xref: /openbmc/linux/drivers/acpi/acpica/utmath.c (revision bbecb07f)
1 /*******************************************************************************
2  *
3  * Module Name: utmath - Integer math support routines
4  *
5  ******************************************************************************/
6 
7 /*
8  * Copyright (C) 2000 - 2017, Intel Corp.
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions, and the following disclaimer,
16  *    without modification.
17  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18  *    substantially similar to the "NO WARRANTY" disclaimer below
19  *    ("Disclaimer") and any redistribution must be conditioned upon
20  *    including a substantially similar Disclaimer requirement for further
21  *    binary redistribution.
22  * 3. Neither the names of the above-listed copyright holders nor the names
23  *    of any contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * Alternatively, this software may be distributed under the terms of the
27  * GNU General Public License ("GPL") version 2 as published by the Free
28  * Software Foundation.
29  *
30  * NO WARRANTY
31  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41  * POSSIBILITY OF SUCH DAMAGES.
42  */
43 
44 #include <acpi/acpi.h>
45 #include "accommon.h"
46 
47 #define _COMPONENT          ACPI_UTILITIES
48 ACPI_MODULE_NAME("utmath")
49 
50 /* Structures used only for 64-bit divide */
51 typedef struct uint64_struct {
52 	u32 lo;
53 	u32 hi;
54 
55 } uint64_struct;
56 
57 typedef union uint64_overlay {
58 	u64 full;
59 	struct uint64_struct part;
60 
61 } uint64_overlay;
62 
63 /*
64  * Optional support for 64-bit double-precision integer multiply and shift.
65  * This code is configurable and is implemented in order to support 32-bit
66  * kernel environments where a 64-bit double-precision math library is not
67  * available.
68  */
69 #ifndef ACPI_USE_NATIVE_MATH64
70 
71 /*******************************************************************************
72  *
73  * FUNCTION:    acpi_ut_short_multiply
74  *
75  * PARAMETERS:  multiplicand        - 64-bit multiplicand
76  *              multiplier          - 32-bit multiplier
77  *              out_product         - Pointer to where the product is returned
78  *
79  * DESCRIPTION: Perform a short multiply.
80  *
81  ******************************************************************************/
82 
83 acpi_status
84 acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product)
85 {
86 	union uint64_overlay multiplicand_ovl;
87 	union uint64_overlay product;
88 	u32 carry32;
89 
90 	ACPI_FUNCTION_TRACE(ut_short_multiply);
91 
92 	multiplicand_ovl.full = multiplicand;
93 
94 	/*
95 	 * The Product is 64 bits, the carry is always 32 bits,
96 	 * and is generated by the second multiply.
97 	 */
98 	ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.hi, multiplier,
99 			  product.part.hi, carry32);
100 
101 	ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.lo, multiplier,
102 			  product.part.lo, carry32);
103 
104 	product.part.hi += carry32;
105 
106 	/* Return only what was requested */
107 
108 	if (out_product) {
109 		*out_product = product.full;
110 	}
111 
112 	return_ACPI_STATUS(AE_OK);
113 }
114 
115 /*******************************************************************************
116  *
117  * FUNCTION:    acpi_ut_short_shift_left
118  *
119  * PARAMETERS:  operand             - 64-bit shift operand
120  *              count               - 32-bit shift count
121  *              out_result          - Pointer to where the result is returned
122  *
123  * DESCRIPTION: Perform a short left shift.
