1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016, Semihalf 4 * Author: Tomasz Nowicki <tn@semihalf.com> 5 * 6 * This file implements early detection/parsing of I/O mapping 7 * reported to OS through firmware via I/O Remapping Table (IORT) 8 * IORT document number: ARM DEN 0049A 9 */ 10 11 #define pr_fmt(fmt) "ACPI: IORT: " fmt 12 13 #include <linux/acpi_iort.h> 14 #include <linux/bitfield.h> 15 #include <linux/iommu.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/pci.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 22 #define IORT_TYPE_MASK(type) (1 << (type)) 23 #define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP) 24 #define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \ 25 (1 << ACPI_IORT_NODE_SMMU_V3)) 26 27 struct iort_its_msi_chip { 28 struct list_head list; 29 struct fwnode_handle *fw_node; 30 phys_addr_t base_addr; 31 u32 translation_id; 32 }; 33 34 struct iort_fwnode { 35 struct list_head list; 36 struct acpi_iort_node *iort_node; 37 struct fwnode_handle *fwnode; 38 }; 39 static LIST_HEAD(iort_fwnode_list); 40 static DEFINE_SPINLOCK(iort_fwnode_lock); 41 42 /** 43 * iort_set_fwnode() - Create iort_fwnode and use it to register 44 * iommu data in the iort_fwnode_list 45 * 46 * @node: IORT table node associated with the IOMMU 47 * @fwnode: fwnode associated with the IORT node 48 * 49 * Returns: 0 on success 50 * <0 on failure 51 */ 52 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node, 53 struct fwnode_handle *fwnode) 54 { 55 struct iort_fwnode *np; 56 57 np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC); 58 59 if (WARN_ON(!np)) 60 return -ENOMEM; 61 62 INIT_LIST_HEAD(&np->list); 63 np->iort_node = iort_node; 64 np->fwnode = fwnode; 65 66 spin_lock(&iort_fwnode_lock); 67 list_add_tail(&np->list, &iort_fwnode_list); 68 spin_unlock(&iort_fwnode_lock); 69 70 return 0; 71 } 72 73 /** 74 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node 75 * 76 * @node: IORT table node to be looked-up 77 * 78 * Returns: fwnode_handle pointer on success, NULL on failure 79 */ 80 static inline struct fwnode_handle *iort_get_fwnode( 81 struct acpi_iort_node *node) 82 { 83 struct iort_fwnode *curr; 84 struct fwnode_handle *fwnode = NULL; 85 86 spin_lock(&iort_fwnode_lock); 87 list_for_each_entry(curr, &iort_fwnode_list, list) { 88 if (curr->iort_node == node) { 89 fwnode = curr->fwnode; 90 break; 91 } 92 } 93 spin_unlock(&iort_fwnode_lock); 94 95 return fwnode; 96 } 97 98 /** 99 * iort_delete_fwnode() - Delete fwnode associated with an IORT node 100 * 101 * @node: IORT table node associated with fwnode to delete 102 */ 103 static inline void iort_delete_fwnode(struct acpi_iort_node *node) 104 { 105 struct iort_fwnode *curr, *tmp; 106 107 spin_lock(&iort_fwnode_lock); 108 list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) { 109 if (curr->iort_node == node) { 110 list_del(&curr->list); 111 kfree(curr); 112 break; 113 } 114 } 115 spin_unlock(&iort_fwnode_lock); 116 } 117 118 /** 119 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode 120 * 121 * @fwnode: fwnode associated with device to be looked-up 122 * 123 * Returns: iort_node pointer on success, NULL on failure 124 */ 125 static inline struct acpi_iort_node *iort_get_iort_node( 126 struct fwnode_handle *fwnode) 127 { 128 struct iort_fwnode *curr; 129 struct acpi_iort_node *iort_node = NULL; 130 131 spin_lock(&iort_fwnode_lock); 132 list_for_each_entry(curr, &iort_fwnode_list, list) { 133 if (curr->fwnode == fwnode) { 134 iort_node = curr->iort_node; 135 break; 136 } 137 } 138 spin_unlock(&iort_fwnode_lock); 139 140 return iort_node; 141 } 142 143 typedef acpi_status (*iort_find_node_callback) 144 (struct acpi_iort_node *node, void *context); 145 146 /* Root pointer to the mapped IORT table */ 147 static struct acpi_table_header *iort_table; 148 149 static LIST_HEAD(iort_msi_chip_list); 150 static DEFINE_SPINLOCK(iort_msi_chip_lock); 151 152 /** 153 * iort_register_domain_token() - register domain token along with related 154 * ITS ID and base address to the list from where we can get it back later on. 155 * @trans_id: ITS ID. 156 * @base: ITS base address. 157 * @fw_node: Domain token. 158 * 159 * Returns: 0 on success, -ENOMEM if no memory when allocating list element 160 */ 161 int iort_register_domain_token(int trans_id, phys_addr_t base, 162 struct fwnode_handle *fw_node) 163 { 164 struct iort_its_msi_chip *its_msi_chip; 165 166 its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL); 167 if (!its_msi_chip) 168 return -ENOMEM; 169 170 its_msi_chip->fw_node = fw_node; 171 its_msi_chip->translation_id = trans_id; 172 its_msi_chip->base_addr = base; 173 174 spin_lock(&iort_msi_chip_lock); 175 list_add(&its_msi_chip->list, &iort_msi_chip_list); 176 spin_unlock(&iort_msi_chip_lock); 177 178 return 0; 179 } 180 181 /** 182 * iort_deregister_domain_token() - Deregister domain token based on ITS ID 183 * @trans_id: ITS ID. 184 * 185 * Returns: none. 186 */ 187 void iort_deregister_domain_token(int trans_id) 188 { 189 struct iort_its_msi_chip *its_msi_chip, *t; 190 191 spin_lock(&iort_msi_chip_lock); 192 list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) { 193 if (its_msi_chip->translation_id == trans_id) { 194 list_del(&its_msi_chip->list); 195 kfree(its_msi_chip); 196 break; 197 } 198 } 199 spin_unlock(&iort_msi_chip_lock); 200 } 201 202 /** 203 * iort_find_domain_token() - Find domain token based on given ITS ID 204 * @trans_id: ITS ID. 205 * 206 * Returns: domain token when find on the list, NULL otherwise 207 */ 208 struct fwnode_handle *iort_find_domain_token(int trans_id) 209 { 210 struct fwnode_handle *fw_node = NULL; 211 struct iort_its_msi_chip *its_msi_chip; 212 213 spin_lock(&iort_msi_chip_lock); 214 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { 215 if (its_msi_chip->translation_id == trans_id) { 216 fw_node = its_msi_chip->fw_node; 217 break; 218 } 219 } 220 spin_unlock(&iort_msi_chip_lock); 221 222 return fw_node; 223 } 224 225 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type, 226 iort_find_node_callback callback, 227 void *context) 228 { 229 struct acpi_iort_node *iort_node, *iort_end; 230 struct acpi_table_iort *iort; 231 int i; 232 233 if (!iort_table) 234 return NULL; 235 236 /* Get the first IORT node */ 237 iort = (struct acpi_table_iort *)iort_table; 238 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 239 iort->node_offset); 240 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 241 iort_table->length); 242 243 for (i = 0; i < iort->node_count; i++) { 244 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND, 245 "IORT node pointer overflows, bad table!