xref: /openbmc/linux/drivers/acpi/acpi_pad.c (revision c0e297dc)
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/cpu.h>
29 #include <linux/tick.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <asm/mwait.h>
33 
34 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
35 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
36 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
37 static DEFINE_MUTEX(isolated_cpus_lock);
38 static DEFINE_MUTEX(round_robin_lock);
39 
40 static unsigned long power_saving_mwait_eax;
41 
42 static unsigned char tsc_detected_unstable;
43 static unsigned char tsc_marked_unstable;
44 
45 static void power_saving_mwait_init(void)
46 {
47 	unsigned int eax, ebx, ecx, edx;
48 	unsigned int highest_cstate = 0;
49 	unsigned int highest_subcstate = 0;
50 	int i;
51 
52 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
53 		return;
54 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
55 		return;
56 
57 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
58 
59 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
60 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
61 		return;
62 
63 	edx >>= MWAIT_SUBSTATE_SIZE;
64 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
65 		if (edx & MWAIT_SUBSTATE_MASK) {
66 			highest_cstate = i;
67 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
68 		}
69 	}
70 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
71 		(highest_subcstate - 1);
72 
73 #if defined(CONFIG_X86)
74 	switch (boot_cpu_data.x86_vendor) {
75 	case X86_VENDOR_AMD:
76 	case X86_VENDOR_INTEL:
77 		/*
78 		 * AMD Fam10h TSC will tick in all
79 		 * C/P/S0/S1 states when this bit is set.
80 		 */
81 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
82 			tsc_detected_unstable = 1;
83 		break;
84 	default:
85 		/* TSC could halt in idle */
86 		tsc_detected_unstable = 1;
87 	}
88 #endif
89 }
90 
91 static unsigned long cpu_weight[NR_CPUS];
92 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
93 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
94 static void round_robin_cpu(unsigned int tsk_index)
95 {
96 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
97 	cpumask_var_t tmp;
98 	int cpu;
99 	unsigned long min_weight = -1;
100 	unsigned long uninitialized_var(preferred_cpu);
101 
102 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
103 		return;
104 
105 	mutex_lock(&round_robin_lock);
106 	cpumask_clear(tmp);
107 	for_each_cpu(cpu, pad_busy_cpus)
108 		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
109 	cpumask_andnot(tmp, cpu_online_mask, tmp);
110 	/* avoid HT sibilings if possible */
111 	if (cpumask_empty(tmp))
112 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
113 	if (cpumask_empty(tmp)) {
114 		mutex_unlock(&round_robin_lock);
115 		return;
116 	}
117 	for_each_cpu(cpu, tmp) {
118 		if (cpu_weight[cpu] < min_weight) {
119 			min_weight = cpu_weight[cpu];
120 			preferred_cpu = cpu;
121 		}
122 	}
123 
124 	if (tsk_in_cpu[tsk_index] != -1)
125 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
126 	tsk_in_cpu[tsk_index] = preferred_cpu;
127 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
128 	cpu_weight[preferred_cpu]++;
129 	mutex_unlock(&round_robin_lock);
130 
131 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
132 }
133 
134 static void exit_round_robin(unsigned int tsk_index)
135 {
136 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
137 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
138 	tsk_in_cpu[tsk_index] = -1;
139 }
140 
141 static unsigned int idle_pct = 5; /* percentage */
142 static unsigned int round_robin_time = 1; /* second */
143 static int power_saving_thread(void *data)
144 {
145 	struct sched_param param = {.sched_priority = 1};
146 	int do_sleep;
147 	unsigned int tsk_index = (unsigned long)data;
148 	u64 last_jiffies = 0;
149 
150 	sched_setscheduler(current, SCHED_RR, &param);
151 
152 	while (!kthread_should_stop()) {
153 		unsigned long expire_time;
154 
155 		try_to_freeze();
156 
157 		/* round robin to cpus */
158 		expire_time = last_jiffies + round_robin_time * HZ;
159 		if (time_before(expire_time, jiffies)) {
160 			last_jiffies = jiffies;
161 			round_robin_cpu(tsk_index);
162 		}
163 
164 		do_sleep = 0;
165 
166 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
167 
168 		while (!need_resched()) {
169 			if (tsc_detected_unstable && !tsc_marked_unstable) {
170 				/* TSC could halt in idle, so notify users */
171 				mark_tsc_unstable("TSC halts in idle");
172 				tsc_marked_unstable = 1;
173 			}
174 			local_irq_disable();
175 			tick_broadcast_enable();
176 			tick_broadcast_enter();
177 			stop_critical_timings();
178 
179 			mwait_idle_with_hints(power_saving_mwait_eax, 1);
180 
181 			start_critical_timings();
182 			tick_broadcast_exit();
183 			local_irq_enable();
184 
185 			if (time_before(expire_time, jiffies)) {
186 				do_sleep = 1;
187 				break;
188 			}
189 		}
190 
191 		/*
192 		 * current sched_rt has threshold for rt task running time.
