xref: /openbmc/linux/drivers/acpi/arm64/iort.c (revision 0661cb2a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016, Semihalf
4  *	Author: Tomasz Nowicki <tn@semihalf.com>
5  *
6  * This file implements early detection/parsing of I/O mapping
7  * reported to OS through firmware via I/O Remapping Table (IORT)
8  * IORT document number: ARM DEN 0049A
9  */
10 
11 #define pr_fmt(fmt)	"ACPI: IORT: " fmt
12 
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/dma-map-ops.h>
22 
23 #define IORT_TYPE_MASK(type)	(1 << (type))
24 #define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
25 #define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
26 				(1 << ACPI_IORT_NODE_SMMU_V3))
27 
28 struct iort_its_msi_chip {
29 	struct list_head	list;
30 	struct fwnode_handle	*fw_node;
31 	phys_addr_t		base_addr;
32 	u32			translation_id;
33 };
34 
35 struct iort_fwnode {
36 	struct list_head list;
37 	struct acpi_iort_node *iort_node;
38 	struct fwnode_handle *fwnode;
39 };
40 static LIST_HEAD(iort_fwnode_list);
41 static DEFINE_SPINLOCK(iort_fwnode_lock);
42 
43 /**
44  * iort_set_fwnode() - Create iort_fwnode and use it to register
45  *		       iommu data in the iort_fwnode_list
46  *
47  * @iort_node: IORT table node associated with the IOMMU
48  * @fwnode: fwnode associated with the IORT node
49  *
50  * Returns: 0 on success
51  *          <0 on failure
52  */
53 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
54 				  struct fwnode_handle *fwnode)
55 {
56 	struct iort_fwnode *np;
57 
58 	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
59 
60 	if (WARN_ON(!np))
61 		return -ENOMEM;
62 
63 	INIT_LIST_HEAD(&np->list);
64 	np->iort_node = iort_node;
65 	np->fwnode = fwnode;
66 
67 	spin_lock(&iort_fwnode_lock);
68 	list_add_tail(&np->list, &iort_fwnode_list);
69 	spin_unlock(&iort_fwnode_lock);
70 
71 	return 0;
72 }
73 
74 /**
75  * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
76  *
77  * @node: IORT table node to be looked-up
78  *
79  * Returns: fwnode_handle pointer on success, NULL on failure
80  */
81 static inline struct fwnode_handle *iort_get_fwnode(
82 			struct acpi_iort_node *node)
83 {
84 	struct iort_fwnode *curr;
85 	struct fwnode_handle *fwnode = NULL;
86 
87 	spin_lock(&iort_fwnode_lock);
88 	list_for_each_entry(curr, &iort_fwnode_list, list) {
89 		if (curr->iort_node == node) {
90 			fwnode = curr->fwnode;
91 			break;
92 		}
93 	}
94 	spin_unlock(&iort_fwnode_lock);
95 
96 	return fwnode;
97 }
98 
99 /**
100  * iort_delete_fwnode() - Delete fwnode associated with an IORT node
101  *
102  * @node: IORT table node associated with fwnode to delete
103  */
104 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
105 {
106 	struct iort_fwnode *curr, *tmp;
107 
108 	spin_lock(&iort_fwnode_lock);
109 	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
110 		if (curr->iort_node == node) {
111 			list_del(&curr->list);
112 			kfree(curr);
113 			break;
114 		}
115 	}
116 	spin_unlock(&iort_fwnode_lock);
117 }
118 
119 /**
120  * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
121  *
122  * @fwnode: fwnode associated with device to be looked-up
123  *
124  * Returns: iort_node pointer on success, NULL on failure
125  */
126 static inline struct acpi_iort_node *iort_get_iort_node(
127 			struct fwnode_handle *fwnode)
128 {
129 	struct iort_fwnode *curr;
130 	struct acpi_iort_node *iort_node = NULL;
131 
132 	spin_lock(&iort_fwnode_lock);
133 	list_for_each_entry(curr, &iort_fwnode_list, list) {
134 		if (curr->fwnode == fwnode) {
135 			iort_node = curr->iort_node;
136 			break;
137 		}
138 	}
139 	spin_unlock(&iort_fwnode_lock);
140 
141 	return iort_node;
142 }
143 
144 typedef acpi_status (*iort_find_node_callback)
145 	(struct acpi_iort_node *node, void *context);
146 
147 /* Root pointer to the mapped IORT table */
148 static struct acpi_table_header *iort_table;
149 
150 static LIST_HEAD(iort_msi_chip_list);
151 static DEFINE_SPINLOCK(iort_msi_chip_lock);
152 
153 /**
154  * iort_register_domain_token() - register domain token along with related
155  * ITS ID and base address to the list from where we can get it back later on.
156  * @trans_id: ITS ID.
157  * @base: ITS base address.
158  * @fw_node: Domain token.
159  *
160  * Returns: 0 on success, -ENOMEM if no memory when allocating list element
161  */
162 int iort_register_domain_token(int trans_id, phys_addr_t base,
163 			       struct fwnode_handle *fw_node)
164 {
165 	struct iort_its_msi_chip *its_msi_chip;
166 
167 	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
168 	if (!its_msi_chip)
169 		return -ENOMEM;
170 
171 	its_msi_chip->fw_node = fw_node;
172 	its_msi_chip->translation_id = trans_id;
173 	its_msi_chip->base_addr = base;
174 
175 	spin_lock(&iort_msi_chip_lock);
176 	list_add(&its_msi_chip->list, &iort_msi_chip_list);
177 	spin_unlock(&iort_msi_chip_lock);
178 
179 	return 0;
180 }
181 
182 /**
183  * iort_deregister_domain_token() - Deregister domain token based on ITS ID
184  * @trans_id: ITS ID.
185  *
186  * Returns: none.
187  */
188 void iort_deregister_domain_token(int trans_id)
189 {
190 	struct iort_its_msi_chip *its_msi_chip, *t;
191 
192 	spin_lock(&iort_msi_chip_lock);
193 	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
194 		if (its_msi_chip->translation_id == trans_id) {
195 			list_del(&its_msi_chip->list);
196 			kfree(its_msi_chip);
197 			break;
198 		}
199 	}
200 	spin_unlock(&iort_msi_chip_lock);
201 }
202 
203 /**
204  * iort_find_domain_token() - Find domain token based on given ITS ID
205  * @trans_id: ITS ID.
