1 /****************************************************************************** 2 * 3 * Name: acmacros.h - C macros for the entire subsystem. 4 * 5 *****************************************************************************/ 6 7 /* 8 * Copyright (C) 2000 - 2015, Intel Corp. 9 * All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions, and the following disclaimer, 16 * without modification. 17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 18 * substantially similar to the "NO WARRANTY" disclaimer below 19 * ("Disclaimer") and any redistribution must be conditioned upon 20 * including a substantially similar Disclaimer requirement for further 21 * binary redistribution. 22 * 3. Neither the names of the above-listed copyright holders nor the names 23 * of any contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * Alternatively, this software may be distributed under the terms of the 27 * GNU General Public License ("GPL") version 2 as published by the Free 28 * Software Foundation. 29 * 30 * NO WARRANTY 31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 41 * POSSIBILITY OF SUCH DAMAGES. 42 */ 43 44 #ifndef __ACMACROS_H__ 45 #define __ACMACROS_H__ 46 47 /* 48 * Extract data using a pointer. Any more than a byte and we 49 * get into potential aligment issues -- see the STORE macros below. 50 * Use with care. 51 */ 52 #define ACPI_CAST8(ptr) ACPI_CAST_PTR (u8, (ptr)) 53 #define ACPI_CAST16(ptr) ACPI_CAST_PTR (u16, (ptr)) 54 #define ACPI_CAST32(ptr) ACPI_CAST_PTR (u32, (ptr)) 55 #define ACPI_CAST64(ptr) ACPI_CAST_PTR (u64, (ptr)) 56 #define ACPI_GET8(ptr) (*ACPI_CAST8 (ptr)) 57 #define ACPI_GET16(ptr) (*ACPI_CAST16 (ptr)) 58 #define ACPI_GET32(ptr) (*ACPI_CAST32 (ptr)) 59 #define ACPI_GET64(ptr) (*ACPI_CAST64 (ptr)) 60 #define ACPI_SET8(ptr, val) (*ACPI_CAST8 (ptr) = (u8) (val)) 61 #define ACPI_SET16(ptr, val) (*ACPI_CAST16 (ptr) = (u16) (val)) 62 #define ACPI_SET32(ptr, val) (*ACPI_CAST32 (ptr) = (u32) (val)) 63 #define ACPI_SET64(ptr, val) (*ACPI_CAST64 (ptr) = (u64) (val)) 64 65 /* 66 * printf() format helper. This macros is a workaround for the difficulties 67 * with emitting 64-bit integers and 64-bit pointers with the same code 68 * for both 32-bit and 64-bit hosts. 69 */ 70 #define ACPI_FORMAT_UINT64(i) ACPI_HIDWORD(i), ACPI_LODWORD(i) 71 72 /* 73 * Macros for moving data around to/from buffers that are possibly unaligned. 74 * If the hardware supports the transfer of unaligned data, just do the store. 75 * Otherwise, we have to move one byte at a time. 76 */ 77 #ifdef ACPI_BIG_ENDIAN 78 /* 79 * Macros for big-endian machines 80 */ 81 82 /* These macros reverse the bytes during the move, converting little-endian to big endian */ 83 84 /* Big Endian <== Little Endian */ 85 /* Hi...Lo Lo...Hi */ 86 /* 16-bit source, 16/32/64 destination */ 87 88 #define ACPI_MOVE_16_TO_16(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[1];\ 89 (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[0];} 90 91 #define ACPI_MOVE_16_TO_32(d, s) {(*(u32 *)(void *)(d))=0;\ 92 ((u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[1];\ 93 ((u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[0];} 94 95 #define ACPI_MOVE_16_TO_64(d, s) {(*(u64 *)(void *)(d))=0;\ 96 ((u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[1];\ 97 ((u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[0];} 98 99 /* 32-bit