xref: /openbmc/linux/drivers/acpi/acpi_pad.c (revision bc33f5e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <asm/mwait.h>
22 #include <xen/xen.h>
23 
24 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
25 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
26 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
27 static DEFINE_MUTEX(isolated_cpus_lock);
28 static DEFINE_MUTEX(round_robin_lock);
29 
30 static unsigned long power_saving_mwait_eax;
31 
32 static unsigned char tsc_detected_unstable;
33 static unsigned char tsc_marked_unstable;
34 
35 static void power_saving_mwait_init(void)
36 {
37 	unsigned int eax, ebx, ecx, edx;
38 	unsigned int highest_cstate = 0;
39 	unsigned int highest_subcstate = 0;
40 	int i;
41 
42 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
43 		return;
44 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
45 		return;
46 
47 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
48 
49 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
50 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
51 		return;
52 
53 	edx >>= MWAIT_SUBSTATE_SIZE;
54 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
55 		if (edx & MWAIT_SUBSTATE_MASK) {
56 			highest_cstate = i;
57 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
58 		}
59 	}
60 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
61 		(highest_subcstate - 1);
62 
63 #if defined(CONFIG_X86)
64 	switch (boot_cpu_data.x86_vendor) {
65 	case X86_VENDOR_HYGON:
66 	case X86_VENDOR_AMD:
67 	case X86_VENDOR_INTEL:
68 	case X86_VENDOR_ZHAOXIN:
69 		/*
70 		 * AMD Fam10h TSC will tick in all
71 		 * C/P/S0/S1 states when this bit is set.
72 		 */
73 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
74 			tsc_detected_unstable = 1;
75 		break;
76 	default:
77 		/* TSC could halt in idle */
78 		tsc_detected_unstable = 1;
79 	}
80 #endif
81 }
82 
83 static unsigned long cpu_weight[NR_CPUS];
84 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
85 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
86 static void round_robin_cpu(unsigned int tsk_index)
87 {
88 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
89 	cpumask_var_t tmp;
90 	int cpu;
91 	unsigned long min_weight = -1;
92 	unsigned long preferred_cpu;
93 
94 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
95 		return;
96 
97 	mutex_lock(&round_robin_lock);
98 	cpumask_clear(tmp);
99 	for_each_cpu(cpu, pad_busy_cpus)
100 		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
101 	cpumask_andnot(tmp, cpu_online_mask, tmp);
102 	/* avoid HT sibilings if possible */
103 	if (cpumask_empty(tmp))
104 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
105 	if (cpumask_empty(tmp)) {
106 		mutex_unlock(&round_robin_lock);
107 		free_cpumask_var(tmp);
108 		return;
109 	}
110 	for_each_cpu(cpu, tmp) {
111 		if (cpu_weight[cpu] < min_weight) {
112 			min_weight = cpu_weight[cpu];
113 			preferred_cpu = cpu;
114 		}
115 	}
116 
117 	if (tsk_in_cpu[tsk_index] != -1)
118 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
119 	tsk_in_cpu[tsk_index] = preferred_cpu;
120 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
121 	cpu_weight[preferred_cpu]++;
122 	mutex_unlock(&round_robin_lock);
123 
124 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
125 
126 	free_cpumask_var(tmp);
127 }
128 
129 static void exit_round_robin(unsigned int tsk_index)
130 {
131 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
132 
133 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
134 	tsk_in_cpu[tsk_index] = -1;
135 }
136 
137 static unsigned int idle_pct = 5; /* percentage */
138 static unsigned int round_robin_time = 1; /* second */
139 static int power_saving_thread(void *data)
140 {
141 	int do_sleep;
142 	unsigned int tsk_index = (unsigned long)data;
143 	u64 last_jiffies = 0;
144 
145 	sched_set_fifo_low(current);
146 
147 	while (!kthread_should_stop()) {
148 		unsigned long expire_time;
149 
150 		/* round robin to cpus */
151 		expire_time = last_jiffies + round_robin_time * HZ;
152 		if (time_before(expire_time, jiffies)) {
153 			last_jiffies = jiffies;
154 			round_robin_cpu(tsk_index);
155 		}
156 
157 		do_sleep = 0;
158 
159 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
160 
161 		while (!need_resched()) {
162 			if (tsc_detected_unstable && !tsc_marked_unstable) {
163 				/* TSC could halt in idle, so notify users */
164 				mark_tsc_unstable("TSC halts in idle");
165 				tsc_marked_unstable = 1;
166 			}
167 			local_irq_disable();
168 
169 			perf_lopwr_cb(true);
170 
171 			tick_broadcast_enable();
172 			tick_broadcast_enter();
173 			stop_critical_timings();
174 
175 			mwait_idle_with_hints(power_saving_mwait_eax, 1);
176 
177 			start_critical_timings();
178 			tick_broadcast_exit();
179 
180 			perf_lopwr_cb(false);
181 
182 			local_irq_enable();
183 
184 			if (time_before(expire_time, jiffies)) {
185 				do_sleep = 1;
186 				break;
187 			}
188 		}
189 
190 		/*
191 		 * current sched_rt has threshold for rt task running time.
