1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016, Semihalf
4 * Author: Tomasz Nowicki <tn@semihalf.com>
5 *
6 * This file implements early detection/parsing of I/O mapping
7 * reported to OS through firmware via I/O Remapping Table (IORT)
8 * IORT document number: ARM DEN 0049A
9 */
10
11 #define pr_fmt(fmt) "ACPI: IORT: " fmt
12
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/dma-map-ops.h>
22 #include "init.h"
23
24 #define IORT_TYPE_MASK(type) (1 << (type))
25 #define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP)
26 #define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \
27 (1 << ACPI_IORT_NODE_SMMU_V3))
28
29 struct iort_its_msi_chip {
30 struct list_head list;
31 struct fwnode_handle *fw_node;
32 phys_addr_t base_addr;
33 u32 translation_id;
34 };
35
36 struct iort_fwnode {
37 struct list_head list;
38 struct acpi_iort_node *iort_node;
39 struct fwnode_handle *fwnode;
40 };
41 static LIST_HEAD(iort_fwnode_list);
42 static DEFINE_SPINLOCK(iort_fwnode_lock);
43
44 /**
45 * iort_set_fwnode() - Create iort_fwnode and use it to register
46 * iommu data in the iort_fwnode_list
47 *
48 * @iort_node: IORT table node associated with the IOMMU
49 * @fwnode: fwnode associated with the IORT node
50 *
51 * Returns: 0 on success
52 * <0 on failure
53 */
iort_set_fwnode(struct acpi_iort_node * iort_node,struct fwnode_handle * fwnode)54 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
55 struct fwnode_handle *fwnode)
56 {
57 struct iort_fwnode *np;
58
59 np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
60
61 if (WARN_ON(!np))
62 return -ENOMEM;
63
64 INIT_LIST_HEAD(&np->list);
65 np->iort_node = iort_node;
66 np->fwnode = fwnode;
67
68 spin_lock(&iort_fwnode_lock);
69 list_add_tail(&np->list, &iort_fwnode_list);
70 spin_unlock(&iort_fwnode_lock);
71
72 return 0;
73 }
74
75 /**
76 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
77 *
78 * @node: IORT table node to be looked-up
79 *
80 * Returns: fwnode_handle pointer on success, NULL on failure
81 */
iort_get_fwnode(struct acpi_iort_node * node)82 static inline struct fwnode_handle *iort_get_fwnode(
83 struct acpi_iort_node *node)
84 {
85 struct iort_fwnode *curr;
86 struct fwnode_handle *fwnode = NULL;
87
88 spin_lock(&iort_fwnode_lock);
89 list_for_each_entry(curr, &iort_fwnode_list, list) {
90 if (curr->iort_node == node) {
91 fwnode = curr->fwnode;
92 break;
93 }
94 }
95 spin_unlock(&iort_fwnode_lock);
96
97 return fwnode;
98 }
99
100 /**
101 * iort_delete_fwnode() - Delete fwnode associated with an IORT node
102 *
103 * @node: IORT table node associated with fwnode to delete
104 */
iort_delete_fwnode(struct acpi_iort_node * node)105 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
106 {
107 struct iort_fwnode *curr, *tmp;
108
109 spin_lock(&iort_fwnode_lock);
110 list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
111 if (curr->iort_node == node) {
112 list_del(&curr->list);
113 kfree(curr);
114 break;
115 }
116 }
117 spin_unlock(&iort_fwnode_lock);
118 }
119
120 /**
121 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
122 *
123 * @fwnode: fwnode associated with device to be looked-up
124 *
125 * Returns: iort_node pointer on success, NULL on failure
126 */
iort_get_iort_node(struct fwnode_handle * fwnode)127 static inline struct acpi_iort_node *iort_get_iort_node(
128 struct fwnode_handle *fwnode)
129 {
130 struct iort_fwnode *curr;
131 struct acpi_iort_node *iort_node = NULL;
132
133 spin_lock(&iort_fwnode_lock);
134 list_for_each_entry(curr, &iort_fwnode_list, list) {
135 if (curr->fwnode == fwnode) {
136 iort_node = curr->iort_node;
137 break;
138 }
139 }
140 spin_unlock(&iort_fwnode_lock);
141
142 return iort_node;
143 }
144
145 typedef acpi_status (*iort_find_node_callback)
146 (struct acpi_iort_node *node, void *context);
147
148 /* Root pointer to the mapped IORT table */
149 static struct acpi_table_header *iort_table;
150
151 static LIST_HEAD(iort_msi_chip_list);
152 static DEFINE_SPINLOCK(iort_msi_chip_lock);
153
154 /**
155 * iort_register_domain_token() - register domain token along with related
156 * ITS ID and base address to the list from where we can get it back later on.
157 * @trans_id: ITS ID.
158 * @base: ITS base address.
159 * @fw_node: Domain token.
160 *
161 * Returns: 0 on success, -ENOMEM if no memory when allocating list element
162 */
iort_register_domain_token(int trans_id,phys_addr_t base,struct fwnode_handle * fw_node)163 int iort_register_domain_token(int trans_id, phys_addr_t base,
164 struct fwnode_handle *fw_node)
165 {
166 struct iort_its_msi_chip *its_msi_chip;
167
168 its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
169 if (!its_msi_chip)
170 return -ENOMEM;
171
172 its_msi_chip->fw_node = fw_node;
173 its_msi_chip->translation_id = trans_id;
174 its_msi_chip->base_addr = base;
175
176 spin_lock(&iort_msi_chip_lock);
177 list_add(&its_msi_chip->list, &iort_msi_chip_list);
178 spin_unlock(&iort_msi_chip_lock);
179
180 return 0;
181 }
182
183 /**
184 * iort_deregister_domain_token() - Deregister domain token based on ITS ID
185 * @trans_id: ITS ID.
186 *
187 * Returns: none.
188 */
iort_deregister_domain_token(int trans_id)189 void iort_deregister_domain_token(int trans_id)
190 {
191 struct iort_its_msi_chip *its_msi_chip, *t;
192
193 spin_lock(&iort_msi_chip_lock);
194 list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
195 if (its_msi_chip->translation_id == trans_id) {
196 list_del(&its_msi_chip->list);
197 kfree(its_msi_chip);
198 break;
199 }
200 }
201 spin_unlock(&iort_msi_chip_lock);
202 }
203
204 /**
205 * iort_find_domain_token() - Find domain token based on given ITS ID
206 * @trans_id: ITS ID.
207 *
208 * Returns: domain token when find on the list, NULL otherwise
209 */
iort_find_domain_token(int trans_id)210 struct fwnode_handle *iort_find_domain_token(int trans_id)
211 {
212 struct fwnode_handle *fw_node = NULL;
213 struct iort_its_msi_chip *its_msi_chip;
214
215 spin_lock(&iort_msi_chip_lock);
216 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
217 if (its_msi_chip->translation_id == trans_id) {
218 fw_node = its_msi_chip->fw_node;
219 break;
220 }
221 }
222 spin_unlock(&iort_msi_chip_lock);
223
224 return fw_node;
225 }
226
iort_scan_node(enum acpi_iort_node_type type,iort_find_node_callback callback,void * context)227 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
228 iort_find_node_callback callback,
229 void *context)
230 {
231 struct acpi_iort_node *iort_node, *iort_end;
232 struct acpi_table_iort *iort;
233 int i;
234
235 if (!iort_table)
236 return NULL;
237
238 /* Get the first IORT node */
239 iort = (struct acpi_table_iort *)iort_table;
240 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
241 iort->node_offset);
242 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
243 iort_table->length);
244
245 for (i = 0; i < iort->node_count; i++) {
246 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
247 "IORT node pointer overflows, bad table!\n"))
248 return NULL;
249
250 if (iort_node->type == type &&
251 ACPI_SUCCESS(callback(iort_node, context)))
252 return iort_node;
253
254 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
255 iort_node->length);
256 }
257
258 return NULL;
259 }
260
iort_match_node_callback(struct acpi_iort_node * node,void * context)261 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
262 void *context)
263 {
264 struct device *dev = context;
265 acpi_status status = AE_NOT_FOUND;
266
267 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
268 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
269 struct acpi_device *adev;
270 struct acpi_iort_named_component *ncomp;
271 struct device *nc_dev = dev;
272
273 /*
274 * Walk the device tree to find a device with an
275 * ACPI companion; there is no point in scanning
276 * IORT for a device matching a named component if
277 * the device does not have an ACPI companion to
278 * start with.