source, 16/32/64 destination */ 100 101 #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 102 103 #define ACPI_MOVE_32_TO_32(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[3];\ 104 (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[2];\ 105 (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[1];\ 106 (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[0];} 107 108 #define ACPI_MOVE_32_TO_64(d, s) {(*(u64 *)(void *)(d))=0;\ 109 ((u8 *)(void *)(d))[4] = ((u8 *)(void *)(s))[3];\ 110 ((u8 *)(void *)(d))[5] = ((u8 *)(void *)(s))[2];\ 111 ((u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[1];\ 112 ((u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[0];} 113 114 /* 64-bit source, 16/32/64 destination */ 115 116 #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 117 118 #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ 119 120 #define ACPI_MOVE_64_TO_64(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[7];\ 121 (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[6];\ 122 (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[5];\ 123 (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[4];\ 124 (( u8 *)(void *)(d))[4] = ((u8 *)(void *)(s))[3];\ 125 (( u8 *)(void *)(d))[5] = ((u8 *)(void *)(s))[2];\ 126 (( u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[1];\ 127 (( u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[0];} 128 #else 129 /* 130 * Macros for little-endian machines 131 */ 132 133 #ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED 134 135 /* The hardware supports unaligned transfers, just do the little-endian move */ 136 137 /* 16-bit source, 16/32/64 destination */ 138 139 #define ACPI_MOVE_16_TO_16(d, s) *(u16 *)(void *)(d) = *(u16 *)(void *)(s) 140 #define ACPI_MOVE_16_TO_32(d, s) *(u32 *)(void *)(d) = *(u16 *)(void *)(s) 141 #define ACPI_MOVE_16_TO_64(d, s) *(u64 *)(void *)(d) = *(u16 *)(void *)(s) 142 143 /* 32-bit source, 16/32/64 destination */ 144 145 #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 146 #define ACPI_MOVE_32_TO_32(d, s) *(u32 *)(void *)(d) = *(u32 *)(void *)(s) 147 #define ACPI_MOVE_32_TO_64(d, s) *(u64 *)(void *)(d) = *(u32 *)(void *)(s) 148 149 /* 64-bit source, 16/32/64 destination */ 150 151 #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 152 #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ 153 #define ACPI_MOVE_64_TO_64(d, s) *(u64 *)(void *)(d) = *(u64 *)(void *)(s) 154 155 #else 156 /* 157 * The hardware does not support unaligned transfers. We must move the 158 * data one byte at a time. These macros work whether the source or 159 * the destination (or both) is/are unaligned. (Little-endian move) 160 */ 161 162 /* 16-bit source, 16/32/64 destination */ 163 164 #define ACPI_MOVE_16_TO_16(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[0];\ 165 (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[1];} 166 167 #define ACPI_MOVE_16_TO_32(d, s) {(*(u32 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);} 168 #define ACPI_MOVE_16_TO_64(d, s) {(*(u64 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);} 169 170 /* 32-bit source, 16/32/64 destination */ 171 172 #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 173 174 #define ACPI_MOVE_32_TO_32(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[0];\ 175 (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[1];\ 176 (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[2];\ 177 (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[3];} 178 179 #define ACPI_MOVE_32_TO_64(d, s) {(*(u64 *)(void *)(d)) = 0; ACPI_MOVE_32_TO_32(d, s);} 180 181 /* 64-bit source, 16/32/64 destination */ 182 183 #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ 184 #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ 185 #define ACPI_MOVE_64_TO_64(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[0];\ 186 (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[1];\ 187 (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[2];\ 188 (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[3];\ 189 (( u8 *)(void *)(d))[4] = ((u8 *)(void *)(s))[4];\ 190 (( u8 *)(void *)(d))[5] = ((u8 *)(void *)(s))[5];\ 191 (( u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[6];\ 192 (( u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[7];} 193 #endif 194 #endif 195 196 /* 197 * Fast power-of-two math macros for non-optimized compilers 198 */ 199 #define _ACPI_DIV(value, power_of2) ((u32) ((value) >> (power_of2))) 200 #define _ACPI_MUL(value, power_of2) ((u32) ((value) << (power_of2))) 201 #define _ACPI_MOD(value, divisor) ((u32) ((value) & ((divisor) -1))) 202 203 #define ACPI_DIV_2(a) _ACPI_DIV(a, 1) 204 #define ACPI_MUL_2(a) _ACPI_MUL(a, 1) 205 #define ACPI_MOD_2(a) _ACPI_MOD(a, 2) 206 207 #define ACPI_DIV_4(a) _ACPI_DIV(a, 2) 208 #define ACPI_MUL_4(a) _ACPI_MUL(a, 2) 209 #define ACPI_MOD_4(a) _ACPI_MOD(a, 4) 210 211 #define ACPI_DIV_8(a) _ACPI_DIV(a, 3) 212 #define ACPI_MUL_8(a) _ACPI_MUL(a, 3) 213 #define ACPI_MOD_8(a) _ACPI_MOD(a, 8) 214 215 #define ACPI_DIV_16(a) _ACPI_DIV(a, 4) 216 #define ACPI_MUL_16(a) _ACPI_MUL(a, 4) 217 #define ACPI_MOD_16(a) _ACPI_MOD(a, 16) 218 219 #define ACPI_DIV_32(a) _ACPI_DIV(a, 5) 220 #define ACPI_MUL_32(a) _ACPI_MUL(a, 5) 221 #define ACPI_MOD_32(a) _ACPI_MOD(a, 32) 222 223 /* 224 * Rounding macros (Power of two boundaries only) 225 */ 226 #define ACPI_ROUND_DOWN(value, boundary) (((acpi_size)(value)) & \ 227 (~(((acpi_size) boundary)-1))) 228 229 #define ACPI_ROUND_UP(value, boundary) ((((acpi_size)(value)) + \ 230 (((acpi_size) boundary)-1)) & \ 231 (~(((acpi_size) boundary)-1))) 232 233 /* Note: sizeof(acpi_size) evaluates to either 4 or 8 (32- vs 64-bit mode) */ 234 235 #define ACPI_ROUND_DOWN_TO_32BIT(a) ACPI_ROUND_DOWN(a, 4) 236 #define ACPI_ROUND_DOWN_TO_64BIT(a) ACPI_ROUND_DOWN(a, 8) 237 #define ACPI_ROUND_DOWN_TO_NATIVE_WORD(a) ACPI_ROUND_DOWN(a, sizeof(acpi_size)) 238 239 #define ACPI_ROUND_UP_TO_32BIT(a) ACPI_ROUND_UP(a, 4) 240 #define ACPI_ROUND_UP_TO_64BIT(a) ACPI_ROUND_UP(a, 8) 241 #define ACPI_ROUND_UP_TO_NATIVE_WORD(a) ACPI_ROUND_UP(a, sizeof(acpi_size)) 242 243 #define ACPI_ROUND_BITS_UP_TO_BYTES(a) ACPI_DIV_8((a) + 7) 244 #define ACPI_ROUND_BITS_DOWN_TO_BYTES(a) ACPI_DIV_8((a)) 245 246 #define ACPI_ROUND_UP_TO_1K(a) (((a) + 1023) >> 10) 247 248 /* Generic (non-power-of-two) rounding */ 249 250 #define ACPI_ROUND_UP_TO(value, boundary) (((value) + ((boundary)-1)) / (boundary)) 251 252 #define ACPI_IS_MISALIGNED(value) (((acpi_size) value) & (sizeof(acpi_size)-1)) 253 254 /* 255 * Bitmask creation 256 * Bit positions start at zero. 257 * MASK_BITS_ABOVE creates a mask starting AT the position and above 258 * MASK_BITS_BELOW creates a mask starting one bit BELOW the position 259 */ 260 #define