xref: /openbmc/linux/drivers/acpi/acpi_pad.c (revision f9834f18)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <asm/mwait.h>
21 #include <xen/xen.h>
22 
23 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
24 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
25 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
26 static DEFINE_MUTEX(isolated_cpus_lock);
27 static DEFINE_MUTEX(round_robin_lock);
28 
29 static unsigned long power_saving_mwait_eax;
30 
31 static unsigned char tsc_detected_unstable;
32 static unsigned char tsc_marked_unstable;
33 
34 static void power_saving_mwait_init(void)
35 {
36 	unsigned int eax, ebx, ecx, edx;
37 	unsigned int highest_cstate = 0;
38 	unsigned int highest_subcstate = 0;
39 	int i;
40 
41 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
42 		return;
43 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
44 		return;
45 
46 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
47 
48 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
49 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
50 		return;
51 
52 	edx >>= MWAIT_SUBSTATE_SIZE;
53 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
54 		if (edx & MWAIT_SUBSTATE_MASK) {
55 			highest_cstate = i;
56 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
57 		}
58 	}
59 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
60 		(highest_subcstate - 1);
61 
62 #if defined(CONFIG_X86)
63 	switch (boot_cpu_data.x86_vendor) {
64 	case X86_VENDOR_HYGON:
65 	case X86_VENDOR_AMD:
66 	case X86_VENDOR_INTEL:
67 	case X86_VENDOR_ZHAOXIN:
68 		/*
69 		 * AMD Fam10h TSC will tick in all
70 		 * C/P/S0/S1 states when this bit is set.
71 		 */
72 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
73 			tsc_detected_unstable = 1;
74 		break;
75 	default:
76 		/* TSC could halt in idle */
77 		tsc_detected_unstable = 1;
78 	}
79 #endif
80 }
81 
82 static unsigned long cpu_weight[NR_CPUS];
83 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
84 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
85 static void round_robin_cpu(unsigned int tsk_index)
86 {
87 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
88 	cpumask_var_t tmp;
89 	int cpu;
90 	unsigned long min_weight = -1;
91 	unsigned long uninitialized_var(preferred_cpu);
92 
93 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
94 		return;
95 
96 	mutex_lock(&round_robin_lock);
97 	cpumask_clear(tmp);
98 	for_each_cpu(cpu, pad_busy_cpus)
99 		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
100 	cpumask_andnot(tmp, cpu_online_mask, tmp);
101 	/* avoid HT sibilings if possible */
102 	if (cpumask_empty(tmp))
103 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
104 	if (cpumask_empty(tmp)) {
105 		mutex_unlock(&round_robin_lock);
106 		free_cpumask_var(tmp);
107 		return;
108 	}
109 	for_each_cpu(cpu, tmp) {
110 		if (cpu_weight[cpu] < min_weight) {
111 			min_weight = cpu_weight[cpu];
112 			preferred_cpu = cpu;
113 		}
114 	}
115 
116 	if (tsk_in_cpu[tsk_index] != -1)
117 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
118 	tsk_in_cpu[tsk_index] = preferred_cpu;
119 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
120 	cpu_weight[preferred_cpu]++;
121 	mutex_unlock(&round_robin_lock);
122 
123 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
124 
125 	free_cpumask_var(tmp);
126 }
127 
128 static void exit_round_robin(unsigned int tsk_index)
129 {
130 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
131 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
132 	tsk_in_cpu[tsk_index] = -1;
133 }
134 
135 static unsigned int idle_pct = 5; /* percentage */
136 static unsigned int round_robin_time = 1; /* second */
137 static int power_saving_thread(void *data)
138 {
139 	struct sched_param param = {.sched_priority = 1};
140 	int do_sleep;
141 	unsigned int tsk_index = (unsigned long)data;
142 	u64 last_jiffies = 0;
143 
144 	sched_setscheduler(current, SCHED_RR, &param);
145 
146 	while (!kthread_should_stop()) {
147 		unsigned long expire_time;
148 
149 		/* round robin to cpus */
150 		expire_time = last_jiffies + round_robin_time * HZ;
151 		if (time_before(expire_time, jiffies)) {
152 			last_jiffies = jiffies;
153 			round_robin_cpu(tsk_index);
154 		}
155 
156 		do_sleep = 0;
157 
158 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
159 
160 		while (!need_resched()) {
161 			if (tsc_detected_unstable && !tsc_marked_unstable) {
162 				/* TSC could halt in idle, so notify users */
163 				mark_tsc_unstable("TSC halts in idle");
164 				tsc_marked_unstable = 1;
165 			}
166 			local_irq_disable();
167 			tick_broadcast_enable();
168 			tick_broadcast_enter();
169 			stop_critical_timings();
170 
171 			mwait_idle_with_hints(power_saving_mwait_eax, 1);
172 
173 			start_critical_timings();
174 			tick_broadcast_exit();
175 			local_irq_enable();
176 
177 			if (time_before(expire_time, jiffies)) {
178 				do_sleep = 1;
179 				break;
180 			}
181 		}
182 
183 		/*
184 		 * current sched_rt has threshold for rt task running time.