206  *
207  * Returns: domain token when find on the list, NULL otherwise
208  */
209 struct fwnode_handle *iort_find_domain_token(int trans_id)
210 {
211 	struct fwnode_handle *fw_node = NULL;
212 	struct iort_its_msi_chip *its_msi_chip;
213 
214 	spin_lock(&iort_msi_chip_lock);
215 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
216 		if (its_msi_chip->translation_id == trans_id) {
217 			fw_node = its_msi_chip->fw_node;
218 			break;
219 		}
220 	}
221 	spin_unlock(&iort_msi_chip_lock);
222 
223 	return fw_node;
224 }
225 
226 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
227 					     iort_find_node_callback callback,
228 					     void *context)
229 {
230 	struct acpi_iort_node *iort_node, *iort_end;
231 	struct acpi_table_iort *iort;
232 	int i;
233 
234 	if (!iort_table)
235 		return NULL;
236 
237 	/* Get the first IORT node */
238 	iort = (struct acpi_table_iort *)iort_table;
239 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
240 				 iort->node_offset);
241 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
242 				iort_table->length);
243 
244 	for (i = 0; i < iort->node_count; i++) {
245 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
246 			       "IORT node pointer overflows, bad table!\n"))
247 			return NULL;
248 
249 		if (iort_node->type == type &&
250 		    ACPI_SUCCESS(callback(iort_node, context)))
251 			return iort_node;
252 
253 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
254 					 iort_node->length);
255 	}
256 
257 	return NULL;
258 }
259 
260 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
261 					    void *context)
262 {
263 	struct device *dev = context;
264 	acpi_status status = AE_NOT_FOUND;
265 
266 	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
267 		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
268 		struct acpi_device *adev;
269 		struct acpi_iort_named_component *ncomp;
270 		struct device *nc_dev = dev;
271 
272 		/*
273 		 * Walk the device tree to find a device with an
274 		 * ACPI companion; there is no point in scanning
275 		 * IORT for a device matching a named component if
276 		 * the device does not have an ACPI companion to
277 		 * start with.
278 		 */
279 		do {
280 			adev = ACPI_COMPANION(nc_dev);
281 			if (adev)
282 				break;
283 
284 			nc_dev = nc_dev->parent;
285 		} while (nc_dev);
286 
287 		if (!adev)
288 			goto out;
289 
290 		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
291 		if (ACPI_FAILURE(status)) {
292 			dev_warn(nc_dev, "Can't get device full path name\n");
293 			goto out;
294 		}
295 
296 		ncomp = (struct acpi_iort_named_component *)node->node_data;
297 		status = !strcmp(ncomp->device_name, buf.pointer) ?
298 							AE_OK : AE_NOT_FOUND;
299 		acpi_os_free(buf.pointer);
300 	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
301 		struct acpi_iort_root_complex *pci_rc;
302 		struct pci_bus *bus;
303 
304 		bus = to_pci_bus(dev);
305 		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
306 
307 		/*
308 		 * It is assumed that PCI segment numbers maps one-to-one
309 		 * with root complexes. Each segment number can represent only
310 		 * one root complex.
311 		 */
312 		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
313 							AE_OK : AE_NOT_FOUND;
314 	}
315 out:
316 	return status;
317 }
318 
319 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
320 		       u32 *rid_out, bool check_overlap)
321 {
322 	/* Single mapping does not care for input id */
323 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
324 		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
325 		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
326 			*rid_out = map->output_base;
327 			return 0;
328 		}
329 
330 		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
331 			map, type);
332 		return -ENXIO;
333 	}
334 
335 	if (rid_in < map->input_base ||
336 	    (rid_in > map->input_base + map->id_count))
337 		return -ENXIO;
338 
339 	if (check_overlap) {
340 		/*
341 		 * We already found a mapping for this input ID at the end of
342 		 * another region. If it coincides with the start of this
343 		 * region, we assume the prior match was due to the off-by-1
344 		 * issue mentioned below, and allow it to be superseded.
345 		 * Otherwise, things are *really* broken, and we just disregard
346 		 * duplicate matches entirely to retain compatibility.
347 		 */
348 		pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
349 		       map, rid_in);
350 		if (rid_in != map->input_base)
351 			return -ENXIO;
352 
353 		pr_err(FW_BUG "applying workaround.\n");
354 	}
355 
356 	*rid_out = map->output_base + (rid_in - map->input_base);
357 
358 	/*
359 	 * Due to confusion regarding the meaning of the id_count field (which
360 	 * carries the number of IDs *minus 1*), we may have to disregard this
361 	 * match if it is at the end of the range, and overlaps with the start
362 	 * of another one.
363 	 */
364 	if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
365 		return -EAGAIN;
366 	return 0;
367 }
368 
369 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
370 					       u32 *id_out, int index)
371 {
372 	struct acpi_iort_node *parent;
373 	struct acpi_iort_id_mapping *map;
374 
375 	if (!node->mapping_offset || !node->mapping_count ||
376 				     index >= node->mapping_count)
377 		return NULL;
378 
379 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
380 			   node->mapping_offset + index * sizeof(*map));
381 
382 	/* Firmware bug! */
383 	if (!map->output_reference) {
384 		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
385 		       node, node->type);
386 		return NULL;
387 	}
388 
389 	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
390 			       map->output_reference);
391 
392 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
393 		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
394 		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
395 		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
396 		    node->type == ACPI_IORT_NODE_PMCG) {
397 			*id_out = map->output_base;
398 			return parent;
399 		}
400 	}
401 
402 	return NULL;
403 }
404 
405 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
406 {
407 	struct acpi_iort_smmu_v3 *smmu;
408 	struct acpi_iort_pmcg *pmcg;
409 
410 	switch (node->type) {
411 	case ACPI_IORT_NODE_SMMU_V3:
412 		/*
413 		 * SMMUv3 dev ID mapping index was introduced in revision 1
414 		 * table, not available in revision 0
415 		 */
416 		if (node->revision < 1)
417 			return -EINVAL;
418 
419 		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
420 		/*
421 		 * ID mapping index is only ignored if all interrupts are
422 		 * GSIV based
423 		 */
424 		if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
425 		    && smmu->sync_gsiv)
426 			return -EINVAL;
427 
428 		if (smmu->id_mapping_index >= node->mapping_count) {
429 			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
430 			       node, node->type);
431 			return -EINVAL;
432 		}
433 
434 		return smmu->id_mapping_index;
435 	case ACPI_IORT_NODE_PMCG:
436 		pmcg = (struct acpi_iort_pmcg *)node->node_data;
437 		if (pmcg->overflow_gsiv || node->mapping_count == 0)
438 			return -EINVAL;
439 
440 		return 0;
441 	default:
442 		return -EINVAL;
443 	}
444 }
445 
446 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
447 					       u32 id_in, u32 *id_out,
448 					       u8 type_mask)
449 {
450 	u32 id = id_in;
451 
452 	/* Parse the ID mapping tree to find specified node type */
453 	while (node) {
454 		struct acpi_iort_id_mapping *map;
455 		int i, index, rc = 0;
456 		u32 out_ref = 0, map_id = id;
457 
458 		if (IORT_TYPE_MASK(node->type) & type_mask) {
459 			if (id_out)
460 				*id_out = id;
461 			return node;
462 		}
463 
464 		if (!node->mapping_offset || !node->mapping_count)
465 			goto fail_map;
466 
467 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
468 				   node->mapping_offset);
469 
470 		/* Firmware bug! */
471 		if (!map->output_reference) {
472 			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
473 			       node, node->type);
474 			goto fail_map;
475 		}
476 
477 		/*
478 		 * Get the special ID mapping index (if any) and skip its
479 		 * associated ID map to prevent erroneous multi-stage
480 		 * IORT ID translations.
