1 /******************************************************************************* 2 * 3 * Module Name: hwregs - Read/write access functions for the various ACPI 4 * control and status registers. 5 * 6 ******************************************************************************/ 7 8 /* 9 * Copyright (C) 2000 - 2017, Intel Corp. 10 * All rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions, and the following disclaimer, 17 * without modification. 18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 19 * substantially similar to the "NO WARRANTY" disclaimer below 20 * ("Disclaimer") and any redistribution must be conditioned upon 21 * including a substantially similar Disclaimer requirement for further 22 * binary redistribution. 23 * 3. Neither the names of the above-listed copyright holders nor the names 24 * of any contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * Alternatively, this software may be distributed under the terms of the 28 * GNU General Public License ("GPL") version 2 as published by the Free 29 * Software Foundation. 30 * 31 * NO WARRANTY 32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 42 * POSSIBILITY OF SUCH DAMAGES. 43 */ 44 45 #include <acpi/acpi.h> 46 #include "accommon.h" 47 #include "acevents.h" 48 49 #define _COMPONENT ACPI_HARDWARE 50 ACPI_MODULE_NAME("hwregs") 51 52 #if (!ACPI_REDUCED_HARDWARE) 53 /* Local Prototypes */ 54 static u8 55 acpi_hw_get_access_bit_width(u64 address, 56 struct acpi_generic_address *reg, 57 u8 max_bit_width); 58 59 static acpi_status 60 acpi_hw_read_multiple(u32 *value, 61 struct acpi_generic_address *register_a, 62 struct acpi_generic_address *register_b); 63 64 static acpi_status 65 acpi_hw_write_multiple(u32 value, 66 struct acpi_generic_address *register_a, 67 struct acpi_generic_address *register_b); 68 69 #endif /* !ACPI_REDUCED_HARDWARE */ 70 71 /****************************************************************************** 72 * 73 * FUNCTION: acpi_hw_get_access_bit_width 74 * 75 * PARAMETERS: address - GAS register address 76 * reg - GAS register structure 77 * max_bit_width - Max bit_width supported (32 or 64) 78 * 79 * RETURN: Status 80 * 81 * DESCRIPTION: Obtain optimal access bit width 82 * 83 ******************************************************************************/ 84 85 static u8 86 acpi_hw_get_access_bit_width(u64 address, 87 struct acpi_generic_address *reg, u8 max_bit_width) 88 { 89 u8 access_bit_width; 90 91 /* 92 * GAS format "register", used by FADT: 93 * 1. Detected if bit_offset is 0 and bit_width is 8/16/32/64; 94 * 2. access_size field is ignored and bit_width field is used for 95 * determining the boundary of the IO accesses. 96 * GAS format "region", used by APEI registers: 97 * 1. Detected if bit_offset is not 0 or bit_width is not 8/16/32/64; 98 * 2. access_size field is used for determining the boundary of the 99 * IO accesses; 100 * 3. bit_offset/bit_width fields are used to describe the "region". 101 * 102 * Note: This algorithm assumes that the "Address" fields should always 103 * contain aligned values. 104 */ 105 if (!reg->bit_offset && reg->bit_width && 106 ACPI_IS_POWER_OF_TWO(reg->bit_width) && 107 ACPI_IS_ALIGNED(reg->bit_width, 8)) { 108 access_bit_width = reg->bit_width; 109 } else if (reg->access_width) { 110 access_bit_width = ACPI_ACCESS_BIT_WIDTH(reg->access_width); 111 } else { 112 access_bit_width = 113 ACPI_ROUND_UP_POWER_OF_TWO_8(reg->bit_offset + 114 reg->bit_width); 115 if (access_bit_width <= 8) { 116 access_bit_width = 8; 117 } else { 118 while (!ACPI_IS_ALIGNED(address, access_bit_width >> 3)) { 119 access_bit_width >>= 1; 120 } 121 } 122 } 123 124 /* Maximum IO port access bit width is 32 */ 125 126 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 127 max_bit_width = 32; 128 } 129 130 /* 131 * Return access width according to the requested maximum access bit width, 132 * as the caller should know the format of the register and may enforce 133 * a 32-bit accesses. 