xref: /openbmc/linux/drivers/acpi/acpi_pad.c (revision afc98d90)
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/cpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <asm/mwait.h>
33 
34 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
35 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
36 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
37 static DEFINE_MUTEX(isolated_cpus_lock);
38 static DEFINE_MUTEX(round_robin_lock);
39 
40 static unsigned long power_saving_mwait_eax;
41 
42 static unsigned char tsc_detected_unstable;
43 static unsigned char tsc_marked_unstable;
44 static unsigned char lapic_detected_unstable;
45 static unsigned char lapic_marked_unstable;
46 
47 static void power_saving_mwait_init(void)
48 {
49 	unsigned int eax, ebx, ecx, edx;
50 	unsigned int highest_cstate = 0;
51 	unsigned int highest_subcstate = 0;
52 	int i;
53 
54 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
55 		return;
56 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
57 		return;
58 
59 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
60 
61 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
62 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
63 		return;
64 
65 	edx >>= MWAIT_SUBSTATE_SIZE;
66 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
67 		if (edx & MWAIT_SUBSTATE_MASK) {
68 			highest_cstate = i;
69 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
70 		}
71 	}
72 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
73 		(highest_subcstate - 1);
74 
75 #if defined(CONFIG_X86)
76 	switch (boot_cpu_data.x86_vendor) {
77 	case X86_VENDOR_AMD:
78 	case X86_VENDOR_INTEL:
79 		/*
80 		 * AMD Fam10h TSC will tick in all
81 		 * C/P/S0/S1 states when this bit is set.
82 		 */
83 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
84 			tsc_detected_unstable = 1;
85 		if (!boot_cpu_has(X86_FEATURE_ARAT))
86 			lapic_detected_unstable = 1;
87 		break;
88 	default:
89 		/* TSC & LAPIC could halt in idle */
90 		tsc_detected_unstable = 1;
91 		lapic_detected_unstable = 1;
92 	}
93 #endif
94 }
95 
96 static unsigned long cpu_weight[NR_CPUS];
97 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
98 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
99 static void round_robin_cpu(unsigned int tsk_index)
100 {
101 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
102 	cpumask_var_t tmp;
103 	int cpu;
104 	unsigned long min_weight = -1;
105 	unsigned long uninitialized_var(preferred_cpu);
106 
107 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
108 		return;
109 
110 	mutex_lock(&round_robin_lock);
111 	cpumask_clear(tmp);
112 	for_each_cpu(cpu, pad_busy_cpus)
113 		cpumask_or(tmp, tmp, topology_thread_cpumask(cpu));
114 	cpumask_andnot(tmp, cpu_online_mask, tmp);
115 	/* avoid HT sibilings if possible */
116 	if (cpumask_empty(tmp))
117 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
118 	if (cpumask_empty(tmp)) {
119 		mutex_unlock(&round_robin_lock);
120 		return;
121 	}
122 	for_each_cpu(cpu, tmp) {
123 		if (cpu_weight[cpu] < min_weight) {
124 			min_weight = cpu_weight[cpu];
125 			preferred_cpu = cpu;
126 		}
127 	}
128 
129 	if (tsk_in_cpu[tsk_index] != -1)
130 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
131 	tsk_in_cpu[tsk_index] = preferred_cpu;
132 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
133 	cpu_weight[preferred_cpu]++;
134 	mutex_unlock(&round_robin_lock);
135 
136 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
137 }
138 
139 static void exit_round_robin(unsigned int tsk_index)
140 {
141 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
142 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