481 		 */
482 		index = iort_get_id_mapping_index(node);
483 
484 		/* Do the ID translation */
485 		for (i = 0; i < node->mapping_count; i++, map++) {
486 			/* if it is special mapping index, skip it */
487 			if (i == index)
488 				continue;
489 
490 			rc = iort_id_map(map, node->type, map_id, &id, out_ref);
491 			if (!rc)
492 				break;
493 			if (rc == -EAGAIN)
494 				out_ref = map->output_reference;
495 		}
496 
497 		if (i == node->mapping_count && !out_ref)
498 			goto fail_map;
499 
500 		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
501 				    rc ? out_ref : map->output_reference);
502 	}
503 
504 fail_map:
505 	/* Map input ID to output ID unchanged on mapping failure */
506 	if (id_out)
507 		*id_out = id_in;
508 
509 	return NULL;
510 }
511 
512 static struct acpi_iort_node *iort_node_map_platform_id(
513 		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
514 		int index)
515 {
516 	struct acpi_iort_node *parent;
517 	u32 id;
518 
519 	/* step 1: retrieve the initial dev id */
520 	parent = iort_node_get_id(node, &id, index);
521 	if (!parent)
522 		return NULL;
523 
524 	/*
525 	 * optional step 2: map the initial dev id if its parent is not
526 	 * the target type we want, map it again for the use cases such
527 	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
528 	 * return the initial dev id and its parent pointer directly.
529 	 */
530 	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
531 		parent = iort_node_map_id(parent, id, id_out, type_mask);
532 	else
533 		if (id_out)
534 			*id_out = id;
535 
536 	return parent;
537 }
538 
539 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
540 {
541 	struct pci_bus *pbus;
542 
543 	if (!dev_is_pci(dev)) {
544 		struct acpi_iort_node *node;
545 		/*
546 		 * scan iort_fwnode_list to see if it's an iort platform
547 		 * device (such as SMMU, PMCG),its iort node already cached
548 		 * and associated with fwnode when iort platform devices
549 		 * were initialized.
550 		 */
551 		node = iort_get_iort_node(dev->fwnode);
552 		if (node)
553 			return node;
554 		/*
555 		 * if not, then it should be a platform device defined in
556 		 * DSDT/SSDT (with Named Component node in IORT)
557 		 */
558 		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
559 				      iort_match_node_callback, dev);
560 	}
561 
562 	pbus = to_pci_dev(dev)->bus;
563 
564 	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
565 			      iort_match_node_callback, &pbus->dev);
566 }
567 
568 /**
569  * iort_msi_map_id() - Map a MSI input ID for a device
570  * @dev: The device for which the mapping is to be done.
571  * @input_id: The device input ID.
572  *
573  * Returns: mapped MSI ID on success, input ID otherwise
574  */
575 u32 iort_msi_map_id(struct device *dev, u32 input_id)
576 {
577 	struct acpi_iort_node *node;
578 	u32 dev_id;
579 
580 	node = iort_find_dev_node(dev);
581 	if (!node)
582 		return input_id;
583 
584 	iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
585 	return dev_id;
586 }
587 
588 /**
589  * iort_pmsi_get_dev_id() - Get the device id for a device
590  * @dev: The device for which the mapping is to be done.
591  * @dev_id: The device ID found.
592  *
593  * Returns: 0 for successful find a dev id, -ENODEV on error
594  */
595 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
596 {
597 	int i, index;
598 	struct acpi_iort_node *node;
599 
600 	node = iort_find_dev_node(dev);
601 	if (!node)
602 		return -ENODEV;
603 
604 	index = iort_get_id_mapping_index(node);
605 	/* if there is a valid index, go get the dev_id directly */
606 	if (index >= 0) {
607 		if (iort_node_get_id(node, dev_id, index))
608 			return 0;
609 	} else {
610 		for (i = 0; i < node->mapping_count; i++) {
611 			if (iort_node_map_platform_id(node, dev_id,
612 						      IORT_MSI_TYPE, i))
613 				return 0;
614 		}
615 	}
616 
617 	return -ENODEV;
618 }
619 
620 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
621 {
622 	struct iort_its_msi_chip *its_msi_chip;
623 	int ret = -ENODEV;
624 
625 	spin_lock(&iort_msi_chip_lock);
626 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
627 		if (its_msi_chip->translation_id == its_id) {
628 			*base = its_msi_chip->base_addr;
629 			ret = 0;
630 			break;
631 		}
632 	}
633 	spin_unlock(&iort_msi_chip_lock);
634 
635 	return ret;
636 }
637 
638 /**
639  * iort_dev_find_its_id() - Find the ITS identifier for a device
640  * @dev: The device.
641  * @id: Device's ID
642  * @idx: Index of the ITS identifier list.
643  * @its_id: ITS identifier.