279 */
280 do {
281 adev = ACPI_COMPANION(nc_dev);
282 if (adev)
283 break;
284
285 nc_dev = nc_dev->parent;
286 } while (nc_dev);
287
288 if (!adev)
289 goto out;
290
291 status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
292 if (ACPI_FAILURE(status)) {
293 dev_warn(nc_dev, "Can't get device full path name\n");
294 goto out;
295 }
296
297 ncomp = (struct acpi_iort_named_component *)node->node_data;
298 status = !strcmp(ncomp->device_name, buf.pointer) ?
299 AE_OK : AE_NOT_FOUND;
300 acpi_os_free(buf.pointer);
301 } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
302 struct acpi_iort_root_complex *pci_rc;
303 struct pci_bus *bus;
304
305 bus = to_pci_bus(dev);
306 pci_rc = (struct acpi_iort_root_complex *)node->node_data;
307
308 /*
309 * It is assumed that PCI segment numbers maps one-to-one
310 * with root complexes. Each segment number can represent only
311 * one root complex.
312 */
313 status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
314 AE_OK : AE_NOT_FOUND;
315 }
316 out:
317 return status;
318 }
319
iort_id_map(struct acpi_iort_id_mapping * map,u8 type,u32 rid_in,u32 * rid_out,bool check_overlap)320 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
321 u32 *rid_out, bool check_overlap)
322 {
323 /* Single mapping does not care for input id */
324 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
325 if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
326 type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
327 *rid_out = map->output_base;
328 return 0;
329 }
330
331 pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
332 map, type);
333 return -ENXIO;
334 }
335
336 if (rid_in < map->input_base ||
337 (rid_in > map->input_base + map->id_count))
338 return -ENXIO;
339
340 if (check_overlap) {
341 /*
342 * We already found a mapping for this input ID at the end of
343 * another region. If it coincides with the start of this
344 * region, we assume the prior match was due to the off-by-1
345 * issue mentioned below, and allow it to be superseded.
346 * Otherwise, things are *really* broken, and we just disregard
347 * duplicate matches entirely to retain compatibility.
348 */
349 pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
350 map, rid_in);
351 if (rid_in != map->input_base)
352 return -ENXIO;
353
354 pr_err(FW_BUG "applying workaround.\n");
355 }
356
357 *rid_out = map->output_base + (rid_in - map->input_base);
358
359 /*
360 * Due to confusion regarding the meaning of the id_count field (which
361 * carries the number of IDs *minus 1*), we may have to disregard this
362 * match if it is at the end of the range, and overlaps with the start
363 * of another one.
364 */
365 if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
366 return -EAGAIN;
367 return 0;
368 }
369
iort_node_get_id(struct acpi_iort_node * node,u32 * id_out,int index)370 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
371 u32 *id_out, int index)
372 {
373 struct acpi_iort_node *parent;
374 struct acpi_iort_id_mapping *map;
375
376 if (!node->mapping_offset || !node->mapping_count ||
377 index >= node->mapping_count)
378 return NULL;
379
380 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
381 node->mapping_offset + index * sizeof(*map));
382
383 /* Firmware bug! */
384 if (!map->output_reference) {
385 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
386 node, node->type);
387 return NULL;
388 }
389
390 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
391 map->output_reference);
392
393 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
394 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
395 node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
396 node->type == ACPI_IORT_NODE_SMMU_V3 ||
397 node->type == ACPI_IORT_NODE_PMCG) {
398 *id_out = map->output_base;
399 return parent;
400 }
401 }
402
403 return NULL;
404 }
405
406 #ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID
407 #define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4)
408 #endif
409
iort_get_id_mapping_index(struct acpi_iort_node * node)410 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
411 {
412 struct acpi_iort_smmu_v3 *smmu;
413 struct acpi_iort_pmcg *pmcg;
414
415 switch (node->type) {
416 case ACPI_IORT_NODE_SMMU_V3:
417 /*
418 * SMMUv3 dev ID mapping index was introduced in revision 1
419 * table, not available in revision 0
420 */
421 if (node->revision < 1)
422 return -EINVAL;
423
424 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
425 /*
426 * Until IORT E.e (node rev. 5), the ID mapping index was
427 * defined to be valid unless all interrupts are GSIV-based.
428 */
429 if (node->revision < 5) {
430 if (smmu->event_gsiv && smmu->pri_gsiv &&
431 smmu->gerr_gsiv && smmu->sync_gsiv)
432 return -EINVAL;
433 } else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) {
434 return -EINVAL;
435 }
436
437 if (smmu->id_mapping_index >= node->mapping_count) {
438 pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
439 node, node->type);
440 return -EINVAL;
441 }
442
443 return smmu->id_mapping_index;
444 case ACPI_IORT_NODE_PMCG:
445 pmcg = (struct acpi_iort_pmcg *)node->node_data;
446 if (pmcg->overflow_gsiv || node->mapping_count == 0)
447 return -EINVAL;
448
449 return 0;
450 default:
451 return -EINVAL;
452 }
453 }
454
iort_node_map_id(struct acpi_iort_node * node,u32 id_in,u32 * id_out,u8 type_mask)455 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
456 u32 id_in, u32 *id_out,
457 u8 type_mask)
458 {
459 u32 id = id_in;
460
461 /* Parse the ID mapping tree to find specified node type */
462 while (node) {
463 struct acpi_iort_id_mapping *map;
464 int i, index, rc = 0;
465 u32 out_ref = 0, map_id = id;
466
467 if (IORT_TYPE_MASK(node->type) & type_mask) {
468 if (id_out)
469 *id_out = id;
470 return node;
471 }
472
473 if (!node->mapping_offset || !node->mapping_count)
474 goto fail_map;
475
476 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
477 node->mapping_offset);
478
479 /* Firmware bug! */
480 if (!map->output_reference) {
481 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
482 node, node->type);
483 goto fail_map;
484 }
485
486 /*
487 * Get the special ID mapping index (if any) and skip its
488 * associated ID map to prevent erroneous multi-stage
489 * IORT ID translations.
490 */
491 index = iort_get_id_mapping_index(node);
492
493 /* Do the ID translation */
494 for (i = 0; i < node->mapping_count; i++, map++) {
495 /* if it is special mapping index, skip it */
496 if (i == index)
497 continue;
498
499 rc = iort_id_map(map, node->type, map_id, &id, out_ref);
500 if (!rc)
501 break;
502 if (rc == -EAGAIN)
503 out_ref = map->output_reference;
504 }
505
506 if (i == node->mapping_count && !out_ref)
507 goto fail_map;
508
509 node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
510 rc ? out_ref : map->output_reference);
511 }
512
513 fail_map:
514 /* Map input ID to output ID unchanged on mapping failure */
515 if (id_out)
516 *id_out = id_in;
517
518 return NULL;
519 }
520
iort_node_map_platform_id(struct acpi_iort_node * node,u32 * id_out,u8 type_mask,int index)521 static struct acpi_iort_node *iort_node_map_platform_id(
522 struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
523 int index)
524 {
525 struct acpi_iort_node *parent;
526 u32 id;
527
528 /* step 1: retrieve the initial dev id */
529 parent = iort_node_get_id(node, &id, index);
530 if (!parent)
531 return NULL;
532
533 /*
534 * optional step 2: map the initial dev id if its parent is not
535 * the target type we want, map it again for the use cases such
536 * as NC (named component) -> SMMU -> ITS. If the type is matched,
537 * return the initial dev id and its parent pointer directly.
