fwnode = iort_get_fwnode(node); 1233 if (!iort_fwnode) 1234 return -ENODEV; 1235 1236 /* 1237 * If the ops look-up fails, this means that either 1238 * the SMMU drivers have not been probed yet or that 1239 * the SMMU drivers are not built in the kernel; 1240 * Depending on whether the SMMU drivers are built-in 1241 * in the kernel or not, defer the IOMMU configuration 1242 * or just abort it. 1243 */ 1244 ops = iommu_ops_from_fwnode(iort_fwnode); 1245 if (!ops) 1246 return iort_iommu_driver_enabled(node->type) ? 1247 -EPROBE_DEFER : -ENODEV; 1248 1249 return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode, ops); 1250 } 1251 1252 struct iort_pci_alias_info { 1253 struct device *dev; 1254 struct acpi_iort_node *node; 1255 }; 1256 1257 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data) 1258 { 1259 struct iort_pci_alias_info *info = data; 1260 struct acpi_iort_node *parent; 1261 u32 streamid; 1262 1263 parent = iort_node_map_id(info->node, alias, &streamid, 1264 IORT_IOMMU_TYPE); 1265 return iort_iommu_xlate(info->dev, parent, streamid); 1266 } 1267 1268 static void iort_named_component_init(struct device *dev, 1269 struct acpi_iort_node *node) 1270 { 1271 struct property_entry props[3] = {}; 1272 struct acpi_iort_named_component *nc; 1273 1274 nc = (struct acpi_iort_named_component *)node->node_data; 1275 props[0] = PROPERTY_ENTRY_U32("pasid-num-bits", 1276 FIELD_GET(ACPI_IORT_NC_PASID_BITS, 1277 nc->node_flags)); 1278 if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED) 1279 props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall"); 1280 1281 if (device_create_managed_software_node(dev, props, NULL)) 1282 dev_warn(dev, "Could not add device properties\n"); 1283 } 1284 1285 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node) 1286 { 1287 struct acpi_iort_node *parent; 1288 int err = -ENODEV, i = 0; 1289 u32 streamid = 0; 1290 1291 do { 1292 1293 parent = iort_node_map_platform_id(node, &streamid, 1294 IORT_IOMMU_TYPE, 1295 i++); 1296 1297 if (parent) 1298 err = iort_iommu_xlate(dev, parent, streamid); 1299 } while (parent && !err); 1300 1301 return err; 1302 } 1303 1304 static int iort_nc_iommu_map_id(struct device *dev, 1305 struct acpi_iort_node *node, 1306 const u32 *in_id) 1307 { 1308 struct acpi_iort_node *parent; 1309 u32 streamid; 1310 1311 parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE); 1312 if (parent) 1313 return iort_iommu_xlate(dev, parent, streamid); 1314 1315 return -ENODEV; 1316 } 1317 1318 1319 /** 1320 * iort_iommu_configure_id - Set-up IOMMU configuration for a device. 1321 * 1322 * @dev: device to configure 1323 * @id_in: optional input id const value pointer 1324 * 1325 * Returns: 0 on success, <0 on failure 1326 */ 1327 int iort_iommu_configure_id(struct device *dev, const u32 *id_in) 1328 { 1329 struct acpi_iort_node *node; 1330 int err = -ENODEV; 1331 1332 if (dev_is_pci(dev)) { 1333 struct iommu_fwspec *fwspec; 1334 struct pci_bus *bus = to_pci_dev(dev)->bus; 1335 struct iort_pci_alias_info info = { .dev = dev }; 1336 1337 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 1338 iort_match_node_callback, &bus->dev); 1339 if (!node) 1340 return -ENODEV; 1341 1342 info.node = node; 1343 err = pci_for_each_dma_alias(to_pci_dev(dev), 1344 iort_pci_iommu_init, &info); 1345 1346 fwspec = dev_iommu_fwspec_get(dev); 1347 if (fwspec && iort_pci_rc_supports_ats(node)) 1348 fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS; 1349 } else { 1350 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 1351 iort_match_node_callback, dev); 1352 if (!node) 1353 return -ENODEV; 1354 1355 err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) : 1356 iort_nc_iommu_map(dev, node); 1357 1358 if (!err) 1359 iort_named_component_init(dev, node); 1360 } 1361 1362 return err; 1363 } 1364 1365 #else 1366 