xref: /openbmc/linux/drivers/acpi/acpi_pad.c (revision a09d2831)
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/cpu.h>
29 #include <linux/clockchips.h>
30 #include <acpi/acpi_bus.h>
31 #include <acpi/acpi_drivers.h>
32 
33 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"processor_aggregator"
34 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
35 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
36 static DEFINE_MUTEX(isolated_cpus_lock);
37 
38 #define MWAIT_SUBSTATE_MASK	(0xf)
39 #define MWAIT_CSTATE_MASK	(0xf)
40 #define MWAIT_SUBSTATE_SIZE	(4)
41 #define CPUID_MWAIT_LEAF (5)
42 #define CPUID5_ECX_EXTENSIONS_SUPPORTED (0x1)
43 #define CPUID5_ECX_INTERRUPT_BREAK	(0x2)
44 static unsigned long power_saving_mwait_eax;
45 static void power_saving_mwait_init(void)
46 {
47 	unsigned int eax, ebx, ecx, edx;
48 	unsigned int highest_cstate = 0;
49 	unsigned int highest_subcstate = 0;
50 	int i;
51 
52 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
53 		return;
54 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
55 		return;
56 
57 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
58 
59 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
60 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
61 		return;
62 
63 	edx >>= MWAIT_SUBSTATE_SIZE;
64 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
65 		if (edx & MWAIT_SUBSTATE_MASK) {
66 			highest_cstate = i;
67 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
68 		}
69 	}
70 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
71 		(highest_subcstate - 1);
72 
73 	for_each_online_cpu(i)
74 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ON, &i);
75 
76 #if defined(CONFIG_GENERIC_TIME) && defined(CONFIG_X86)
77 	switch (boot_cpu_data.x86_vendor) {
78 	case X86_VENDOR_AMD:
79 	case X86_VENDOR_INTEL:
80 		/*
81 		 * AMD Fam10h TSC will tick in all
82 		 * C/P/S0/S1 states when this bit is set.
83 		 */
84 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
85 			return;
86 
87 		/*FALL THROUGH*/
88 	default:
89 		/* TSC could halt in idle, so notify users */
90 		mark_tsc_unstable("TSC halts in idle");
91 	}
92 #endif
93 }
94 
95 static unsigned long cpu_weight[NR_CPUS];
96 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
97 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
98 static void round_robin_cpu(unsigned int tsk_index)
99 {
100 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
101 	cpumask_var_t tmp;
102 	int cpu;
103 	unsigned long min_weight = -1;
104 	unsigned long uninitialized_var(preferred_cpu);
105 
106 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
107 		return;
108 
109 	mutex_lock(&isolated_cpus_lock);
110 	cpumask_clear(tmp);
111 	for_each_cpu(cpu, pad_busy_cpus)
112 		cpumask_or(tmp, tmp, topology_thread_cpumask(cpu));
113 	cpumask_andnot(tmp, cpu_online_mask, tmp);
114 	/* avoid HT sibilings if possible */
115 	if (cpumask_empty(tmp))
116 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
117 	if (cpumask_empty(tmp)) {
118 		mutex_unlock(&isolated_cpus_lock);
119 		return;
120 	}
121 	for_each_cpu(cpu, tmp) {
122 		if (cpu_weight[cpu] < min_weight) {
123 			min_weight = cpu_weight[cpu];
124 			preferred_cpu = cpu;
125 		}
126 	}
127 
128 	if (tsk_in_cpu[tsk_index] != -1)
129 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
130 	tsk_in_cpu[tsk_index] = preferred_cpu;
131 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
132 	cpu_weight[preferred_cpu]++;
133 	mutex_unlock(&isolated_cpus_lock);
134 
135 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
136 }
137 
138 static void exit_round_robin(unsigned int tsk_index)