\n")) 246 return NULL; 247 248 if (iort_node->type == type && 249 ACPI_SUCCESS(callback(iort_node, context))) 250 return iort_node; 251 252 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 253 iort_node->length); 254 } 255 256 return NULL; 257 } 258 259 static acpi_status iort_match_node_callback(struct acpi_iort_node *node, 260 void *context) 261 { 262 struct device *dev = context; 263 acpi_status status = AE_NOT_FOUND; 264 265 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) { 266 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 267 struct acpi_device *adev = to_acpi_device_node(dev->fwnode); 268 struct acpi_iort_named_component *ncomp; 269 270 if (!adev) 271 goto out; 272 273 status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf); 274 if (ACPI_FAILURE(status)) { 275 dev_warn(dev, "Can't get device full path name\n"); 276 goto out; 277 } 278 279 ncomp = (struct acpi_iort_named_component *)node->node_data; 280 status = !strcmp(ncomp->device_name, buf.pointer) ? 281 AE_OK : AE_NOT_FOUND; 282 acpi_os_free(buf.pointer); 283 } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 284 struct acpi_iort_root_complex *pci_rc; 285 struct pci_bus *bus; 286 287 bus = to_pci_bus(dev); 288 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 289 290 /* 291 * It is assumed that PCI segment numbers maps one-to-one 292 * with root complexes. Each segment number can represent only 293 * one root complex. 294 */ 295 status = pci_rc->pci_segment_number == pci_domain_nr(bus) ? 296 AE_OK : AE_NOT_FOUND; 297 } 298 out: 299 return status; 300 } 301 302 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in, 303 u32 *rid_out, bool check_overlap) 304 { 305 /* Single mapping does not care for input id */ 306 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { 307 if (type == ACPI_IORT_NODE_NAMED_COMPONENT || 308 type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 309 *rid_out = map->output_base; 310 return 0; 311 } 312 313 pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n", 314 map, type); 315 return -ENXIO; 316 } 317 318 if (rid_in < map->input_base || 319 (rid_in > map->input_base + map->id_count)) 320 return -ENXIO; 321 322 if (check_overlap) { 323 /* 324 * We already found a mapping for this input ID at the end of 325 * another region. If it coincides with the start of this 326 * region, we assume the prior match was due to the off-by-1 327 * issue mentioned below, and allow it to be superseded. 328 * Otherwise, things are *really* broken, and we just disregard 329 * duplicate matches entirely to retain compatibility. 330 */ 331 pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n", 332 map, rid_in); 333 if (rid_in != map->input_base) 334 return -ENXIO; 335 336 pr_err(FW_BUG "applying workaround.\n"); 337 } 338 339 *rid_out = map->output_base + (rid_in - map->input_base); 340 341 /* 342 * Due to confusion regarding the meaning of the id_count field (which 343 * carries the number of IDs *minus 1*), we may have to disregard this 344 * match if it is at the end of the range, and overlaps with the start 345 * of another one. 346 */ 347 if (map->id_count > 0 && rid_in == map->input_base + map->id_count) 348 return -EAGAIN; 349 return 0; 350 } 351 352 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node, 353 u32 *id_out, int index) 354 { 355 struct acpi_iort_node *parent; 356 struct acpi_iort_id_mapping *map; 357 358 if (!node->mapping_offset || !node->mapping_count || 359 index >= node->mapping_count) 360 return NULL; 361 362 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 363 node->mapping_offset + index * sizeof(*map)); 364 365 /* Firmware bug! */ 366 if (!map->output_reference) { 367 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", 368 node, node->type); 369 return NULL; 370 } 371 372 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 373 map->output_reference); 374 375 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { 376 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT || 377 node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX || 378 node->type == ACPI_IORT_NODE_SMMU_V3 || 379 node->type == ACPI_IORT_NODE_PMCG) { 380 *id_out = map->output_base; 381 return parent; 382 } 383 } 384 385 return NULL; 386 } 387 388 static int iort_get_id_mapping_index(struct acpi_iort_node *node) 389 { 390 struct acpi_iort_smmu_v3 *smmu; 391 struct acpi_iort_pmcg *pmcg; 392 393 switch (node->type) { 394 case ACPI_IORT_NODE_SMMU_V3: 395 /* 396 * SMMUv3 dev ID mapping index was introduced in revision 1 397 * table, not available in revision 0 398 */ 399 if (node->revision < 1) 400 return -EINVAL; 401 402 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 403 /* 404 * ID mapping index is only ignored if all interrupts are 405 * GSIV based 406 */ 407 if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv 408 && smmu->sync_gsiv) 409 return -EINVAL; 410 411 if (smmu->id_mapping_index >= node->mapping_count) { 412 pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n", 413 node, node->type); 414 return -EINVAL; 415 } 416 417 return smmu->id_mapping_index; 418 case ACPI_IORT_NODE_PMCG: 419 pmcg = (struct acpi_iort_pmcg *)node->node_data; 