193 		 * When a rt task uses 95% CPU time, the rt thread will be
194 		 * scheduled out for 5% CPU time to not starve other tasks. But
195 		 * the mechanism only works when all CPUs have RT task running,
196 		 * as if one CPU hasn't RT task, RT task from other CPUs will
197 		 * borrow CPU time from this CPU and cause RT task use > 95%
198 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
199 		 */
200 		if (unlikely(do_sleep))
201 			schedule_timeout_killable(HZ * idle_pct / 100);
202 
203 		/* If an external event has set the need_resched flag, then
204 		 * we need to deal with it, or this loop will continue to
205 		 * spin without calling __mwait().
206 		 */
207 		if (unlikely(need_resched()))
208 			schedule();
209 	}
210 
211 	exit_round_robin(tsk_index);
212 	return 0;
213 }
214 
215 static struct task_struct *ps_tsks[NR_CPUS];
216 static unsigned int ps_tsk_num;
217 static int create_power_saving_task(void)
218 {
219 	int rc;
220 
221 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
222 		(void *)(unsigned long)ps_tsk_num,
223 		"acpi_pad/%d", ps_tsk_num);
224 
225 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
226 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
227 		ps_tsks[ps_tsk_num] = NULL;
228 	} else {
229 		rc = 0;
230 		ps_tsk_num++;
231 	}
232 
233 	return rc;
234 }
235 
236 static void destroy_power_saving_task(void)
237 {
238 	if (ps_tsk_num > 0) {
239 		ps_tsk_num--;
240 		kthread_stop(ps_tsks[ps_tsk_num]);
241 		ps_tsks[ps_tsk_num] = NULL;
242 	}
243 }
244 
245 static void set_power_saving_task_num(unsigned int num)
246 {
247 	if (num > ps_tsk_num) {
248 		while (ps_tsk_num < num) {
249 			if (create_power_saving_task())
250 				return;
251 		}
252 	} else if (num < ps_tsk_num) {
253 		while (ps_tsk_num > num)
254 			destroy_power_saving_task();
255 	}
256 }
257 
258 static void acpi_pad_idle_cpus(unsigned int num_cpus)
259 {
260 	get_online_cpus();
261 
262 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
263 	set_power_saving_task_num(num_cpus);
264 
265 	put_online_cpus();
266 }
267 
268 static uint32_t acpi_pad_idle_cpus_num(void)
269 {
270 	return ps_tsk_num;
271 }
272 
273 static ssize_t acpi_pad_rrtime_store(struct device *dev,
274 	struct device_attribute *attr, const char *buf, size_t count)
275 {
276 	unsigned long num;
277 	if (kstrtoul(buf, 0, &num))
278 		return -EINVAL;
279 	if (num < 1 || num >= 100)
280 		return -EINVAL;
281 	mutex_lock(&isolated_cpus_lock);
282 	round_robin_time = num;
283 	mutex_unlock(&isolated_cpus_lock);
284 	return count;
285 }
286 
287 static ssize_t acpi_pad_rrtime_show(struct device *dev,
288 	struct device_attribute *attr, char *buf)
289 {
290 	return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
291 }
292 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
293 	acpi_pad_rrtime_show,
294 	acpi_pad_rrtime_store);
295 
296 static ssize_t acpi_pad_idlepct_store(struct device *dev,
297 	struct device_attribute *attr, const char *buf, size_t count)
298 {
299 	unsigned long num;
300 	if (kstrtoul(buf, 0, &num))
301 		return -EINVAL;
302 	if (num < 1 || num >= 100)
303 		return -EINVAL;
304 	mutex_lock(&isolated_cpus_lock);
305 	idle_pct = num;
306 	mutex_unlock(&isolated_cpus_lock);
307 	return count;
308 }
309 
310 static ssize_t acpi_pad_idlepct_show(struct device *dev,
311 	struct device_attribute *attr, char *buf)
312 {
313 	return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
314 }
315 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
316 	acpi_pad_idlepct_show,
317 	acpi_pad_idlepct_store);
318 
319 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
320 	struct device_attribute *attr, const char *buf, size_t count)
321 {
322 	unsigned long num;
323 	if (kstrtoul(buf, 0, &num))
324 		return -EINVAL;
325 	mutex_lock(&isolated_cpus_lock);
326 	acpi_pad_idle_cpus(num);
327 	mutex_unlock(&isolated_cpus_lock);
328 	return count;
329 }
330 
331 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
332 	struct device_attribute *attr, char *buf)
333 {
334 	return cpumap_print_to_pagebuf(false, buf,
335 				       to_cpumask(pad_busy_cpus_bits));
336 }
337 
338 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
339 	acpi_pad_idlecpus_show,
340 	acpi_pad_idlecpus_store);
341 
342 static int acpi_pad_add_sysfs(struct acpi_device *device)
343 {
344 	int result;
345 