134 */ 135 if (access_bit_width < max_bit_width) { 136 return (access_bit_width); 137 } 138 return (max_bit_width); 139 } 140 141 /****************************************************************************** 142 * 143 * FUNCTION: acpi_hw_validate_register 144 * 145 * PARAMETERS: reg - GAS register structure 146 * max_bit_width - Max bit_width supported (32 or 64) 147 * address - Pointer to where the gas->address 148 * is returned 149 * 150 * RETURN: Status 151 * 152 * DESCRIPTION: Validate the contents of a GAS register. Checks the GAS 153 * pointer, Address, space_id, bit_width, and bit_offset. 154 * 155 ******************************************************************************/ 156 157 acpi_status 158 acpi_hw_validate_register(struct acpi_generic_address *reg, 159 u8 max_bit_width, u64 *address) 160 { 161 u8 bit_width; 162 u8 access_width; 163 164 /* Must have a valid pointer to a GAS structure */ 165 166 if (!reg) { 167 return (AE_BAD_PARAMETER); 168 } 169 170 /* 171 * Copy the target address. This handles possible alignment issues. 172 * Address must not be null. A null address also indicates an optional 173 * ACPI register that is not supported, so no error message. 174 */ 175 ACPI_MOVE_64_TO_64(address, ®->address); 176 if (!(*address)) { 177 return (AE_BAD_ADDRESS); 178 } 179 180 /* Validate the space_ID */ 181 182 if ((reg->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) && 183 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { 184 ACPI_ERROR((AE_INFO, 185 "Unsupported address space: 0x%X", reg->space_id)); 186 return (AE_SUPPORT); 187 } 188 189 /* Validate the access_width */ 190 191 if (reg->access_width > 4) { 192 ACPI_ERROR((AE_INFO, 193 "Unsupported register access width: 0x%X", 194 reg->access_width)); 195 return (AE_SUPPORT); 196 } 197 198 /* Validate the bit_width, convert access_width into number of bits */ 199 200 access_width = 201 acpi_hw_get_access_bit_width(*address, reg, max_bit_width); 202 bit_width = 203 ACPI_ROUND_UP(reg->bit_offset + reg->bit_width, access_width); 204 if (max_bit_width < bit_width) { 205 ACPI_WARNING((AE_INFO, 206 "Requested bit width 0x%X is smaller than register bit width 0x%X", 207 max_bit_width, bit_width)); 208 return (AE_SUPPORT); 209 } 210 211 return (AE_OK); 212 } 213 214 /****************************************************************************** 215 * 216 * FUNCTION: acpi_hw_read 217 * 218 * PARAMETERS: value - Where the value is returned 219 * reg - GAS register structure 220 * 221 * RETURN: Status 222 * 223 * DESCRIPTION: Read from either memory or IO space. This is a 64-bit max 224 * version of acpi_read. 225 * 226 * LIMITATIONS: <These limitations also apply to acpi_hw_write> 227 * space_ID must be system_memory or system_IO. 228 * 229 ******************************************************************************/ 230 231 acpi_status acpi_hw_read(u64 *value, struct acpi_generic_address *reg) 232 { 233 u64 address; 234 u8 access_width; 235 u32 bit_width; 236 u8 bit_offset; 237 u64 value64; 238 u32 value32; 239 u8 index; 240 acpi_status status; 241 242 ACPI_FUNCTION_NAME(hw_read); 243 244 /* Validate contents of the GAS register */ 245 246 status = acpi_hw_validate_register(reg, 64, &address); 247 if (ACPI_FAILURE(status)) { 248 return (status); 249 } 250 251 /* 252 * Initialize entire 64-bit return value to zero, convert access_width 253 * into number of bits based 254 */ 255 *value = 0; 256 access_width = acpi_hw_get_access_bit_width(address, reg, 64); 257 bit_width = reg->bit_offset + reg->bit_width; 258 bit_offset = reg->bit_offset; 259 260 /* 261 * Two address spaces supported: Memory or IO. PCI_Config is 262 * not supported here because the GAS structure is insufficient 263 */ 264 index = 0; 265 while (bit_width) { 266 if (bit_offset >= access_width) { 267 value64 = 0; 268 bit_offset -= access_width; 269 } else { 270 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 271 status = 272 acpi_os_read_memory((acpi_physical_address) 273 address + 274 index * 275 ACPI_DIV_8 276 (access_width), 277 &value64, access_width); 278 } else { /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */ 279 280 status = acpi_hw_read_port((acpi_io_address) 281 address + 282 index * 283 ACPI_DIV_8 284 (access_width), 285 &value32, 286 access_width); 287 value64 = (u64)value32; 288 } 289 } 290 291 /* 292 * Use offset style bit writes because "Index * AccessWidth" is 293 * ensured to be less than 64-bits by acpi_hw_validate_register(). 