420 if (pmcg->overflow_gsiv || node->mapping_count == 0) 421 return -EINVAL; 422 423 return 0; 424 default: 425 return -EINVAL; 426 } 427 } 428 429 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node, 430 u32 id_in, u32 *id_out, 431 u8 type_mask) 432 { 433 u32 id = id_in; 434 435 /* Parse the ID mapping tree to find specified node type */ 436 while (node) { 437 struct acpi_iort_id_mapping *map; 438 int i, index, rc = 0; 439 u32 out_ref = 0, map_id = id; 440 441 if (IORT_TYPE_MASK(node->type) & type_mask) { 442 if (id_out) 443 *id_out = id; 444 return node; 445 } 446 447 if (!node->mapping_offset || !node->mapping_count) 448 goto fail_map; 449 450 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 451 node->mapping_offset); 452 453 /* Firmware bug! */ 454 if (!map->output_reference) { 455 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", 456 node, node->type); 457 goto fail_map; 458 } 459 460 /* 461 * Get the special ID mapping index (if any) and skip its 462 * associated ID map to prevent erroneous multi-stage 463 * IORT ID translations. 464 */ 465 index = iort_get_id_mapping_index(node); 466 467 /* Do the ID translation */ 468 for (i = 0; i < node->mapping_count; i++, map++) { 469 /* if it is special mapping index, skip it */ 470 if (i == index) 471 continue; 472 473 rc = iort_id_map(map, node->type, map_id, &id, out_ref); 474 if (!rc) 475 break; 476 if (rc == -EAGAIN) 477 out_ref = map->output_reference; 478 } 479 480 if (i == node->mapping_count && !out_ref) 481 goto fail_map; 482 483 node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 484 rc ? out_ref : map->output_reference); 485 } 486 487 fail_map: 488 /* Map input ID to output ID unchanged on mapping failure */ 489 if (id_out) 490 *id_out = id_in; 491 492 return NULL; 493 } 494 495 static struct acpi_iort_node *iort_node_map_platform_id( 496 struct acpi_iort_node *node, u32 *id_out, u8 type_mask, 497 int index) 498 { 499 struct acpi_iort_node *parent; 500 u32 id; 501 502 /* step 1: retrieve the initial dev id */ 503 parent = iort_node_get_id(node, &id, index); 504 if (!parent) 505 return NULL; 506 507 /* 508 * optional step 2: map the initial dev id if its parent is not 509 * the target type we want, map it again for the use cases such 510 * as NC (named component) -> SMMU -> ITS. If the type is matched, 511 * return the initial dev id and its parent pointer directly. 512 */ 513 if (!(IORT_TYPE_MASK(parent->type) & type_mask)) 514 parent = iort_node_map_id(parent, id, id_out, type_mask); 515 else 516 if (id_out) 517 *id_out = id; 518 519 return parent; 520 } 521 522 static struct acpi_iort_node *iort_find_dev_node(struct device *dev) 523 { 524 struct pci_bus *pbus; 525 526 if (!dev_is_pci(dev)) { 527 struct acpi_iort_node *node; 528 /* 529 * scan iort_fwnode_list to see if it's an iort platform 530 * device (such as SMMU, PMCG),its iort node already cached 531 * and associated with fwnode when iort platform devices 532 * were initialized. 533 */ 534 node = iort_get_iort_node(dev->fwnode); 535 if (node) 536 return node; 537 538 /* 539 * if not, then it should be a platform device defined in 540 * DSDT/SSDT (with Named Component node in IORT) 541 */ 542 return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 543 iort_match_node_callback, dev); 544 } 545 546 /* Find a PCI root bus */ 547 pbus = to_pci_dev(dev)->bus; 548 while (!pci_is_root_bus(pbus)) 549 pbus = pbus->parent; 550 551 return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 552 iort_match_node_callback, &pbus->dev); 553 } 554 555 /** 556 * iort_msi_map_rid() - Map a MSI requester ID for a device 557 * @dev: The device for which the mapping is to be done. 558 * @req_id: The device requester ID. 559 * 560 * Returns: mapped MSI RID on success, input requester ID otherwise 561 */ 562 u32 iort_msi_map_rid(struct device *dev, u32 req_id) 563 { 564 struct acpi_iort_node *node; 565 u32 dev_id; 566 567 node = iort_find_dev_node(dev); 568 if (!node) 569 return req_id; 570 571 iort_node_map_id(node, req_id, &dev_id, IORT_MSI_TYPE); 572 return dev_id; 573 } 574 575 /** 576 * iort_pmsi_get_dev_id() - Get the device id for a device 577 * @dev: The device for which the mapping is to be done. 578 * @dev_id: The device ID found. 579 * 580 * Returns: 0 for successful find a dev id, -ENODEV on error 581 */ 582 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id) 583 { 584 int i, index; 585 struct acpi_iort_node *node; 586 587 node = iort_find_dev_node(dev); 588 if (!node) 589 return -ENODEV; 590 591 index = iort_get_id_mapping_index(node); 592 /* if there is a valid index, go get the dev_id directly */ 593 if (index >= 0) { 594 if (iort_node_get_id(node, dev_id, index)) 595 return 0; 596 } else { 597 for (i = 0; i < node->mapping_count; i++) { 598 if (iort_node_map_platform_id(node, dev_id, 599 IORT_MSI_TYPE, i)) 600 return 0; 601 } 602 } 603 604 return -ENODEV; 605 } 606 607 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base) 608 { 609 struct iort_its_msi_chip *its_msi_chip; 610 int ret = -ENODEV; 611 612 spin_lock(&iort_msi_chip_lock); 613 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { 614 if (its_msi_chip->translation_id == its_id) { 615 *base = its_msi_chip->base_addr; 616 ret = 0; 617 break; 618 } 619 } 620 spin_unlock(&iort_msi_chip_lock); 621 622 return ret; 623 } 624 625 /** 626 * iort_dev_find_its_id() - Find the ITS identifier for a device 627 * @dev: The device. 628 * @req_id: Device's requester ID 629 * @idx: Index of the ITS identifier list. 630 * @its_id: ITS identifier. 