xref: /openbmc/linux/drivers/acpi/acpi_pad.c (revision 5497b23e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <asm/mwait.h>
21 #include <xen/xen.h>
22 
23 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
24 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
25 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
26 static DEFINE_MUTEX(isolated_cpus_lock);
27 static DEFINE_MUTEX(round_robin_lock);
28 
29 static unsigned long power_saving_mwait_eax;
30 
31 static unsigned char tsc_detected_unstable;
32 static unsigned char tsc_marked_unstable;
33 
34 static void power_saving_mwait_init(void)
35 {
36 	unsigned int eax, ebx, ecx, edx;
37 	unsigned int highest_cstate = 0;
38 	unsigned int highest_subcstate = 0;
39 	int i;
40 
41 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
42 		return;
43 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
44 		return;
45 
46 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
47 
48 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
49 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
50 		return;
51 
52 	edx >>= MWAIT_SUBSTATE_SIZE;
53 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
54 		if (edx & MWAIT_SUBSTATE_MASK) {
55 			highest_cstate = i;
56 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
57 		}
58 	}
59 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
60 		(highest_subcstate - 1);
61 
62 #if defined(CONFIG_X86)
63 	switch (boot_cpu_data.x86_vendor) {
64 	case X86_VENDOR_HYGON:
65 	case X86_VENDOR_AMD:
66 	case X86_VENDOR_INTEL:
67 	case X86_VENDOR_ZHAOXIN:
68 		/*
69 		 * AMD Fam10h TSC will tick in all
70 		 * C/P/S0/S1 states when this bit is set.
71 		 */
72 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
73 			tsc_detected_unstable = 1;
74 		break;
75 	default:
76 		/* TSC could halt in idle */
77 		tsc_detected_unstable = 1;
78 	}
79 #endif
80 }
81 
82 static unsigned long cpu_weight[NR_CPUS];
83 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
84 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
85 static void round_robin_cpu(unsigned int tsk_index)
86 {
87 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
88 	cpumask_var_t tmp;
89 	int cpu;
90 	unsigned long min_weight = -1;
91 	unsigned long preferred_cpu;
92 
93 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
94 		return;
95 
96 	mutex_lock(&round_robin_lock);
97 	cpumask_clear(tmp);
98 	for_each_cpu(cpu, pad_busy_cpus)
99 		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
100 	cpumask_andnot(tmp, cpu_online_mask, tmp);
101 	/* avoid HT sibilings if possible */
102 	if (cpumask_empty(tmp))
103 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
104 	if (cpumask_empty(tmp)) {
105 		mutex_unlock(&round_robin_lock);
106 		free_cpumask_var(tmp);
107 		return;
108 	}
109 	for_each_cpu(cpu, tmp) {
110 		if (cpu_weight[cpu] < min_weight) {
111 			min_weight = cpu_weight[cpu];
112 			preferred_cpu = cpu;
113 		}
114 	}
115 
116 	if (tsk_in_cpu[tsk_index] != -1)
117 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
118 	tsk_in_cpu[tsk_index] = preferred_cpu;
119 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
120 	cpu_weight[preferred_cpu]++;
121 	mutex_unlock(&round_robin_lock);
122 
123 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
124 
125 	free_cpumask_var(tmp);
126 }
127 
128 static void exit_round_robin(unsigned int tsk_index)
129 {
130 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
131 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
132 	tsk_in_cpu[tsk_index] = -1;
133 }
134 
135 static unsigned int idle_pct = 5; /* percentage */
136 static unsigned int round_robin_time = 1; /* second */
137 static int power_saving_thread(void *data)
138 {
139 	int do_sleep;
140 	unsigned int tsk_index = (unsigned long)data;
141 	u64 last_jiffies = 0;
142 
143 	sched_set_fifo_low(current);
144 
145 	while (!kthread_should_stop()) {
146 		unsigned long expire_time;
147 
148 		/* round robin to cpus */
149 		expire_time = last_jiffies + round_robin_time * HZ;
150 		if (time_before(expire_time, jiffies)) {
151 			last_jiffies = jiffies;
152 			round_robin_cpu(tsk_index);
153 		}
154 
155 		do_sleep = 0;
156 
157 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
158 
159 		while (!need_resched()) {
160 			if (tsc_detected_unstable && !tsc_marked_unstable) {
161 				/* TSC could halt in idle, so notify users */
162 				mark_tsc_unstable("TSC halts in idle");
163 				tsc_marked_unstable = 1;
164 			}
165 			local_irq_disable();
166 			tick_broadcast_enable();
167 			tick_broadcast_enter();
168 			stop_critical_timings();
169 
170 			mwait_idle_with_hints(power_saving_mwait_eax, 1);
171 
172 			start_critical_timings();
173 			tick_broadcast_exit();
174 			local_irq_enable();
175 
176 			if (time_before(expire_time, jiffies)) {
177 				do_sleep = 1;
178 				break;
179 			}
180 		}
181 
182 		/*
183 		 * current sched_rt has threshold for rt task running time.