644  *
645  * Returns: 0 on success, appropriate error value otherwise
646  */
647 static int iort_dev_find_its_id(struct device *dev, u32 id,
648 				unsigned int idx, int *its_id)
649 {
650 	struct acpi_iort_its_group *its;
651 	struct acpi_iort_node *node;
652 
653 	node = iort_find_dev_node(dev);
654 	if (!node)
655 		return -ENXIO;
656 
657 	node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
658 	if (!node)
659 		return -ENXIO;
660 
661 	/* Move to ITS specific data */
662 	its = (struct acpi_iort_its_group *)node->node_data;
663 	if (idx >= its->its_count) {
664 		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
665 			idx, its->its_count);
666 		return -ENXIO;
667 	}
668 
669 	*its_id = its->identifiers[idx];
670 	return 0;
671 }
672 
673 /**
674  * iort_get_device_domain() - Find MSI domain related to a device
675  * @dev: The device.
676  * @id: Requester ID for the device.
677  * @bus_token: irq domain bus token.
678  *
679  * Returns: the MSI domain for this device, NULL otherwise
680  */
681 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
682 					  enum irq_domain_bus_token bus_token)
683 {
684 	struct fwnode_handle *handle;
685 	int its_id;
686 
687 	if (iort_dev_find_its_id(dev, id, 0, &its_id))
688 		return NULL;
689 
690 	handle = iort_find_domain_token(its_id);
691 	if (!handle)
692 		return NULL;
693 
694 	return irq_find_matching_fwnode(handle, bus_token);
695 }
696 
697 static void iort_set_device_domain(struct device *dev,
698 				   struct acpi_iort_node *node)
699 {
700 	struct acpi_iort_its_group *its;
701 	struct acpi_iort_node *msi_parent;
702 	struct acpi_iort_id_mapping *map;
703 	struct fwnode_handle *iort_fwnode;
704 	struct irq_domain *domain;
705 	int index;
706 
707 	index = iort_get_id_mapping_index(node);
708 	if (index < 0)
709 		return;
710 
711 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
712 			   node->mapping_offset + index * sizeof(*map));
713 
714 	/* Firmware bug! */
715 	if (!map->output_reference ||
716 	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
717 		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
718 		       node, node->type);
719 		return;
720 	}
721 
722 	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
723 				  map->output_reference);
724 
725 	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
726 		return;
727 
728 	/* Move to ITS specific data */
729 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
730 
731 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
732 	if (!iort_fwnode)
733 		return;
734 
735 	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
736 	if (domain)
737 		dev_set_msi_domain(dev, domain);
738 }
739 
740 /**
741  * iort_get_platform_device_domain() - Find MSI domain related to a
742  * platform device
743  * @dev: the dev pointer associated with the platform device
744  *
745  * Returns: the MSI domain for this device, NULL otherwise
746  */
747 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
748 {
749 	struct acpi_iort_node *node, *msi_parent = NULL;
750 	struct fwnode_handle *iort_fwnode;
751 	struct acpi_iort_its_group *its;
752 	int i;
753 
754 	/* find its associated iort node */
755 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
756 			      iort_match_node_callback, dev);
757 	if (!node)
758 		return NULL;
759 
760 	/* then find its msi parent node */
761 	for (i = 0; i < node->mapping_count; i++) {
762 		msi_parent = iort_node_map_platform_id(node, NULL,
763 						       IORT_MSI_TYPE, i);
764 		if (msi_parent)
765 			break;
766 	}
767 
768 	if (!msi_parent)
769 		return NULL;
770 
771 	/* Move to ITS specific data */
772 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
773 
774 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
775 	if (!iort_fwnode)
776 		return NULL;
777 
778 	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
779 }
780 
781 void acpi_configure_pmsi_domain(struct device *dev)
782 {
783 	struct irq_domain *msi_domain;
784 
785 	msi_domain = iort_get_platform_device_domain(dev);
786 	if (msi_domain)
787 		dev_set_msi_domain(dev, msi_domain);
788 }
789 
790 #ifdef CONFIG_IOMMU_API
791 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
792 {
793 	struct acpi_iort_node *iommu;
794 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
795 
796 	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
797 
798 	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
799 		struct acpi_iort_smmu_v3 *smmu;
800 
801 		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
802 		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
803 			return iommu;
804 	}
805 
806 	return NULL;
807 }
808 
809 /**
810  * iort_iommu_msi_get_resv_regions - Reserved region driver helper
811  * @dev: Device from iommu_get_resv_regions()
812  * @head: Reserved region list from iommu_get_resv_regions()
813  *
814  * Returns: Number of msi reserved regions on success (0 if platform
815  *          doesn't require the reservation or no associated msi regions),
816  *          appropriate error value otherwise. The ITS interrupt translation
817  *          spaces (ITS_base + SZ_64K, SZ_64K) associated with the device
818  *          are the msi reserved regions.
819  */
820 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
821 {
822 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
823 	struct acpi_iort_its_group *its;
824 	struct acpi_iort_node *iommu_node, *its_node = NULL;
825 	int i, resv = 0;
826 
827 	iommu_node = iort_get_msi_resv_iommu(dev);
828 	if (!iommu_node)
829 		return 0;
830 
831 	/*
832 	 * Current logic to reserve ITS regions relies on HW topologies
833 	 * where a given PCI or named component maps its IDs to only one
834 	 * ITS group; if a PCI or named component can map its IDs to
835 	 * different ITS groups through IORT mappings this function has
836 	 * to be reworked to ensure we reserve regions for all ITS groups
837 	 * a given PCI or named component may map IDs to.