631 * 632 * Returns: 0 on success, appropriate error value otherwise 633 */ 634 static int iort_dev_find_its_id(struct device *dev, u32 req_id, 635 unsigned int idx, int *its_id) 636 { 637 struct acpi_iort_its_group *its; 638 struct acpi_iort_node *node; 639 640 node = iort_find_dev_node(dev); 641 if (!node) 642 return -ENXIO; 643 644 node = iort_node_map_id(node, req_id, NULL, IORT_MSI_TYPE); 645 if (!node) 646 return -ENXIO; 647 648 /* Move to ITS specific data */ 649 its = (struct acpi_iort_its_group *)node->node_data; 650 if (idx >= its->its_count) { 651 dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n", 652 idx, its->its_count); 653 return -ENXIO; 654 } 655 656 *its_id = its->identifiers[idx]; 657 return 0; 658 } 659 660 /** 661 * iort_get_device_domain() - Find MSI domain related to a device 662 * @dev: The device. 663 * @req_id: Requester ID for the device. 664 * 665 * Returns: the MSI domain for this device, NULL otherwise 666 */ 667 struct irq_domain *iort_get_device_domain(struct device *dev, u32 req_id) 668 { 669 struct fwnode_handle *handle; 670 int its_id; 671 672 if (iort_dev_find_its_id(dev, req_id, 0, &its_id)) 673 return NULL; 674 675 handle = iort_find_domain_token(its_id); 676 if (!handle) 677 return NULL; 678 679 return irq_find_matching_fwnode(handle, DOMAIN_BUS_PCI_MSI); 680 } 681 682 static void iort_set_device_domain(struct device *dev, 683 struct acpi_iort_node *node) 684 { 685 struct acpi_iort_its_group *its; 686 struct acpi_iort_node *msi_parent; 687 struct acpi_iort_id_mapping *map; 688 struct fwnode_handle *iort_fwnode; 689 struct irq_domain *domain; 690 int index; 691 692 index = iort_get_id_mapping_index(node); 693 if (index < 0) 694 return; 695 696 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 697 node->mapping_offset + index * sizeof(*map)); 698 699 /* Firmware bug! */ 700 if (!map->output_reference || 701 !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) { 702 pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n", 703 node, node->type); 704 return; 705 } 706 707 msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 708 map->output_reference); 709 710 if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP) 711 return; 712 713 /* Move to ITS specific data */ 714 its = (struct acpi_iort_its_group *)msi_parent->node_data; 715 716 iort_fwnode = iort_find_domain_token(its->identifiers[0]); 717 if (!iort_fwnode) 718 return; 719 720 domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); 721 if (domain) 722 dev_set_msi_domain(dev, domain); 723 } 724 725 /** 726 * iort_get_platform_device_domain() - Find MSI domain related to a 727 * platform device 728 * @dev: the dev pointer associated with the platform device 729 * 730 * Returns: the MSI domain for this device, NULL otherwise 731 */ 732 static struct irq_domain *iort_get_platform_device_domain(struct device *dev) 733 { 734 struct acpi_iort_node *node, *msi_parent = NULL; 735 struct fwnode_handle *iort_fwnode; 736 struct acpi_iort_its_group *its; 737 int i; 738 739 /* find its associated iort node */ 740 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 741 iort_match_node_callback, dev); 742 if (!node) 743 return NULL; 744 745 /* then find its msi parent node */ 746 for (i = 0; i < node->mapping_count; i++) { 747 msi_parent = iort_node_map_platform_id(node, NULL, 748 IORT_MSI_TYPE, i); 749 if (msi_parent) 750 break; 751 } 752 753 if (!msi_parent) 754 return NULL; 755 756 /* Move to ITS specific data */ 757 its = (struct acpi_iort_its_group *)msi_parent->node_data; 758 759 iort_fwnode = iort_find_domain_token(its->identifiers[0]); 760 if (!iort_fwnode) 761 return NULL; 762 763 return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); 764 } 765 766 void acpi_configure_pmsi_domain(struct device *dev) 767 { 768 struct irq_domain *msi_domain; 769 770 msi_domain = iort_get_platform_device_domain(dev); 771 if (msi_domain) 772 dev_set_msi_domain(dev, msi_domain); 773 } 774 775 #ifdef CONFIG_IOMMU_API 776 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev) 777 { 778 struct acpi_iort_node *iommu; 779 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 780 781 iommu = iort_get_iort_node(fwspec->iommu_fwnode); 782 783 if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) { 784 struct acpi_iort_smmu_v3 *smmu; 785 786 smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data; 787 if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X) 788 return iommu; 789 } 790 791 return NULL; 792 } 793 794 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev) 795 { 796 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 797 798 return (fwspec && fwspec->ops) ? fwspec->ops : NULL; 799 } 800 801 static inline int iort_add_device_replay(const struct iommu_ops *ops, 802 struct device *dev) 803 { 804 int err = 0; 805 806 if (dev->bus && !device_iommu_mapped(dev)) 807 err = iommu_probe_device(dev); 808 809 return err; 810 } 811 812 /** 813 * iort_iommu_msi_get_resv_regions - Reserved region driver helper 814 * @dev: Device from iommu_get_resv_regions() 815 * @head: Reserved region list from iommu_get_resv_regions() 816 * 817 * Returns: Number of msi reserved regions on success (0 if platform 818 * doesn't require the reservation or no associated msi regions), 819 * appropriate error value otherwise. The ITS interrupt translation 820 * spaces (ITS_base + SZ_64K, SZ_64K) associated with the device 821 * are the msi reserved regions. 