294 */ 295 ACPI_SET_BITS(value, index * access_width, 296 ACPI_MASK_BITS_ABOVE_64(access_width), value64); 297 298 bit_width -= 299 bit_width > access_width ? access_width : bit_width; 300 index++; 301 } 302 303 ACPI_DEBUG_PRINT((ACPI_DB_IO, 304 "Read: %8.8X%8.8X width %2d from %8.8X%8.8X (%s)\n", 305 ACPI_FORMAT_UINT64(*value), access_width, 306 ACPI_FORMAT_UINT64(address), 307 acpi_ut_get_region_name(reg->space_id))); 308 309 return (status); 310 } 311 312 /****************************************************************************** 313 * 314 * FUNCTION: acpi_hw_write 315 * 316 * PARAMETERS: value - Value to be written 317 * reg - GAS register structure 318 * 319 * RETURN: Status 320 * 321 * DESCRIPTION: Write to either memory or IO space. This is a 64-bit max 322 * version of acpi_write. 323 * 324 ******************************************************************************/ 325 326 acpi_status acpi_hw_write(u64 value, struct acpi_generic_address *reg) 327 { 328 u64 address; 329 u8 access_width; 330 u32 bit_width; 331 u8 bit_offset; 332 u64 value64; 333 u8 index; 334 acpi_status status; 335 336 ACPI_FUNCTION_NAME(hw_write); 337 338 /* Validate contents of the GAS register */ 339 340 status = acpi_hw_validate_register(reg, 64, &address); 341 if (ACPI_FAILURE(status)) { 342 return (status); 343 } 344 345 /* Convert access_width into number of bits based */ 346 347 access_width = acpi_hw_get_access_bit_width(address, reg, 64); 348 bit_width = reg->bit_offset + reg->bit_width; 349 bit_offset = reg->bit_offset; 350 351 /* 352 * Two address spaces supported: Memory or IO. PCI_Config is 353 * not supported here because the GAS structure is insufficient 354 */ 355 index = 0; 356 while (bit_width) { 357 /* 358 * Use offset style bit reads because "Index * AccessWidth" is 359 * ensured to be less than 64-bits by acpi_hw_validate_register(). 360 */ 361 value64 = ACPI_GET_BITS(&value, index * access_width, 362 ACPI_MASK_BITS_ABOVE_64(access_width)); 363 364 if (bit_offset >= access_width) { 365 bit_offset -= access_width; 366 } else { 367 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 368 status = 369 acpi_os_write_memory((acpi_physical_address) 370 address + 371 index * 372 ACPI_DIV_8 373 (access_width), 374 value64, access_width); 375 } else { /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */ 376 377 status = acpi_hw_write_port((acpi_io_address) 378 address + 379 index * 380 ACPI_DIV_8 381 (access_width), 382 (u32)value64, 383 access_width); 384 } 385 } 386 387 /* 388 * Index * access_width is ensured to be less than 32-bits by 389 * acpi_hw_validate_register(). 390 */ 391 bit_width -= 392 bit_width > access_width ? access_width : bit_width; 393 index++; 394 } 395 396 ACPI_DEBUG_PRINT((ACPI_DB_IO, 397 "Wrote: %8.8X%8.8X width %2d to %8.8X%8.8X (%s)\n", 398 ACPI_FORMAT_UINT64(value), access_width, 399 ACPI_FORMAT_UINT64(address), 400 acpi_ut_get_region_name(reg->space_id))); 401 402 return (status); 403 } 404 405 #if (!ACPI_REDUCED_HARDWARE) 406 /******************************************************************************* 407 * 408 * FUNCTION: acpi_hw_clear_acpi_status 409 * 410 * PARAMETERS: None 411 * 412 * RETURN: Status 413 * 414 * DESCRIPTION: Clears all fixed and general purpose status bits 415 * 416 ******************************************************************************/ 417 418 acpi_status acpi_hw_clear_acpi_status(void) 419 { 420 acpi_status status; 421 acpi_cpu_flags lock_flags = 0; 422 423 ACPI_FUNCTION_TRACE(hw_clear_acpi_status); 424 425 ACPI_DEBUG_PRINT((ACPI_DB_IO, "About to write %04X to %8.8X%8.8X\n", 