xref: /openbmc/linux/drivers/acpi/acpica/hwxface.c (revision f4356947)
1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
2 /******************************************************************************
3  *
4  * Module Name: hwxface - Public ACPICA hardware interfaces
5  *
6  * Copyright (C) 2000 - 2023, Intel Corp.
7  *
8  *****************************************************************************/
9 
10 #define EXPORT_ACPI_INTERFACES
11 
12 #include <acpi/acpi.h>
13 #include "accommon.h"
14 #include "acnamesp.h"
15 
16 #define _COMPONENT          ACPI_HARDWARE
17 ACPI_MODULE_NAME("hwxface")
18 
19 /******************************************************************************
20  *
21  * FUNCTION:    acpi_reset
22  *
23  * PARAMETERS:  None
24  *
25  * RETURN:      Status
26  *
27  * DESCRIPTION: Set reset register in memory or IO space. Note: Does not
28  *              support reset register in PCI config space, this must be
29  *              handled separately.
30  *
31  ******************************************************************************/
32 acpi_status acpi_reset(void)
33 {
34 	struct acpi_generic_address *reset_reg;
35 	acpi_status status;
36 
37 	ACPI_FUNCTION_TRACE(acpi_reset);
38 
39 	reset_reg = &acpi_gbl_FADT.reset_register;
40 
41 	/* Check if the reset register is supported */
42 
43 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) ||
44 	    !reset_reg->address) {
45 		return_ACPI_STATUS(AE_NOT_EXIST);
46 	}
47 
48 	if (reset_reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
49 		/*
50 		 * For I/O space, write directly to the OSL. This bypasses the port
51 		 * validation mechanism, which may block a valid write to the reset
52 		 * register.
53 		 *
54 		 * NOTE:
55 		 * The ACPI spec requires the reset register width to be 8, so we
56 		 * hardcode it here and ignore the FADT value. This maintains
57 		 * compatibility with other ACPI implementations that have allowed
58 		 * BIOS code with bad register width values to go unnoticed.
59 		 */
60 		status = acpi_os_write_port((acpi_io_address)reset_reg->address,
61 					    acpi_gbl_FADT.reset_value,
62 					    ACPI_RESET_REGISTER_WIDTH);
63 	} else {
64 		/* Write the reset value to the reset register */
65 
66 		status = acpi_hw_write(acpi_gbl_FADT.reset_value, reset_reg);
67 	}
68 
69 	return_ACPI_STATUS(status);
70 }
71 
72 ACPI_EXPORT_SYMBOL(acpi_reset)
73 
74 /******************************************************************************
75  *
76  * FUNCTION:    acpi_read
77  *
78  * PARAMETERS:  value               - Where the value is returned
79  *              reg                 - GAS register structure
80  *
81  * RETURN:      Status
82  *
83  * DESCRIPTION: Read from either memory or IO space.
84  *
85  * LIMITATIONS: <These limitations also apply to acpi_write>
86  *      bit_width must be exactly 8, 16, 32, or 64.
87  *      space_ID must be system_memory or system_IO.
88  *      bit_offset and access_width are currently ignored, as there has
89  *          not been a need to implement these.
90  *
91  ******************************************************************************/
92 acpi_status acpi_read(u64 *return_value, struct acpi_generic_address *reg)
93 {
94 	acpi_status status;
95 
96 	ACPI_FUNCTION_NAME(acpi_read);
97 
98 	status = acpi_hw_read(return_value, reg);
99 	return (status);
100 }
101 
102 ACPI_EXPORT_SYMBOL(acpi_read)
103 
104 /******************************************************************************
105  *
106  * FUNCTION:    acpi_write
107  *
108  * PARAMETERS:  value               - Value to be written
109  *              reg                 - GAS register structure
110  *
111  * RETURN:      Status
112  *
113  * DESCRIPTION: Write to either memory or IO space.