143 	tsk_in_cpu[tsk_index] = -1;
144 }
145 
146 static unsigned int idle_pct = 5; /* percentage */
147 static unsigned int round_robin_time = 1; /* second */
148 static int power_saving_thread(void *data)
149 {
150 	struct sched_param param = {.sched_priority = 1};
151 	int do_sleep;
152 	unsigned int tsk_index = (unsigned long)data;
153 	u64 last_jiffies = 0;
154 
155 	sched_setscheduler(current, SCHED_RR, &param);
156 
157 	while (!kthread_should_stop()) {
158 		int cpu;
159 		u64 expire_time;
160 
161 		try_to_freeze();
162 
163 		/* round robin to cpus */
164 		if (last_jiffies + round_robin_time * HZ < jiffies) {
165 			last_jiffies = jiffies;
166 			round_robin_cpu(tsk_index);
167 		}
168 
169 		do_sleep = 0;
170 
171 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
172 
173 		while (!need_resched()) {
174 			if (tsc_detected_unstable && !tsc_marked_unstable) {
175 				/* TSC could halt in idle, so notify users */
176 				mark_tsc_unstable("TSC halts in idle");
177 				tsc_marked_unstable = 1;
178 			}
179 			if (lapic_detected_unstable && !lapic_marked_unstable) {
180 				int i;
181 				/* LAPIC could halt in idle, so notify users */
182 				for_each_online_cpu(i)
183 					clockevents_notify(
184 						CLOCK_EVT_NOTIFY_BROADCAST_ON,
185 						&i);
186 				lapic_marked_unstable = 1;
187 			}
188 			local_irq_disable();
189 			cpu = smp_processor_id();
190 			if (lapic_marked_unstable)
191 				clockevents_notify(
192 					CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
193 			stop_critical_timings();
194 
195 			mwait_idle_with_hints(power_saving_mwait_eax, 1);
196 
197 			start_critical_timings();
198 			if (lapic_marked_unstable)
199 				clockevents_notify(
200 					CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
201 			local_irq_enable();
202 
203 			if (jiffies > expire_time) {
204 				do_sleep = 1;
205 				break;
206 			}
207 		}
208 
209 		/*
210 		 * current sched_rt has threshold for rt task running time.
211 		 * When a rt task uses 95% CPU time, the rt thread will be
212 		 * scheduled out for 5% CPU time to not starve other tasks. But
213 		 * the mechanism only works when all CPUs have RT task running,
214 		 * as if one CPU hasn't RT task, RT task from other CPUs will
215 		 * borrow CPU time from this CPU and cause RT task use > 95%
216 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
217 		 */
218 		if (do_sleep)
219 			schedule_timeout_killable(HZ * idle_pct / 100);
220 	}
221 
222 	exit_round_robin(tsk_index);
223 	return 0;
224 }
225 
226 static struct task_struct *ps_tsks[NR_CPUS];
227 static unsigned int ps_tsk_num;
228 static int create_power_saving_task(void)
229 {
230 	int rc;
231 
232 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
233 		(void *)(unsigned long)ps_tsk_num,
234 		"acpi_pad/%d", ps_tsk_num);
235 
236 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
237 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
238 		ps_tsks[ps_tsk_num] = NULL;
239 	} else {
240 		rc = 0;
241 		ps_tsk_num++;
242 	}
243 
244 	return rc;
245 }
246 
247 static void destroy_power_saving_task(void)
248 {
249 	if (ps_tsk_num > 0) {
250 		ps_tsk_num--;
251 		kthread_stop(ps_tsks[ps_tsk_num]);
252 		ps_tsks[ps_tsk_num] = NULL;
253 	}
254 }
255 
256 static void set_power_saving_task_num(unsigned int num)
257 {
258 	if (num > ps_tsk_num) {
259 		while (ps_tsk_num < num) {
260 			if (create_power_saving_task())
261 				return;
262 		}
263 	} else if (num < ps_tsk_num) {
264 		while (ps_tsk_num > num)
265 			destroy_power_saving_task();
266 	}
267 }
268 
269 static void acpi_pad_idle_cpus(unsigned int num_cpus)
270 {
271 	get_online_cpus();
272 