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head) 1367 { } 1368 int iort_iommu_configure_id(struct device *dev, const u32 *input_id) 1369 { return -ENODEV; } 1370 #endif 1371 1372 static int nc_dma_get_range(struct device *dev, u64 *size) 1373 { 1374 struct acpi_iort_node *node; 1375 struct acpi_iort_named_component *ncomp; 1376 1377 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 1378 iort_match_node_callback, dev); 1379 if (!node) 1380 return -ENODEV; 1381 1382 ncomp = (struct acpi_iort_named_component *)node->node_data; 1383 1384 if (!ncomp->memory_address_limit) { 1385 pr_warn(FW_BUG "Named component missing memory address limit\n"); 1386 return -EINVAL; 1387 } 1388 1389 *size = ncomp->memory_address_limit >= 64 ? U64_MAX : 1390 1ULL<<ncomp->memory_address_limit; 1391 1392 return 0; 1393 } 1394 1395 static int rc_dma_get_range(struct device *dev, u64 *size) 1396 { 1397 struct acpi_iort_node *node; 1398 struct acpi_iort_root_complex *rc; 1399 struct pci_bus *pbus = to_pci_dev(dev)->bus; 1400 1401 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 1402 iort_match_node_callback, &pbus->dev); 1403 if (!node || node->revision < 1) 1404 return -ENODEV; 1405 1406 rc = (struct acpi_iort_root_complex *)node->node_data; 1407 1408 if (!rc->memory_address_limit) { 1409 pr_warn(FW_BUG "Root complex missing memory address limit\n"); 1410 return -EINVAL; 1411 } 1412 1413 *size = rc->memory_address_limit >= 64 ? U64_MAX : 1414 1ULL<<rc->memory_address_limit; 1415 1416 return 0; 1417 } 1418 1419 /** 1420 * iort_dma_get_ranges() - Look up DMA addressing limit for the device 1421 * @dev: device to lookup 1422 * @size: DMA range size result pointer 1423 * 1424 * Return: 0 on success, an error otherwise. 1425 */ 1426 int iort_dma_get_ranges(struct device *dev, u64 *size) 1427 { 1428 if (dev_is_pci(dev)) 1429 return rc_dma_get_range(dev, size); 1430 else 1431 return nc_dma_get_range(dev, size); 1432 } 1433 1434 static void __init acpi_iort_register_irq(int hwirq, const char *name, 1435 int trigger, 1436 struct resource *res) 1437 { 1438 int irq = acpi_register_gsi(NULL, hwirq, trigger, 1439 ACPI_ACTIVE_HIGH); 1440 1441 if (irq <= 0) { 1442 pr_err("could not register gsi hwirq %d name [%s]\n", hwirq, 1443 name); 1444 return; 1445 } 1446 1447 res->start = irq; 1448 res->end = irq; 1449 res->flags = IORESOURCE_IRQ; 1450 res->name = name; 1451 } 1452 1453 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node) 1454 { 1455 struct acpi_iort_smmu_v3 *smmu; 1456 /* Always present mem resource */ 1457 int num_res = 1; 1458 1459 /* Retrieve SMMUv3 specific data */ 1460 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1461 1462 if (smmu->event_gsiv) 1463 num_res++; 1464 1465 if (smmu->pri_gsiv) 1466 num_res++; 1467 1468 if (smmu->gerr_gsiv) 1469 num_res++; 1470 1471 if (smmu->sync_gsiv) 1472 num_res++; 1473 1474 return num_res; 1475 } 1476 1477 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu) 1478 { 1479 /* 1480 * Cavium ThunderX2 implementation doesn't not support unique 1481 * irq line. Use single irq line for all the SMMUv3 interrupts. 1482 */ 1483 if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) 1484 return false; 1485 1486 /* 1487 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking 1488 * SPI numbers here. 1489 */ 1490 return smmu->event_gsiv == smmu->pri_gsiv && 1491 smmu->event_gsiv == smmu->gerr_gsiv && 1492 smmu->event_gsiv == smmu->sync_gsiv; 1493 } 1494 1495 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu) 1496 { 1497 /* 1498 * Override the size, for Cavium ThunderX2 implementation 1499 * which doesn't support the page 1 SMMU register space. 