139 {
140 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
141 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
142 	tsk_in_cpu[tsk_index] = -1;
143 }
144 
145 static unsigned int idle_pct = 5; /* percentage */
146 static unsigned int round_robin_time = 10; /* second */
147 static int power_saving_thread(void *data)
148 {
149 	struct sched_param param = {.sched_priority = 1};
150 	int do_sleep;
151 	unsigned int tsk_index = (unsigned long)data;
152 	u64 last_jiffies = 0;
153 
154 	sched_setscheduler(current, SCHED_RR, &param);
155 
156 	while (!kthread_should_stop()) {
157 		int cpu;
158 		u64 expire_time;
159 
160 		try_to_freeze();
161 
162 		/* round robin to cpus */
163 		if (last_jiffies + round_robin_time * HZ < jiffies) {
164 			last_jiffies = jiffies;
165 			round_robin_cpu(tsk_index);
166 		}
167 
168 		do_sleep = 0;
169 
170 		current_thread_info()->status &= ~TS_POLLING;
171 		/*
172 		 * TS_POLLING-cleared state must be visible before we test
173 		 * NEED_RESCHED:
174 		 */
175 		smp_mb();
176 
177 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
178 
179 		while (!need_resched()) {
180 			local_irq_disable();
181 			cpu = smp_processor_id();
182 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER,
183 				&cpu);
184 			stop_critical_timings();
185 
186 			__monitor((void *)&current_thread_info()->flags, 0, 0);
187 			smp_mb();
188 			if (!need_resched())
189 				__mwait(power_saving_mwait_eax, 1);
190 
191 			start_critical_timings();
192 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT,
193 				&cpu);
194 			local_irq_enable();
195 
196 			if (jiffies > expire_time) {
197 				do_sleep = 1;
198 				break;
199 			}
200 		}
201 
202 		current_thread_info()->status |= TS_POLLING;
203 
204 		/*
205 		 * current sched_rt has threshold for rt task running time.
206 		 * When a rt task uses 95% CPU time, the rt thread will be
207 		 * scheduled out for 5% CPU time to not starve other tasks. But
208 		 * the mechanism only works when all CPUs have RT task running,
209 		 * as if one CPU hasn't RT task, RT task from other CPUs will
210 		 * borrow CPU time from this CPU and cause RT task use > 95%
211 		 * CPU time. To make 'avoid staration' work, takes a nap here.
212 		 */
213 		if (do_sleep)
214 			schedule_timeout_killable(HZ * idle_pct / 100);
215 	}
216 
217 	exit_round_robin(tsk_index);
218 	return 0;
219 }
220 
221 static struct task_struct *ps_tsks[NR_CPUS];
222 static unsigned int ps_tsk_num;
223 static int create_power_saving_task(void)
224 {
225 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
226 		(void *)(unsigned long)ps_tsk_num,
227 		"power_saving/%d", ps_tsk_num);
228 	if (ps_tsks[ps_tsk_num]) {
229 		ps_tsk_num++;
230 		return 0;
231 	}
232 	return -EINVAL;
233 }
234 
235 static void destroy_power_saving_task(void)
236 {
237 	if (ps_tsk_num > 0) {
238 		ps_tsk_num--;
239 		kthread_stop(ps_tsks[ps_tsk_num]);
240 	}
241 }
242 
243 static void set_power_saving_task_num(unsigned int num)
244 {
245 	if (num > ps_tsk_num) {
246 		while (ps_tsk_num < num) {
247 			if (create_power_saving_task())
248 				return;
249 		}
250 	} else if (num < ps_tsk_num) {
251 		while (ps_tsk_num > num)
252 			destroy_power_saving_task();
253 	}
254 }
255 
256 static int acpi_pad_idle_cpus(unsigned int num_cpus)
257 {
258 	get_online_cpus();
259 
260 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
261 	set_power_saving_task_num(num_cpus);
262 
263 	put_online_cpus();
264 	return 0;
265 }
266 
267 static uint32_t acpi_pad_idle_cpus_num(void)
268 {
269 	return ps_tsk_num;
270 }
271 