273 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
274 	set_power_saving_task_num(num_cpus);
275 
276 	put_online_cpus();
277 }
278 
279 static uint32_t acpi_pad_idle_cpus_num(void)
280 {
281 	return ps_tsk_num;
282 }
283 
284 static ssize_t acpi_pad_rrtime_store(struct device *dev,
285 	struct device_attribute *attr, const char *buf, size_t count)
286 {
287 	unsigned long num;
288 	if (kstrtoul(buf, 0, &num))
289 		return -EINVAL;
290 	if (num < 1 || num >= 100)
291 		return -EINVAL;
292 	mutex_lock(&isolated_cpus_lock);
293 	round_robin_time = num;
294 	mutex_unlock(&isolated_cpus_lock);
295 	return count;
296 }
297 
298 static ssize_t acpi_pad_rrtime_show(struct device *dev,
299 	struct device_attribute *attr, char *buf)
300 {
301 	return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
302 }
303 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
304 	acpi_pad_rrtime_show,
305 	acpi_pad_rrtime_store);
306 
307 static ssize_t acpi_pad_idlepct_store(struct device *dev,
308 	struct device_attribute *attr, const char *buf, size_t count)
309 {
310 	unsigned long num;
311 	if (kstrtoul(buf, 0, &num))
312 		return -EINVAL;
313 	if (num < 1 || num >= 100)
314 		return -EINVAL;
315 	mutex_lock(&isolated_cpus_lock);
316 	idle_pct = num;
317 	mutex_unlock(&isolated_cpus_lock);
318 	return count;
319 }
320 
321 static ssize_t acpi_pad_idlepct_show(struct device *dev,
322 	struct device_attribute *attr, char *buf)
323 {
324 	return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
325 }
326 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
327 	acpi_pad_idlepct_show,
328 	acpi_pad_idlepct_store);
329 
330 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
331 	struct device_attribute *attr, const char *buf, size_t count)
332 {
333 	unsigned long num;
334 	if (kstrtoul(buf, 0, &num))
335 		return -EINVAL;
336 	mutex_lock(&isolated_cpus_lock);
337 	acpi_pad_idle_cpus(num);
338 	mutex_unlock(&isolated_cpus_lock);
339 	return count;
340 }
341 
342 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
343 	struct device_attribute *attr, char *buf)
344 {
345 	int n = 0;
346 	n = cpumask_scnprintf(buf, PAGE_SIZE-2, to_cpumask(pad_busy_cpus_bits));
347 	buf[n++] = '\n';
348 	buf[n] = '\0';
349 	return n;
350 }
351 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
352 	acpi_pad_idlecpus_show,
353 	acpi_pad_idlecpus_store);
354 
355 static int acpi_pad_add_sysfs(struct acpi_device *device)
356 {
357 	int result;
358 
359 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
360 	if (result)
361 		return -ENODEV;
362 	result = device_create_file(&device->dev, &dev_attr_idlepct);
363 	if (result) {
364 		device_remove_file(&device->dev, &dev_attr_idlecpus);
365 		return -ENODEV;
366 	}
367 	result = device_create_file(&device->dev, &dev_attr_rrtime);
368 	if (result) {
369 		device_remove_file(&device->dev, &dev_attr_idlecpus);
370 		device_remove_file(&device->dev, &dev_attr_idlepct);
371 		return -ENODEV;
372 	}
373 	return 0;
374 }
375 
376 static void acpi_pad_remove_sysfs(struct acpi_device *device)
377 {
378 	device_remove_file(&device->dev, &dev_attr_idlecpus);
379 	device_remove_file(&device->dev, &dev_attr_idlepct);
380 	device_remove_file(&device->dev, &dev_attr_rrtime);
381 }
382 
383 /*
384  * Query firmware how many CPUs should be idle
385  * return -1 on failure
386  */
387 static int acpi_pad_pur(acpi_handle handle)
388 {
389 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
390 	union acpi_object *package;
391 	int num = -1;
392 
393 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
394 		return num;
395 
396 	if (!buffer.length || !buffer.pointer)
397 		return num;
398 