124  *
125  ******************************************************************************/
126 
127 acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result)
128 {
129 	union uint64_overlay operand_ovl;
130 
131 	ACPI_FUNCTION_TRACE(ut_short_shift_left);
132 
133 	operand_ovl.full = operand;
134 
135 	if ((count & 63) >= 32) {
136 		operand_ovl.part.hi = operand_ovl.part.lo;
137 		operand_ovl.part.lo ^= operand_ovl.part.lo;
138 		count = (count & 63) - 32;
139 	}
140 	ACPI_SHIFT_LEFT_64_BY_32(operand_ovl.part.hi,
141 				 operand_ovl.part.lo, count);
142 
143 	/* Return only what was requested */
144 
145 	if (out_result) {
146 		*out_result = operand_ovl.full;
147 	}
148 
149 	return_ACPI_STATUS(AE_OK);
150 }
151 
152 /*******************************************************************************
153  *
154  * FUNCTION:    acpi_ut_short_shift_right
155  *
156  * PARAMETERS:  operand             - 64-bit shift operand
157  *              count               - 32-bit shift count
158  *              out_result          - Pointer to where the result is returned
159  *
160  * DESCRIPTION: Perform a short right shift.
161  *
162  ******************************************************************************/
163 
164 acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result)
165 {
166 	union uint64_overlay operand_ovl;
167 
168 	ACPI_FUNCTION_TRACE(ut_short_shift_right);
169 
170 	operand_ovl.full = operand;
171 
172 	if ((count & 63) >= 32) {
173 		operand_ovl.part.lo = operand_ovl.part.hi;
174 		operand_ovl.part.hi ^= operand_ovl.part.hi;
175 		count = (count & 63) - 32;
176 	}
177 	ACPI_SHIFT_RIGHT_64_BY_32(operand_ovl.part.hi,
178 				  operand_ovl.part.lo, count);
179 
180 	/* Return only what was requested */
181 
182 	if (out_result) {
183 		*out_result = operand_ovl.full;
184 	}
185 
186 	return_ACPI_STATUS(AE_OK);
187 }
188 #else
189 
190 /*******************************************************************************
191  *
192  * FUNCTION:    acpi_ut_short_multiply
193  *
194  * PARAMETERS:  See function headers above
195  *
196  * DESCRIPTION: Native version of the ut_short_multiply function.
197  *
198  ******************************************************************************/
199 
200 acpi_status
201 acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product)
202 {
203 
204 	ACPI_FUNCTION_TRACE(ut_short_multiply);
205 
206 	/* Return only what was requested */
207 
208 	if (out_product) {
209 		*out_product = multiplicand * multiplier;
210 	}
211 
212 	return_ACPI_STATUS(AE_OK);
213 }
214 
215 /*******************************************************************************
216  *
217  * FUNCTION:    acpi_ut_short_shift_left
218  *
219  * PARAMETERS:  See function headers above
220  *
221  * DESCRIPTION: Native version of the ut_short_shift_left function.
222  *
223  ******************************************************************************/
224 
225 acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result)
226 {
227 
228 	ACPI_FUNCTION_TRACE(ut_short_shift_left);
229 
230 	/* Return only what was requested */
231 
232 	if (out_result) {
233 		*out_result = operand << count;
234 	}
235 
236 	return_ACPI_STATUS(AE_OK);
237 }
238 
239 /*******************************************************************************
240  *
241  * FUNCTION:    acpi_ut_short_shift_right
242  *
243  * PARAMETERS:  See function headers above
244  *
245  * DESCRIPTION: Native version of the ut_short_shift_right function.
246  *
247  ******************************************************************************/
248 
249 acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result)
250 {
251 
252 	ACPI_FUNCTION_TRACE(ut_short_shift_right);
253 
254 	/* Return only what was requested */
255 
256 	if (out_result) {
257 		*out_result = operand >> count;
258 	}
259 
260 	return_ACPI_STATUS(AE_OK);
261 }
262 #endif
263 
264 /*
265  * Optional support for 64-bit double-precision integer divide. This code
266  * is configurable and is implemented in order to support 32-bit kernel
267  * environments where a 64-bit double-precision math library is not available.
268  *
269  * Support for a more normal 64-bit divide/modulo (with check for a divide-
270  * by-zero) appears after this optional section of code.
