1 2 /******************************************************************************* 3 * 4 * Module Name: hwregs - Read/write access functions for the various ACPI 5 * control and status registers. 6 * 7 ******************************************************************************/ 8 9 /* 10 * Copyright (C) 2000 - 2011, Intel Corp. 11 * All rights reserved. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions, and the following disclaimer, 18 * without modification. 19 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 20 * substantially similar to the "NO WARRANTY" disclaimer below 21 * ("Disclaimer") and any redistribution must be conditioned upon 22 * including a substantially similar Disclaimer requirement for further 23 * binary redistribution. 24 * 3. Neither the names of the above-listed copyright holders nor the names 25 * of any contributors may be used to endorse or promote products derived 26 * from this software without specific prior written permission. 27 * 28 * Alternatively, this software may be distributed under the terms of the 29 * GNU General Public License ("GPL") version 2 as published by the Free 30 * Software Foundation. 31 * 32 * NO WARRANTY 33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 37 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 42 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 43 * POSSIBILITY OF SUCH DAMAGES. 44 */ 45 46 #include <acpi/acpi.h> 47 #include "accommon.h" 48 #include "acnamesp.h" 49 #include "acevents.h" 50 51 #define _COMPONENT ACPI_HARDWARE 52 ACPI_MODULE_NAME("hwregs") 53 54 /* Local Prototypes */ 55 static acpi_status 56 acpi_hw_read_multiple(u32 *value, 57 struct acpi_generic_address *register_a, 58 struct acpi_generic_address *register_b); 59 60 static acpi_status 61 acpi_hw_write_multiple(u32 value, 62 struct acpi_generic_address *register_a, 63 struct acpi_generic_address *register_b); 64 65 /****************************************************************************** 66 * 67 * FUNCTION: acpi_hw_validate_register 68 * 69 * PARAMETERS: Reg - GAS register structure 70 * max_bit_width - Max bit_width supported (32 or 64) 71 * Address - Pointer to where the gas->address 72 * is returned 73 * 74 * RETURN: Status 75 * 76 * DESCRIPTION: Validate the contents of a GAS register. Checks the GAS 77 * pointer, Address, space_id, bit_width, and bit_offset. 78 * 79 ******************************************************************************/ 80 81 acpi_status 82 acpi_hw_validate_register(struct acpi_generic_address *reg, 83 u8 max_bit_width, u64 *address) 84 { 85 86 /* Must have a valid pointer to a GAS structure */ 87 88 if (!reg) { 89 return (AE_BAD_PARAMETER); 90 } 91 92 /* 93 * Copy the target address. This handles possible alignment issues. 94 * Address must not be null. A null address also indicates an optional 95 * ACPI register that is not supported, so no error message. 96 */ 97 ACPI_MOVE_64_TO_64(address, ®->address); 98 if (!(*address)) { 99 return (AE_BAD_ADDRESS); 100 } 101 102 /* Validate the space_iD */ 103 104 if ((reg->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) && 105 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { 106 ACPI_ERROR((AE_INFO, 107 "Unsupported address space: 0x%X", reg->space_id)); 108 return (AE_SUPPORT); 109 } 110 111 /* Validate the bit_width */ 112 113 if ((reg->bit_width != 8) && 114 (reg->bit_width != 16) && 115 (reg->bit_width != 32) && (reg->bit_width != max_bit_width)) { 116 ACPI_ERROR((AE_INFO, 117 "Unsupported register bit width: 0x%X", 118 reg->bit_width)); 119 return (AE_SUPPORT); 120 } 121 122 /* Validate the bit_offset. Just a warning for now. */ 123 124 if (reg->bit_offset != 0) { 125 ACPI_WARNING((AE_INFO, 126 "Unsupported register bit offset: 0x%X", 127 reg->bit_offset)); 128 } 129 130 return (AE_OK); 131 } 132 133 /****************************************************************************** 134 * 135 * FUNCTION: acpi_hw_read 136 * 137 * PARAMETERS: Value - Where the value is returned 138 * Reg - GAS register structure 139 * 140 * RETURN: Status 141 * 142 * DESCRIPTION: Read from either memory or IO space. This is a 32-bit max 143 * version of acpi_read, used internally since the overhead of 144 * 64-bit values is not needed. 