ACPI_MASK_BITS_ABOVE(position) (~((ACPI_UINT64_MAX) << ((u32) (position)))) 261 #define ACPI_MASK_BITS_BELOW(position) ((ACPI_UINT64_MAX) << ((u32) (position))) 262 263 /* Bitfields within ACPI registers */ 264 265 #define ACPI_REGISTER_PREPARE_BITS(val, pos, mask) \ 266 ((val << pos) & mask) 267 268 #define ACPI_REGISTER_INSERT_VALUE(reg, pos, mask, val) \ 269 reg = (reg & (~(mask))) | ACPI_REGISTER_PREPARE_BITS(val, pos, mask) 270 271 #define ACPI_INSERT_BITS(target, mask, source) \ 272 target = ((target & (~(mask))) | (source & mask)) 273 274 /* Generic bitfield macros and masks */ 275 276 #define ACPI_GET_BITS(source_ptr, position, mask) \ 277 ((*source_ptr >> position) & mask) 278 279 #define ACPI_SET_BITS(target_ptr, position, mask, value) \ 280 (*target_ptr |= ((value & mask) << position)) 281 282 #define ACPI_1BIT_MASK 0x00000001 283 #define ACPI_2BIT_MASK 0x00000003 284 #define ACPI_3BIT_MASK 0x00000007 285 #define ACPI_4BIT_MASK 0x0000000F 286 #define ACPI_5BIT_MASK 0x0000001F 287 #define ACPI_6BIT_MASK 0x0000003F 288 #define ACPI_7BIT_MASK 0x0000007F 289 #define ACPI_8BIT_MASK 0x000000FF 290 #define ACPI_16BIT_MASK 0x0000FFFF 291 #define ACPI_24BIT_MASK 0x00FFFFFF 292 293 /* Macros to extract flag bits from position zero */ 294 295 #define ACPI_GET_1BIT_FLAG(value) ((value) & ACPI_1BIT_MASK) 296 #define ACPI_GET_2BIT_FLAG(value) ((value) & ACPI_2BIT_MASK) 297 #define ACPI_GET_3BIT_FLAG(value) ((value) & ACPI_3BIT_MASK) 298 #define ACPI_GET_4BIT_FLAG(value) ((value) & ACPI_4BIT_MASK) 299 300 /* Macros to extract flag bits from position one and above */ 301 302 #define ACPI_EXTRACT_1BIT_FLAG(field, position) (ACPI_GET_1BIT_FLAG ((field) >> position)) 303 #define ACPI_EXTRACT_2BIT_FLAG(field, position) (ACPI_GET_2BIT_FLAG ((field) >> position)) 304 #define ACPI_EXTRACT_3BIT_FLAG(field, position) (ACPI_GET_3BIT_FLAG ((field) >> position)) 305 #define ACPI_EXTRACT_4BIT_FLAG(field, position) (ACPI_GET_4BIT_FLAG ((field) >> position)) 306 307 /* ACPI Pathname helpers */ 308 309 #define ACPI_IS_ROOT_PREFIX(c) ((c) == (u8) 0x5C) /* Backslash */ 310 #define ACPI_IS_PARENT_PREFIX(c) ((c) == (u8) 0x5E) /* Carat */ 311 #define ACPI_IS_PATH_SEPARATOR(c) ((c) == (u8) 0x2E) /* Period (dot) */ 312 313 /* 314 * An object of type struct acpi_namespace_node can appear in some contexts 315 * where a pointer to an object of type union acpi_operand_object can also 316 * appear. This macro is used to distinguish them. 317 * 318 * The "DescriptorType" field is the second field in both structures. 319 */ 320 #define ACPI_GET_DESCRIPTOR_PTR(d) (((union acpi_descriptor *)(void *)(d))->common.common_pointer) 321 #define ACPI_SET_DESCRIPTOR_PTR(d, p) (((union acpi_descriptor *)(void *)(d))->common.common_pointer = (p)) 322 #define ACPI_GET_DESCRIPTOR_TYPE(d) (((union acpi_descriptor *)(void *)(d))->common.descriptor_type) 323 #define ACPI_SET_DESCRIPTOR_TYPE(d, t) (((union acpi_descriptor *)(void *)(d))->common.descriptor_type = (t)) 324 325 /* 326 * Macros for the master AML opcode table 327 */ 328 #if defined (ACPI_DISASSEMBLER) || defined (ACPI_DEBUG_OUTPUT) 329 #define ACPI_OP(name, Pargs, Iargs, obj_type, class, type, flags) \ 330 {name, (u32)(Pargs), (u32)(Iargs), (u32)(flags), obj_type, class, type} 331 #else 332 #define ACPI_OP(name, Pargs, Iargs, obj_type, class, type, flags) \ 333 {(u32)(Pargs), (u32)(Iargs), (u32)(flags), obj_type, class, type} 