822 */ 823 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head) 824 { 825 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 826 struct acpi_iort_its_group *its; 827 struct acpi_iort_node *iommu_node, *its_node = NULL; 828 int i, resv = 0; 829 830 iommu_node = iort_get_msi_resv_iommu(dev); 831 if (!iommu_node) 832 return 0; 833 834 /* 835 * Current logic to reserve ITS regions relies on HW topologies 836 * where a given PCI or named component maps its IDs to only one 837 * ITS group; if a PCI or named component can map its IDs to 838 * different ITS groups through IORT mappings this function has 839 * to be reworked to ensure we reserve regions for all ITS groups 840 * a given PCI or named component may map IDs to. 841 */ 842 843 for (i = 0; i < fwspec->num_ids; i++) { 844 its_node = iort_node_map_id(iommu_node, 845 fwspec->ids[i], 846 NULL, IORT_MSI_TYPE); 847 if (its_node) 848 break; 849 } 850 851 if (!its_node) 852 return 0; 853 854 /* Move to ITS specific data */ 855 its = (struct acpi_iort_its_group *)its_node->node_data; 856 857 for (i = 0; i < its->its_count; i++) { 858 phys_addr_t base; 859 860 if (!iort_find_its_base(its->identifiers[i], &base)) { 861 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 862 struct iommu_resv_region *region; 863 864 region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K, 865 prot, IOMMU_RESV_MSI); 866 if (region) { 867 list_add_tail(®ion->list, head); 868 resv++; 869 } 870 } 871 } 872 873 return (resv == its->its_count) ? resv : -ENODEV; 874 } 875 876 static inline bool iort_iommu_driver_enabled(u8 type) 877 { 878 switch (type) { 879 case ACPI_IORT_NODE_SMMU_V3: 880 return IS_ENABLED(CONFIG_ARM_SMMU_V3); 881 case ACPI_IORT_NODE_SMMU: 882 return IS_ENABLED(CONFIG_ARM_SMMU); 883 default: 884 pr_warn("IORT node type %u does not describe an SMMU\n", type); 885 return false; 886 } 887 } 888 889 static int arm_smmu_iort_xlate(struct device *dev, u32 streamid, 890 struct fwnode_handle *fwnode, 891 const struct iommu_ops *ops) 892 { 893 int ret = iommu_fwspec_init(dev, fwnode, ops); 894 895 if (!ret) 896 ret = iommu_fwspec_add_ids(dev, &streamid, 1); 897 898 return ret; 899 } 900 901 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node) 902 { 903 struct acpi_iort_root_complex *pci_rc; 904 905 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 906 return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED; 907 } 908 909 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node, 910 u32 streamid) 911 { 912 const struct iommu_ops *ops; 913 struct fwnode_handle *iort_fwnode; 914 915 if (!node) 916 return -ENODEV; 917 918 iort_fwnode = iort_get_fwnode(node); 919 if (!iort_fwnode) 920 return -ENODEV; 921 922 /* 923 * If the ops look-up fails, this means that either 924 * the SMMU drivers have not been probed yet or that 925 * the SMMU drivers are not built in the kernel; 926 * Depending on whether the SMMU drivers are built-in 927 * in the kernel or not, defer the IOMMU configuration 928 * or just abort it. 929 */ 930 ops = iommu_ops_from_fwnode(iort_fwnode); 931 if (!ops) 932 return iort_iommu_driver_enabled(node->type) ? 933 -EPROBE_DEFER : -ENODEV; 934 935 return arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops); 936 } 937 938 struct iort_pci_alias_info { 939 struct device *dev; 940 struct acpi_iort_node *node; 941 }; 942 943 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data) 944 { 945 struct iort_pci_alias_info *info = data; 946 struct acpi_iort_node *parent; 947 u32 streamid; 948 949 parent = iort_node_map_id(info->node, alias, &streamid, 950 IORT_IOMMU_TYPE); 951 return iort_iommu_xlate(info->dev, parent, streamid); 952 } 953 954 static void iort_named_component_init(struct device *dev, 955 struct acpi_iort_node *node) 956 { 957 struct acpi_iort_named_component *nc; 958 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 959 960 if (!fwspec) 961 return; 962 963 nc = (struct acpi_iort_named_component *)node->node_data; 964 fwspec->num_pasid_bits = FIELD_GET(ACPI_IORT_NC_PASID_BITS, 965 nc->node_flags); 966 } 967 968 /** 969 * iort_iommu_configure - Set-up IOMMU configuration for a device. 970 * 971 * @dev: device to configure 972 * 973 * Returns: iommu_ops pointer on configuration success 974 * NULL on configuration failure 975 */ 976 const struct iommu_ops *iort_iommu_configure(struct device *dev) 977 { 978 struct acpi_iort_node *node, *parent; 979 const struct iommu_ops *ops; 980 u32 streamid = 0; 981 int err = -ENODEV; 982 983 /* 984 * If we already translated the fwspec there 985 * is nothing left to do, return the iommu_ops. 986 */ 987 ops = iort_fwspec_iommu_ops(dev); 988 if (ops) 989 return ops; 990 991 if (dev_is_pci(dev)) { 992 struct iommu_fwspec *fwspec; 993 struct pci_bus *bus = to_pci_dev(dev)->bus; 994 struct iort_pci_alias_info info = { .dev = dev }; 995 996 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 997 iort_match_node_callback, &bus->dev); 998 if (!node) 999 return NULL; 1000 1001 info.node = node; 1002 err = pci_for_each_dma_alias(to_pci_dev(dev), 1003 iort_pci_iommu_init, &info); 1004 1005 fwspec = dev_iommu_fwspec_get(dev); 1006 if (fwspec && iort_pci_rc_supports_ats(node)) 1007 fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS; 1008 } else { 1009 int i = 0; 1010 1011 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 1012 iort_match_node_callback, dev); 1013 if (!node) 1014 return NULL; 1015 1016 do { 1017 parent = iort_node_map_platform_id(node, &streamid, 1018 IORT_IOMMU_TYPE, 1019 i++); 1020 1021 if (parent) 1022 err = iort_iommu_xlate(dev, parent, streamid); 1023 } while (parent && !err); 1024 1025 if (!err) 1026 iort_named_component_init(dev, node); 1027 } 1028 1029 /* 1030 * If we have reason to believe the IOMMU driver missed the initial 1031 * add_device callback for dev, replay it to get things in order. 1032 */ 1033 if (!err) { 1034 ops = iort_fwspec_iommu_ops(dev); 1035 err = iort_add_device_replay(ops, dev); 1036 } 1037 1038 /* Ignore all other errors apart from EPROBE_DEFER */ 1039 if (err == -EPROBE_DEFER) { 1040 ops = ERR_PTR(err); 1041 } else if (err) { 1042 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1043 ops = NULL; 1044 } 1045 1046 return ops; 1047 } 1048 #else 1049 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev) 1050 { return NULL; } 1051 static inline int iort_add_device_replay(const struct iommu_ops *ops, 1052 struct device *dev) 1053 { return 0; } 1054 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head) 1055 { return 0; } 1056 const struct iommu_ops *iort_iommu_configure(struct device *dev) 1057 { return NULL; } 1058 #endif 1059 1060 static int nc_dma_get_range(struct device *dev, u64 *size) 1061 { 1062 struct acpi_iort_node *node; 1063 