426 ACPI_BITMASK_ALL_FIXED_STATUS, 427 ACPI_FORMAT_UINT64(acpi_gbl_xpm1a_status.address))); 428 429 lock_flags = acpi_os_acquire_lock(acpi_gbl_hardware_lock); 430 431 /* Clear the fixed events in PM1 A/B */ 432 433 status = acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS, 434 ACPI_BITMASK_ALL_FIXED_STATUS); 435 436 acpi_os_release_lock(acpi_gbl_hardware_lock, lock_flags); 437 438 if (ACPI_FAILURE(status)) { 439 goto exit; 440 } 441 442 /* Clear the GPE Bits in all GPE registers in all GPE blocks */ 443 444 status = acpi_ev_walk_gpe_list(acpi_hw_clear_gpe_block, NULL); 445 446 exit: 447 return_ACPI_STATUS(status); 448 } 449 450 /******************************************************************************* 451 * 452 * FUNCTION: acpi_hw_get_bit_register_info 453 * 454 * PARAMETERS: register_id - Index of ACPI Register to access 455 * 456 * RETURN: The bitmask to be used when accessing the register 457 * 458 * DESCRIPTION: Map register_id into a register bitmask. 459 * 460 ******************************************************************************/ 461 462 struct acpi_bit_register_info *acpi_hw_get_bit_register_info(u32 register_id) 463 { 464 ACPI_FUNCTION_ENTRY(); 465 466 if (register_id > ACPI_BITREG_MAX) { 467 ACPI_ERROR((AE_INFO, "Invalid BitRegister ID: 0x%X", 468 register_id)); 469 return (NULL); 470 } 471 472 return (&acpi_gbl_bit_register_info[register_id]); 473 } 474 475 /****************************************************************************** 476 * 477 * FUNCTION: acpi_hw_write_pm1_control 478 * 479 * PARAMETERS: pm1a_control - Value to be written to PM1A control 480 * pm1b_control - Value to be written to PM1B control 481 * 482 * RETURN: Status 483 * 484 * DESCRIPTION: Write the PM1 A/B control registers. These registers are 485 * different than than the PM1 A/B status and enable registers 486 * in that different values can be written to the A/B registers. 487 * Most notably, the SLP_TYP bits can be different, as per the 488 * values returned from the _Sx predefined methods. 489 * 490 ******************************************************************************/ 491 492 acpi_status acpi_hw_write_pm1_control(u32 pm1a_control, u32 pm1b_control) 493 { 494 acpi_status status; 495 496 ACPI_FUNCTION_TRACE(hw_write_pm1_control); 497 498 status = 499 acpi_hw_write(pm1a_control, &acpi_gbl_FADT.xpm1a_control_block); 500 if (ACPI_FAILURE(status)) { 501 return_ACPI_STATUS(status); 502 } 503 504 if (acpi_gbl_FADT.xpm1b_control_block.address) { 505 status = 506 acpi_hw_write(pm1b_control, 507 &acpi_gbl_FADT.xpm1b_control_block); 508 } 509 return_ACPI_STATUS(status); 510 } 511 512 /****************************************************************************** 513 * 514 * FUNCTION: acpi_hw_register_read 515 * 516 * PARAMETERS: register_id - ACPI Register ID 517 * return_value - Where the register value is returned 518 * 519 * RETURN: Status and the value read. 520 * 521 * DESCRIPTION: Read from the specified ACPI register 522 * 523 ******************************************************************************/ 524 acpi_status acpi_hw_register_read(u32 register_id, u32 *return_value) 525 { 526 u32 value = 0; 527 u64 value64; 528 acpi_status status; 529 530 ACPI_FUNCTION_TRACE(hw_register_read); 531 532 switch (register_id) { 533 case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */ 534 535 status = acpi_hw_read_multiple(&value, 536 &acpi_gbl_xpm1a_status, 537 &acpi_gbl_xpm1b_status); 538 break; 539 540 case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access each */ 541 542 status = acpi_hw_read_multiple(&value, 543 &acpi_gbl_xpm1a_enable, 544 &acpi_gbl_xpm1b_enable); 545 break; 546 547 case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */ 548 549 status = acpi_hw_read_multiple(&value, 550 &acpi_gbl_FADT. 551 xpm1a_control_block, 552 &acpi_gbl_FADT. 553 xpm1b_control_block); 554 555 /* 556 * Zero the write-only bits. From the ACPI specification, "Hardware 557 * Write-Only Bits": "Upon reads to registers with