185 		 * When a rt task uses 95% CPU time, the rt thread will be
186 		 * scheduled out for 5% CPU time to not starve other tasks. But
187 		 * the mechanism only works when all CPUs have RT task running,
188 		 * as if one CPU hasn't RT task, RT task from other CPUs will
189 		 * borrow CPU time from this CPU and cause RT task use > 95%
190 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
191 		 */
192 		if (unlikely(do_sleep))
193 			schedule_timeout_killable(HZ * idle_pct / 100);
194 
195 		/* If an external event has set the need_resched flag, then
196 		 * we need to deal with it, or this loop will continue to
197 		 * spin without calling __mwait().
198 		 */
199 		if (unlikely(need_resched()))
200 			schedule();
201 	}
202 
203 	exit_round_robin(tsk_index);
204 	return 0;
205 }
206 
207 static struct task_struct *ps_tsks[NR_CPUS];
208 static unsigned int ps_tsk_num;
209 static int create_power_saving_task(void)
210 {
211 	int rc;
212 
213 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
214 		(void *)(unsigned long)ps_tsk_num,
215 		"acpi_pad/%d", ps_tsk_num);
216 
217 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
218 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
219 		ps_tsks[ps_tsk_num] = NULL;
220 	} else {
221 		rc = 0;
222 		ps_tsk_num++;
223 	}
224 
225 	return rc;
226 }
227 
228 static void destroy_power_saving_task(void)
229 {
230 	if (ps_tsk_num > 0) {
231 		ps_tsk_num--;
232 		kthread_stop(ps_tsks[ps_tsk_num]);
233 		ps_tsks[ps_tsk_num] = NULL;
234 	}
235 }
236 
237 static void set_power_saving_task_num(unsigned int num)
238 {
239 	if (num > ps_tsk_num) {
240 		while (ps_tsk_num < num) {
241 			if (create_power_saving_task())
242 				return;
243 		}
244 	} else if (num < ps_tsk_num) {
245 		while (ps_tsk_num > num)
246 			destroy_power_saving_task();
247 	}
248 }
249 
250 static void acpi_pad_idle_cpus(unsigned int num_cpus)
251 {
252 	get_online_cpus();
253 
254 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
255 	set_power_saving_task_num(num_cpus);
256 
257 	put_online_cpus();
258 }
259 
260 static uint32_t acpi_pad_idle_cpus_num(void)
261 {
262 	return ps_tsk_num;
263 }
264 
265 static ssize_t acpi_pad_rrtime_store(struct device *dev,
266 	struct device_attribute *attr, const char *buf, size_t count)
267 {
268 	unsigned long num;
269 	if (kstrtoul(buf, 0, &num))
270 		return -EINVAL;
271 	if (num < 1 || num >= 100)
272 		return -EINVAL;
273 	mutex_lock(&isolated_cpus_lock);
274 	round_robin_time = num;
275 	mutex_unlock(&isolated_cpus_lock);
276 	return count;
277 }
278 
279 static ssize_t acpi_pad_rrtime_show(struct device *dev,
280 	struct device_attribute *attr, char *buf)
281 {
282 	return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
283 }
284 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
285 	acpi_pad_rrtime_show,
286 	acpi_pad_rrtime_store);
287 
288 static ssize_t acpi_pad_idlepct_store(struct device *dev,
289 	struct device_attribute *attr, const char *buf, size_t count)
290 {
291 	unsigned long num;
292 	if (kstrtoul(buf, 0, &num))
293 		return -EINVAL;
294 	if (num < 1 || num >= 100)
295 		return -EINVAL;
296 	mutex_lock(&isolated_cpus_lock);
297 	idle_pct = num;
298 	mutex_unlock(&isolated_cpus_lock);
299 	return count;
300 }
301 
302 static ssize_t acpi_pad_idlepct_show(struct device *dev,
303 	struct device_attribute *attr, char *buf)
304 {
305 	return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
306 }
307 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
308 	acpi_pad_idlepct_show,
309 	acpi_pad_idlepct_store);
310 
311 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
312 	struct device_attribute *attr, const char *buf, size_t count)
313 {
314 	unsigned long num;
315 	if (kstrtoul(buf, 0, &num))
316 		return -EINVAL;
317 	mutex_lock(&isolated_cpus_lock);
318 	acpi_pad_idle_cpus(num);
319 	mutex_unlock(&isolated_cpus_lock);
320 	return count;
321 }
322 
323 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
324 	struct device_attribute *attr, char *buf)
325 {
326 	return cpumap_print_to_pagebuf(false, buf,
327 				       to_cpumask(pad_busy_cpus_bits));
328 }
329 
330 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
331 	acpi_pad_idlecpus_show,
332 	acpi_pad_idlecpus_store);
333 
334 static int acpi_pad_add_sysfs(struct acpi_device *device)
335 {
336 	int result;
337 
338 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