145 * 146 * LIMITATIONS: <These limitations also apply to acpi_hw_write> 147 * bit_width must be exactly 8, 16, or 32. 148 * space_iD must be system_memory or system_iO. 149 * bit_offset and access_width are currently ignored, as there has 150 * not been a need to implement these. 151 * 152 ******************************************************************************/ 153 154 acpi_status acpi_hw_read(u32 *value, struct acpi_generic_address *reg) 155 { 156 u64 address; 157 acpi_status status; 158 159 ACPI_FUNCTION_NAME(hw_read); 160 161 /* Validate contents of the GAS register */ 162 163 status = acpi_hw_validate_register(reg, 32, &address); 164 if (ACPI_FAILURE(status)) { 165 return (status); 166 } 167 168 /* Initialize entire 32-bit return value to zero */ 169 170 *value = 0; 171 172 /* 173 * Two address spaces supported: Memory or IO. PCI_Config is 174 * not supported here because the GAS structure is insufficient 175 */ 176 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 177 status = acpi_os_read_memory((acpi_physical_address) 178 address, value, reg->bit_width); 179 } else { /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */ 180 181 status = acpi_hw_read_port((acpi_io_address) 182 address, value, reg->bit_width); 183 } 184 185 ACPI_DEBUG_PRINT((ACPI_DB_IO, 186 "Read: %8.8X width %2d from %8.8X%8.8X (%s)\n", 187 *value, reg->bit_width, ACPI_FORMAT_UINT64(address), 188 acpi_ut_get_region_name(reg->space_id))); 189 190 return (status); 191 } 192 193 /****************************************************************************** 194 * 195 * FUNCTION: acpi_hw_write 196 * 197 * PARAMETERS: Value - Value to be written 198 * Reg - GAS register structure 199 * 200 * RETURN: Status 201 * 202 * DESCRIPTION: Write to either memory or IO space. This is a 32-bit max 203 * version of acpi_write, used internally since the overhead of 204 * 64-bit values is not needed. 205 * 206 ******************************************************************************/ 207 208 acpi_status acpi_hw_write(u32 value, struct acpi_generic_address *reg) 209 { 210 u64 address; 211 acpi_status status; 212 213 ACPI_FUNCTION_NAME(hw_write); 214 215 /* Validate contents of the GAS register */ 216 217 status = acpi_hw_validate_register(reg, 32, &address); 218 if (ACPI_FAILURE(status)) { 219 return (status); 220 } 221 222 /* 223 * Two address spaces supported: Memory or IO. PCI_Config is 224 * not supported here because the GAS structure is insufficient 225 */ 226 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 227 status = acpi_os_write_memory((acpi_physical_address) 228 address, value, reg->bit_width); 229 } else { /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */ 230 231 status = acpi_hw_write_port((acpi_io_address) 232 address, value, reg->bit_width); 233 } 234 235 ACPI_DEBUG_PRINT((ACPI_DB_IO, 236 "Wrote: %8.8X width %2d to %8.8X%8.8X (%s)\n", 237 value, reg->bit_width, ACPI_FORMAT_UINT64(address), 238 acpi_ut_get_region_name(reg->space_id))); 239 240 return (status); 241 } 242 243 /******************************************************************************* 244 * 245 * FUNCTION: acpi_hw_clear_acpi_status 246 * 247 * PARAMETERS: None 248 * 249 * RETURN: Status 250 * 251 * DESCRIPTION: Clears all fixed and general purpose status bits 252 * 253 ******************************************************************************/ 254 255 acpi_status acpi_hw_clear_acpi_status(void) 256 { 257 acpi_status status; 258 acpi_cpu_flags lock_flags = 0; 259 260 ACPI_FUNCTION_TRACE(hw_clear_acpi_status); 261 262 ACPI_DEBUG_PRINT((ACPI_DB_IO, "About to write %04X to %8.8X%8.8X\n", 263 