838 	 */
839 
840 	for (i = 0; i < fwspec->num_ids; i++) {
841 		its_node = iort_node_map_id(iommu_node,
842 					fwspec->ids[i],
843 					NULL, IORT_MSI_TYPE);
844 		if (its_node)
845 			break;
846 	}
847 
848 	if (!its_node)
849 		return 0;
850 
851 	/* Move to ITS specific data */
852 	its = (struct acpi_iort_its_group *)its_node->node_data;
853 
854 	for (i = 0; i < its->its_count; i++) {
855 		phys_addr_t base;
856 
857 		if (!iort_find_its_base(its->identifiers[i], &base)) {
858 			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
859 			struct iommu_resv_region *region;
860 
861 			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
862 							 prot, IOMMU_RESV_MSI);
863 			if (region) {
864 				list_add_tail(&region->list, head);
865 				resv++;
866 			}
867 		}
868 	}
869 
870 	return (resv == its->its_count) ? resv : -ENODEV;
871 }
872 
873 static inline bool iort_iommu_driver_enabled(u8 type)
874 {
875 	switch (type) {
876 	case ACPI_IORT_NODE_SMMU_V3:
877 		return IS_ENABLED(CONFIG_ARM_SMMU_V3);
878 	case ACPI_IORT_NODE_SMMU:
879 		return IS_ENABLED(CONFIG_ARM_SMMU);
880 	default:
881 		pr_warn("IORT node type %u does not describe an SMMU\n", type);
882 		return false;
883 	}
884 }
885 
886 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
887 {
888 	struct acpi_iort_root_complex *pci_rc;
889 
890 	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
891 	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
892 }
893 
894 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
895 			    u32 streamid)
896 {
897 	const struct iommu_ops *ops;
898 	struct fwnode_handle *iort_fwnode;
899 
900 	if (!node)
901 		return -ENODEV;
902 
903 	iort_fwnode = iort_get_fwnode(node);
904 	if (!iort_fwnode)
905 		return -ENODEV;
906 
907 	/*
908 	 * If the ops look-up fails, this means that either
909 	 * the SMMU drivers have not been probed yet or that
910 	 * the SMMU drivers are not built in the kernel;
911 	 * Depending on whether the SMMU drivers are built-in
912 	 * in the kernel or not, defer the IOMMU configuration
913 	 * or just abort it.
914 	 */
915 	ops = iommu_ops_from_fwnode(iort_fwnode);
916 	if (!ops)
917 		return iort_iommu_driver_enabled(node->type) ?
918 		       -EPROBE_DEFER : -ENODEV;
919 
920 	return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode, ops);
921 }
922 
923 struct iort_pci_alias_info {
924 	struct device *dev;
925 	struct acpi_iort_node *node;
926 };
927 
928 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
929 {
930 	struct iort_pci_alias_info *info = data;
931 	struct acpi_iort_node *parent;
932 	u32 streamid;
933 
934 	parent = iort_node_map_id(info->node, alias, &streamid,
935 				  IORT_IOMMU_TYPE);
936 	return iort_iommu_xlate(info->dev, parent, streamid);
937 }
938 
939 static void iort_named_component_init(struct device *dev,
940 				      struct acpi_iort_node *node)
941 {
942 	struct property_entry props[3] = {};
943 	struct acpi_iort_named_component *nc;
944 
945 	nc = (struct acpi_iort_named_component *)node->node_data;
946 	props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
947 				      FIELD_GET(ACPI_IORT_NC_PASID_BITS,
948 						nc->node_flags));
949 	if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
950 		props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
951 
952 	if (device_create_managed_software_node(dev, props, NULL))
953 		dev_warn(dev, "Could not add device properties\n");
954 }
955 
956 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
957 {
958 	struct acpi_iort_node *parent;
959 	int err = -ENODEV, i = 0;
960 	u32 streamid = 0;
961 
962 	do {
963 
964 		parent = iort_node_map_platform_id(node, &streamid,
965 						   IORT_IOMMU_TYPE,
966 						   i++);
967 
968 		if (parent)
969 			err = iort_iommu_xlate(dev, parent, streamid);
970 	} while (parent && !err);
971 
972 	return err;
973 }
974 
975 static int iort_nc_iommu_map_id(struct device *dev,
976 				struct acpi_iort_node *node,
977 				const u32 *in_id)
978 {
979 	struct acpi_iort_node *parent;
980 	u32 streamid;
981 
982 	parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
983 	if (parent)
984 		return iort_iommu_xlate(dev, parent, streamid);
985 
986 	return -ENODEV;
987 }
988 
989 
990 /**
991  * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
992  *
993  * @dev: device to configure
994  * @id_in: optional input id const value pointer
995  *
996  * Returns: 0 on success, <0 on failure
997  */
998 int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
999 {
1000 	struct acpi_iort_node *node;
1001 	int err = -ENODEV;
1002 
1003 	if (dev_is_pci(dev)) {
1004 		struct iommu_fwspec *fwspec;
1005 		struct pci_bus *bus = to_pci_dev(dev)->bus;
1006 		struct iort_pci_alias_info info = { .dev = dev };
1007 
1008 		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1009 				      iort_match_node_callback, &bus->dev);
1010 		if (!node)
1011 			return -ENODEV;
1012 
1013 		info.node = node;
1014 		err = pci_for_each_dma_alias(to_pci_dev(dev),
1015 					     iort_pci_iommu_init, &info);
1016 
1017 		fwspec = dev_iommu_fwspec_get(dev);
1018 		if (fwspec && iort_pci_rc_supports_ats(node))
1019 			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1020 	} else {
1021 		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1022 				      iort_match_node_callback, dev);
1023 		if (!node)
1024 			return -ENODEV;
1025 
1026 		err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1027 			      iort_nc_iommu_map(dev, node);
1028 
1029 		if (!err)
1030 			iort_named_component_init(dev, node);
1031 	}
1032 
1033 	return err;
1034 }
1035 
1036 #else
1037 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
1038 { return 0; }
1039 int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
1040 { return -ENODEV; }
1041 #endif
1042 
1043 static int nc_dma_get_range(struct device *dev, u64 *size)
1044 {
1045 	struct acpi_iort_node *node;
1046 	struct acpi_iort_named_component *ncomp;
1047 
1048 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1049 			      iort_match_node_callback, dev);
1050 	if (!node)
1051 		return -ENODEV;
1052 
1053 	ncomp = (struct acpi_iort_named_component *)node->node_data;
1054 
1055 	if (!ncomp->memory_address_limit) {
1056 		pr_warn(FW_BUG "Named component missing memory address limit\n");
1057 		return -EINVAL;
1058 	}
1059 
1060 	*size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1061 			1ULL<<ncomp->memory_address_limit;
1062 
1063 	return 0;
1064 }
1065 
1066 static int rc_dma_get_range(struct device *dev, u64 *size)
1067 {
1068 	struct acpi_iort_node *node;
1069 	struct acpi_iort_root_complex *rc;
1070 	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1071 
1072 	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1073 			      iort_match_node_callback, &pbus->dev);
1074 	if (!node || node->revision < 1)
1075 		return -ENODEV;
1076 
1077 	rc = (struct acpi_iort_root_complex *)node->node_data;
1078 
1079 	if (!rc->memory_address_limit) {
1080 		pr_warn(FW_BUG "Root complex missing memory address limit\n");
1081 		return -EINVAL;
1082 	}
1083 
1084 	*size = rc->memory_address_limit >= 64 ? U64_MAX :
1085 			1ULL<<rc->memory_address_limit;
1086 
1087 	return 0;
1088 }
1089 
1090 /**
1091  * iort_dma_get_ranges() - Look up DMA addressing limit for the device
1092  * @dev: device to lookup
1093  * @size: DMA range size result pointer
1094  *
1095  * Return: 0 on success, an error otherwise.