write-only bits, 558 * software masks out all write-only bits." 559 */ 560 value &= ~ACPI_PM1_CONTROL_WRITEONLY_BITS; 561 break; 562 563 case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */ 564 565 status = 566 acpi_hw_read(&value64, &acpi_gbl_FADT.xpm2_control_block); 567 value = (u32)value64; 568 break; 569 570 case ACPI_REGISTER_PM_TIMER: /* 32-bit access */ 571 572 status = acpi_hw_read(&value64, &acpi_gbl_FADT.xpm_timer_block); 573 value = (u32)value64; 574 break; 575 576 case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */ 577 578 status = 579 acpi_hw_read_port(acpi_gbl_FADT.smi_command, &value, 8); 580 break; 581 582 default: 583 584 ACPI_ERROR((AE_INFO, "Unknown Register ID: 0x%X", register_id)); 585 status = AE_BAD_PARAMETER; 586 break; 587 } 588 589 if (ACPI_SUCCESS(status)) { 590 *return_value = (u32)value; 591 } 592 593 return_ACPI_STATUS(status); 594 } 595 596 /****************************************************************************** 597 * 598 * FUNCTION: acpi_hw_register_write 599 * 600 * PARAMETERS: register_id - ACPI Register ID 601 * value - The value to write 602 * 603 * RETURN: Status 604 * 605 * DESCRIPTION: Write to the specified ACPI register 606 * 607 * NOTE: In accordance with the ACPI specification, this function automatically 608 * preserves the value of the following bits, meaning that these bits cannot be 609 * changed via this interface: 610 * 611 * PM1_CONTROL[0] = SCI_EN 612 * PM1_CONTROL[9] 613 * PM1_STATUS[11] 614 * 615 * ACPI References: 616 * 1) Hardware Ignored Bits: When software writes to a register with ignored 617 * bit fields, it preserves the ignored bit fields 618 * 2) SCI_EN: OSPM always preserves this bit position 619 * 620 ******************************************************************************/ 621 622 acpi_status acpi_hw_register_write(u32 register_id, u32 value) 623 { 624 acpi_status status; 625 u32 read_value; 626 u64 read_value64; 627 628 ACPI_FUNCTION_TRACE(hw_register_write); 629 630 switch (register_id) { 631 case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */ 632 /* 633 * Handle the "ignored" bit in PM1 Status. According to the ACPI 634 * specification, ignored bits are to be preserved when writing. 635 * Normally, this would mean a read/modify/write sequence. However, 636 * preserving a bit in the status register is different. Writing a 637 * one clears the status, and writing a zero preserves the status. 638 * Therefore, we must always write zero to the ignored bit. 639 * 640 * This behavior is clarified in the ACPI 4.0 specification. 641 */ 642 value &= ~ACPI_PM1_STATUS_PRESERVED_BITS; 643 644 status = acpi_hw_write_multiple(value, 645 &acpi_gbl_xpm1a_status, 646 &acpi_gbl_xpm1b_status); 647 break; 648 649 case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access each */ 650 651 status = acpi_hw_write_multiple(value, 652 &acpi_gbl_xpm1a_enable, 653 &acpi_gbl_xpm1b_enable); 654 break; 655 656 case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */ 657 /* 658 * Perform a read first to preserve certain bits (per ACPI spec) 659 * Note: This includes SCI_EN, we never want to change this bit 660 */ 661 status = acpi_hw_read_multiple(&read_value, 662 &acpi_gbl_FADT. 663 xpm1a_control_block, 664 &acpi_gbl_FADT. 665 xpm1b_control_block); 666 if (ACPI_FAILURE(status)) { 667 goto exit; 668 } 669 670 /* Insert the bits to be preserved */ 671 672 ACPI_INSERT_BITS(value, ACPI_PM1_CONTROL_PRESERVED_BITS, 673 read_value); 674 675 /* Now we can write the data */ 676 677 status = acpi_hw_write_multiple(value, 678 &acpi_gbl_FADT. 679 xpm1a_control_block, 680 &acpi_gbl_FADT. 681 xpm1b_control_block); 682 break; 683 684 case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */ 685 /* 686 * For control registers, all reserved bits must be preserved, 687 * as per the ACPI spec. 688 */ 689 status = 690 acpi_hw_read(&read_value64, 691 &acpi_gbl_FADT.xpm2_control_block); 692 if (ACPI_FAILURE(status)) { 693 goto exit; 694 } 695 read_value = (u32)read_value64; 696 697 /* Insert