ACPI_BITMASK_ALL_FIXED_STATUS, 264 ACPI_FORMAT_UINT64(acpi_gbl_xpm1a_status.address))); 265 266 lock_flags = acpi_os_acquire_lock(acpi_gbl_hardware_lock); 267 268 /* Clear the fixed events in PM1 A/B */ 269 270 status = acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS, 271 ACPI_BITMASK_ALL_FIXED_STATUS); 272 if (ACPI_FAILURE(status)) { 273 goto unlock_and_exit; 274 } 275 276 /* Clear the GPE Bits in all GPE registers in all GPE blocks */ 277 278 status = acpi_ev_walk_gpe_list(acpi_hw_clear_gpe_block, NULL); 279 280 unlock_and_exit: 281 acpi_os_release_lock(acpi_gbl_hardware_lock, lock_flags); 282 return_ACPI_STATUS(status); 283 } 284 285 /******************************************************************************* 286 * 287 * FUNCTION: acpi_hw_get_register_bit_mask 288 * 289 * PARAMETERS: register_id - Index of ACPI Register to access 290 * 291 * RETURN: The bitmask to be used when accessing the register 292 * 293 * DESCRIPTION: Map register_id into a register bitmask. 294 * 295 ******************************************************************************/ 296 297 struct acpi_bit_register_info *acpi_hw_get_bit_register_info(u32 register_id) 298 { 299 ACPI_FUNCTION_ENTRY(); 300 301 if (register_id > ACPI_BITREG_MAX) { 302 ACPI_ERROR((AE_INFO, "Invalid BitRegister ID: 0x%X", 303 register_id)); 304 return (NULL); 305 } 306 307 return (&acpi_gbl_bit_register_info[register_id]); 308 } 309 310 /****************************************************************************** 311 * 312 * FUNCTION: acpi_hw_write_pm1_control 313 * 314 * PARAMETERS: pm1a_control - Value to be written to PM1A control 315 * pm1b_control - Value to be written to PM1B control 316 * 317 * RETURN: Status 318 * 319 * DESCRIPTION: Write the PM1 A/B control registers. These registers are 320 * different than than the PM1 A/B status and enable registers 321 * in that different values can be written to the A/B registers. 322 * Most notably, the SLP_TYP bits can be different, as per the 323 * values returned from the _Sx predefined methods. 324 * 325 ******************************************************************************/ 326 327 acpi_status acpi_hw_write_pm1_control(u32 pm1a_control, u32 pm1b_control) 328 { 329 acpi_status status; 330 331 ACPI_FUNCTION_TRACE(hw_write_pm1_control); 332 333 status = 334 acpi_hw_write(pm1a_control, &acpi_gbl_FADT.xpm1a_control_block); 335 if (ACPI_FAILURE(status)) { 336 return_ACPI_STATUS(status); 337 } 338 339 if (acpi_gbl_FADT.xpm1b_control_block.address) { 340 status = 341 acpi_hw_write(pm1b_control, 342 &acpi_gbl_FADT.xpm1b_control_block); 343 } 344 return_ACPI_STATUS(status); 345 } 346 347 /****************************************************************************** 348 * 349 * FUNCTION: acpi_hw_register_read 350 * 351 * PARAMETERS: register_id - ACPI Register ID 352 * return_value - Where the register value is returned 353 * 354 * RETURN: Status and the value read. 355 * 356 * DESCRIPTION: Read from the specified ACPI register 357 * 358 ******************************************************************************/ 359 acpi_status 360 acpi_hw_register_read(u32 register_id, u32 * return_value) 361 { 362 u32 value = 0; 363 acpi_status status; 364 365 ACPI_FUNCTION_TRACE(hw_register_read); 366 367 switch (register_id) { 368 case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */ 369 370 status = acpi_hw_read_multiple(&value, 371 &acpi_gbl_xpm1a_status, 372 &acpi_gbl_xpm1b_status); 373 break; 374 375 case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access each */ 376 377 status = acpi_hw_read_multiple(&value, 378 &acpi_gbl_xpm1a_enable, 379 &acpi_gbl_xpm1b_enable); 380 break; 381 382 case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */ 383 384 status = acpi_hw_read_multiple(&value, 385 &acpi_gbl_FADT. 386 xpm1a_control_block, 387 &acpi_gbl_FADT. 388 xpm1b_control_block); 389 390 /* 391 * Zero the write-only bits. From the ACPI