538 */
539 if (!(IORT_TYPE_MASK(parent->type) & type_mask))
540 parent = iort_node_map_id(parent, id, id_out, type_mask);
541 else
542 if (id_out)
543 *id_out = id;
544
545 return parent;
546 }
547
iort_find_dev_node(struct device * dev)548 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
549 {
550 struct pci_bus *pbus;
551
552 if (!dev_is_pci(dev)) {
553 struct acpi_iort_node *node;
554 /*
555 * scan iort_fwnode_list to see if it's an iort platform
556 * device (such as SMMU, PMCG),its iort node already cached
557 * and associated with fwnode when iort platform devices
558 * were initialized.
559 */
560 node = iort_get_iort_node(dev->fwnode);
561 if (node)
562 return node;
563 /*
564 * if not, then it should be a platform device defined in
565 * DSDT/SSDT (with Named Component node in IORT)
566 */
567 return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
568 iort_match_node_callback, dev);
569 }
570
571 pbus = to_pci_dev(dev)->bus;
572
573 return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
574 iort_match_node_callback, &pbus->dev);
575 }
576
577 /**
578 * iort_msi_map_id() - Map a MSI input ID for a device
579 * @dev: The device for which the mapping is to be done.
580 * @input_id: The device input ID.
581 *
582 * Returns: mapped MSI ID on success, input ID otherwise
583 */
iort_msi_map_id(struct device * dev,u32 input_id)584 u32 iort_msi_map_id(struct device *dev, u32 input_id)
585 {
586 struct acpi_iort_node *node;
587 u32 dev_id;
588
589 node = iort_find_dev_node(dev);
590 if (!node)
591 return input_id;
592
593 iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
594 return dev_id;
595 }
596
597 /**
598 * iort_pmsi_get_dev_id() - Get the device id for a device
599 * @dev: The device for which the mapping is to be done.
600 * @dev_id: The device ID found.
601 *
602 * Returns: 0 for successful find a dev id, -ENODEV on error
603 */
iort_pmsi_get_dev_id(struct device * dev,u32 * dev_id)604 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
605 {
606 int i, index;
607 struct acpi_iort_node *node;
608
609 node = iort_find_dev_node(dev);
610 if (!node)
611 return -ENODEV;
612
613 index = iort_get_id_mapping_index(node);
614 /* if there is a valid index, go get the dev_id directly */
615 if (index >= 0) {
616 if (iort_node_get_id(node, dev_id, index))
617 return 0;
618 } else {
619 for (i = 0; i < node->mapping_count; i++) {
620 if (iort_node_map_platform_id(node, dev_id,
621 IORT_MSI_TYPE, i))
622 return 0;
623 }
624 }
625
626 return -ENODEV;
627 }
628
iort_find_its_base(u32 its_id,phys_addr_t * base)629 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
630 {
631 struct iort_its_msi_chip *its_msi_chip;
632 int ret = -ENODEV;
633
634 spin_lock(&iort_msi_chip_lock);
635 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
636 if (its_msi_chip->translation_id == its_id) {
637 *base = its_msi_chip->base_addr;
638 ret = 0;
639 break;
640 }
641 }
642 spin_unlock(&iort_msi_chip_lock);
643
644 return ret;
645 }
646
647 /**
648 * iort_dev_find_its_id() - Find the ITS identifier for a device
649 * @dev: The device.
650 * @id: Device's ID
651 * @idx: Index of the ITS identifier list.
652 * @its_id: ITS identifier.
653 *
654 * Returns: 0 on success, appropriate error value otherwise
655 */
iort_dev_find_its_id(struct device * dev,u32 id,unsigned int idx,int * its_id)656 static int iort_dev_find_its_id(struct device *dev, u32 id,
657 unsigned int idx, int *its_id)
658 {
659 struct acpi_iort_its_group *its;
660 struct acpi_iort_node *node;
661
662 node = iort_find_dev_node(dev);
663 if (!node)
664 return -ENXIO;
665
666 node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
667 if (!node)
668 return -ENXIO;
669
670 /* Move to ITS specific data */
671 its = (struct acpi_iort_its_group *)node->node_data;
672 if (idx >= its->its_count) {
673 dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
674 idx, its->its_count);
675 return -ENXIO;
676 }
677
678 *its_id = its->identifiers[idx];
679 return 0;
680 }
681
682 /**
683 * iort_get_device_domain() - Find MSI domain related to a device
684 * @dev: The device.
685 * @id: Requester ID for the device.
686 * @bus_token: irq domain bus token.
687 *
688 * Returns: the MSI domain for this device, NULL otherwise
689 */
iort_get_device_domain(struct device * dev,u32 id,enum irq_domain_bus_token bus_token)690 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
691 enum irq_domain_bus_token bus_token)
692 {
693 struct fwnode_handle *handle;
694 int its_id;
695
696 if (iort_dev_find_its_id(dev, id, 0, &its_id))
697 return NULL;
698
699 handle = iort_find_domain_token(its_id);
700 if (!handle)
701 return NULL;
702
703 return irq_find_matching_fwnode(handle, bus_token);
704 }
705
iort_set_device_domain(struct device * dev,struct acpi_iort_node * node)706 static void iort_set_device_domain(struct device *dev,
707 struct acpi_iort_node *node)
708 {
709 struct acpi_iort_its_group *its;
710 struct acpi_iort_node *msi_parent;
711 struct acpi_iort_id_mapping *map;
712 struct fwnode_handle *iort_fwnode;
713 struct irq_domain *domain;
714 int index;
715
716 index = iort_get_id_mapping_index(node);
717 if (index < 0)
718 return;
719
720 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
721 node->mapping_offset + index * sizeof(*map));
722
723 /* Firmware bug! */
724 if (!map->output_reference ||
725 !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
726 pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
727 node, node->type);
728 return;
729 }
730
731 msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
732 map->output_reference);
733
734 if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
735 return;
736
737 /* Move to ITS specific data */
738 its = (struct acpi_iort_its_group *)msi_parent->node_data;
739
740 iort_fwnode = iort_find_domain_token(its->identifiers[0]);
741 if (!iort_fwnode)
742 return;
743
744 domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
745 if (domain)
746 dev_set_msi_domain(dev, domain);
747 }
748
749 /**
750 * iort_get_platform_device_domain() - Find MSI domain related to a
751 * platform device
752 * @dev: the dev pointer associated with the platform device
753 *
754 * Returns: the MSI domain for this device, NULL otherwise
755 */
iort_get_platform_device_domain(struct device * dev)756 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
757 {
758 struct acpi_iort_node *node, *msi_parent = NULL;
759 struct fwnode_handle *iort_fwnode;
760 struct acpi_iort_its_group *its;
761 int i;
762
763 /* find its associated iort node */
764 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
765 iort_match_node_callback, dev);
766 if (!node)
767 return NULL;
768
769 /* then find its msi parent node */
770 for (i = 0; i < node->mapping_count; i++) {
771 msi_parent = iort_node_map_platform_id(node, NULL,
772 IORT_MSI_TYPE, i);
773 if (msi_parent)
774 break;
775 }
776
777 if (!msi_parent)
778 return NULL;
779
780 /* Move to ITS specific data */
781 its = (struct acpi_iort_its_group *)msi_parent->node_data;
782
783 iort_fwnode = iort_find_domain_token(its->identifiers[0]);
784 if (!iort_fwnode)
785 return NULL;
786
787 return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
788 }
789
acpi_configure_pmsi_domain(struct device * dev)790 void acpi_configure_pmsi_domain(struct device *dev)
791 {
792 struct irq_domain *msi_domain;
793
794 msi_domain = iort_get_platform_device_domain(dev);
795 if (msi_domain)
796 dev_set_msi_domain(dev, msi_domain);
797 }
798
799 #ifdef CONFIG_IOMMU_API
iort_rmr_free(struct device * dev,struct iommu_resv_region * region)800 static void iort_rmr_free(struct device *dev,
801 struct iommu_resv_region *region)
802 {
803 struct iommu_iort_rmr_data *rmr_data;
804
805 rmr_data = container_of(region, struct iommu_iort_rmr_data, rr);
806 kfree(rmr_data->sids);
807 kfree(rmr_data);
808 }
809