struct acpi_iort_named_component *ncomp; 1064 1065 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 1066 iort_match_node_callback, dev); 1067 if (!node) 1068 return -ENODEV; 1069 1070 ncomp = (struct acpi_iort_named_component *)node->node_data; 1071 1072 *size = ncomp->memory_address_limit >= 64 ? U64_MAX : 1073 1ULL<<ncomp->memory_address_limit; 1074 1075 return 0; 1076 } 1077 1078 static int rc_dma_get_range(struct device *dev, u64 *size) 1079 { 1080 struct acpi_iort_node *node; 1081 struct acpi_iort_root_complex *rc; 1082 struct pci_bus *pbus = to_pci_dev(dev)->bus; 1083 1084 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 1085 iort_match_node_callback, &pbus->dev); 1086 if (!node || node->revision < 1) 1087 return -ENODEV; 1088 1089 rc = (struct acpi_iort_root_complex *)node->node_data; 1090 1091 *size = rc->memory_address_limit >= 64 ? U64_MAX : 1092 1ULL<<rc->memory_address_limit; 1093 1094 return 0; 1095 } 1096 1097 /** 1098 * iort_dma_setup() - Set-up device DMA parameters. 1099 * 1100 * @dev: device to configure 1101 * @dma_addr: device DMA address result pointer 1102 * @size: DMA range size result pointer 1103 */ 1104 void iort_dma_setup(struct device *dev, u64 *dma_addr, u64 *dma_size) 1105 { 1106 u64 end, mask, dmaaddr = 0, size = 0, offset = 0; 1107 int ret; 1108 1109 /* 1110 * If @dev is expected to be DMA-capable then the bus code that created 1111 * it should have initialised its dma_mask pointer by this point. For 1112 * now, we'll continue the legacy behaviour of coercing it to the 1113 * coherent mask if not, but we'll no longer do so quietly. 1114 */ 1115 if (!dev->dma_mask) { 1116 dev_warn(dev, "DMA mask not set\n"); 1117 dev->dma_mask = &dev->coherent_dma_mask; 1118 } 1119 1120 if (dev->coherent_dma_mask) 1121 size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1); 1122 else 1123 size = 1ULL << 32; 1124 1125 ret = acpi_dma_get_range(dev, &dmaaddr, &offset, &size); 1126 if (ret == -ENODEV) 1127 ret = dev_is_pci(dev) ? rc_dma_get_range(dev, &size) 1128 : nc_dma_get_range(dev, &size); 1129 1130 if (!ret) { 1131 /* 1132 * Limit coherent and dma mask based on size retrieved from 1133 * firmware. 1134 */ 1135 end = dmaaddr + size - 1; 1136 mask = DMA_BIT_MASK(ilog2(end) + 1); 1137 dev->bus_dma_limit = end; 1138 dev->coherent_dma_mask = mask; 1139 *dev->dma_mask = mask; 1140 } 1141 1142 *dma_addr = dmaaddr; 1143 *dma_size = size; 1144 1145 dev->dma_pfn_offset = PFN_DOWN(offset); 1146 dev_dbg(dev, "dma_pfn_offset(%#08llx)\n", offset); 1147 } 1148 1149 static void __init acpi_iort_register_irq(int hwirq, const char *name, 1150 int trigger, 1151 struct resource *res) 1152 { 1153 int irq = acpi_register_gsi(NULL, hwirq, trigger, 1154 ACPI_ACTIVE_HIGH); 1155 1156 if (irq <= 0) { 1157 pr_err("could not register gsi hwirq %d name [%s]\n", hwirq, 1158 name); 1159 return; 1160 } 1161 1162 res->start = irq; 1163 res->end = irq; 1164 res->flags = IORESOURCE_IRQ; 1165 res->name = name; 1166 } 1167 1168 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node) 1169 { 1170 struct acpi_iort_smmu_v3 *smmu; 1171 /* Always present mem resource */ 1172 int num_res = 1; 1173 1174 /* Retrieve SMMUv3 specific data */ 1175 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1176 1177 if (smmu->event_gsiv) 1178 num_res++; 1179 1180 if (smmu->pri_gsiv) 1181 num_res++; 1182 1183 if (smmu->gerr_gsiv) 1184 num_res++; 1185 1186 if (smmu->sync_gsiv) 1187 num_res++; 1188 1189 return num_res; 1190 } 1191 1192 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu) 1193 { 1194 /* 1195 * Cavium ThunderX2 implementation doesn't not support unique 1196 * irq line. Use single irq line for all the SMMUv3 interrupts. 1197 */ 1198 if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) 1199 return false; 1200 1201 /* 1202 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking 1203 * SPI numbers here. 1204 */ 1205 return smmu->event_gsiv == smmu->pri_gsiv && 1206 smmu->event_gsiv == smmu->gerr_gsiv && 1207 smmu->event_gsiv == smmu->sync_gsiv; 1208 } 1209 1210 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu) 1211 { 1212 /* 1213 * Override the size, for Cavium ThunderX2 implementation 1214 * which doesn't support the page 1 SMMU register space. 1215 */ 1216 if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) 1217 return SZ_64K; 1218 1219 return SZ_128K; 1220 } 1221 1222 static void __init arm_smmu_v3_init_resources(struct resource *res, 1223 struct acpi_iort_node *node) 1224 { 1225 struct acpi_iort_smmu_v3 *smmu; 1226 int num_res = 0; 1227 1228 /* Retrieve SMMUv3 specific data */ 1229 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1230 1231 res[num_res].start = smmu->base_address; 1232 res[num_res].end = smmu->base_address + 1233 arm_smmu_v3_resource_size(smmu) - 1; 1234 res[num_res].flags = IORESOURCE_MEM; 1235 1236 num_res++; 1237 if (arm_smmu_v3_is_combined_irq(smmu)) { 1238 if (smmu->event_gsiv) 1239 acpi_iort_register_irq(smmu->event_gsiv, "combined", 1240 ACPI_EDGE_SENSITIVE, 1241 &res[num_res++]); 1242 } else { 1243 1244 if (smmu->event_gsiv) 1245 acpi_iort_register_irq(smmu->event_gsiv, "eventq", 1246 ACPI_EDGE_SENSITIVE, 1247 &res[num_res++]); 1248 1249 if (smmu->pri_gsiv) 1250 acpi_iort_register_irq(smmu->pri_gsiv, "priq", 1251 ACPI_EDGE_SENSITIVE, 1252 &res[num_res++]); 1253 1254 if (smmu->gerr_gsiv) 1255 acpi_iort_register_irq(smmu->gerr_gsiv, "gerror", 1256 ACPI_EDGE_SENSITIVE, 1257 &res[num_res++]); 1258 1259 if (smmu->sync_gsiv) 1260 acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync", 1261 ACPI_EDGE_SENSITIVE, 1262 &res[num_res++]); 1263 } 1264 } 1265 1266 static void __init arm_smmu_v3_dma_configure(struct device *dev, 1267 struct acpi_iort_node *node) 1268 { 1269 struct acpi_iort_smmu_v3 *smmu; 1270 enum dev_dma_attr attr; 1271 1272 /* Retrieve SMMUv3 specific data */ 1273 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1274 1275 attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ? 