specification, "Hardware 392 * Write-Only Bits": "Upon reads to registers with write-only bits, 393 * software masks out all write-only bits." 394 */ 395 value &= ~ACPI_PM1_CONTROL_WRITEONLY_BITS; 396 break; 397 398 case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */ 399 400 status = 401 acpi_hw_read(&value, &acpi_gbl_FADT.xpm2_control_block); 402 break; 403 404 case ACPI_REGISTER_PM_TIMER: /* 32-bit access */ 405 406 status = acpi_hw_read(&value, &acpi_gbl_FADT.xpm_timer_block); 407 break; 408 409 case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */ 410 411 status = 412 acpi_hw_read_port(acpi_gbl_FADT.smi_command, &value, 8); 413 break; 414 415 default: 416 ACPI_ERROR((AE_INFO, "Unknown Register ID: 0x%X", register_id)); 417 status = AE_BAD_PARAMETER; 418 break; 419 } 420 421 if (ACPI_SUCCESS(status)) { 422 *return_value = value; 423 } 424 425 return_ACPI_STATUS(status); 426 } 427 428 /****************************************************************************** 429 * 430 * FUNCTION: acpi_hw_register_write 431 * 432 * PARAMETERS: register_id - ACPI Register ID 433 * Value - The value to write 434 * 435 * RETURN: Status 436 * 437 * DESCRIPTION: Write to the specified ACPI register 438 * 439 * NOTE: In accordance with the ACPI specification, this function automatically 440 * preserves the value of the following bits, meaning that these bits cannot be 441 * changed via this interface: 442 * 443 * PM1_CONTROL[0] = SCI_EN 444 * PM1_CONTROL[9] 445 * PM1_STATUS[11] 446 * 447 * ACPI References: 448 * 1) Hardware Ignored Bits: When software writes to a register with ignored 449 * bit fields, it preserves the ignored bit fields 450 * 2) SCI_EN: OSPM always preserves this bit position 451 * 452 ******************************************************************************/ 453 454 acpi_status acpi_hw_register_write(u32 register_id, u32 value) 455 { 456 acpi_status status; 457 u32 read_value; 458 459 ACPI_FUNCTION_TRACE(hw_register_write); 460 461 switch (register_id) { 462 case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */ 463 /* 464 * Handle the "ignored" bit in PM1 Status. According to the ACPI 465 * specification, ignored bits are to be preserved when writing. 466 * Normally, this would mean a read/modify/write sequence. However, 467 * preserving a bit in the status register is different. Writing a 468 * one clears the status, and writing a zero preserves the status. 469 * Therefore, we must always write zero to the ignored bit. 470 * 471 * This behavior is clarified in the ACPI 4.0 specification. 472 */ 473 value &= ~ACPI_PM1_STATUS_PRESERVED_BITS; 474 475 status = acpi_hw_write_multiple(value, 476 &acpi_gbl_xpm1a_status, 477 &acpi_gbl_xpm1b_status); 478 break; 479 480 case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access */ 481 482 status = acpi_hw_write_multiple(value, 483 &acpi_gbl_xpm1a_enable, 484 &acpi_gbl_xpm1b_enable); 485 break; 486 487 case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */ 488 489 /* 490 * Perform a read first to preserve certain bits (per ACPI spec) 491 * Note: This includes SCI_EN, we never want to change this bit 492 */ 493 status = acpi_hw_read_multiple(&read_value, 494 &acpi_gbl_FADT. 495 xpm1a_control_block, 496 &acpi_gbl_FADT. 497 xpm1b_control_block); 498 if (ACPI_FAILURE(status)) { 499 goto exit; 500 } 501 502 /* Insert the bits to be preserved */ 503 504 ACPI_INSERT_BITS(value, ACPI_PM1_CONTROL_PRESERVED_BITS, 505 read_value); 506 507 /* Now we can write the data */ 508 509 status = acpi_hw_write_multiple(value, 510 &acpi_gbl_FADT. 511 xpm1a_control_block, 512 &acpi_gbl_FADT. 513 xpm1b_control_block); 514 break; 515 516 case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */ 517 518 /* 519 * For control registers, all reserved bits must be preserved, 520 * as per the ACPI spec. 521 */ 522 status = 523 acpi_hw_read(&read_value, 524 &acpi_gbl_FADT.xpm2_control_block); 525 if (ACPI_FAILURE(status)) { 