iort_rmr_alloc(struct acpi_iort_rmr_desc * rmr_desc,int prot,enum iommu_resv_type type,u32 * sids,u32 num_sids)810 static struct iommu_iort_rmr_data *iort_rmr_alloc(
811 struct acpi_iort_rmr_desc *rmr_desc,
812 int prot, enum iommu_resv_type type,
813 u32 *sids, u32 num_sids)
814 {
815 struct iommu_iort_rmr_data *rmr_data;
816 struct iommu_resv_region *region;
817 u32 *sids_copy;
818 u64 addr = rmr_desc->base_address, size = rmr_desc->length;
819
820 rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL);
821 if (!rmr_data)
822 return NULL;
823
824 /* Create a copy of SIDs array to associate with this rmr_data */
825 sids_copy = kmemdup(sids, num_sids * sizeof(*sids), GFP_KERNEL);
826 if (!sids_copy) {
827 kfree(rmr_data);
828 return NULL;
829 }
830 rmr_data->sids = sids_copy;
831 rmr_data->num_sids = num_sids;
832
833 if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) {
834 /* PAGE align base addr and size */
835 addr &= PAGE_MASK;
836 size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address));
837
838 pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n",
839 rmr_desc->base_address,
840 rmr_desc->base_address + rmr_desc->length - 1,
841 addr, addr + size - 1);
842 }
843
844 region = &rmr_data->rr;
845 INIT_LIST_HEAD(®ion->list);
846 region->start = addr;
847 region->length = size;
848 region->prot = prot;
849 region->type = type;
850 region->free = iort_rmr_free;
851
852 return rmr_data;
853 }
854
iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc * desc,u32 count)855 static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc,
856 u32 count)
857 {
858 int i, j;
859
860 for (i = 0; i < count; i++) {
861 u64 end, start = desc[i].base_address, length = desc[i].length;
862
863 if (!length) {
864 pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n",
865 start);
866 continue;
867 }
868
869 end = start + length - 1;
870
871 /* Check for address overlap */
872 for (j = i + 1; j < count; j++) {
873 u64 e_start = desc[j].base_address;
874 u64 e_end = e_start + desc[j].length - 1;
875
876 if (start <= e_end && end >= e_start)
877 pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n",
878 start, end);
879 }
880 }
881 }
882
883 /*
884 * Please note, we will keep the already allocated RMR reserve
885 * regions in case of a memory allocation failure.
886 */
iort_get_rmrs(struct acpi_iort_node * node,struct acpi_iort_node * smmu,u32 * sids,u32 num_sids,struct list_head * head)887 static void iort_get_rmrs(struct acpi_iort_node *node,
888 struct acpi_iort_node *smmu,
889 u32 *sids, u32 num_sids,
890 struct list_head *head)
891 {
892 struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data;
893 struct acpi_iort_rmr_desc *rmr_desc;
894 int i;
895
896 rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node,
897 rmr->rmr_offset);
898
899 iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count);
900
901 for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) {
902 struct iommu_iort_rmr_data *rmr_data;
903 enum iommu_resv_type type;
904 int prot = IOMMU_READ | IOMMU_WRITE;
905
906 if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED)
907 type = IOMMU_RESV_DIRECT_RELAXABLE;
908 else
909 type = IOMMU_RESV_DIRECT;
910
911 if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE)
912 prot |= IOMMU_PRIV;
913
914 /* Attributes 0x00 - 0x03 represents device memory */
915 if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <=
916 ACPI_IORT_RMR_ATTR_DEVICE_GRE)
917 prot |= IOMMU_MMIO;
918 else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) ==
919 ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB)
920 prot |= IOMMU_CACHE;
921
922 rmr_data = iort_rmr_alloc(rmr_desc, prot, type,
923 sids, num_sids);
924 if (!rmr_data)
925 return;
926
927 list_add_tail(&rmr_data->rr.list, head);
928 }
929 }
930
iort_rmr_alloc_sids(u32 * sids,u32 count,u32 id_start,u32 new_count)931 static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start,
932 u32 new_count)
933 {
934 u32 *new_sids;
935 u32 total_count = count + new_count;
936 int i;
937
938 new_sids = krealloc_array(sids, count + new_count,
939 sizeof(*new_sids), GFP_KERNEL);
940 if (!new_sids)
941 return NULL;
942
943 for (i = count; i < total_count; i++)
944 new_sids[i] = id_start++;
945
946 return new_sids;
947 }
948
iort_rmr_has_dev(struct device * dev,u32 id_start,u32 id_count)949 static bool iort_rmr_has_dev(struct device *dev, u32 id_start,
950 u32 id_count)
951 {
952 int i;
953 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
954
955 /*
956 * Make sure the kernel has preserved the boot firmware PCIe
957 * configuration. This is required to ensure that the RMR PCIe
958 * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5).
959 */
960 if (dev_is_pci(dev)) {
961 struct pci_dev *pdev = to_pci_dev(dev);
962 struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
963
964 if (!host->preserve_config)
965 return false;
966 }
967
968 for (i = 0; i < fwspec->num_ids; i++) {
969 if (fwspec->ids[i] >= id_start &&
970 fwspec->ids[i] <= id_start + id_count)
971 return true;
972 }
973
974 return false;
975 }
976
iort_node_get_rmr_info(struct acpi_iort_node * node,struct acpi_iort_node * iommu,struct device * dev,struct list_head * head)977 static void iort_node_get_rmr_info(struct acpi_iort_node *node,
978 struct acpi_iort_node *iommu,
979 struct device *dev, struct list_head *head)
980 {
981 struct acpi_iort_node *smmu = NULL;
982 struct acpi_iort_rmr *rmr;
983 struct acpi_iort_id_mapping *map;
984 u32 *sids = NULL;
985 u32 num_sids = 0;
986 int i;
987
988 if (!node->mapping_offset || !node->mapping_count) {
989 pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n",
990 node);
991 return;
992 }
993
994 rmr = (struct acpi_iort_rmr *)node->node_data;
995 if (!rmr->rmr_offset || !rmr->rmr_count)
996 return;
997
998 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
999 node->mapping_offset);
1000
1001 /*
1002 * Go through the ID mappings and see if we have a match for SMMU
1003 * and dev(if !NULL). If found, get the sids for the Node.
1004 * Please note, id_count is equal to the number of IDs in the
1005 * range minus one.
1006 */
1007 for (i = 0; i < node->mapping_count; i++, map++) {
1008 struct acpi_iort_node *parent;
1009
1010 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
1011 map->output_reference);
1012 if (parent != iommu)
1013 continue;
1014
1015 /* If dev is valid, check RMR node corresponds to the dev SID */
1016 if (dev && !iort_rmr_has_dev(dev, map->output_base,
1017 map->id_count))
1018 continue;
1019
1020 /* Retrieve SIDs associated with the Node. */
1021 sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base,
1022 map->id_count + 1);
1023 if (!sids)
1024 return;
1025
1026 num_sids += map->id_count + 1;
1027 }
1028
1029 if (!sids)
1030 return;
1031
1032 iort_get_rmrs(node, smmu, sids, num_sids, head);
1033 kfree(sids);
1034 }
1035
iort_find_rmrs(struct acpi_iort_node * iommu,struct device * dev,struct list_head * head)1036 static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev,
1037 struct list_head *head)
1038 {
1039 struct acpi_table_iort *iort;
1040 struct acpi_iort_node *iort_node, *iort_end;
1041 int i;
1042
1043 /* Only supports ARM DEN 0049E.d onwards */
1044 if (iort_table->revision < 5)
1045 return;
1046
1047 iort = (struct acpi_table_iort *)iort_table;
1048
1049 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1050 iort->node_offset);
1051 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1052 iort_table->length);
1053
1054 for (i = 0; i < iort->node_count; i++) {
1055 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
1056 "IORT node pointer overflows, bad table!\n"))
1057 return;
1058
1059 if (iort_node->type == ACPI_IORT_NODE_RMR)
1060 iort_node_get_rmr_info(iort_node, iommu, dev, head);
1061
1062 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1063 iort_node->length);
1064 }
1065 }
1066
1067 /*
1068 * Populate the RMR list associated with a given IOMMU and dev(if provided).