1096  */
1097 int iort_dma_get_ranges(struct device *dev, u64 *size)
1098 {
1099 	if (dev_is_pci(dev))
1100 		return rc_dma_get_range(dev, size);
1101 	else
1102 		return nc_dma_get_range(dev, size);
1103 }
1104 
1105 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1106 					  int trigger,
1107 					  struct resource *res)
1108 {
1109 	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1110 				    ACPI_ACTIVE_HIGH);
1111 
1112 	if (irq <= 0) {
1113 		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1114 								      name);
1115 		return;
1116 	}
1117 
1118 	res->start = irq;
1119 	res->end = irq;
1120 	res->flags = IORESOURCE_IRQ;
1121 	res->name = name;
1122 }
1123 
1124 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1125 {
1126 	struct acpi_iort_smmu_v3 *smmu;
1127 	/* Always present mem resource */
1128 	int num_res = 1;
1129 
1130 	/* Retrieve SMMUv3 specific data */
1131 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1132 
1133 	if (smmu->event_gsiv)
1134 		num_res++;
1135 
1136 	if (smmu->pri_gsiv)
1137 		num_res++;
1138 
1139 	if (smmu->gerr_gsiv)
1140 		num_res++;
1141 
1142 	if (smmu->sync_gsiv)
1143 		num_res++;
1144 
1145 	return num_res;
1146 }
1147 
1148 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1149 {
1150 	/*
1151 	 * Cavium ThunderX2 implementation doesn't not support unique
1152 	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1153 	 */
1154 	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1155 		return false;
1156 
1157 	/*
1158 	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1159 	 * SPI numbers here.
1160 	 */
1161 	return smmu->event_gsiv == smmu->pri_gsiv &&
1162 	       smmu->event_gsiv == smmu->gerr_gsiv &&
1163 	       smmu->event_gsiv == smmu->sync_gsiv;
1164 }
1165 
1166 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1167 {
1168 	/*
1169 	 * Override the size, for Cavium ThunderX2 implementation
1170 	 * which doesn't support the page 1 SMMU register space.
1171 	 */
1172 	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1173 		return SZ_64K;
1174 
1175 	return SZ_128K;
1176 }
1177 
1178 static void __init arm_smmu_v3_init_resources(struct resource *res,
1179 					      struct acpi_iort_node *node)
1180 {
1181 	struct acpi_iort_smmu_v3 *smmu;
1182 	int num_res = 0;
1183 
1184 	/* Retrieve SMMUv3 specific data */
1185 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1186 
1187 	res[num_res].start = smmu->base_address;
1188 	res[num_res].end = smmu->base_address +
1189 				arm_smmu_v3_resource_size(smmu) - 1;
1190 	res[num_res].flags = IORESOURCE_MEM;
1191 
1192 	num_res++;
1193 	if (arm_smmu_v3_is_combined_irq(smmu)) {
1194 		if (smmu->event_gsiv)
1195 			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1196 					       ACPI_EDGE_SENSITIVE,
1197 					       &res[num_res++]);
1198 	} else {
1199 
1200 		if (smmu->event_gsiv)
1201 			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1202 					       ACPI_EDGE_SENSITIVE,
1203 					       &res[num_res++]);
1204 
1205 		if (smmu->pri_gsiv)
1206 			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1207 					       ACPI_EDGE_SENSITIVE,
1208 					       &res[num_res++]);
1209 
1210 		if (smmu->gerr_gsiv)
1211 			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1212 					       ACPI_EDGE_SENSITIVE,
1213 					       &res[num_res++]);
1214 
1215 		if (smmu->sync_gsiv)
1216 			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1217 					       ACPI_EDGE_SENSITIVE,
1218 					       &res[num_res++]);
1219 	}
1220 }
1221 
1222 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1223 					     struct acpi_iort_node *node)
1224 {
1225 	struct acpi_iort_smmu_v3 *smmu;
1226 	enum dev_dma_attr attr;
1227 
1228 	/* Retrieve SMMUv3 specific data */
1229 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1230 
1231 	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1232 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1233 
1234 	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1235 	dev->dma_mask = &dev->coherent_dma_mask;
1236 
1237 	/* Configure DMA for the page table walker */
1238 	acpi_dma_configure(dev, attr);
1239 }
1240 
1241 #if defined(CONFIG_ACPI_NUMA)
1242 /*
1243  * set numa proximity domain for smmuv3 device
1244  */
1245 static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1246 					      struct acpi_iort_node *node)
1247 {
1248 	struct acpi_iort_smmu_v3 *smmu;
1249 
1250 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1251 	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1252 		int dev_node = pxm_to_node(smmu->pxm);
1253 
1254 		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1255 			return -EINVAL;
1256 
1257 		set_dev_node(dev, dev_node);
1258 		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1259 			smmu->base_address,
1260 			smmu->pxm);
1261 	}
1262 	return 0;
1263 }
1264 #else
1265 #define arm_smmu_v3_set_proximity NULL
1266 #endif
1267 
1268 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1269 {
1270 	struct acpi_iort_smmu *smmu;
1271 
1272 	/* Retrieve SMMU specific data */
1273 	smmu = (struct acpi_iort_smmu *)node->node_data;
1274 
1275 	/*
1276 	 * Only consider the global fault interrupt and ignore the
1277 	 * configuration access interrupt.
1278 	 *
1279 	 * MMIO address and global fault interrupt resources are always
1280 	 * present so add them to the context interrupt count as a static
1281 	 * value.