272 static ssize_t acpi_pad_rrtime_store(struct device *dev,
273 	struct device_attribute *attr, const char *buf, size_t count)
274 {
275 	unsigned long num;
276 	if (strict_strtoul(buf, 0, &num))
277 		return -EINVAL;
278 	if (num < 1 || num >= 100)
279 		return -EINVAL;
280 	mutex_lock(&isolated_cpus_lock);
281 	round_robin_time = num;
282 	mutex_unlock(&isolated_cpus_lock);
283 	return count;
284 }
285 
286 static ssize_t acpi_pad_rrtime_show(struct device *dev,
287 	struct device_attribute *attr, char *buf)
288 {
289 	return scnprintf(buf, PAGE_SIZE, "%d", round_robin_time);
290 }
291 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
292 	acpi_pad_rrtime_show,
293 	acpi_pad_rrtime_store);
294 
295 static ssize_t acpi_pad_idlepct_store(struct device *dev,
296 	struct device_attribute *attr, const char *buf, size_t count)
297 {
298 	unsigned long num;
299 	if (strict_strtoul(buf, 0, &num))
300 		return -EINVAL;
301 	if (num < 1 || num >= 100)
302 		return -EINVAL;
303 	mutex_lock(&isolated_cpus_lock);
304 	idle_pct = num;
305 	mutex_unlock(&isolated_cpus_lock);
306 	return count;
307 }
308 
309 static ssize_t acpi_pad_idlepct_show(struct device *dev,
310 	struct device_attribute *attr, char *buf)
311 {
312 	return scnprintf(buf, PAGE_SIZE, "%d", idle_pct);
313 }
314 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
315 	acpi_pad_idlepct_show,
316 	acpi_pad_idlepct_store);
317 
318 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
319 	struct device_attribute *attr, const char *buf, size_t count)
320 {
321 	unsigned long num;
322 	if (strict_strtoul(buf, 0, &num))
323 		return -EINVAL;
324 	mutex_lock(&isolated_cpus_lock);
325 	acpi_pad_idle_cpus(num);
326 	mutex_unlock(&isolated_cpus_lock);
327 	return count;
328 }
329 
330 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
331 	struct device_attribute *attr, char *buf)
332 {
333 	return cpumask_scnprintf(buf, PAGE_SIZE,
334 		to_cpumask(pad_busy_cpus_bits));
335 }
336 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
337 	acpi_pad_idlecpus_show,
338 	acpi_pad_idlecpus_store);
339 
340 static int acpi_pad_add_sysfs(struct acpi_device *device)
341 {
342 	int result;
343 
344 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
345 	if (result)
346 		return -ENODEV;
347 	result = device_create_file(&device->dev, &dev_attr_idlepct);
348 	if (result) {
349 		device_remove_file(&device->dev, &dev_attr_idlecpus);
350 		return -ENODEV;
351 	}
352 	result = device_create_file(&device->dev, &dev_attr_rrtime);
353 	if (result) {
354 		device_remove_file(&device->dev, &dev_attr_idlecpus);
355 		device_remove_file(&device->dev, &dev_attr_idlepct);
356 		return -ENODEV;
357 	}
358 	return 0;
359 }
360 
361 static void acpi_pad_remove_sysfs(struct acpi_device *device)
362 {
363 	device_remove_file(&device->dev, &dev_attr_idlecpus);
364 	device_remove_file(&device->dev, &dev_attr_idlepct);
365 	device_remove_file(&device->dev, &dev_attr_rrtime);
366 }
367 
368 /* Query firmware how many CPUs should be idle */
369 static int acpi_pad_pur(acpi_handle handle, int *num_cpus)
370 {
371 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
372 	acpi_status status;
373 	union acpi_object *package;
374 	int rev, num, ret = -EINVAL;
375 
376 	status = acpi_evaluate_object(handle, "_PUR", NULL, &buffer);
377 	if (ACPI_FAILURE(status))
378 		return -EINVAL;
379 	package = buffer.pointer;
380 	if (package->type != ACPI_TYPE_PACKAGE || package->package.count != 2)
381 		goto out;
382 	rev = package->package.elements[0].integer.value;
383 	num = package->package.elements[1].integer.value;
384 	if (rev != 1)