526 goto exit; 527 } 528 529 /* Insert the bits to be preserved */ 530 531 ACPI_INSERT_BITS(value, ACPI_PM2_CONTROL_PRESERVED_BITS, 532 read_value); 533 534 status = 535 acpi_hw_write(value, &acpi_gbl_FADT.xpm2_control_block); 536 break; 537 538 case ACPI_REGISTER_PM_TIMER: /* 32-bit access */ 539 540 status = acpi_hw_write(value, &acpi_gbl_FADT.xpm_timer_block); 541 break; 542 543 case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */ 544 545 /* SMI_CMD is currently always in IO space */ 546 547 status = 548 acpi_hw_write_port(acpi_gbl_FADT.smi_command, value, 8); 549 break; 550 551 default: 552 ACPI_ERROR((AE_INFO, "Unknown Register ID: 0x%X", register_id)); 553 status = AE_BAD_PARAMETER; 554 break; 555 } 556 557 exit: 558 return_ACPI_STATUS(status); 559 } 560 561 /****************************************************************************** 562 * 563 * FUNCTION: acpi_hw_read_multiple 564 * 565 * PARAMETERS: Value - Where the register value is returned 566 * register_a - First ACPI register (required) 567 * register_b - Second ACPI register (optional) 568 * 569 * RETURN: Status 570 * 571 * DESCRIPTION: Read from the specified two-part ACPI register (such as PM1 A/B) 572 * 573 ******************************************************************************/ 574 575 static acpi_status 576 acpi_hw_read_multiple(u32 *value, 577 struct acpi_generic_address *register_a, 578 struct acpi_generic_address *register_b) 579 { 580 u32 value_a = 0; 581 u32 value_b = 0; 582 acpi_status status; 583 584 /* The first register is always required */ 585 586 status = acpi_hw_read(&value_a, register_a); 587 if (ACPI_FAILURE(status)) { 588 return (status); 589 } 590 591 /* Second register is optional */ 592 593 if (register_b->address) { 594 status = acpi_hw_read(&value_b, register_b); 595 if (ACPI_FAILURE(status)) { 596 return (status); 597 } 598 } 599 600 /* 601 * OR the two return values together. No shifting or masking is necessary, 602 * because of how the PM1 registers are defined in the ACPI specification: 603 * 604 * "Although the bits can be split between the two register blocks (each 605 * register block has a unique pointer within the FADT), the bit positions 606 * are maintained. The register block with unimplemented bits (that is, 607 * those implemented in the other register block) always returns zeros, 608 * and writes have no side effects" 609 */ 610 *value = (value_a | value_b); 611 return (AE_OK); 612 } 613 614 /****************************************************************************** 615 * 616 * FUNCTION: acpi_hw_write_multiple 617 * 618 * PARAMETERS: Value - The value to write 619 * register_a - First ACPI register (required) 620 * register_b - Second ACPI register (optional) 621 * 622 * RETURN: Status 623 * 624 * DESCRIPTION: Write to the specified two-part ACPI register (such as PM1 A/B) 625 * 626 ******************************************************************************/ 627 628 static acpi_status 629 acpi_hw_write_multiple(u32 value, 630 struct acpi_generic_address *register_a, 631 struct acpi_generic_address *register_b) 632 { 633 acpi_status status; 634 635 /* The first register is always required */ 636 637 status = acpi_hw_write(value, register_a); 638 if (ACPI_FAILURE(status)) { 639 return (status); 640 } 641 642 /* 643 * Second register is optional 644 * 645 * No bit shifting or clearing is necessary, because of how the PM1 646 * registers are defined in the ACPI specification: 647 * 648 * "Although the bits can be split between the two register blocks (each 649 * register block has a unique pointer within the FADT), the bit positions 650 * are maintained. The register block with unimplemented bits (that is, 651 * those implemented in the other register block) always returns zeros, 652 * and writes have no side effects" 653 */ 654 if (register_b->address) { 655 status = acpi_hw_write(value, register_b); 656 } 657 658 return (status); 659 } 660