334 #endif 335 336 #define ARG_TYPE_WIDTH 5 337 #define ARG_1(x) ((u32)(x)) 338 #define ARG_2(x) ((u32)(x) << (1 * ARG_TYPE_WIDTH)) 339 #define ARG_3(x) ((u32)(x) << (2 * ARG_TYPE_WIDTH)) 340 #define ARG_4(x) ((u32)(x) << (3 * ARG_TYPE_WIDTH)) 341 #define ARG_5(x) ((u32)(x) << (4 * ARG_TYPE_WIDTH)) 342 #define ARG_6(x) ((u32)(x) << (5 * ARG_TYPE_WIDTH)) 343 344 #define ARGI_LIST1(a) (ARG_1(a)) 345 #define ARGI_LIST2(a, b) (ARG_1(b)|ARG_2(a)) 346 #define ARGI_LIST3(a, b, c) (ARG_1(c)|ARG_2(b)|ARG_3(a)) 347 #define ARGI_LIST4(a, b, c, d) (ARG_1(d)|ARG_2(c)|ARG_3(b)|ARG_4(a)) 348 #define ARGI_LIST5(a, b, c, d, e) (ARG_1(e)|ARG_2(d)|ARG_3(c)|ARG_4(b)|ARG_5(a)) 349 #define ARGI_LIST6(a, b, c, d, e, f) (ARG_1(f)|ARG_2(e)|ARG_3(d)|ARG_4(c)|ARG_5(b)|ARG_6(a)) 350 351 #define ARGP_LIST1(a) (ARG_1(a)) 352 #define ARGP_LIST2(a, b) (ARG_1(a)|ARG_2(b)) 353 #define ARGP_LIST3(a, b, c) (ARG_1(a)|ARG_2(b)|ARG_3(c)) 354 #define ARGP_LIST4(a, b, c, d) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)) 355 #define ARGP_LIST5(a, b, c, d, e) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e)) 356 #define ARGP_LIST6(a, b, c, d, e, f) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e)|ARG_6(f)) 357 358 #define GET_CURRENT_ARG_TYPE(list) (list & ((u32) 0x1F)) 359 #define INCREMENT_ARG_LIST(list) (list >>= ((u32) ARG_TYPE_WIDTH)) 360 361 /* 362 * Ascii error messages can be configured out 363 */ 364 #ifndef ACPI_NO_ERROR_MESSAGES 365 /* 366 * Error reporting. Callers module and line number are inserted by AE_INFO, 367 * the plist contains a set of parens to allow variable-length lists. 368 * These macros are used for both the debug and non-debug versions of the code. 369 */ 370 #define ACPI_ERROR_NAMESPACE(s, e) acpi_ut_namespace_error (AE_INFO, s, e); 371 #define ACPI_ERROR_METHOD(s, n, p, e) acpi_ut_method_error (AE_INFO, s, n, p, e); 372 #define ACPI_WARN_PREDEFINED(plist) acpi_ut_predefined_warning plist 373 #define ACPI_INFO_PREDEFINED(plist) acpi_ut_predefined_info plist 374 #define ACPI_BIOS_ERROR_PREDEFINED(plist) acpi_ut_predefined_bios_error plist 375 376 #else 377 378 /* No error messages */ 379 380 #define ACPI_ERROR_NAMESPACE(s, e) 381 #define ACPI_ERROR_METHOD(s, n, p, e) 382 #define ACPI_WARN_PREDEFINED(plist) 383 #define ACPI_INFO_PREDEFINED(plist) 384 #define ACPI_BIOS_ERROR_PREDEFINED(plist) 385 386 #endif /* ACPI_NO_ERROR_MESSAGES */ 387 388 #if (!ACPI_REDUCED_HARDWARE) 389 #define ACPI_HW_OPTIONAL_FUNCTION(addr) addr 390 #else 391 #define ACPI_HW_OPTIONAL_FUNCTION(addr) NULL 392 #endif 393 394 /* 395 * Some code only gets executed when the debugger is built in. 396 * Note that this is entirely independent of whether the 397 * DEBUG_PRINT stuff (set by ACPI_DEBUG_OUTPUT) is on, or not. 398 */ 399 #ifdef ACPI_DEBUGGER 400 #define ACPI_DEBUGGER_EXEC(a) a 401 #else 402 #define ACPI_DEBUGGER_EXEC(a) 403 #endif 404 405 /* 406 * Macros used for ACPICA utilities only 407 */ 408 409 /* Generate a UUID */ 410 411 #define ACPI_INIT_UUID(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 412 (a) & 0xFF, ((a) >> 8) & 0xFF, ((a) >> 16) & 0xFF, ((a) >> 24) & 0xFF, \ 413 (b) & 0xFF, ((b) >> 8) & 0xFF, \ 414 (c) & 0xFF, ((c) >> 8) & 0xFF, \ 415 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) 416 417 #define ACPI_IS_OCTAL_DIGIT(d) (((char)(d) >= '0') && ((char)(d) <= '7')) 418 419 #endif /* ACMACROS_H */ 420