1500 */ 1501 if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) 1502 return SZ_64K; 1503 1504 return SZ_128K; 1505 } 1506 1507 static void __init arm_smmu_v3_init_resources(struct resource *res, 1508 struct acpi_iort_node *node) 1509 { 1510 struct acpi_iort_smmu_v3 *smmu; 1511 int num_res = 0; 1512 1513 /* Retrieve SMMUv3 specific data */ 1514 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1515 1516 res[num_res].start = smmu->base_address; 1517 res[num_res].end = smmu->base_address + 1518 arm_smmu_v3_resource_size(smmu) - 1; 1519 res[num_res].flags = IORESOURCE_MEM; 1520 1521 num_res++; 1522 if (arm_smmu_v3_is_combined_irq(smmu)) { 1523 if (smmu->event_gsiv) 1524 acpi_iort_register_irq(smmu->event_gsiv, "combined", 1525 ACPI_EDGE_SENSITIVE, 1526 &res[num_res++]); 1527 } else { 1528 1529 if (smmu->event_gsiv) 1530 acpi_iort_register_irq(smmu->event_gsiv, "eventq", 1531 ACPI_EDGE_SENSITIVE, 1532 &res[num_res++]); 1533 1534 if (smmu->pri_gsiv) 1535 acpi_iort_register_irq(smmu->pri_gsiv, "priq", 1536 ACPI_EDGE_SENSITIVE, 1537 &res[num_res++]); 1538 1539 if (smmu->gerr_gsiv) 1540 acpi_iort_register_irq(smmu->gerr_gsiv, "gerror", 1541 ACPI_EDGE_SENSITIVE, 1542 &res[num_res++]); 1543 1544 if (smmu->sync_gsiv) 1545 acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync", 1546 ACPI_EDGE_SENSITIVE, 1547 &res[num_res++]); 1548 } 1549 } 1550 1551 static void __init arm_smmu_v3_dma_configure(struct device *dev, 1552 struct acpi_iort_node *node) 1553 { 1554 struct acpi_iort_smmu_v3 *smmu; 1555 enum dev_dma_attr attr; 1556 1557 /* Retrieve SMMUv3 specific data */ 1558 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1559 1560 attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ? 1561 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; 1562 1563 /* We expect the dma masks to be equivalent for all SMMUv3 set-ups */ 1564 dev->dma_mask = &dev->coherent_dma_mask; 1565 1566 /* Configure DMA for the page table walker */ 1567 acpi_dma_configure(dev, attr); 1568 } 1569 1570 #if defined(CONFIG_ACPI_NUMA) 1571 /* 1572 * set numa proximity domain for smmuv3 device 1573 */ 1574 static int __init arm_smmu_v3_set_proximity(struct device *dev, 1575 struct acpi_iort_node *node) 1576 { 1577 struct acpi_iort_smmu_v3 *smmu; 1578 1579 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1580 if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) { 1581 int dev_node = pxm_to_node(smmu->pxm); 1582 1583 if (dev_node != NUMA_NO_NODE && !node_online(dev_node)) 1584 return -EINVAL; 1585 1586 set_dev_node(dev, dev_node); 1587 pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n", 1588 smmu->base_address, 1589 smmu->pxm); 1590 } 1591 return 0; 1592 } 1593 #else 1594 #define arm_smmu_v3_set_proximity NULL 1595 #endif 1596 1597 static int __init arm_smmu_count_resources(struct acpi_iort_node *node) 1598 { 1599 struct acpi_iort_smmu *smmu; 1600 1601 /* Retrieve SMMU specific data */ 1602 smmu = (struct acpi_iort_smmu *)node->node_data; 1603 1604 /* 1605 * Only consider the global fault interrupt and ignore the 1606 * configuration access interrupt. 1607 * 1608 * MMIO address and global fault interrupt resources are always 1609 * present so add them to the context interrupt count as a static 1610 * value. 1611 */ 1612 return smmu->context_interrupt_count + 2; 1613 } 1614 1615 static void __init arm_smmu_init_resources(struct resource *res, 1616 struct acpi_iort_node *node) 1617 { 1618 struct acpi_iort_smmu *smmu; 1619 int i, hw_irq, trigger, num_res = 0; 1620 u64 *ctx_irq, *glb_irq; 1621 1622 /* Retrieve SMMU specific data */ 1623 smmu = (struct acpi_iort_smmu *)node->node_data; 1624 1625 res[num_res].start = smmu->base_address; 1626 res[num_res].end = smmu->base_address + smmu->span - 1; 1627 res[num_res].flags = IORESOURCE_MEM; 1628 num_res++; 1629 1630 glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset); 1631 /* Global IRQs */ 1632 hw_irq = IORT_IRQ_MASK(glb_irq[0]); 1633 trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]); 1634 1635 acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger, 1636 &res[num_res++]); 1637 1638 /* Context IRQs */ 1639 ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset); 1640 for (i = 0; i < smmu->context_interrupt_count; i++) { 1641 hw_irq = IORT_IRQ_MASK(ctx_irq[i]); 1642 trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]); 1643 1644 acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger, 1645 &res[num_res++]); 1646 } 1647 } 1648 1649 static void __init arm_smmu_dma_configure(struct device *dev, 1650 struct acpi_iort_node *node) 1651 { 1652 struct acpi_iort_smmu *smmu; 1653 enum dev_dma_attr attr; 1654 1655 /* Retrieve SMMU specific data */ 1656 smmu = (struct acpi_iort_smmu *)node->node_data; 1657 1658 attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ? 1659 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; 1660 1661 /* We expect the dma masks to be equivalent for SMMU set-ups */ 1662 dev->dma_mask = &dev->coherent_dma_mask; 1663 1664 /* Configure DMA for the page table walker */ 1665 acpi_dma_configure(dev, attr); 1666 } 1667 1668 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node) 1669 { 1670 struct acpi_iort_pmcg *pmcg; 1671 1672 /* Retrieve PMCG specific data */ 1673 pmcg = (struct acpi_iort_pmcg *)node->node_data; 1674 1675 /* 1676 * There are always 2 memory resources. 1677 * If the overflow_gsiv is present then add that for a total of 3. 1678 */ 1679 return pmcg->overflow_gsiv ? 3 : 2; 1680 } 1681 1682 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res, 1683 struct acpi_iort_node *node) 1684 { 1685 struct acpi_iort_pmcg *pmcg; 1686 1687 /* Retrieve PMCG specific data */ 1688 pmcg = (struct acpi_iort_pmcg *)node->node_data; 1689 1690 res[0].start = pmcg->page0_base_address; 1691 res[0].end = pmcg->page0_base_address + SZ_4K - 1; 1692 res[0].flags = IORESOURCE_MEM; 1693 /* 1694 * The initial version in DEN0049C lacked a way to describe register 1695 * page 1, which makes it broken for most PMCG implementations; in 1696 * that case, just let the driver fail gracefully if it expects to 1697 * find a second memory resource. 1698 */ 1699 if (node->revision > 0) { 1700 res[1].start = pmcg->page1_base_address; 1701 res[1].end = pmcg->page1_base_address + SZ_4K - 1; 1702 res[1].flags = IORESOURCE_MEM; 1703 } 1704 1705 if (pmcg->overflow_gsiv) 1706 acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow", 1707 ACPI_EDGE_SENSITIVE, &res[2]); 1708 } 1709 1710 static struct acpi_platform_list pmcg_plat_info[] __initdata = { 1711 /* HiSilicon Hip08 Platform */ 1712 {"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal, 1713 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08}, 1714 { } 1715 }; 1716 1717 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev) 1718 { 1719 u32 model; 1720 int idx; 1721 1722 idx = acpi_match_platform_list(pmcg_plat_info); 1723 if (idx >= 0) 1724 model = pmcg_plat_info[idx].data; 1725 else 1726 model = IORT_SMMU_V3_PMCG_GENERIC; 1727 1728 return platform_device_add_data(pdev, &model, sizeof(model)); 1729 } 1730 1731 struct iort_dev_config { 1732 const char *name; 1733 int (*dev_init)(struct acpi_iort_node *node); 1734 void (*dev_dma_configure)(struct device *dev, 1735 struct acpi_iort_node *node); 1736 int (*dev_count_resources)(struct acpi_iort_node *node); 1737 void (*dev_init_resources)(struct resource *res, 1738 struct acpi_iort_node *node); 1739 int (*dev_set_proximity)(struct device *dev, 1740 struct acpi_iort_node *node); 1741 int (*dev_add_platdata)(struct platform_device *pdev); 1742 }; 1743 1744 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = { 1745 .name = "arm-smmu-v3", 1746 .dev_dma_configure = arm_smmu_v3_dma_configure, 1747 .dev_count_resources = arm_smmu_v3_count_resources, 1748 .dev_init_resources = arm_smmu_v3_init_resources, 1749 .dev_set_proximity = arm_smmu_v3_set_proximity, 1750 }; 1751 1752 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = { 1753 .name = "arm-smmu", 1754 .dev_dma_configure = arm_smmu_dma_configure, 1755 .dev_count_resources = arm_smmu_count_resources, 1756 .dev_init_resources = arm_smmu_init_resources, 1757 }; 1758 1759 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = { 1760 .name = "arm-smmu-v3-pmcg", 1761 .dev_count_resources = arm_smmu_v3_pmcg_count_resources, 1762 .dev_init_resources = arm_smmu_v3_pmcg_init_resources, 1763 .dev_add_platdata = arm_smmu_v3_pmcg_add_platdata, 1764 }; 1765 1766 static __init const struct iort_dev_config *iort_get_dev_cfg( 1767 struct acpi_iort_node *node) 1768 { 1769 switch (node->type) { 1770 case ACPI_IORT_NODE_SMMU_V3: 1771 return &iort_arm_smmu_v3_cfg; 1772 case ACPI_IORT_NODE_SMMU: 1773 return &iort_arm_smmu_cfg; 1774 case ACPI_IORT_NODE_PMCG: 1775 return &iort_arm_smmu_v3_pmcg_cfg; 1776 default: 1777 return NULL; 1778 } 1779 } 1780 1781 /** 1782 * iort_add_platform_device() - Allocate a platform device for IORT node 1783 * @node: Pointer to device ACPI IORT node 1784 * @ops: Pointer to IORT device config struct 1785 * 1786 * Returns: 0 on success, <0 failure 1787 */ 1788 static int __init iort_add_platform_device(struct acpi_iort_node *node, 1789 const struct iort_dev_config *ops) 1790 { 1791 struct fwnode_handle *fwnode; 1792 struct platform_device *pdev; 1793 struct resource *r; 1794 int ret, count; 1795 1796 pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO); 1797 if (!pdev) 1798 return -ENOMEM; 1799 1800 if (ops->dev_set_proximity) { 1801 ret = ops->dev_set_proximity(&pdev->dev, node); 1802 if (ret) 1803 goto dev_put; 1804 } 1805 1806 count = ops->dev_count_resources(node); 1807 1808 r = kcalloc(count, sizeof(*r), GFP_KERNEL); 1809 if (!r) { 1810 ret = -ENOMEM; 1811 goto dev_put; 1812 } 1813 1814 ops->dev_init_resources(r, node); 1815 1816 ret = platform_device_add_resources(pdev, r, count); 1817 /* 1818 * Resources are duplicated in platform_device_add_resources, 1819 * free their allocated memory 1820 */ 1821 kfree(r); 1822 1823 if (ret) 1824 goto dev_put; 1825 1826 /* 1827 * Platform devices based on PMCG nodes uses platform_data to 1828 * pass the hardware model info to the driver. For others, add 1829 * a copy of IORT node pointer to platform_data to be used to 1830 * retrieve IORT data information. 1831 */ 1832 if (ops->dev_add_platdata) 1833 ret = ops->dev_add_platdata(pdev); 1834 else 1835 ret = platform_device_add_data(pdev, &node, sizeof(node)); 1836 1837 if (ret) 1838 goto dev_put; 1839 1840 fwnode = iort_get_fwnode(node); 1841 1842 if (!fwnode) { 1843 ret = -ENODEV; 1844 goto dev_put; 1845 } 1846 1847 pdev->dev.fwnode = fwnode; 1848 1849 if (ops->dev_dma_configure) 1850 ops->dev_dma_configure(&pdev->dev, node); 1851 1852 iort_set_device_domain(&pdev->dev, node); 1853 1854 ret = platform_device_add(pdev); 1855 if (ret) 1856 goto dma_deconfigure; 1857 1858 return 0; 1859 1860 dma_deconfigure: 1861 arch_teardown_dma_ops(&pdev->dev); 1862 dev_put: 1863 platform_device_put(pdev); 1864 1865 return ret; 1866 } 1867 1868 #ifdef CONFIG_PCI 1869 static void __init iort_enable_acs(struct acpi_iort_node *iort_node) 1870 { 1871 static bool acs_enabled __initdata; 1872 1873 if (acs_enabled) 1874 return; 1875 1876 if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 1877 struct acpi_iort_node *parent; 1878 struct acpi_iort_id_mapping *map; 1879 int i; 1880 1881 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node, 1882 iort_node->mapping_offset); 1883 1884 for (i = 0; i < iort_node->mapping_count; i++, map++) { 1885 if (!map->output_reference) 1886 continue; 1887 1888 parent = ACPI_ADD_PTR(struct acpi_iort_node, 1889 iort_table, map->output_reference); 1890 /* 1891 * If we detect a RC->SMMU mapping, make sure 1892 * we enable ACS on the system. 