399 	package = buffer.pointer;
400 
401 	if (package->type == ACPI_TYPE_PACKAGE &&
402 		package->package.count == 2 &&
403 		package->package.elements[0].integer.value == 1) /* rev 1 */
404 
405 		num = package->package.elements[1].integer.value;
406 
407 	kfree(buffer.pointer);
408 	return num;
409 }
410 
411 /* Notify firmware how many CPUs are idle */
412 static void acpi_pad_ost(acpi_handle handle, int stat,
413 	uint32_t idle_cpus)
414 {
415 	union acpi_object params[3] = {
416 		{.type = ACPI_TYPE_INTEGER,},
417 		{.type = ACPI_TYPE_INTEGER,},
418 		{.type = ACPI_TYPE_BUFFER,},
419 	};
420 	struct acpi_object_list arg_list = {3, params};
421 
422 	params[0].integer.value = ACPI_PROCESSOR_AGGREGATOR_NOTIFY;
423 	params[1].integer.value =  stat;
424 	params[2].buffer.length = 4;
425 	params[2].buffer.pointer = (void *)&idle_cpus;
426 	acpi_evaluate_object(handle, "_OST", &arg_list, NULL);
427 }
428 
429 static void acpi_pad_handle_notify(acpi_handle handle)
430 {
431 	int num_cpus;
432 	uint32_t idle_cpus;
433 
434 	mutex_lock(&isolated_cpus_lock);
435 	num_cpus = acpi_pad_pur(handle);
436 	if (num_cpus < 0) {
437 		mutex_unlock(&isolated_cpus_lock);
438 		return;
439 	}
440 	acpi_pad_idle_cpus(num_cpus);
441 	idle_cpus = acpi_pad_idle_cpus_num();
442 	acpi_pad_ost(handle, 0, idle_cpus);
443 	mutex_unlock(&isolated_cpus_lock);
444 }
445 
446 static void acpi_pad_notify(acpi_handle handle, u32 event,
447 	void *data)
448 {
449 	struct acpi_device *device = data;
450 
451 	switch (event) {
452 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
453 		acpi_pad_handle_notify(handle);
454 		acpi_bus_generate_netlink_event(device->pnp.device_class,
455 			dev_name(&device->dev), event, 0);
456 		break;
457 	default:
458 		pr_warn("Unsupported event [0x%x]\n", event);
459 		break;
460 	}
461 }
462 
463 static int acpi_pad_add(struct acpi_device *device)
464 {
465 	acpi_status status;
466 
467 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
468 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
469 
470 	if (acpi_pad_add_sysfs(device))
471 		return -ENODEV;
472 
473 	status = acpi_install_notify_handler(device->handle,
474 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
475 	if (ACPI_FAILURE(status)) {
476 		acpi_pad_remove_sysfs(device);
477 		return -ENODEV;
478 	}
479 
480 	return 0;
481 }
482 
483 static int acpi_pad_remove(struct acpi_device *device)
484 {
485 	mutex_lock(&isolated_cpus_lock);
486 	acpi_pad_idle_cpus(0);
487 	mutex_unlock(&isolated_cpus_lock);
488 
489 	acpi_remove_notify_handler(device->handle,
490 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
491 	acpi_pad_remove_sysfs(device);
492 	return 0;
493 }
494 
495 static const struct acpi_device_id pad_device_ids[] = {
496 	{"ACPI000C", 0},
497 	{"", 0},
498 };
499 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
500 
501 static struct acpi_driver acpi_pad_driver = {
502 	.name = "processor_aggregator",
503 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
504 	.ids = pad_device_ids,
505 	.ops = {
506 		.add = acpi_pad_add,
507 		.remove = acpi_pad_remove,
508 	},
509 };
510 
511 static int __init acpi_pad_init(void)
512 {
513 	power_saving_mwait_init();
514 	if (power_saving_mwait_eax == 0)
515 		return -EINVAL;
516 
517 	return acpi_bus_register_driver(&acpi_pad_driver);
518 }
519 
520 static void __exit acpi_pad_exit(void)
521 {
522 	acpi_bus_unregister_driver(&acpi_pad_driver);
523 }
524 
525 module_init(acpi_pad_init);
526 module_exit(acpi_pad_exit);
527 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
528 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
529 MODULE_LICENSE("GPL");
530