1069 * If dev is NULL, the function populates all the RMRs associated with the
1070 * given IOMMU.
1071 */
iort_iommu_rmr_get_resv_regions(struct fwnode_handle * iommu_fwnode,struct device * dev,struct list_head * head)1072 static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode,
1073 struct device *dev,
1074 struct list_head *head)
1075 {
1076 struct acpi_iort_node *iommu;
1077
1078 iommu = iort_get_iort_node(iommu_fwnode);
1079 if (!iommu)
1080 return;
1081
1082 iort_find_rmrs(iommu, dev, head);
1083 }
1084
iort_get_msi_resv_iommu(struct device * dev)1085 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
1086 {
1087 struct acpi_iort_node *iommu;
1088 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1089
1090 iommu = iort_get_iort_node(fwspec->iommu_fwnode);
1091
1092 if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
1093 struct acpi_iort_smmu_v3 *smmu;
1094
1095 smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
1096 if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
1097 return iommu;
1098 }
1099
1100 return NULL;
1101 }
1102
1103 /*
1104 * Retrieve platform specific HW MSI reserve regions.
1105 * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K)
1106 * associated with the device are the HW MSI reserved regions.
1107 */
iort_iommu_msi_get_resv_regions(struct device * dev,struct list_head * head)1108 static void iort_iommu_msi_get_resv_regions(struct device *dev,
1109 struct list_head *head)
1110 {
1111 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1112 struct acpi_iort_its_group *its;
1113 struct acpi_iort_node *iommu_node, *its_node = NULL;
1114 int i;
1115
1116 iommu_node = iort_get_msi_resv_iommu(dev);
1117 if (!iommu_node)
1118 return;
1119
1120 /*
1121 * Current logic to reserve ITS regions relies on HW topologies
1122 * where a given PCI or named component maps its IDs to only one
1123 * ITS group; if a PCI or named component can map its IDs to
1124 * different ITS groups through IORT mappings this function has
1125 * to be reworked to ensure we reserve regions for all ITS groups
1126 * a given PCI or named component may map IDs to.
1127 */
1128
1129 for (i = 0; i < fwspec->num_ids; i++) {
1130 its_node = iort_node_map_id(iommu_node,
1131 fwspec->ids[i],
1132 NULL, IORT_MSI_TYPE);
1133 if (its_node)
1134 break;
1135 }
1136
1137 if (!its_node)
1138 return;
1139
1140 /* Move to ITS specific data */
1141 its = (struct acpi_iort_its_group *)its_node->node_data;
1142
1143 for (i = 0; i < its->its_count; i++) {
1144 phys_addr_t base;
1145
1146 if (!iort_find_its_base(its->identifiers[i], &base)) {
1147 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1148 struct iommu_resv_region *region;
1149
1150 region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
1151 prot, IOMMU_RESV_MSI,
1152 GFP_KERNEL);
1153 if (region)
1154 list_add_tail(®ion->list, head);
1155 }
1156 }
1157 }
1158
1159 /**
1160 * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions.
1161 * @dev: Device from iommu_get_resv_regions()
1162 * @head: Reserved region list from iommu_get_resv_regions()
1163 */
iort_iommu_get_resv_regions(struct device * dev,struct list_head * head)1164 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1165 {
1166 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1167
1168 iort_iommu_msi_get_resv_regions(dev, head);
1169 iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head);
1170 }
1171
1172 /**
1173 * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with
1174 * associated StreamIDs information.
1175 * @iommu_fwnode: fwnode associated with IOMMU
1176 * @head: Resereved region list
1177 */
iort_get_rmr_sids(struct fwnode_handle * iommu_fwnode,struct list_head * head)1178 void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode,
1179 struct list_head *head)
1180 {
1181 iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head);
1182 }
1183 EXPORT_SYMBOL_GPL(iort_get_rmr_sids);
1184
1185 /**
1186 * iort_put_rmr_sids - Free memory allocated for RMR reserved regions.
1187 * @iommu_fwnode: fwnode associated with IOMMU
1188 * @head: Resereved region list
1189 */
iort_put_rmr_sids(struct fwnode_handle * iommu_fwnode,struct list_head * head)1190 void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode,
1191 struct list_head *head)
1192 {
1193 struct iommu_resv_region *entry, *next;
1194
1195 list_for_each_entry_safe(entry, next, head, list)
1196 entry->free(NULL, entry);
1197 }
1198 EXPORT_SYMBOL_GPL(iort_put_rmr_sids);
1199
iort_iommu_driver_enabled(u8 type)1200 static inline bool iort_iommu_driver_enabled(u8 type)
1201 {
1202 switch (type) {
1203 case ACPI_IORT_NODE_SMMU_V3:
1204 return IS_ENABLED(CONFIG_ARM_SMMU_V3);
1205 case ACPI_IORT_NODE_SMMU:
1206 return IS_ENABLED(CONFIG_ARM_SMMU);
1207 default:
1208 pr_warn("IORT node type %u does not describe an SMMU\n", type);
1209 return false;
1210 }
1211 }
1212
iort_pci_rc_supports_ats(struct acpi_iort_node * node)1213 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
1214 {
1215 struct acpi_iort_root_complex *pci_rc;
1216
1217 pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1218 return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
1219 }
1220
iort_iommu_xlate(struct device * dev,struct acpi_iort_node * node,u32 streamid)1221 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
1222 u32 streamid)
1223 {
1224 const struct iommu_ops *ops;
1225 struct fwnode_handle *iort_fwnode;
1226
1227 if (!node)
1228 return -ENODEV;
1229
1230 iort_fwnode = iort_get_fwnode(node);
1231 if (!iort_fwnode)
1232 return -ENODEV;
1233
1234 /*
1235 * If the ops look-up fails, this means that either
1236 * the SMMU drivers have not been probed yet or that
1237 * the SMMU drivers are not built in the kernel;
1238 * Depending on whether the SMMU drivers are built-in
1239 * in the kernel or not, defer the IOMMU configuration
1240 * or just abort it.
1241 */
1242 ops = iommu_ops_from_fwnode(iort_fwnode);
1243 if (!ops)
1244 return iort_iommu_driver_enabled(node->type) ?