184 		 * When a rt task uses 95% CPU time, the rt thread will be
185 		 * scheduled out for 5% CPU time to not starve other tasks. But
186 		 * the mechanism only works when all CPUs have RT task running,
187 		 * as if one CPU hasn't RT task, RT task from other CPUs will
188 		 * borrow CPU time from this CPU and cause RT task use > 95%
189 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
190 		 */
191 		if (unlikely(do_sleep))
192 			schedule_timeout_killable(HZ * idle_pct / 100);
193 
194 		/* If an external event has set the need_resched flag, then
195 		 * we need to deal with it, or this loop will continue to
196 		 * spin without calling __mwait().
197 		 */
198 		if (unlikely(need_resched()))
199 			schedule();
200 	}
201 
202 	exit_round_robin(tsk_index);
203 	return 0;
204 }
205 
206 static struct task_struct *ps_tsks[NR_CPUS];
207 static unsigned int ps_tsk_num;
208 static int create_power_saving_task(void)
209 {
210 	int rc;
211 
212 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
213 		(void *)(unsigned long)ps_tsk_num,
214 		"acpi_pad/%d", ps_tsk_num);
215 
216 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
217 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
218 		ps_tsks[ps_tsk_num] = NULL;
219 	} else {
220 		rc = 0;
221 		ps_tsk_num++;
222 	}
223 
224 	return rc;
225 }
226 
227 static void destroy_power_saving_task(void)
228 {
229 	if (ps_tsk_num > 0) {
230 		ps_tsk_num--;
231 		kthread_stop(ps_tsks[ps_tsk_num]);
232 		ps_tsks[ps_tsk_num] = NULL;
233 	}
234 }
235 
236 static void set_power_saving_task_num(unsigned int num)
237 {
238 	if (num > ps_tsk_num) {
239 		while (ps_tsk_num < num) {
240 			if (create_power_saving_task())
241 				return;
242 		}
243 	} else if (num < ps_tsk_num) {
244 		while (ps_tsk_num > num)
245 			destroy_power_saving_task();
246 	}
247 }
248 
249 static void acpi_pad_idle_cpus(unsigned int num_cpus)
250 {
251 	get_online_cpus();
252 
253 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
254 	set_power_saving_task_num(num_cpus);
255 
256 	put_online_cpus();
257 }
258 
259 static uint32_t acpi_pad_idle_cpus_num(void)
260 {
261 	return ps_tsk_num;
262 }
263 
264 static ssize_t rrtime_store(struct device *dev,
265 	struct device_attribute *attr, const char *buf, size_t count)
266 {
267 	unsigned long num;
268 	if (kstrtoul(buf, 0, &num))
269 		return -EINVAL;
270 	if (num < 1 || num >= 100)
271 		return -EINVAL;
272 	mutex_lock(&isolated_cpus_lock);
273 	round_robin_time = num;
274 	mutex_unlock(&isolated_cpus_lock);
275 	return count;
276 }
277 
278 static ssize_t rrtime_show(struct device *dev,
279 	struct device_attribute *attr, char *buf)
280 {
281 	return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
282 }
283 static DEVICE_ATTR_RW(rrtime);
284 
285 static ssize_t idlepct_store(struct device *dev,
286 	struct device_attribute *attr, const char *buf, size_t count)
287 {
288 	unsigned long num;
289 	if (kstrtoul(buf, 0, &num))
290 		return -EINVAL;
291 	if (num < 1 || num >= 100)
292 		return -EINVAL;
293 	mutex_lock(&isolated_cpus_lock);
294 	idle_pct = num;
295 	mutex_unlock(&isolated_cpus_lock);
296 	return count;
297 }
298 
299 static ssize_t idlepct_show(struct device *dev,
300 	struct device_attribute *attr, char *buf)
301 {
302 	return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
303 }
304 static DEVICE_ATTR_RW(idlepct);
305 
306 static ssize_t idlecpus_store(struct device *dev,
307 	struct device_attribute *attr, const char *buf, size_t count)
308 {
309 	unsigned long num;
310 	if (kstrtoul(buf, 0, &num))
311 		return -EINVAL;
312 	mutex_lock(&isolated_cpus_lock);
313 	acpi_pad_idle_cpus(num);
314 	mutex_unlock(&isolated_cpus_lock);
315 	return count;
316 }
317 
318 static ssize_t idlecpus_show(struct device *dev,
319 	struct device_attribute *attr, char *buf)
320 {
321 	return cpumap_print_to_pagebuf(false, buf,
322 				       to_cpumask(pad_busy_cpus_bits));
323 }
324 
325 static DEVICE_ATTR_RW(idlecpus);
326 