the bits to be preserved */ 698 699 ACPI_INSERT_BITS(value, ACPI_PM2_CONTROL_PRESERVED_BITS, 700 read_value); 701 702 status = 703 acpi_hw_write(value, &acpi_gbl_FADT.xpm2_control_block); 704 break; 705 706 case ACPI_REGISTER_PM_TIMER: /* 32-bit access */ 707 708 status = acpi_hw_write(value, &acpi_gbl_FADT.xpm_timer_block); 709 break; 710 711 case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */ 712 713 /* SMI_CMD is currently always in IO space */ 714 715 status = 716 acpi_hw_write_port(acpi_gbl_FADT.smi_command, value, 8); 717 break; 718 719 default: 720 721 ACPI_ERROR((AE_INFO, "Unknown Register ID: 0x%X", register_id)); 722 status = AE_BAD_PARAMETER; 723 break; 724 } 725 726 exit: 727 return_ACPI_STATUS(status); 728 } 729 730 /****************************************************************************** 731 * 732 * FUNCTION: acpi_hw_read_multiple 733 * 734 * PARAMETERS: value - Where the register value is returned 735 * register_a - First ACPI register (required) 736 * register_b - Second ACPI register (optional) 737 * 738 * RETURN: Status 739 * 740 * DESCRIPTION: Read from the specified two-part ACPI register (such as PM1 A/B) 741 * 742 ******************************************************************************/ 743 744 static acpi_status 745 acpi_hw_read_multiple(u32 *value, 746 struct acpi_generic_address *register_a, 747 struct acpi_generic_address *register_b) 748 { 749 u32 value_a = 0; 750 u32 value_b = 0; 751 u64 value64; 752 acpi_status status; 753 754 /* The first register is always required */ 755 756 status = acpi_hw_read(&value64, register_a); 757 if (ACPI_FAILURE(status)) { 758 return (status); 759 } 760 value_a = (u32)value64; 761 762 /* Second register is optional */ 763 764 if (register_b->address) { 765 status = acpi_hw_read(&value64, register_b); 766 if (ACPI_FAILURE(status)) { 767 return (status); 768 } 769 value_b = (u32)value64; 770 } 771 772 /* 773 * OR the two return values together. No shifting or masking is necessary, 774 * because of how the PM1 registers are defined in the ACPI specification: 775 * 776 * "Although the bits can be split between the two register blocks (each 777 * register block has a unique pointer within the FADT), the bit positions 778 * are maintained. The register block with unimplemented bits (that is, 779 * those implemented in the other register block) always returns zeros, 780 * and writes have no side effects" 781 */ 782 *value = (value_a | value_b); 783 return (AE_OK); 784 } 785 786 /****************************************************************************** 787 * 788 * FUNCTION: acpi_hw_write_multiple 789 * 790 * PARAMETERS: value - The value to write 791 * register_a - First ACPI register (required) 792 * register_b - Second ACPI register (optional) 793 * 794 * RETURN: Status 795 * 796 * DESCRIPTION: Write to the specified two-part ACPI register (such as PM1 A/B) 797 * 798 ******************************************************************************/ 799 800 static acpi_status 801 acpi_hw_write_multiple(u32 value, 802 struct acpi_generic_address *register_a, 803 struct acpi_generic_address *register_b) 804 { 805 acpi_status status; 806 807 /* The first register is always required */ 808 809 status = acpi_hw_write(value, register_a); 810 if (ACPI_FAILURE(status)) { 811 return (status); 812 } 813 814 /* 815 * Second register is optional 816 * 817 * No bit shifting or clearing is necessary, because of how the PM1 818 * registers are defined in the ACPI specification: 819 * 820 * "Although the bits can be split between the two register blocks (each 821 * register block has a unique pointer within the FADT), the bit positions 822 * are maintained. The register block with unimplemented bits (that is, 823 * those implemented in the other register block) always returns zeros, 824 * and writes have no side effects" 825 */ 826 if (register_b->address) { 827 status = acpi_hw_write(value, register_b); 828 } 829 830 return (status); 831 } 832 833 #endif /* !ACPI_REDUCED_HARDWARE */ 834