192 		 * When a rt task uses 95% CPU time, the rt thread will be
193 		 * scheduled out for 5% CPU time to not starve other tasks. But
194 		 * the mechanism only works when all CPUs have RT task running,
195 		 * as if one CPU hasn't RT task, RT task from other CPUs will
196 		 * borrow CPU time from this CPU and cause RT task use > 95%
197 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
198 		 */
199 		if (unlikely(do_sleep))
200 			schedule_timeout_killable(HZ * idle_pct / 100);
201 
202 		/* If an external event has set the need_resched flag, then
203 		 * we need to deal with it, or this loop will continue to
204 		 * spin without calling __mwait().
205 		 */
206 		if (unlikely(need_resched()))
207 			schedule();
208 	}
209 
210 	exit_round_robin(tsk_index);
211 	return 0;
212 }
213 
214 static struct task_struct *ps_tsks[NR_CPUS];
215 static unsigned int ps_tsk_num;
216 static int create_power_saving_task(void)
217 {
218 	int rc;
219 
220 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
221 		(void *)(unsigned long)ps_tsk_num,
222 		"acpi_pad/%d", ps_tsk_num);
223 
224 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
225 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
226 		ps_tsks[ps_tsk_num] = NULL;
227 	} else {
228 		rc = 0;
229 		ps_tsk_num++;
230 	}
231 
232 	return rc;
233 }
234 
235 static void destroy_power_saving_task(void)
236 {
237 	if (ps_tsk_num > 0) {
238 		ps_tsk_num--;
239 		kthread_stop(ps_tsks[ps_tsk_num]);
240 		ps_tsks[ps_tsk_num] = NULL;
241 	}
242 }
243 
244 static void set_power_saving_task_num(unsigned int num)
245 {
246 	if (num > ps_tsk_num) {
247 		while (ps_tsk_num < num) {
248 			if (create_power_saving_task())
249 				return;
250 		}
251 	} else if (num < ps_tsk_num) {
252 		while (ps_tsk_num > num)
253 			destroy_power_saving_task();
254 	}
255 }
256 
257 static void acpi_pad_idle_cpus(unsigned int num_cpus)
258 {
259 	cpus_read_lock();
260 
261 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
262 	set_power_saving_task_num(num_cpus);
263 
264 	cpus_read_unlock();
265 }
266 
267 static uint32_t acpi_pad_idle_cpus_num(void)
268 {
269 	return ps_tsk_num;
270 }
271 
272 static ssize_t rrtime_store(struct device *dev,
273 	struct device_attribute *attr, const char *buf, size_t count)
274 {
275 	unsigned long num;
276 
277 	if (kstrtoul(buf, 0, &num))
278 		return -EINVAL;
279 	if (num < 1 || num >= 100)
280 		return -EINVAL;
281 	mutex_lock(&isolated_cpus_lock);
282 	round_robin_time = num;
283 	mutex_unlock(&isolated_cpus_lock);
284 	return count;
285 }
286 
287 static ssize_t rrtime_show(struct device *dev,
288 	struct device_attribute *attr, char *buf)
289 {
290 	return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
291 }
292 static DEVICE_ATTR_RW(rrtime);
293 
294 static ssize_t idlepct_store(struct device *dev,
295 	struct device_attribute *attr, const char *buf, size_t count)
296 {
297 	unsigned long num;
298 
299 	if (kstrtoul(buf, 0, &num))
300 		return -EINVAL;
301 	if (num < 1 || num >= 100)
302 		return -EINVAL;
303 	mutex_lock(&isolated_cpus_lock);
304 	idle_pct = num;
305 	mutex_unlock(&isolated_cpus_lock);
306 	return count;
307 }
308 
309 static ssize_t idlepct_show(struct device *dev,
310 	struct device_attribute *attr, char *buf)
311 {
312 	return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
313 }
314 static DEVICE_ATTR_RW(idlepct);
315 
316 static ssize_t idlecpus_store(struct device *dev,
317 	struct device_attribute *attr, const char *buf, size_t count)
318 {
319 	unsigned long num;
320 
321 	if (kstrtoul(buf, 0, &num))
322 		return -EINVAL;
323 	mutex_lock(&isolated_cpus_lock);
324 	acpi_pad_idle_cpus(num);
325 	mutex_unlock(&isolated_cpus_lock);
326 	return count;
327 }
328 
329 static ssize_t idlecpus_show(struct device *dev,
330 	struct device_attribute *attr, char *buf)
331 {
332 	return cpumap_print_to_pagebuf(false, buf,
333 				       to_cpumask(pad_busy_cpus_bits));
334 }
335 
336 static DEVICE_ATTR_RW(idlecpus);
337 
338 static int acpi_pad_add_sysfs(struct acpi_device *device)
339 {
340 	int result;
341 
342 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
343 	if (result)
344 		return -ENODEV;
345 	result = device_create_file(&device->dev, &dev_attr_idlepct);
346 	if (result) {