1282 	 */
1283 	return smmu->context_interrupt_count + 2;
1284 }
1285 
1286 static void __init arm_smmu_init_resources(struct resource *res,
1287 					   struct acpi_iort_node *node)
1288 {
1289 	struct acpi_iort_smmu *smmu;
1290 	int i, hw_irq, trigger, num_res = 0;
1291 	u64 *ctx_irq, *glb_irq;
1292 
1293 	/* Retrieve SMMU specific data */
1294 	smmu = (struct acpi_iort_smmu *)node->node_data;
1295 
1296 	res[num_res].start = smmu->base_address;
1297 	res[num_res].end = smmu->base_address + smmu->span - 1;
1298 	res[num_res].flags = IORESOURCE_MEM;
1299 	num_res++;
1300 
1301 	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1302 	/* Global IRQs */
1303 	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1304 	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1305 
1306 	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1307 				     &res[num_res++]);
1308 
1309 	/* Context IRQs */
1310 	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1311 	for (i = 0; i < smmu->context_interrupt_count; i++) {
1312 		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1313 		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1314 
1315 		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1316 				       &res[num_res++]);
1317 	}
1318 }
1319 
1320 static void __init arm_smmu_dma_configure(struct device *dev,
1321 					  struct acpi_iort_node *node)
1322 {
1323 	struct acpi_iort_smmu *smmu;
1324 	enum dev_dma_attr attr;
1325 
1326 	/* Retrieve SMMU specific data */
1327 	smmu = (struct acpi_iort_smmu *)node->node_data;
1328 
1329 	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1330 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1331 
1332 	/* We expect the dma masks to be equivalent for SMMU set-ups */
1333 	dev->dma_mask = &dev->coherent_dma_mask;
1334 
1335 	/* Configure DMA for the page table walker */
1336 	acpi_dma_configure(dev, attr);
1337 }
1338 
1339 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1340 {
1341 	struct acpi_iort_pmcg *pmcg;
1342 
1343 	/* Retrieve PMCG specific data */
1344 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1345 
1346 	/*
1347 	 * There are always 2 memory resources.
1348 	 * If the overflow_gsiv is present then add that for a total of 3.
1349 	 */
1350 	return pmcg->overflow_gsiv ? 3 : 2;
1351 }
1352 
1353 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1354 						   struct acpi_iort_node *node)
1355 {
1356 	struct acpi_iort_pmcg *pmcg;
1357 
1358 	/* Retrieve PMCG specific data */
1359 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1360 
1361 	res[0].start = pmcg->page0_base_address;
1362 	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1363 	res[0].flags = IORESOURCE_MEM;
1364 	res[1].start = pmcg->page1_base_address;
1365 	res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1366 	res[1].flags = IORESOURCE_MEM;
1367 
1368 	if (pmcg->overflow_gsiv)
1369 		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1370 				       ACPI_EDGE_SENSITIVE, &res[2]);
1371 }
1372 
1373 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1374 	/* HiSilicon Hip08 Platform */
1375 	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1376 	 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
1377 	{ }
1378 };
1379 
1380 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1381 {
1382 	u32 model;
1383 	int idx;
1384 
1385 	idx = acpi_match_platform_list(pmcg_plat_info);
1386 	if (idx >= 0)
1387 		model = pmcg_plat_info[idx].data;
1388 	else
1389 		model = IORT_SMMU_V3_PMCG_GENERIC;
1390 
1391 	return platform_device_add_data(pdev, &model, sizeof(model));
1392 }
1393 
1394 struct iort_dev_config {
1395 	const char *name;
1396 	int (*dev_init)(struct acpi_iort_node *node);
1397 	void (*dev_dma_configure)(struct device *dev,
1398 				  struct acpi_iort_node *node);
1399 	int (*dev_count_resources)(struct acpi_iort_node *node);
1400 	void (*dev_init_resources)(struct resource *res,
1401 				     struct acpi_iort_node *node);
1402 	int (*dev_set_proximity)(struct device *dev,
1403 				    struct acpi_iort_node *node);
1404 	int (*dev_add_platdata)(struct platform_device *pdev);
1405 };
1406 
1407 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1408 	.name = "arm-smmu-v3",
1409 	.dev_dma_configure = arm_smmu_v3_dma_configure,
1410 	.dev_count_resources = arm_smmu_v3_count_resources,
1411 	.dev_init_resources = arm_smmu_v3_init_resources,
1412 	.dev_set_proximity = arm_smmu_v3_set_proximity,
1413 };
1414 
1415 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1416 	.name = "arm-smmu",
1417 	.dev_dma_configure = arm_smmu_dma_configure,
1418 	.dev_count_resources = arm_smmu_count_resources,
1419 	.dev_init_resources = arm_smmu_init_resources,
1420 };
1421 
1422 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1423 	.name = "arm-smmu-v3-pmcg",
1424 	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1425 	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1426 	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1427 };
1428 
1429 static __init const struct iort_dev_config *iort_get_dev_cfg(
1430 			struct acpi_iort_node *node)
1431 {
1432 	switch (node->type) {
1433 	case ACPI_IORT_NODE_SMMU_V3:
1434 		return &iort_arm_smmu_v3_cfg;
1435 	case ACPI_IORT_NODE_SMMU:
1436 		return &iort_arm_smmu_cfg;
1437 	case ACPI_IORT_NODE_PMCG:
1438 		return &iort_arm_smmu_v3_pmcg_cfg;
1439 	default:
1440 		return NULL;
1441 	}
1442 }
1443 
1444 /**
1445  * iort_add_platform_device() - Allocate a platform device for IORT node
1446  * @node: Pointer to device ACPI IORT node
1447  * @ops: Pointer to IORT device config struct
1448  *
1449  * Returns: 0 on success, <0 failure
1450  */
1451 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1452 					   const struct iort_dev_config *ops)
1453 {
1454 	struct fwnode_handle *fwnode;
1455 	struct platform_device *pdev;
1456 	struct resource *r;
1457 	int ret, count;
1458 
1459 	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1460 	if (!pdev)
1461 		return -ENOMEM;
1462 
1463 	if (ops->dev_set_proximity) {
1464 		ret = ops->dev_set_proximity(&pdev->dev, node);
1465 		if (ret)
1466 			goto dev_put;
1467 	}
1468 
1469 	count = ops->dev_count_resources(node);
1470 
1471 	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1472 	if (!r) {
1473 		ret = -ENOMEM;
1474 		goto dev_put;
1475 	}
1476 
1477 	ops->dev_init_resources(r, node);
1478 
1479 	ret = platform_device_add_resources(pdev, r, count);
1480 	/*
1481 	 * Resources are duplicated in platform_device_add_resources,
1482 	 * free their allocated memory
1483 	 */
1484 	kfree(r);
1485 
1486 	if (ret)
1487 		goto dev_put;
1488 
1489 	/*
1490 	 * Platform devices based on PMCG nodes uses platform_data to
1491 	 * pass the hardware model info to the driver. For others, add
1492 	 * a copy of IORT node pointer to platform_data to be used to
1493 	 * retrieve IORT data information.