1893 */ 1894 if ((parent->type == ACPI_IORT_NODE_SMMU) || 1895 (parent->type == ACPI_IORT_NODE_SMMU_V3)) { 1896 pci_request_acs(); 1897 acs_enabled = true; 1898 return; 1899 } 1900 } 1901 } 1902 } 1903 #else 1904 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { } 1905 #endif 1906 1907 static void __init iort_init_platform_devices(void) 1908 { 1909 struct acpi_iort_node *iort_node, *iort_end; 1910 struct acpi_table_iort *iort; 1911 struct fwnode_handle *fwnode; 1912 int i, ret; 1913 const struct iort_dev_config *ops; 1914 1915 /* 1916 * iort_table and iort both point to the start of IORT table, but 1917 * have different struct types 1918 */ 1919 iort = (struct acpi_table_iort *)iort_table; 1920 1921 /* Get the first IORT node */ 1922 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1923 iort->node_offset); 1924 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1925 iort_table->length); 1926 1927 for (i = 0; i < iort->node_count; i++) { 1928 if (iort_node >= iort_end) { 1929 pr_err("iort node pointer overflows, bad table\n"); 1930 return; 1931 } 1932 1933 iort_enable_acs(iort_node); 1934 1935 ops = iort_get_dev_cfg(iort_node); 1936 if (ops) { 1937 fwnode = acpi_alloc_fwnode_static(); 1938 if (!fwnode) 1939 return; 1940 1941 iort_set_fwnode(iort_node, fwnode); 1942 1943 ret = iort_add_platform_device(iort_node, ops); 1944 if (ret) { 1945 iort_delete_fwnode(iort_node); 1946 acpi_free_fwnode_static(fwnode); 1947 return; 1948 } 1949 } 1950 1951 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 1952 iort_node->length); 1953 } 1954 } 1955 1956 void __init acpi_iort_init(void) 1957 { 1958 acpi_status status; 1959 1960 /* iort_table will be used at runtime after the iort init, 1961 * so we don't need to call acpi_put_table() to release 1962 * the IORT table mapping. 1963 */ 1964 status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table); 1965 if (ACPI_FAILURE(status)) { 1966 if (status != AE_NOT_FOUND) { 1967 const char *msg = acpi_format_exception(status); 1968 1969 pr_err("Failed to get table, %s\n", msg); 1970 } 1971 1972 return; 1973 } 1974 1975 iort_init_platform_devices(); 1976 } 1977 1978 #ifdef CONFIG_ZONE_DMA 1979 /* 1980 * Extract the highest CPU physical address accessible to all DMA masters in 1981 * the system. PHYS_ADDR_MAX is returned when no constrained device is found. 1982 */ 1983 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void) 1984 { 1985 phys_addr_t limit = PHYS_ADDR_MAX; 1986 struct acpi_iort_node *node, *end; 1987 struct acpi_table_iort *iort; 1988 acpi_status status; 1989 int i; 1990 1991 if (acpi_disabled) 1992 return limit; 1993 1994 status = acpi_get_table(ACPI_SIG_IORT, 0, 1995 (struct acpi_table_header **)&iort); 1996 if (ACPI_FAILURE(status)) 1997 return limit; 1998 1999 node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset); 2000 end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length); 2001 2002 for (i = 0; i < iort->node_count; i++) { 2003 if (node >= end) 2004 break; 2005 2006 switch (node->type) { 2007 struct acpi_iort_named_component *ncomp; 2008 struct acpi_iort_root_complex *rc; 2009 phys_addr_t local_limit; 2010 2011 case ACPI_IORT_NODE_NAMED_COMPONENT: 2012 ncomp = (struct acpi_iort_named_component *)node->node_data; 2013 local_limit = DMA_BIT_MASK(ncomp->memory_address_limit); 2014 limit = min_not_zero(limit, local_limit); 2015 break; 2016 2017 case ACPI_IORT_NODE_PCI_ROOT_COMPLEX: 2018 if (node->revision < 1) 2019 break; 2020 2021 rc = (struct acpi_iort_root_complex *)node->node_data; 2022 local_limit = DMA_BIT_MASK(rc->memory_address_limit); 2023 limit = min_not_zero(limit, local_limit); 2024 break; 2025 } 2026 node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length); 2027 } 2028 acpi_put_table(&iort->header); 2029 return limit; 2030 } 2031 #endif 2032