1245 -EPROBE_DEFER : -ENODEV;
1246
1247 return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode, ops);
1248 }
1249
1250 struct iort_pci_alias_info {
1251 struct device *dev;
1252 struct acpi_iort_node *node;
1253 };
1254
iort_pci_iommu_init(struct pci_dev * pdev,u16 alias,void * data)1255 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
1256 {
1257 struct iort_pci_alias_info *info = data;
1258 struct acpi_iort_node *parent;
1259 u32 streamid;
1260
1261 parent = iort_node_map_id(info->node, alias, &streamid,
1262 IORT_IOMMU_TYPE);
1263 return iort_iommu_xlate(info->dev, parent, streamid);
1264 }
1265
iort_named_component_init(struct device * dev,struct acpi_iort_node * node)1266 static void iort_named_component_init(struct device *dev,
1267 struct acpi_iort_node *node)
1268 {
1269 struct property_entry props[3] = {};
1270 struct acpi_iort_named_component *nc;
1271
1272 nc = (struct acpi_iort_named_component *)node->node_data;
1273 props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
1274 FIELD_GET(ACPI_IORT_NC_PASID_BITS,
1275 nc->node_flags));
1276 if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
1277 props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
1278
1279 if (device_create_managed_software_node(dev, props, NULL))
1280 dev_warn(dev, "Could not add device properties\n");
1281 }
1282
iort_nc_iommu_map(struct device * dev,struct acpi_iort_node * node)1283 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
1284 {
1285 struct acpi_iort_node *parent;
1286 int err = -ENODEV, i = 0;
1287 u32 streamid = 0;
1288
1289 do {
1290
1291 parent = iort_node_map_platform_id(node, &streamid,
1292 IORT_IOMMU_TYPE,
1293 i++);
1294
1295 if (parent)
1296 err = iort_iommu_xlate(dev, parent, streamid);
1297 } while (parent && !err);
1298
1299 return err;
1300 }
1301
iort_nc_iommu_map_id(struct device * dev,struct acpi_iort_node * node,const u32 * in_id)1302 static int iort_nc_iommu_map_id(struct device *dev,
1303 struct acpi_iort_node *node,
1304 const u32 *in_id)
1305 {
1306 struct acpi_iort_node *parent;
1307 u32 streamid;
1308
1309 parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1310 if (parent)
1311 return iort_iommu_xlate(dev, parent, streamid);
1312
1313 return -ENODEV;
1314 }
1315
1316
1317 /**
1318 * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1319 *
1320 * @dev: device to configure
1321 * @id_in: optional input id const value pointer
1322 *
1323 * Returns: 0 on success, <0 on failure
1324 */
iort_iommu_configure_id(struct device * dev,const u32 * id_in)1325 int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
1326 {
1327 struct acpi_iort_node *node;
1328 int err = -ENODEV;
1329
1330 if (dev_is_pci(dev)) {
1331 struct iommu_fwspec *fwspec;
1332 struct pci_bus *bus = to_pci_dev(dev)->bus;
1333 struct iort_pci_alias_info info = { .dev = dev };
1334
1335 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1336 iort_match_node_callback, &bus->dev);
1337 if (!node)
1338 return -ENODEV;
1339
1340 info.node = node;
1341 err = pci_for_each_dma_alias(to_pci_dev(dev),
1342 iort_pci_iommu_init, &info);
1343
1344 fwspec = dev_iommu_fwspec_get(dev);
1345 if (fwspec && iort_pci_rc_supports_ats(node))
1346 fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1347 } else {
1348 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1349 iort_match_node_callback, dev);
1350 if (!node)
1351 return -ENODEV;
1352
1353 err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1354 iort_nc_iommu_map(dev, node);
1355
1356 if (!err)
1357 iort_named_component_init(dev, node);
1358 }
1359
1360 return err;
1361 }
1362
1363 #else
iort_iommu_get_resv_regions(struct device * dev,struct list_head * head)1364 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1365 { }
iort_iommu_configure_id(struct device * dev,const u32 * input_id)1366 int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
1367 { return -ENODEV; }
1368 #endif
1369
nc_dma_get_range(struct device * dev,u64 * size)1370 static int nc_dma_get_range(struct device *dev, u64 *size)
1371 {
1372 struct acpi_iort_node *node;
1373 struct acpi_iort_named_component *ncomp;
1374
1375 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1376 iort_match_node_callback, dev);
1377 if (!node)
1378 return -ENODEV;
1379
1380 ncomp = (struct acpi_iort_named_component *)node->node_data;
1381
1382 if (!ncomp->memory_address_limit) {
1383 pr_warn(FW_BUG "Named component missing memory address limit\n");
1384 return -EINVAL;
1385 }
1386
1387 *size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1388 1ULL<<ncomp->memory_address_limit;
1389
1390 return 0;
1391 }
1392
rc_dma_get_range(struct device * dev,u64 * size)1393 static int rc_dma_get_range(struct device *dev, u64 *size)
1394 {
1395 struct acpi_iort_node *node;
1396 struct acpi_iort_root_complex *rc;
1397 struct pci_bus *pbus = to_pci_dev(dev)->bus;
1398
1399 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1400 iort_match_node_callback, &pbus->dev);
1401 if (!node || node->revision < 1)
1402 return -ENODEV;
1403
1404 rc = (struct acpi_iort_root_complex *)node->node_data;
1405
1406 if (!rc->memory_address_limit) {
1407 pr_warn(FW_BUG "Root complex missing memory address limit\n");
1408 return -EINVAL;
1409 }
1410
1411 *size = rc->memory_address_limit >= 64 ? U64_MAX :
1412 1ULL<<rc->memory_address_limit;
1413
1414 return 0;
1415 }
1416
1417 /**
1418 * iort_dma_get_ranges() - Look up DMA addressing limit for the device
1419 * @dev: device to lookup
1420 * @size: DMA range size result pointer
1421 *
1422 * Return: 0 on success, an error otherwise.
1423 */
iort_dma_get_ranges(struct device * dev,u64 * size)1424 int iort_dma_get_ranges(struct device *dev, u64 *size)
1425 {
1426 if (dev_is_pci(dev))
1427 return rc_dma_get_range(dev, size);
1428 else
1429 return nc_dma_get_range(dev, size);
1430 }
1431
acpi_iort_register_irq(int hwirq,const char * name,int trigger,struct resource * res)1432 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1433 int trigger,
1434 struct resource *res)
1435 {
1436 int irq = acpi_register_gsi(NULL, hwirq, trigger,
1437 ACPI_ACTIVE_HIGH);
1438
1439 if (irq <= 0) {
1440 pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1441 name);
1442 return;
1443 }
1444
1445 res->start = irq;
1446 res->end = irq;
1447 res->flags = IORESOURCE_IRQ;
1448 res->name = name;
1449 }
1450
arm_smmu_v3_count_resources(struct acpi_iort_node * node)1451 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1452 {
1453 struct acpi_iort_smmu_v3 *smmu;
1454 /* Always present mem resource */
1455 int num_res = 1;
1456
1457 /* Retrieve SMMUv3 specific data */
1458 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1459
1460 if (smmu->event_gsiv)
1461 num_res++;
1462
1463 if (smmu->pri_gsiv)
1464 num_res++;
1465
1466 if (smmu->gerr_gsiv)
1467 num_res++;
1468
1469 if (smmu->sync_gsiv)
1470 num_res++;
1471
1472 return num_res;
1473 }
1474
arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 * smmu)1475 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1476 {
1477 /*
1478 * Cavium ThunderX2 implementation doesn't not support unique
1479 * irq line. Use single irq line for all the SMMUv3 interrupts.
1480 */
1481 if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1482 return false;
1483
1484 /*
1485 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1486 * SPI numbers here.
1487 */
1488 return smmu->event_gsiv == smmu->pri_gsiv &&
1489 smmu->event_gsiv == smmu->gerr_gsiv &&
1490 smmu->event_gsiv == smmu->sync_gsiv;
1491 }
1492
arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 * smmu)1493 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1494 {
1495 /*
1496 * Override the size, for Cavium ThunderX2 implementation
1497 * which doesn't support the page 1 SMMU register space.