271  */
272 #ifndef ACPI_USE_NATIVE_DIVIDE
273 
274 /*******************************************************************************
275  *
276  * FUNCTION:    acpi_ut_short_divide
277  *
278  * PARAMETERS:  dividend            - 64-bit dividend
279  *              divisor             - 32-bit divisor
280  *              out_quotient        - Pointer to where the quotient is returned
281  *              out_remainder       - Pointer to where the remainder is returned
282  *
283  * RETURN:      Status (Checks for divide-by-zero)
284  *
285  * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
286  *              divide and modulo. The result is a 64-bit quotient and a
287  *              32-bit remainder.
288  *
289  ******************************************************************************/
290 
291 acpi_status
292 acpi_ut_short_divide(u64 dividend,
293 		     u32 divisor, u64 *out_quotient, u32 *out_remainder)
294 {
295 	union uint64_overlay dividend_ovl;
296 	union uint64_overlay quotient;
297 	u32 remainder32;
298 
299 	ACPI_FUNCTION_TRACE(ut_short_divide);
300 
301 	/* Always check for a zero divisor */
302 
303 	if (divisor == 0) {
304 		ACPI_ERROR((AE_INFO, "Divide by zero"));
305 		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
306 	}
307 
308 	dividend_ovl.full = dividend;
309 
310 	/*
311 	 * The quotient is 64 bits, the remainder is always 32 bits,
312 	 * and is generated by the second divide.
313 	 */
314 	ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor,
315 			  quotient.part.hi, remainder32);
316 
317 	ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor,
318 			  quotient.part.lo, remainder32);
319 
320 	/* Return only what was requested */
321 
322 	if (out_quotient) {
323 		*out_quotient = quotient.full;
324 	}
325 	if (out_remainder) {
326 		*out_remainder = remainder32;
327 	}
328 
329 	return_ACPI_STATUS(AE_OK);
330 }
331 
332 /*******************************************************************************
333  *
334  * FUNCTION:    acpi_ut_divide
335  *
336  * PARAMETERS:  in_dividend         - Dividend
337  *              in_divisor          - Divisor
338  *              out_quotient        - Pointer to where the quotient is returned
339  *              out_remainder       - Pointer to where the remainder is returned
340  *
341  * RETURN:      Status (Checks for divide-by-zero)
342  *
343  * DESCRIPTION: Perform a divide and modulo.
344  *
345  ******************************************************************************/
346 
347 acpi_status
348 acpi_ut_divide(u64 in_dividend,
349 	       u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
350 {
351 	union uint64_overlay dividend;
352 	union uint64_overlay divisor;
353 	union uint64_overlay quotient;
354 	union uint64_overlay remainder;
355 	union uint64_overlay normalized_dividend;
356 	union uint64_overlay normalized_divisor;
357 	u32 partial1;
358 	union uint64_overlay partial2;
359 	union uint64_overlay partial3;
360 
361 	ACPI_FUNCTION_TRACE(ut_divide);
362 
363 	/* Always check for a zero divisor */
364 
365 	if (in_divisor == 0) {
366 		ACPI_ERROR((AE_INFO, "Divide by zero"));
367 		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
368 	}
369 
370 	divisor.full = in_divisor;
371 	dividend.full = in_dividend;
372 	if (divisor.part.hi == 0) {
373 		/*
374 		 * 1) Simplest case is where the divisor is 32 bits, we can
375 		 * just do two divides
376 		 */
377 		remainder.part.hi = 0;
378 
379 		/*
380 		 * The quotient is 64 bits, the remainder is always 32 bits,
381 		 * and is generated by the second divide.
382 		 */
383 		ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo,
384 				  quotient.part.hi, partial1);
385 
386 		ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo,
387 				  quotient.part.lo, remainder.part.lo);
388 	}
389 
390 	else {
391 		/*
392 		 * 2) The general case where the divisor is a full 64 bits
393 		 * is more difficult
394 		 */
395 		quotient.part.hi = 0;
396 		normalized_dividend = dividend;
397 		normalized_divisor = divisor;
398 
399 		/* Normalize the operands (shift until the divisor is < 32 bits) */
400 
401 		do {
402 			ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi,
403 					    normalized_divisor.part.lo);
404 			ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi,
405 					    normalized_dividend.part.lo);
406 
407 		} while (normalized_divisor.part.hi != 0);
408 
409 		/* Partial divide */
410 
411 		ACPI_DIV_64_BY_32(normalized_dividend.part.hi,
412 				  normalized_dividend.part.lo,
413 				  normalized_divisor.part.lo, quotient.part.lo,
414 				  partial1);
415 
416 		/*
417 		 * The quotient is always 32 bits, and simply requires
418 		 * adjustment. The 64-bit remainder must be generated.