114  *
115  ******************************************************************************/
116 acpi_status acpi_write(u64 value, struct acpi_generic_address *reg)
117 {
118 	acpi_status status;
119 
120 	ACPI_FUNCTION_NAME(acpi_write);
121 
122 	status = acpi_hw_write(value, reg);
123 	return (status);
124 }
125 
126 ACPI_EXPORT_SYMBOL(acpi_write)
127 
128 #if (!ACPI_REDUCED_HARDWARE)
129 /*******************************************************************************
130  *
131  * FUNCTION:    acpi_read_bit_register
132  *
133  * PARAMETERS:  register_id     - ID of ACPI Bit Register to access
134  *              return_value    - Value that was read from the register,
135  *                                normalized to bit position zero.
136  *
137  * RETURN:      Status and the value read from the specified Register. Value
138  *              returned is normalized to bit0 (is shifted all the way right)
139  *
140  * DESCRIPTION: ACPI bit_register read function. Does not acquire the HW lock.
141  *
142  * SUPPORTS:    Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
143  *              PM2 Control.
144  *
145  * Note: The hardware lock is not required when reading the ACPI bit registers
146  *       since almost all of them are single bit and it does not matter that
147  *       the parent hardware register can be split across two physical
148  *       registers. The only multi-bit field is SLP_TYP in the PM1 control
149  *       register, but this field does not cross an 8-bit boundary (nor does
150  *       it make much sense to actually read this field.)
151  *
152  ******************************************************************************/
153 acpi_status acpi_read_bit_register(u32 register_id, u32 *return_value)
154 {
155 	struct acpi_bit_register_info *bit_reg_info;
156 	u32 register_value;
157 	u32 value;
158 	acpi_status status;
159 
160 	ACPI_FUNCTION_TRACE_U32(acpi_read_bit_register, register_id);
161 
162 	/* Get the info structure corresponding to the requested ACPI Register */
163 
164 	bit_reg_info = acpi_hw_get_bit_register_info(register_id);
165 	if (!bit_reg_info) {
166 		return_ACPI_STATUS(AE_BAD_PARAMETER);
167 	}
168 
169 	/* Read the entire parent register */
170 
171 	status = acpi_hw_register_read(bit_reg_info->parent_register,
172 				       &register_value);
173 	if (ACPI_FAILURE(status)) {
174 		return_ACPI_STATUS(status);
175 	}
176 
177 	/* Normalize the value that was read, mask off other bits */
178 
179 	value = ((register_value & bit_reg_info->access_bit_mask)
180 		 >> bit_reg_info->bit_position);
181 
182 	ACPI_DEBUG_PRINT((ACPI_DB_IO,
183 			  "BitReg %X, ParentReg %X, Actual %8.8X, ReturnValue %8.8X\n",
184 			  register_id, bit_reg_info->parent_register,
185 			  register_value, value));
186 
187 	*return_value = value;
188 	return_ACPI_STATUS(AE_OK);
189 }
190 
191 ACPI_EXPORT_SYMBOL(acpi_read_bit_register)
192 
193 /*******************************************************************************
194  *
195  * FUNCTION:    acpi_write_bit_register
196  *
197  * PARAMETERS:  register_id     - ID of ACPI Bit Register to access
198  *              value           - Value to write to the register, in bit
199  *                                position zero. The bit is automatically
200  *                                shifted to the correct position.
201  *
202  * RETURN:      Status
203  *
204  * DESCRIPTION: ACPI Bit Register write function. Acquires the hardware lock
205  *              since most operations require a read/modify/write sequence.
206  *
207  * SUPPORTS:    Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
208  *              PM2 Control.
209  *
210  * Note that at this level, the fact that there may be actually two
211  * hardware registers (A and B - and B may not exist) is abstracted.