1276 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; 1277 1278 /* We expect the dma masks to be equivalent for all SMMUv3 set-ups */ 1279 dev->dma_mask = &dev->coherent_dma_mask; 1280 1281 /* Configure DMA for the page table walker */ 1282 acpi_dma_configure(dev, attr); 1283 } 1284 1285 #if defined(CONFIG_ACPI_NUMA) 1286 /* 1287 * set numa proximity domain for smmuv3 device 1288 */ 1289 static int __init arm_smmu_v3_set_proximity(struct device *dev, 1290 struct acpi_iort_node *node) 1291 { 1292 struct acpi_iort_smmu_v3 *smmu; 1293 1294 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1295 if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) { 1296 int dev_node = acpi_map_pxm_to_node(smmu->pxm); 1297 1298 if (dev_node != NUMA_NO_NODE && !node_online(dev_node)) 1299 return -EINVAL; 1300 1301 set_dev_node(dev, dev_node); 1302 pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n", 1303 smmu->base_address, 1304 smmu->pxm); 1305 } 1306 return 0; 1307 } 1308 #else 1309 #define arm_smmu_v3_set_proximity NULL 1310 #endif 1311 1312 static int __init arm_smmu_count_resources(struct acpi_iort_node *node) 1313 { 1314 struct acpi_iort_smmu *smmu; 1315 1316 /* Retrieve SMMU specific data */ 1317 smmu = (struct acpi_iort_smmu *)node->node_data; 1318 1319 /* 1320 * Only consider the global fault interrupt and ignore the 1321 * configuration access interrupt. 1322 * 1323 * MMIO address and global fault interrupt resources are always 1324 * present so add them to the context interrupt count as a static 1325 * value. 1326 */ 1327 return smmu->context_interrupt_count + 2; 1328 } 1329 1330 static void __init arm_smmu_init_resources(struct resource *res, 1331 struct acpi_iort_node *node) 1332 { 1333 struct acpi_iort_smmu *smmu; 1334 int i, hw_irq, trigger, num_res = 0; 1335 u64 *ctx_irq, *glb_irq; 1336 1337 /* Retrieve SMMU specific data */ 1338 smmu = (struct acpi_iort_smmu *)node->node_data; 1339 1340 res[num_res].start = smmu->base_address; 1341 res[num_res].end = smmu->base_address + smmu->span - 1; 1342 res[num_res].flags = IORESOURCE_MEM; 1343 num_res++; 1344 1345 glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset); 1346 /* Global IRQs */ 1347 hw_irq = IORT_IRQ_MASK(glb_irq[0]); 1348 trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]); 1349 1350 acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger, 1351 &res[num_res++]); 1352 1353 /* Context IRQs */ 1354 ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset); 1355 for (i = 0; i < smmu->context_interrupt_count; i++) { 1356 hw_irq = IORT_IRQ_MASK(ctx_irq[i]); 1357 trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]); 1358 1359 acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger, 1360 &res[num_res++]); 1361 } 1362 } 1363 1364 static void __init arm_smmu_dma_configure(struct device *dev, 1365 struct acpi_iort_node *node) 1366 { 1367 struct acpi_iort_smmu *smmu; 1368 enum dev_dma_attr attr; 1369 1370 /* Retrieve SMMU specific data */ 1371 smmu = (struct acpi_iort_smmu *)node->node_data; 1372 1373 attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ? 1374 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; 1375 1376 /* We expect the dma masks to be equivalent for SMMU set-ups */ 1377 dev->dma_mask = &dev->coherent_dma_mask; 1378 1379 /* Configure DMA for the page table walker */ 1380 acpi_dma_configure(dev, attr); 1381 } 1382 1383 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node) 1384 { 1385 struct acpi_iort_pmcg *pmcg; 1386 1387 /* Retrieve PMCG specific data */ 1388 pmcg = (struct acpi_iort_pmcg *)node->node_data; 1389 1390 /* 1391 * There are always 2 memory resources. 1392 * If the overflow_gsiv is present then add that for a total of 3. 1393 */ 1394 return pmcg->overflow_gsiv ? 3 : 2; 1395 } 1396 1397 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res, 1398 struct acpi_iort_node *node) 1399 { 1400 struct acpi_iort_pmcg *pmcg; 1401 1402 /* Retrieve PMCG specific data */ 1403 pmcg = (struct acpi_iort_pmcg *)node->node_data; 1404 1405 res[0].start = pmcg->page0_base_address; 1406 res[0].end = pmcg->page0_base_address + SZ_4K - 1; 1407 res[0].flags = IORESOURCE_MEM; 1408 res[1].start = pmcg->page1_base_address; 1409 res[1].end = pmcg->page1_base_address + SZ_4K - 1; 1410 res[1].flags = IORESOURCE_MEM; 1411 1412 if (pmcg->overflow_gsiv) 1413 acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow", 1414 ACPI_EDGE_SENSITIVE, &res[2]); 1415 } 1416 1417 static struct acpi_platform_list pmcg_plat_info[] __initdata = { 1418 /* HiSilicon Hip08 Platform */ 1419 {"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal, 1420 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08}, 1421 { } 1422 }; 1423 1424 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev) 1425 { 1426 u32 model; 1427 int idx; 1428 1429 idx = acpi_match_platform_list(pmcg_plat_info); 1430 if (idx >= 0) 1431 model = pmcg_plat_info[idx].data; 1432 else 1433 model = IORT_SMMU_V3_PMCG_GENERIC; 1434 1435 return platform_device_add_data(pdev, &model, sizeof(model)); 1436 } 1437 1438 struct iort_dev_config { 1439 const char *name; 1440 int (*dev_init)(struct acpi_iort_node *node); 1441 void (*dev_dma_configure)(struct device *dev, 1442 struct acpi_iort_node *node); 1443 int (*dev_count_resources)(struct acpi_iort_node *node); 1444 void (*dev_init_resources)(struct resource *res, 1445 struct acpi_iort_node *node); 1446 int (*dev_set_proximity)(struct device *dev, 1447 struct acpi_iort_node *node); 1448 int (*dev_add_platdata)(struct platform_device *pdev); 1449 }; 1450 1451 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = { 1452 .name = "arm-smmu-v3", 1453 .dev_dma_configure = arm_smmu_v3_dma_configure, 1454 .dev_count_resources = arm_smmu_v3_count_resources, 1455 .dev_init_resources = arm_smmu_v3_init_resources, 1456 .dev_set_proximity = arm_smmu_v3_set_proximity, 1457 }; 1458 1459 