339 	if (result)
340 		return -ENODEV;
341 	result = device_create_file(&device->dev, &dev_attr_idlepct);
342 	if (result) {
343 		device_remove_file(&device->dev, &dev_attr_idlecpus);
344 		return -ENODEV;
345 	}
346 	result = device_create_file(&device->dev, &dev_attr_rrtime);
347 	if (result) {
348 		device_remove_file(&device->dev, &dev_attr_idlecpus);
349 		device_remove_file(&device->dev, &dev_attr_idlepct);
350 		return -ENODEV;
351 	}
352 	return 0;
353 }
354 
355 static void acpi_pad_remove_sysfs(struct acpi_device *device)
356 {
357 	device_remove_file(&device->dev, &dev_attr_idlecpus);
358 	device_remove_file(&device->dev, &dev_attr_idlepct);
359 	device_remove_file(&device->dev, &dev_attr_rrtime);
360 }
361 
362 /*
363  * Query firmware how many CPUs should be idle
364  * return -1 on failure
365  */
366 static int acpi_pad_pur(acpi_handle handle)
367 {
368 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369 	union acpi_object *package;
370 	int num = -1;
371 
372 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
373 		return num;
374 
375 	if (!buffer.length || !buffer.pointer)
376 		return num;
377 
378 	package = buffer.pointer;
379 
380 	if (package->type == ACPI_TYPE_PACKAGE &&
381 		package->package.count == 2 &&
382 		package->package.elements[0].integer.value == 1) /* rev 1 */
383 
384 		num = package->package.elements[1].integer.value;
385 
386 	kfree(buffer.pointer);
387 	return num;
388 }
389 
390 static void acpi_pad_handle_notify(acpi_handle handle)
391 {
392 	int num_cpus;
393 	uint32_t idle_cpus;
394 	struct acpi_buffer param = {
395 		.length = 4,
396 		.pointer = (void *)&idle_cpus,
397 	};
398 
399 	mutex_lock(&isolated_cpus_lock);
400 	num_cpus = acpi_pad_pur(handle);
401 	if (num_cpus < 0) {
402 		mutex_unlock(&isolated_cpus_lock);
403 		return;
404 	}
405 	acpi_pad_idle_cpus(num_cpus);
406 	idle_cpus = acpi_pad_idle_cpus_num();
407 	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
408 	mutex_unlock(&isolated_cpus_lock);
409 }
410 
411 static void acpi_pad_notify(acpi_handle handle, u32 event,
412 	void *data)
413 {
414 	struct acpi_device *device = data;
415 
416 	switch (event) {
417 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
418 		acpi_pad_handle_notify(handle);
419 		acpi_bus_generate_netlink_event(device->pnp.device_class,
420 			dev_name(&device->dev), event, 0);
421 		break;
422 	default:
423 		pr_warn("Unsupported event [0x%x]\n", event);
424 		break;
425 	}
426 }
427 
428 static int acpi_pad_add(struct acpi_device *device)
429 {
430 	acpi_status status;
431 
432 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
433 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
434 
435 	if (acpi_pad_add_sysfs(device))
436 		return -ENODEV;
437 
438 	status = acpi_install_notify_handler(device->handle,
439 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
440 	if (ACPI_FAILURE(status)) {
441 		acpi_pad_remove_sysfs(device);
442 		return -ENODEV;
443 	}
444 
445 	return 0;
446 }
447 
448 static int acpi_pad_remove(struct acpi_device *device)
449 {
450 	mutex_lock(&isolated_cpus_lock);
451 	acpi_pad_idle_cpus(0);
452 	mutex_unlock(&isolated_cpus_lock);
453 
454 	acpi_remove_notify_handler(device->handle,
455 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
456 	acpi_pad_remove_sysfs(device);
457 	return 0;
458 }
459 
460 static const struct acpi_device_id pad_device_ids[] = {
461 	{"ACPI000C", 0},
462 	{"", 0},
463 };
464 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
465 
466 static struct acpi_driver acpi_pad_driver = {
467 	.name = "processor_aggregator",
468 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
469 	.ids = pad_device_ids,
470 	.ops = {
471 		.add = acpi_pad_add,
472 		.remove = acpi_pad_remove,
473 	},
474 };
475 
476 static int __init acpi_pad_init(void)
477 {
478 	/* Xen ACPI PAD is used when running as Xen Dom0. */
479 	if (xen_initial_domain())
480 		return -ENODEV;
481 
482 	power_saving_mwait_init();
483 	if (power_saving_mwait_eax == 0)
484 		return -EINVAL;
485 
486 	return acpi_bus_register_driver(&acpi_pad_driver);
487 }
488 
489 static void __exit acpi_pad_exit(void)
490 {
491 	acpi_bus_unregister_driver(&acpi_pad_driver);
492 }
493 
494 module_init(acpi_pad_init);
495 module_exit(acpi_pad_exit);
496 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
497 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
498 MODULE_LICENSE("GPL");
499