419 		 */
420 		partial1 = quotient.part.lo * divisor.part.hi;
421 		partial2.full = (u64) quotient.part.lo * divisor.part.lo;
422 		partial3.full = (u64) partial2.part.hi + partial1;
423 
424 		remainder.part.hi = partial3.part.lo;
425 		remainder.part.lo = partial2.part.lo;
426 
427 		if (partial3.part.hi == 0) {
428 			if (partial3.part.lo >= dividend.part.hi) {
429 				if (partial3.part.lo == dividend.part.hi) {
430 					if (partial2.part.lo > dividend.part.lo) {
431 						quotient.part.lo--;
432 						remainder.full -= divisor.full;
433 					}
434 				} else {
435 					quotient.part.lo--;
436 					remainder.full -= divisor.full;
437 				}
438 			}
439 
440 			remainder.full = remainder.full - dividend.full;
441 			remainder.part.hi = (u32)-((s32)remainder.part.hi);
442 			remainder.part.lo = (u32)-((s32)remainder.part.lo);
443 
444 			if (remainder.part.lo) {
445 				remainder.part.hi--;
446 			}
447 		}
448 	}
449 
450 	/* Return only what was requested */
451 
452 	if (out_quotient) {
453 		*out_quotient = quotient.full;
454 	}
455 	if (out_remainder) {
456 		*out_remainder = remainder.full;
457 	}
458 
459 	return_ACPI_STATUS(AE_OK);
460 }
461 
462 #else
463 
464 /*******************************************************************************
465  *
466  * FUNCTION:    acpi_ut_short_divide, acpi_ut_divide
467  *
468  * PARAMETERS:  See function headers above
469  *
470  * DESCRIPTION: Native versions of the ut_divide functions. Use these if either
471  *              1) The target is a 64-bit platform and therefore 64-bit
472  *                 integer math is supported directly by the machine.
473  *              2) The target is a 32-bit or 16-bit platform, and the
474  *                 double-precision integer math library is available to
475  *                 perform the divide.
476  *
477  ******************************************************************************/
478 
479 acpi_status
480 acpi_ut_short_divide(u64 in_dividend,
481 		     u32 divisor, u64 *out_quotient, u32 *out_remainder)
482 {
483 
484 	ACPI_FUNCTION_TRACE(ut_short_divide);
485 
486 	/* Always check for a zero divisor */
487 
488 	if (divisor == 0) {
489 		ACPI_ERROR((AE_INFO, "Divide by zero"));
490 		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
491 	}
492 
493 	/* Return only what was requested */
494 
495 	if (out_quotient) {
496 		*out_quotient = in_dividend / divisor;
497 	}
498 	if (out_remainder) {
499 		*out_remainder = (u32) (in_dividend % divisor);
500 	}
501 
502 	return_ACPI_STATUS(AE_OK);
503 }
504 
505 acpi_status
506 acpi_ut_divide(u64 in_dividend,
507 	       u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
508 {
509 	ACPI_FUNCTION_TRACE(ut_divide);
510 
511 	/* Always check for a zero divisor */
512 
513 	if (in_divisor == 0) {
514 		ACPI_ERROR((AE_INFO, "Divide by zero"));
515 		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
516 	}
517 
518 	/* Return only what was requested */
519 
520 	if (out_quotient) {
521 		*out_quotient = in_dividend / in_divisor;
522 	}
523 	if (out_remainder) {
524 		*out_remainder = in_dividend % in_divisor;
525 	}
526 
527 	return_ACPI_STATUS(AE_OK);
528 }
529 
530 #endif
531