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = { 1460 .name = "arm-smmu", 1461 .dev_dma_configure = arm_smmu_dma_configure, 1462 .dev_count_resources = arm_smmu_count_resources, 1463 .dev_init_resources = arm_smmu_init_resources, 1464 }; 1465 1466 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = { 1467 .name = "arm-smmu-v3-pmcg", 1468 .dev_count_resources = arm_smmu_v3_pmcg_count_resources, 1469 .dev_init_resources = arm_smmu_v3_pmcg_init_resources, 1470 .dev_add_platdata = arm_smmu_v3_pmcg_add_platdata, 1471 }; 1472 1473 static __init const struct iort_dev_config *iort_get_dev_cfg( 1474 struct acpi_iort_node *node) 1475 { 1476 switch (node->type) { 1477 case ACPI_IORT_NODE_SMMU_V3: 1478 return &iort_arm_smmu_v3_cfg; 1479 case ACPI_IORT_NODE_SMMU: 1480 return &iort_arm_smmu_cfg; 1481 case ACPI_IORT_NODE_PMCG: 1482 return &iort_arm_smmu_v3_pmcg_cfg; 1483 default: 1484 return NULL; 1485 } 1486 } 1487 1488 /** 1489 * iort_add_platform_device() - Allocate a platform device for IORT node 1490 * @node: Pointer to device ACPI IORT node 1491 * 1492 * Returns: 0 on success, <0 failure 1493 */ 1494 static int __init iort_add_platform_device(struct acpi_iort_node *node, 1495 const struct iort_dev_config *ops) 1496 { 1497 struct fwnode_handle *fwnode; 1498 struct platform_device *pdev; 1499 struct resource *r; 1500 int ret, count; 1501 1502 pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO); 1503 if (!pdev) 1504 return -ENOMEM; 1505 1506 if (ops->dev_set_proximity) { 1507 ret = ops->dev_set_proximity(&pdev->dev, node); 1508 if (ret) 1509 goto dev_put; 1510 } 1511 1512 count = ops->dev_count_resources(node); 1513 1514 r = kcalloc(count, sizeof(*r), GFP_KERNEL); 1515 if (!r) { 1516 ret = -ENOMEM; 1517 goto dev_put; 1518 } 1519 1520 ops->dev_init_resources(r, node); 1521 1522 ret = platform_device_add_resources(pdev, r, count); 1523 /* 1524 * Resources are duplicated in platform_device_add_resources, 1525 * free their allocated memory 1526 */ 1527 kfree(r); 1528 1529 if (ret) 1530 goto dev_put; 1531 1532 /* 1533 * Platform devices based on PMCG nodes uses platform_data to 1534 * pass the hardware model info to the driver. For others, add 1535 * a copy of IORT node pointer to platform_data to be used to 1536 * retrieve IORT data information. 1537 */ 1538 if (ops->dev_add_platdata) 1539 ret = ops->dev_add_platdata(pdev); 1540 else 1541 ret = platform_device_add_data(pdev, &node, sizeof(node)); 1542 1543 if (ret) 1544 goto dev_put; 1545 1546 fwnode = iort_get_fwnode(node); 1547 1548 if (!fwnode) { 1549 ret = -ENODEV; 1550 goto dev_put; 1551 } 1552 1553 pdev->dev.fwnode = fwnode; 1554 1555 if (ops->dev_dma_configure) 1556 ops->dev_dma_configure(&pdev->dev, node); 1557 1558 iort_set_device_domain(&pdev->dev, node); 1559 1560 ret = platform_device_add(pdev); 1561 if (ret) 1562 goto dma_deconfigure; 1563 1564 return 0; 1565 1566 dma_deconfigure: 1567 arch_teardown_dma_ops(&pdev->dev); 1568 dev_put: 1569 platform_device_put(pdev); 1570 1571 return ret; 1572 } 1573 1574 #ifdef CONFIG_PCI 1575 static void __init iort_enable_acs(struct acpi_iort_node *iort_node) 1576 { 1577 static bool acs_enabled __initdata; 1578 1579 if (acs_enabled) 1580 return; 1581 1582 if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 1583 struct acpi_iort_node *parent; 1584 struct acpi_iort_id_mapping *map; 1585 int i; 1586 1587 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node, 1588 iort_node->mapping_offset); 1589 1590 for (i = 0; i < iort_node->mapping_count; i++, map++) { 1591 if (!map->output_reference) 1592 continue; 1593 1594 parent = ACPI_ADD_PTR(struct acpi_iort_node, 1595 iort_table, map->output_reference); 1596 /* 1597 * If we detect a RC->SMMU mapping, make sure 1598 * we enable ACS on the system. 1599 */ 1600 if ((parent->type == ACPI_IORT_NODE_SMMU) || 1601 (parent->type == ACPI_IORT_NODE_SMMU_V3)) { 1602 pci_request_acs(); 1603 acs_enabled = true; 1604 return; 1605 } 1606 } 1607 } 1608 } 1609 #else 1610 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { } 1611 #endif 1612 1613 static void __init iort_init_platform_devices(void) 1614 { 1615 struct acpi_iort_node *iort_node, *iort_end; 1616 struct acpi_table_iort *iort; 1617 struct fwnode_handle *fwnode; 1618 int i, ret; 1619 const struct iort_dev_config *ops; 1620 1621 /* 1622 * iort_table and iort both point to the start of IORT table, but 1623 * have different struct types 1624 */ 1625 iort = (struct acpi_table_iort *)iort_table; 1626 1627 /* Get the first IORT node */ 1628 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1629 iort->node_offset); 1630 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1631 iort_table->length); 1632 1633 for (i = 0; i < iort->node_count; i++) { 1634 if (iort_node >= iort_end) { 1635 pr_err("iort node pointer overflows, bad table\n"); 1636 return; 1637 } 1638 1639 iort_enable_acs(iort_node); 1640 1641 ops = iort_get_dev_cfg(iort_node); 1642 if (ops) { 1643 fwnode = acpi_alloc_fwnode_static(); 1644 if (!fwnode) 1645 return; 1646 1647 iort_set_fwnode(iort_node, fwnode); 1648 1649 ret = iort_add_platform_device(iort_node, ops); 1650 if (ret) { 1651 iort_delete_fwnode(iort_node); 1652 acpi_free_fwnode_static(fwnode); 1653 return; 1654 } 1655 } 1656 1657 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 1658 iort_node->length); 1659 } 1660 } 1661 1662 void __init acpi_iort_init(void) 1663 { 1664 acpi_status status; 1665 1666 /* iort_table will be used at runtime after the iort init, 1667 * so we don't need to call acpi_put_table() to release 1668 * the IORT table mapping. 1669 */ 1670 status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table); 1671 if (ACPI_FAILURE(status)) { 1672 if (status != AE_NOT_FOUND) { 1673 const char *msg = acpi_format_exception(status); 1674 1675 pr_err("Failed to get table, %s\n", msg); 1676 } 1677 1678 return; 1679 } 1680 1681 iort_init_platform_devices(); 1682 } 1683