1498 */
1499 if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1500 return SZ_64K;
1501
1502 return SZ_128K;
1503 }
1504
arm_smmu_v3_init_resources(struct resource * res,struct acpi_iort_node * node)1505 static void __init arm_smmu_v3_init_resources(struct resource *res,
1506 struct acpi_iort_node *node)
1507 {
1508 struct acpi_iort_smmu_v3 *smmu;
1509 int num_res = 0;
1510
1511 /* Retrieve SMMUv3 specific data */
1512 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1513
1514 res[num_res].start = smmu->base_address;
1515 res[num_res].end = smmu->base_address +
1516 arm_smmu_v3_resource_size(smmu) - 1;
1517 res[num_res].flags = IORESOURCE_MEM;
1518
1519 num_res++;
1520 if (arm_smmu_v3_is_combined_irq(smmu)) {
1521 if (smmu->event_gsiv)
1522 acpi_iort_register_irq(smmu->event_gsiv, "combined",
1523 ACPI_EDGE_SENSITIVE,
1524 &res[num_res++]);
1525 } else {
1526
1527 if (smmu->event_gsiv)
1528 acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1529 ACPI_EDGE_SENSITIVE,
1530 &res[num_res++]);
1531
1532 if (smmu->pri_gsiv)
1533 acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1534 ACPI_EDGE_SENSITIVE,
1535 &res[num_res++]);
1536
1537 if (smmu->gerr_gsiv)
1538 acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1539 ACPI_EDGE_SENSITIVE,
1540 &res[num_res++]);
1541
1542 if (smmu->sync_gsiv)
1543 acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1544 ACPI_EDGE_SENSITIVE,
1545 &res[num_res++]);
1546 }
1547 }
1548
arm_smmu_v3_dma_configure(struct device * dev,struct acpi_iort_node * node)1549 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1550 struct acpi_iort_node *node)
1551 {
1552 struct acpi_iort_smmu_v3 *smmu;
1553 enum dev_dma_attr attr;
1554
1555 /* Retrieve SMMUv3 specific data */
1556 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1557
1558 attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1559 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1560
1561 /* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1562 dev->dma_mask = &dev->coherent_dma_mask;
1563
1564 /* Configure DMA for the page table walker */
1565 acpi_dma_configure(dev, attr);
1566 }
1567
1568 #if defined(CONFIG_ACPI_NUMA)
1569 /*
1570 * set numa proximity domain for smmuv3 device
1571 */
arm_smmu_v3_set_proximity(struct device * dev,struct acpi_iort_node * node)1572 static int __init arm_smmu_v3_set_proximity(struct device *dev,
1573 struct acpi_iort_node *node)
1574 {
1575 struct acpi_iort_smmu_v3 *smmu;
1576
1577 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1578 if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1579 int dev_node = pxm_to_node(smmu->pxm);
1580
1581 if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1582 return -EINVAL;
1583
1584 set_dev_node(dev, dev_node);
1585 pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1586 smmu->base_address,
1587 smmu->pxm);
1588 }
1589 return 0;
1590 }
1591 #else
1592 #define arm_smmu_v3_set_proximity NULL
1593 #endif
1594
arm_smmu_count_resources(struct acpi_iort_node * node)1595 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1596 {
1597 struct acpi_iort_smmu *smmu;
1598
1599 /* Retrieve SMMU specific data */
1600 smmu = (struct acpi_iort_smmu *)node->node_data;
1601
1602 /*
1603 * Only consider the global fault interrupt and ignore the
1604 * configuration access interrupt.
1605 *
1606 * MMIO address and global fault interrupt resources are always
1607 * present so add them to the context interrupt count as a static
1608 * value.
1609 */
1610 return smmu->context_interrupt_count + 2;
1611 }
1612
arm_smmu_init_resources(struct resource * res,struct acpi_iort_node * node)1613 static void __init arm_smmu_init_resources(struct resource *res,
1614 struct acpi_iort_node *node)
1615 {
1616 struct acpi_iort_smmu *smmu;
1617 int i, hw_irq, trigger, num_res = 0;
1618 u64 *ctx_irq, *glb_irq;
1619
1620 /* Retrieve SMMU specific data */
1621 smmu = (struct acpi_iort_smmu *)node->node_data;
1622
1623 res[num_res].start = smmu->base_address;
1624 res[num_res].end = smmu->base_address + smmu->span - 1;
1625 res[num_res].flags = IORESOURCE_MEM;
1626 num_res++;
1627
1628 glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1629 /* Global IRQs */
1630 hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1631 trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1632
1633 acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1634 &res[num_res++]);
1635
1636 /* Context IRQs */
1637 ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1638 for (i = 0; i < smmu->context_interrupt_count; i++) {
1639 hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1640 trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1641
1642 acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1643 &res[num_res++]);
1644 }
1645 }
1646
arm_smmu_dma_configure(struct device * dev,struct acpi_iort_node * node)1647 static void __init arm_smmu_dma_configure(struct device *dev,
1648 struct acpi_iort_node *node)
1649 {
1650 struct acpi_iort_smmu *smmu;
1651 enum dev_dma_attr attr;
1652
1653 /* Retrieve SMMU specific data */
1654 smmu = (struct acpi_iort_smmu *)node->node_data;
1655
1656 attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1657 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1658
1659 /* We expect the dma masks to be equivalent for SMMU set-ups */
1660 dev->dma_mask = &dev->coherent_dma_mask;
1661
1662 /* Configure DMA for the page table walker */
1663 acpi_dma_configure(dev, attr);
1664 }
1665
arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node * node)1666 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1667 {
1668 struct acpi_iort_pmcg *pmcg;
1669
1670 /* Retrieve PMCG specific data */
1671 pmcg = (struct acpi_iort_pmcg *)node->node_data;
1672
1673 /*
1674 * There are always 2 memory resources.
1675 * If the overflow_gsiv is present then add that for a total of 3.
1676 */
1677 return pmcg->overflow_gsiv ? 3 : 2;
1678 }
1679
arm_smmu_v3_pmcg_init_resources(struct resource * res,struct acpi_iort_node * node)1680 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1681 struct acpi_iort_node *node)
1682 {
1683 struct acpi_iort_pmcg *pmcg;
1684
1685 /* Retrieve PMCG specific data */
1686 pmcg = (struct acpi_iort_pmcg *)node->node_data;
1687
1688 res[0].start = pmcg->page0_base_address;
1689 res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1690 res[0].flags = IORESOURCE_MEM;
1691 /*
1692 * The initial version in DEN0049C lacked a way to describe register
1693 * page 1, which makes it broken for most PMCG implementations; in
1694 * that case, just let the driver fail gracefully if it expects to
1695 * find a second memory resource.
1696 */
1697 if (node->revision > 0) {
1698 res[1].start = pmcg->page1_base_address;
1699 res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1700 res[1].flags = IORESOURCE_MEM;
1701 }
1702
1703 if (pmcg->overflow_gsiv)
1704 acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1705 ACPI_EDGE_SENSITIVE, &res[2]);
1706 }
1707
1708 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1709 /* HiSilicon Hip08 Platform */
1710 {"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1711 "Erratum #162001800, Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP08},
1712 /* HiSilicon Hip09 Platform */
1713 {"HISI ", "HIP09 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1714 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1715 { }
1716 };
1717
arm_smmu_v3_pmcg_add_platdata(struct platform_device * pdev)1718 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1719 {
1720 u32 model;
1721 int idx;
1722
1723 idx = acpi_match_platform_list(pmcg_plat_info);
1724 if (idx >= 0)
1725 model = pmcg_plat_info[idx].data;
1726 else
1727 model = IORT_SMMU_V3_PMCG_GENERIC;
1728
1729 return platform_device_add_data(pdev, &model, sizeof(model));
1730 }
1731
1732 struct iort_dev_config {
1733 const char *name;
1734 int (*dev_init)(struct acpi_iort_node *node);
1735 void (*dev_dma_configure)(struct device *dev,
1736 struct acpi_iort_node *node);
1737 int (*dev_count_resources)(struct acpi_iort_node *node);
1738 void (*dev_init_resources)(struct resource *res,
1739 struct acpi_iort_node *node);
1740 int (*dev_set_proximity)(struct device *dev,
1741 struct acpi_iort_node *node);
1742 int (*dev_add_platdata)(struct platform_device *pdev);
1743 };
1744
1745 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1746 .name = "arm-smmu-v3",
1747 .dev_dma_configure = arm_smmu_v3_dma_configure,
1748 .dev_count_resources = arm_smmu_v3_count_resources,
1749 .dev_init_resources = arm_smmu_v3_init_resources,
1750 .dev_set_proximity = arm_smmu_v3_set_proximity,
1751 };
1752
1753 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1754 .name = "arm-smmu",
1755 .dev_dma_configure = arm_smmu_dma_configure,
1756 .dev_count_resources = arm_smmu_count_resources,
1757 .dev_init_resources = arm_smmu_init_resources,
1758 };
1759
1760 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1761 .name = "arm-smmu-v3-pmcg",
1762 .dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1763 .dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1764 .dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1765 };
1766
iort_get_dev_cfg(struct acpi_iort_node * node)1767 static __init const struct iort_dev_config *iort_get_dev_cfg(
1768 struct acpi_iort_node *node)
1769 {
1770 switch (node->type) {
1771 case ACPI_IORT_NODE_SMMU_V3:
1772 return &iort_arm_smmu_v3_cfg;
1773 case ACPI_IORT_NODE_SMMU:
1774 return &iort_arm_smmu_cfg;
1775 case ACPI_IORT_NODE_PMCG:
1776 return &iort_arm_smmu_v3_pmcg_cfg;
1777 default:
1778 return NULL;
1779 }
1780 }
1781
1782 /**
1783 * iort_add_platform_device() - Allocate a platform device for IORT node
1784 * @node: Pointer to device ACPI IORT node
1785 * @ops: Pointer to IORT device config struct
1786 *
1787 * Returns: 0 on success, <0 failure
1788 */
iort_add_platform_device(struct acpi_iort_node * node,const struct iort_dev_config * ops)1789 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1790 const struct iort_dev_config *ops)
1791 {
1792 struct fwnode_handle *fwnode;
1793 struct platform_device *pdev;
1794 struct resource *r;
1795 int ret, count;
1796
1797 pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1798 if (!pdev)
1799 return -ENOMEM;
1800
1801 if (ops->dev_set_proximity) {
1802 ret = ops->dev_set_proximity(&pdev->dev, node);
1803 if (ret)
1804 goto dev_put;
1805 }
1806
1807 count = ops->dev_count_resources(node);
1808
1809 r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1810 if (!r) {
1811 ret = -ENOMEM;
1812 goto dev_put;
1813 }
1814
1815 ops->dev_init_resources(r, node);
1816
1817 ret = platform_device_add_resources(pdev, r, count);
1818 /*
1819 * Resources are duplicated in platform_device_add_resources,
1820 * free their allocated memory
1821 */
1822 kfree(r);
1823
1824 if (ret)
1825 goto dev_put;
1826
1827 /*
1828 * Platform devices based on PMCG nodes uses platform_data to
1829 * pass the hardware model info to the driver. For others, add
1830 * a copy of IORT node pointer to platform_data to be used to
1831 * retrieve IORT data information.