212  *
213  ******************************************************************************/
214 acpi_status acpi_write_bit_register(u32 register_id, u32 value)
215 {
216 	struct acpi_bit_register_info *bit_reg_info;
217 	acpi_cpu_flags lock_flags;
218 	u32 register_value;
219 	acpi_status status = AE_OK;
220 
221 	ACPI_FUNCTION_TRACE_U32(acpi_write_bit_register, register_id);
222 
223 	/* Get the info structure corresponding to the requested ACPI Register */
224 
225 	bit_reg_info = acpi_hw_get_bit_register_info(register_id);
226 	if (!bit_reg_info) {
227 		return_ACPI_STATUS(AE_BAD_PARAMETER);
228 	}
229 
230 	lock_flags = acpi_os_acquire_raw_lock(acpi_gbl_hardware_lock);
231 
232 	/*
233 	 * At this point, we know that the parent register is one of the
234 	 * following: PM1 Status, PM1 Enable, PM1 Control, or PM2 Control
235 	 */
236 	if (bit_reg_info->parent_register != ACPI_REGISTER_PM1_STATUS) {
237 		/*
238 		 * 1) Case for PM1 Enable, PM1 Control, and PM2 Control
239 		 *
240 		 * Perform a register read to preserve the bits that we are not
241 		 * interested in
242 		 */
243 		status = acpi_hw_register_read(bit_reg_info->parent_register,
244 					       &register_value);
245 		if (ACPI_FAILURE(status)) {
246 			goto unlock_and_exit;
247 		}
248 
249 		/*
250 		 * Insert the input bit into the value that was just read
251 		 * and write the register
252 		 */
253 		ACPI_REGISTER_INSERT_VALUE(register_value,
254 					   bit_reg_info->bit_position,
255 					   bit_reg_info->access_bit_mask,
256 					   value);
257 
258 		status = acpi_hw_register_write(bit_reg_info->parent_register,
259 						register_value);
260 	} else {
261 		/*
262 		 * 2) Case for PM1 Status
263 		 *
264 		 * The Status register is different from the rest. Clear an event
265 		 * by writing 1, writing 0 has no effect. So, the only relevant
266 		 * information is the single bit we're interested in, all others
267 		 * should be written as 0 so they will be left unchanged.
268 		 */
269 		register_value = ACPI_REGISTER_PREPARE_BITS(value,
270 							    bit_reg_info->
271 							    bit_position,
272 							    bit_reg_info->
273 							    access_bit_mask);
274 
275 		/* No need to write the register if value is all zeros */
276 
277 		if (register_value) {
278 			status =
279 			    acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS,
280 						   register_value);
281 		}
282 	}
283 
284 	ACPI_DEBUG_PRINT((ACPI_DB_IO,
285 			  "BitReg %X, ParentReg %X, Value %8.8X, Actual %8.8X\n",
286 			  register_id, bit_reg_info->parent_register, value,
287 			  register_value));
288 
289 unlock_and_exit:
290 
291 	acpi_os_release_raw_lock(acpi_gbl_hardware_lock, lock_flags);
292 	return_ACPI_STATUS(status);
293 }
294 
295 ACPI_EXPORT_SYMBOL(acpi_write_bit_register)
296 #endif				/* !ACPI_REDUCED_HARDWARE */
297 /*******************************************************************************
298  *
299  * FUNCTION:    acpi_get_sleep_type_data
300  *
301  * PARAMETERS:  sleep_state         - Numeric sleep state
302  *              *sleep_type_a        - Where SLP_TYPa is returned
303  *              *sleep_type_b        - Where SLP_TYPb is returned
304  *
305  * RETURN:      Status
306  *
307  * DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested
308  *              sleep state via the appropriate \_Sx object.
309  *
310  *  The sleep state package returned from the corresponding \_Sx_ object
311  *  must contain at least one integer.
312  *
313  *  March 2005:
314  *  Added support for a package that contains two integers. This
315  *  goes against the ACPI specification which defines this object as a
316  *  package with one encoded DWORD integer. However, existing practice
317  *  by many BIOS vendors is to return a package with 2 or more integer
318  *  elements, at least one per sleep type (A/B).
319  *
320  *  January 2013:
321  *  Therefore, we must be prepared to accept a package with either a
322  *  single integer or multiple integers.