385 		goto out;
386 	*num_cpus = num;
387 	ret = 0;
388 out:
389 	kfree(buffer.pointer);
390 	return ret;
391 }
392 
393 /* Notify firmware how many CPUs are idle */
394 static void acpi_pad_ost(acpi_handle handle, int stat,
395 	uint32_t idle_cpus)
396 {
397 	union acpi_object params[3] = {
398 		{.type = ACPI_TYPE_INTEGER,},
399 		{.type = ACPI_TYPE_INTEGER,},
400 		{.type = ACPI_TYPE_BUFFER,},
401 	};
402 	struct acpi_object_list arg_list = {3, params};
403 
404 	params[0].integer.value = ACPI_PROCESSOR_AGGREGATOR_NOTIFY;
405 	params[1].integer.value =  stat;
406 	params[2].buffer.length = 4;
407 	params[2].buffer.pointer = (void *)&idle_cpus;
408 	acpi_evaluate_object(handle, "_OST", &arg_list, NULL);
409 }
410 
411 static void acpi_pad_handle_notify(acpi_handle handle)
412 {
413 	int num_cpus, ret;
414 	uint32_t idle_cpus;
415 
416 	mutex_lock(&isolated_cpus_lock);
417 	if (acpi_pad_pur(handle, &num_cpus)) {
418 		mutex_unlock(&isolated_cpus_lock);
419 		return;
420 	}
421 	ret = acpi_pad_idle_cpus(num_cpus);
422 	idle_cpus = acpi_pad_idle_cpus_num();
423 	if (!ret)
424 		acpi_pad_ost(handle, 0, idle_cpus);
425 	else
426 		acpi_pad_ost(handle, 1, 0);
427 	mutex_unlock(&isolated_cpus_lock);
428 }
429 
430 static void acpi_pad_notify(acpi_handle handle, u32 event,
431 	void *data)
432 {
433 	struct acpi_device *device = data;
434 
435 	switch (event) {
436 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
437 		acpi_pad_handle_notify(handle);
438 		acpi_bus_generate_proc_event(device, event, 0);
439 		acpi_bus_generate_netlink_event(device->pnp.device_class,
440 			dev_name(&device->dev), event, 0);
441 		break;
442 	default:
443 		printk(KERN_WARNING"Unsupported event [0x%x]\n", event);
444 		break;
445 	}
446 }
447 
448 static int acpi_pad_add(struct acpi_device *device)
449 {
450 	acpi_status status;
451 
452 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
453 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
454 
455 	if (acpi_pad_add_sysfs(device))
456 		return -ENODEV;
457 
458 	status = acpi_install_notify_handler(device->handle,
459 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
460 	if (ACPI_FAILURE(status)) {
461 		acpi_pad_remove_sysfs(device);
462 		return -ENODEV;
463 	}
464 
465 	return 0;
466 }
467 
468 static int acpi_pad_remove(struct acpi_device *device,
469 	int type)
470 {
471 	mutex_lock(&isolated_cpus_lock);
472 	acpi_pad_idle_cpus(0);
473 	mutex_unlock(&isolated_cpus_lock);
474 
475 	acpi_remove_notify_handler(device->handle,
476 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
477 	acpi_pad_remove_sysfs(device);
478 	return 0;
479 }
480 
481 static const struct acpi_device_id pad_device_ids[] = {
482 	{"ACPI000C", 0},
483 	{"", 0},
484 };
485 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
486 
487 static struct acpi_driver acpi_pad_driver = {
488 	.name = "processor_aggregator",
489 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
490 	.ids = pad_device_ids,
491 	.ops = {
492 		.add = acpi_pad_add,
493 		.remove = acpi_pad_remove,
494 	},
495 };
496 
497 static int __init acpi_pad_init(void)
498 {
499 	power_saving_mwait_init();
500 	if (power_saving_mwait_eax == 0)
501 		return -EINVAL;
502 
503 	return acpi_bus_register_driver(&acpi_pad_driver);
504 }
505 
506 static void __exit acpi_pad_exit(void)
507 {
508 	acpi_bus_unregister_driver(&acpi_pad_driver);
509 }
510 
511 module_init(acpi_pad_init);
512 module_exit(acpi_pad_exit);
513 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
514 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
515 MODULE_LICENSE("GPL");
516