1494 	 */
1495 	if (ops->dev_add_platdata)
1496 		ret = ops->dev_add_platdata(pdev);
1497 	else
1498 		ret = platform_device_add_data(pdev, &node, sizeof(node));
1499 
1500 	if (ret)
1501 		goto dev_put;
1502 
1503 	fwnode = iort_get_fwnode(node);
1504 
1505 	if (!fwnode) {
1506 		ret = -ENODEV;
1507 		goto dev_put;
1508 	}
1509 
1510 	pdev->dev.fwnode = fwnode;
1511 
1512 	if (ops->dev_dma_configure)
1513 		ops->dev_dma_configure(&pdev->dev, node);
1514 
1515 	iort_set_device_domain(&pdev->dev, node);
1516 
1517 	ret = platform_device_add(pdev);
1518 	if (ret)
1519 		goto dma_deconfigure;
1520 
1521 	return 0;
1522 
1523 dma_deconfigure:
1524 	arch_teardown_dma_ops(&pdev->dev);
1525 dev_put:
1526 	platform_device_put(pdev);
1527 
1528 	return ret;
1529 }
1530 
1531 #ifdef CONFIG_PCI
1532 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1533 {
1534 	static bool acs_enabled __initdata;
1535 
1536 	if (acs_enabled)
1537 		return;
1538 
1539 	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1540 		struct acpi_iort_node *parent;
1541 		struct acpi_iort_id_mapping *map;
1542 		int i;
1543 
1544 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1545 				   iort_node->mapping_offset);
1546 
1547 		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1548 			if (!map->output_reference)
1549 				continue;
1550 
1551 			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1552 					iort_table,  map->output_reference);
1553 			/*
1554 			 * If we detect a RC->SMMU mapping, make sure
1555 			 * we enable ACS on the system.
1556 			 */
1557 			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1558 				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1559 				pci_request_acs();
1560 				acs_enabled = true;
1561 				return;
1562 			}
1563 		}
1564 	}
1565 }
1566 #else
1567 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1568 #endif
1569 
1570 static void __init iort_init_platform_devices(void)
1571 {
1572 	struct acpi_iort_node *iort_node, *iort_end;
1573 	struct acpi_table_iort *iort;
1574 	struct fwnode_handle *fwnode;
1575 	int i, ret;
1576 	const struct iort_dev_config *ops;
1577 
1578 	/*
1579 	 * iort_table and iort both point to the start of IORT table, but
1580 	 * have different struct types
1581 	 */
1582 	iort = (struct acpi_table_iort *)iort_table;
1583 
1584 	/* Get the first IORT node */
1585 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1586 				 iort->node_offset);
1587 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1588 				iort_table->length);
1589 
1590 	for (i = 0; i < iort->node_count; i++) {
1591 		if (iort_node >= iort_end) {
1592 			pr_err("iort node pointer overflows, bad table\n");
1593 			return;
1594 		}
1595 
1596 		iort_enable_acs(iort_node);
1597 
1598 		ops = iort_get_dev_cfg(iort_node);
1599 		if (ops) {
1600 			fwnode = acpi_alloc_fwnode_static();
1601 			if (!fwnode)
1602 				return;
1603 
1604 			iort_set_fwnode(iort_node, fwnode);
1605 
1606 			ret = iort_add_platform_device(iort_node, ops);
1607 			if (ret) {
1608 				iort_delete_fwnode(iort_node);
1609 				acpi_free_fwnode_static(fwnode);
1610 				return;
1611 			}
1612 		}
1613 
1614 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1615 					 iort_node->length);
1616 	}
1617 }
1618 
1619 void __init acpi_iort_init(void)
1620 {
1621 	acpi_status status;
1622 
1623 	/* iort_table will be used at runtime after the iort init,
1624 	 * so we don't need to call acpi_put_table() to release
1625 	 * the IORT table mapping.
1626 	 */
1627 	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1628 	if (ACPI_FAILURE(status)) {
1629 		if (status != AE_NOT_FOUND) {
1630 			const char *msg = acpi_format_exception(status);
1631 
1632 			pr_err("Failed to get table, %s\n", msg);
1633 		}
1634 
1635 		return;
1636 	}
1637 
1638 	iort_init_platform_devices();
1639 }
1640 
1641 #ifdef CONFIG_ZONE_DMA
1642 /*
1643  * Extract the highest CPU physical address accessible to all DMA masters in
1644  * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1645  */
1646 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1647 {
1648 	phys_addr_t limit = PHYS_ADDR_MAX;
1649 	struct acpi_iort_node *node, *end;
1650 	struct acpi_table_iort *iort;
1651 	acpi_status status;
1652 	int i;
1653 
1654 	if (acpi_disabled)
1655 		return limit;
1656 
1657 	status = acpi_get_table(ACPI_SIG_IORT, 0,
1658 				(struct acpi_table_header **)&iort);
1659 	if (ACPI_FAILURE(status))
1660 		return limit;
1661 
1662 	node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
1663 	end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
1664 
1665 	for (i = 0; i < iort->node_count; i++) {
1666 		if (node >= end)
1667 			break;
1668 
1669 		switch (node->type) {
1670 			struct acpi_iort_named_component *ncomp;
1671 			struct acpi_iort_root_complex *rc;
1672 			phys_addr_t local_limit;
1673 
1674 		case ACPI_IORT_NODE_NAMED_COMPONENT:
1675 			ncomp = (struct acpi_iort_named_component *)node->node_data;
1676 			local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
1677 			limit = min_not_zero(limit, local_limit);
1678 			break;
1679 
1680 		case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
1681 			if (node->revision < 1)
1682 				break;
1683 
1684 			rc = (struct acpi_iort_root_complex *)node->node_data;
1685 			local_limit = DMA_BIT_MASK(rc->memory_address_limit);
1686 			limit = min_not_zero(limit, local_limit);
1687 			break;
1688 		}
1689 		node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
1690 	}
1691 	acpi_put_table(&iort->header);
1692 	return limit;
1693 }
1694 #endif
1695