347 		device_remove_file(&device->dev, &dev_attr_idlecpus);
348 		return -ENODEV;
349 	}
350 	result = device_create_file(&device->dev, &dev_attr_rrtime);
351 	if (result) {
352 		device_remove_file(&device->dev, &dev_attr_idlecpus);
353 		device_remove_file(&device->dev, &dev_attr_idlepct);
354 		return -ENODEV;
355 	}
356 	return 0;
357 }
358 
359 static void acpi_pad_remove_sysfs(struct acpi_device *device)
360 {
361 	device_remove_file(&device->dev, &dev_attr_idlecpus);
362 	device_remove_file(&device->dev, &dev_attr_idlepct);
363 	device_remove_file(&device->dev, &dev_attr_rrtime);
364 }
365 
366 /*
367  * Query firmware how many CPUs should be idle
368  * return -1 on failure
369  */
370 static int acpi_pad_pur(acpi_handle handle)
371 {
372 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
373 	union acpi_object *package;
374 	int num = -1;
375 
376 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
377 		return num;
378 
379 	if (!buffer.length || !buffer.pointer)
380 		return num;
381 
382 	package = buffer.pointer;
383 
384 	if (package->type == ACPI_TYPE_PACKAGE &&
385 		package->package.count == 2 &&
386 		package->package.elements[0].integer.value == 1) /* rev 1 */
387 
388 		num = package->package.elements[1].integer.value;
389 
390 	kfree(buffer.pointer);
391 	return num;
392 }
393 
394 static void acpi_pad_handle_notify(acpi_handle handle)
395 {
396 	int num_cpus;
397 	uint32_t idle_cpus;
398 	struct acpi_buffer param = {
399 		.length = 4,
400 		.pointer = (void *)&idle_cpus,
401 	};
402 
403 	mutex_lock(&isolated_cpus_lock);
404 	num_cpus = acpi_pad_pur(handle);
405 	if (num_cpus < 0) {
406 		mutex_unlock(&isolated_cpus_lock);
407 		return;
408 	}
409 	acpi_pad_idle_cpus(num_cpus);
410 	idle_cpus = acpi_pad_idle_cpus_num();
411 	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
412 	mutex_unlock(&isolated_cpus_lock);
413 }
414 
415 static void acpi_pad_notify(acpi_handle handle, u32 event,
416 	void *data)
417 {
418 	struct acpi_device *device = data;
419 
420 	switch (event) {
421 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
422 		acpi_pad_handle_notify(handle);
423 		acpi_bus_generate_netlink_event(device->pnp.device_class,
424 			dev_name(&device->dev), event, 0);
425 		break;
426 	default:
427 		pr_warn("Unsupported event [0x%x]\n", event);
428 		break;
429 	}
430 }
431 
432 static int acpi_pad_add(struct acpi_device *device)
433 {
434 	acpi_status status;
435 
436 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
437 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
438 
439 	if (acpi_pad_add_sysfs(device))
440 		return -ENODEV;
441 
442 	status = acpi_install_notify_handler(device->handle,
443 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
444 	if (ACPI_FAILURE(status)) {
445 		acpi_pad_remove_sysfs(device);
446 		return -ENODEV;
447 	}
448 
449 	return 0;
450 }
451 
452 static int acpi_pad_remove(struct acpi_device *device)
453 {
454 	mutex_lock(&isolated_cpus_lock);
455 	acpi_pad_idle_cpus(0);
456 	mutex_unlock(&isolated_cpus_lock);
457 
458 	acpi_remove_notify_handler(device->handle,
459 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
460 	acpi_pad_remove_sysfs(device);
461 	return 0;
462 }
463 
464 static const struct acpi_device_id pad_device_ids[] = {
465 	{"ACPI000C", 0},
466 	{"", 0},
467 };
468 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
469 
470 static struct acpi_driver acpi_pad_driver = {
471 	.name = "processor_aggregator",
472 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
473 	.ids = pad_device_ids,
474 	.ops = {
475 		.add = acpi_pad_add,
476 		.remove = acpi_pad_remove,
477 	},
478 };
479 
480 static int __init acpi_pad_init(void)
481 {
482 	/* Xen ACPI PAD is used when running as Xen Dom0. */
483 	if (xen_initial_domain())
484 		return -ENODEV;
485 
486 	power_saving_mwait_init();
487 	if (power_saving_mwait_eax == 0)
488 		return -EINVAL;
489 
490 	return acpi_bus_register_driver(&acpi_pad_driver);
491 }
492 
493 static void __exit acpi_pad_exit(void)
494 {
495 	acpi_bus_unregister_driver(&acpi_pad_driver);
496 }
497 
498 module_init(acpi_pad_init);
499 module_exit(acpi_pad_exit);
500 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
501 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
502 MODULE_LICENSE("GPL");
503