346 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
347 	if (result)
348 		return -ENODEV;
349 	result = device_create_file(&device->dev, &dev_attr_idlepct);
350 	if (result) {
351 		device_remove_file(&device->dev, &dev_attr_idlecpus);
352 		return -ENODEV;
353 	}
354 	result = device_create_file(&device->dev, &dev_attr_rrtime);
355 	if (result) {
356 		device_remove_file(&device->dev, &dev_attr_idlecpus);
357 		device_remove_file(&device->dev, &dev_attr_idlepct);
358 		return -ENODEV;
359 	}
360 	return 0;
361 }
362 
363 static void acpi_pad_remove_sysfs(struct acpi_device *device)
364 {
365 	device_remove_file(&device->dev, &dev_attr_idlecpus);
366 	device_remove_file(&device->dev, &dev_attr_idlepct);
367 	device_remove_file(&device->dev, &dev_attr_rrtime);
368 }
369 
370 /*
371  * Query firmware how many CPUs should be idle
372  * return -1 on failure
373  */
374 static int acpi_pad_pur(acpi_handle handle)
375 {
376 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
377 	union acpi_object *package;
378 	int num = -1;
379 
380 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
381 		return num;
382 
383 	if (!buffer.length || !buffer.pointer)
384 		return num;
385 
386 	package = buffer.pointer;
387 
388 	if (package->type == ACPI_TYPE_PACKAGE &&
389 		package->package.count == 2 &&
390 		package->package.elements[0].integer.value == 1) /* rev 1 */
391 
392 		num = package->package.elements[1].integer.value;
393 
394 	kfree(buffer.pointer);
395 	return num;
396 }
397 
398 static void acpi_pad_handle_notify(acpi_handle handle)
399 {
400 	int num_cpus;
401 	uint32_t idle_cpus;
402 	struct acpi_buffer param = {
403 		.length = 4,
404 		.pointer = (void *)&idle_cpus,
405 	};
406 
407 	mutex_lock(&isolated_cpus_lock);
408 	num_cpus = acpi_pad_pur(handle);
409 	if (num_cpus < 0) {
410 		mutex_unlock(&isolated_cpus_lock);
411 		return;
412 	}
413 	acpi_pad_idle_cpus(num_cpus);
414 	idle_cpus = acpi_pad_idle_cpus_num();
415 	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
416 	mutex_unlock(&isolated_cpus_lock);
417 }
418 
419 static void acpi_pad_notify(acpi_handle handle, u32 event,
420 	void *data)
421 {
422 	struct acpi_device *device = data;
423 
424 	switch (event) {
425 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
426 		acpi_pad_handle_notify(handle);
427 		acpi_bus_generate_netlink_event(device->pnp.device_class,
428 			dev_name(&device->dev), event, 0);
429 		break;
430 	default:
431 		pr_warn("Unsupported event [0x%x]\n", event);
432 		break;
433 	}
434 }
435 
436 static int acpi_pad_add(struct acpi_device *device)
437 {
438 	acpi_status status;
439 
440 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
441 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
442 
443 	if (acpi_pad_add_sysfs(device))
444 		return -ENODEV;
445 
446 	status = acpi_install_notify_handler(device->handle,
447 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
448 	if (ACPI_FAILURE(status)) {
449 		acpi_pad_remove_sysfs(device);
450 		return -ENODEV;
451 	}
452 
453 	return 0;
454 }
455 
456 static int acpi_pad_remove(struct acpi_device *device)
457 {
458 	mutex_lock(&isolated_cpus_lock);
459 	acpi_pad_idle_cpus(0);
460 	mutex_unlock(&isolated_cpus_lock);
461 
462 	acpi_remove_notify_handler(device->handle,
463 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
464 	acpi_pad_remove_sysfs(device);
465 	return 0;
466 }
467 
468 static const struct acpi_device_id pad_device_ids[] = {
469 	{"ACPI000C", 0},
470 	{"", 0},
471 };
472 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
473 
474 static struct acpi_driver acpi_pad_driver = {
475 	.name = "processor_aggregator",
476 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
477 	.ids = pad_device_ids,
478 	.ops = {
479 		.add = acpi_pad_add,
480 		.remove = acpi_pad_remove,
481 	},
482 };
483 
484 static int __init acpi_pad_init(void)
485 {
486 	power_saving_mwait_init();
487 	if (power_saving_mwait_eax == 0)
488 		return -EINVAL;
489 
490 	return acpi_bus_register_driver(&acpi_pad_driver);
491 }
492 
493 static void __exit acpi_pad_exit(void)
494 {
495 	acpi_bus_unregister_driver(&acpi_pad_driver);
496 }
497 
498 module_init(acpi_pad_init);
499 module_exit(acpi_pad_exit);
500 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
501 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
502 MODULE_LICENSE("GPL");
503