323  *
324  *  The single integer DWORD format is as follows:
325  *      BYTE 0 - Value for the PM1A SLP_TYP register
326  *      BYTE 1 - Value for the PM1B SLP_TYP register
327  *      BYTE 2-3 - Reserved
328  *
329  *  The dual integer format is as follows:
330  *      Integer 0 - Value for the PM1A SLP_TYP register
331  *      Integer 1 - Value for the PM1A SLP_TYP register
332  *
333  ******************************************************************************/
334 acpi_status
335 acpi_get_sleep_type_data(u8 sleep_state, u8 *sleep_type_a, u8 *sleep_type_b)
336 {
337 	acpi_status status;
338 	struct acpi_evaluate_info *info;
339 	union acpi_operand_object **elements;
340 
341 	ACPI_FUNCTION_TRACE(acpi_get_sleep_type_data);
342 
343 	/* Validate parameters */
344 
345 	if ((sleep_state > ACPI_S_STATES_MAX) || !sleep_type_a || !sleep_type_b) {
346 		return_ACPI_STATUS(AE_BAD_PARAMETER);
347 	}
348 
349 	/* Allocate the evaluation information block */
350 
351 	info = ACPI_ALLOCATE_ZEROED(sizeof(struct acpi_evaluate_info));
352 	if (!info) {
353 		return_ACPI_STATUS(AE_NO_MEMORY);
354 	}
355 
356 	/*
357 	 * Evaluate the \_Sx namespace object containing the register values
358 	 * for this state
359 	 */
360 	info->relative_pathname = acpi_gbl_sleep_state_names[sleep_state];
361 
362 	status = acpi_ns_evaluate(info);
363 	if (ACPI_FAILURE(status)) {
364 		if (status == AE_NOT_FOUND) {
365 
366 			/* The _Sx states are optional, ignore NOT_FOUND */
367 
368 			goto final_cleanup;
369 		}
370 
371 		goto warning_cleanup;
372 	}
373 
374 	/* Must have a return object */
375 
376 	if (!info->return_object) {
377 		ACPI_ERROR((AE_INFO, "No Sleep State object returned from [%s]",
378 			    info->relative_pathname));
379 		status = AE_AML_NO_RETURN_VALUE;
380 		goto warning_cleanup;
381 	}
382 
383 	/* Return object must be of type Package */
384 
385 	if (info->return_object->common.type != ACPI_TYPE_PACKAGE) {
386 		ACPI_ERROR((AE_INFO,
387 			    "Sleep State return object is not a Package"));
388 		status = AE_AML_OPERAND_TYPE;
389 		goto return_value_cleanup;
390 	}
391 
392 	/*
393 	 * Any warnings about the package length or the object types have
394 	 * already been issued by the predefined name module -- there is no
395 	 * need to repeat them here.
396 	 */
397 	elements = info->return_object->package.elements;
398 	switch (info->return_object->package.count) {
399 	case 0:
400 
401 		status = AE_AML_PACKAGE_LIMIT;
402 		break;
403 
404 	case 1:
405 
406 		if (elements[0]->common.type != ACPI_TYPE_INTEGER) {
407 			status = AE_AML_OPERAND_TYPE;
408 			break;
409 		}
410 
411 		/* A valid _Sx_ package with one integer */
412 
413 		*sleep_type_a = (u8)elements[0]->integer.value;
414 		*sleep_type_b = (u8)(elements[0]->integer.value >> 8);
415 		break;
416 
417 	case 2:
418 	default:
419 
420 		if ((elements[0]->common.type != ACPI_TYPE_INTEGER) ||
421 		    (elements[1]->common.type != ACPI_TYPE_INTEGER)) {
422 			status = AE_AML_OPERAND_TYPE;
423 			break;
424 		}
425 
426 		/* A valid _Sx_ package with two integers */
427 
428 		*sleep_type_a = (u8)elements[0]->integer.value;
429 		*sleep_type_b = (u8)elements[1]->integer.value;
430 		break;
431 	}
432 
433 return_value_cleanup:
434 	acpi_ut_remove_reference(info->return_object);
435 
436 warning_cleanup:
437 	if (ACPI_FAILURE(status)) {
438 		ACPI_EXCEPTION((AE_INFO, status,
439 				"While evaluating Sleep State [%s]",
440 				info->relative_pathname));
441 	}
442 
443 final_cleanup:
444 	ACPI_FREE(info);
445 	return_ACPI_STATUS(status);
446 }
447 
448 ACPI_EXPORT_SYMBOL(acpi_get_sleep_type_data)
449