1832 */
1833 if (ops->dev_add_platdata)
1834 ret = ops->dev_add_platdata(pdev);
1835 else
1836 ret = platform_device_add_data(pdev, &node, sizeof(node));
1837
1838 if (ret)
1839 goto dev_put;
1840
1841 fwnode = iort_get_fwnode(node);
1842
1843 if (!fwnode) {
1844 ret = -ENODEV;
1845 goto dev_put;
1846 }
1847
1848 pdev->dev.fwnode = fwnode;
1849
1850 if (ops->dev_dma_configure)
1851 ops->dev_dma_configure(&pdev->dev, node);
1852
1853 iort_set_device_domain(&pdev->dev, node);
1854
1855 ret = platform_device_add(pdev);
1856 if (ret)
1857 goto dma_deconfigure;
1858
1859 return 0;
1860
1861 dma_deconfigure:
1862 arch_teardown_dma_ops(&pdev->dev);
1863 dev_put:
1864 platform_device_put(pdev);
1865
1866 return ret;
1867 }
1868
1869 #ifdef CONFIG_PCI
iort_enable_acs(struct acpi_iort_node * iort_node)1870 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1871 {
1872 static bool acs_enabled __initdata;
1873
1874 if (acs_enabled)
1875 return;
1876
1877 if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1878 struct acpi_iort_node *parent;
1879 struct acpi_iort_id_mapping *map;
1880 int i;
1881
1882 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1883 iort_node->mapping_offset);
1884
1885 for (i = 0; i < iort_node->mapping_count; i++, map++) {
1886 if (!map->output_reference)
1887 continue;
1888
1889 parent = ACPI_ADD_PTR(struct acpi_iort_node,
1890 iort_table, map->output_reference);
1891 /*
1892 * If we detect a RC->SMMU mapping, make sure
1893 * we enable ACS on the system.
1894 */
1895 if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1896 (parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1897 pci_request_acs();
1898 acs_enabled = true;
1899 return;
1900 }
1901 }
1902 }
1903 }
1904 #else
iort_enable_acs(struct acpi_iort_node * iort_node)1905 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1906 #endif
1907
iort_init_platform_devices(void)1908 static void __init iort_init_platform_devices(void)
1909 {
1910 struct acpi_iort_node *iort_node, *iort_end;
1911 struct acpi_table_iort *iort;
1912 struct fwnode_handle *fwnode;
1913 int i, ret;
1914 const struct iort_dev_config *ops;
1915
1916 /*
1917 * iort_table and iort both point to the start of IORT table, but
1918 * have different struct types
1919 */
1920 iort = (struct acpi_table_iort *)iort_table;
1921
1922 /* Get the first IORT node */
1923 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1924 iort->node_offset);
1925 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1926 iort_table->length);
1927
1928 for (i = 0; i < iort->node_count; i++) {
1929 if (iort_node >= iort_end) {
1930 pr_err("iort node pointer overflows, bad table\n");
1931 return;
1932 }
1933
1934 iort_enable_acs(iort_node);
1935
1936 ops = iort_get_dev_cfg(iort_node);
1937 if (ops) {
1938 fwnode = acpi_alloc_fwnode_static();
1939 if (!fwnode)
1940 return;
1941
1942 iort_set_fwnode(iort_node, fwnode);
1943
1944 ret = iort_add_platform_device(iort_node, ops);
1945 if (ret) {
1946 iort_delete_fwnode(iort_node);
1947 acpi_free_fwnode_static(fwnode);
1948 return;
1949 }
1950 }
1951
1952 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1953 iort_node->length);
1954 }
1955 }
1956
acpi_iort_init(void)1957 void __init acpi_iort_init(void)
1958 {
1959 acpi_status status;
1960
1961 /* iort_table will be used at runtime after the iort init,
1962 * so we don't need to call acpi_put_table() to release
1963 * the IORT table mapping.
1964 */
1965 status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1966 if (ACPI_FAILURE(status)) {
1967 if (status != AE_NOT_FOUND) {
1968 const char *msg = acpi_format_exception(status);
1969
1970 pr_err("Failed to get table, %s\n", msg);
1971 }
1972
1973 return;
1974 }
1975
1976 iort_init_platform_devices();
1977 }
1978
1979 #ifdef CONFIG_ZONE_DMA
1980 /*
1981 * Extract the highest CPU physical address accessible to all DMA masters in
1982 * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1983 */
acpi_iort_dma_get_max_cpu_address(void)1984 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1985 {
1986 phys_addr_t limit = PHYS_ADDR_MAX;
1987 struct acpi_iort_node *node, *end;
1988 struct acpi_table_iort *iort;
1989 acpi_status status;
1990 int i;
1991
1992 if (acpi_disabled)
1993 return limit;
1994
1995 status = acpi_get_table(ACPI_SIG_IORT, 0,
1996 (struct acpi_table_header **)&iort);
1997 if (ACPI_FAILURE(status))
1998 return limit;
1999
2000 node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
2001 end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
2002
2003 for (i = 0; i < iort->node_count; i++) {
2004 if (node >= end)
2005 break;
2006
2007 switch (node->type) {
2008 struct acpi_iort_named_component *ncomp;
2009 struct acpi_iort_root_complex *rc;
2010 phys_addr_t local_limit;
2011
2012 case ACPI_IORT_NODE_NAMED_COMPONENT:
2013 ncomp = (struct acpi_iort_named_component *)node->node_data;
2014 local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
2015 limit = min_not_zero(limit, local_limit);
2016 break;
2017
2018 case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
2019 if (node->revision < 1)
2020 break;
2021
2022 rc = (struct acpi_iort_root_complex *)node->node_data;
2023 local_limit = DMA_BIT_MASK(rc->memory_address_limit);
2024 limit = min_not_zero(limit, local_limit);
2025 break;
2026 }
2027 node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
2028 }
2029 acpi_put_table(&iort->header);
2030 return limit;
2031 }
2032 #endif
2033