327 static int acpi_pad_add_sysfs(struct acpi_device *device)
328 {
329 	int result;
330 
331 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
332 	if (result)
333 		return -ENODEV;
334 	result = device_create_file(&device->dev, &dev_attr_idlepct);
335 	if (result) {
336 		device_remove_file(&device->dev, &dev_attr_idlecpus);
337 		return -ENODEV;
338 	}
339 	result = device_create_file(&device->dev, &dev_attr_rrtime);
340 	if (result) {
341 		device_remove_file(&device->dev, &dev_attr_idlecpus);
342 		device_remove_file(&device->dev, &dev_attr_idlepct);
343 		return -ENODEV;
344 	}
345 	return 0;
346 }
347 
348 static void acpi_pad_remove_sysfs(struct acpi_device *device)
349 {
350 	device_remove_file(&device->dev, &dev_attr_idlecpus);
351 	device_remove_file(&device->dev, &dev_attr_idlepct);
352 	device_remove_file(&device->dev, &dev_attr_rrtime);
353 }
354 
355 /*
356  * Query firmware how many CPUs should be idle
357  * return -1 on failure
358  */
359 static int acpi_pad_pur(acpi_handle handle)
360 {
361 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
362 	union acpi_object *package;
363 	int num = -1;
364 
365 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
366 		return num;
367 
368 	if (!buffer.length || !buffer.pointer)
369 		return num;
370 
371 	package = buffer.pointer;
372 
373 	if (package->type == ACPI_TYPE_PACKAGE &&
374 		package->package.count == 2 &&
375 		package->package.elements[0].integer.value == 1) /* rev 1 */
376 
377 		num = package->package.elements[1].integer.value;
378 
379 	kfree(buffer.pointer);
380 	return num;
381 }
382 
383 static void acpi_pad_handle_notify(acpi_handle handle)
384 {
385 	int num_cpus;
386 	uint32_t idle_cpus;
387 	struct acpi_buffer param = {
388 		.length = 4,
389 		.pointer = (void *)&idle_cpus,
390 	};
391 
392 	mutex_lock(&isolated_cpus_lock);
393 	num_cpus = acpi_pad_pur(handle);
394 	if (num_cpus < 0) {
395 		mutex_unlock(&isolated_cpus_lock);
396 		return;
397 	}
398 	acpi_pad_idle_cpus(num_cpus);
399 	idle_cpus = acpi_pad_idle_cpus_num();
400 	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
401 	mutex_unlock(&isolated_cpus_lock);
402 }
403 
404 static void acpi_pad_notify(acpi_handle handle, u32 event,
405 	void *data)
406 {
407 	struct acpi_device *device = data;
408 
409 	switch (event) {
410 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
411 		acpi_pad_handle_notify(handle);
412 		acpi_bus_generate_netlink_event(device->pnp.device_class,
413 			dev_name(&device->dev), event, 0);
414 		break;
415 	default:
416 		pr_warn("Unsupported event [0x%x]\n", event);
417 		break;
418 	}
419 }
420 
421 static int acpi_pad_add(struct acpi_device *device)
422 {
423 	acpi_status status;
424 
425 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
426 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
427 
428 	if (acpi_pad_add_sysfs(device))
429 		return -ENODEV;
430 
431 	status = acpi_install_notify_handler(device->handle,
432 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
433 	if (ACPI_FAILURE(status)) {
434 		acpi_pad_remove_sysfs(device);
435 		return -ENODEV;
436 	}
437 
438 	return 0;
439 }
440 
441 static int acpi_pad_remove(struct acpi_device *device)
442 {
443 	mutex_lock(&isolated_cpus_lock);
444 	acpi_pad_idle_cpus(0);
445 	mutex_unlock(&isolated_cpus_lock);
446 
447 	acpi_remove_notify_handler(device->handle,
448 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
449 	acpi_pad_remove_sysfs(device);
450 	return 0;
451 }
452 
453 static const struct acpi_device_id pad_device_ids[] = {
454 	{"ACPI000C", 0},
455 	{"", 0},
456 };
457 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
458 
459 static struct acpi_driver acpi_pad_driver = {
460 	.name = "processor_aggregator",
461 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
462 	.ids = pad_device_ids,
463 	.ops = {
464 		.add = acpi_pad_add,
465 		.remove = acpi_pad_remove,
466 	},
467 };
468 
469 static int __init acpi_pad_init(void)
470 {
471 	/* Xen ACPI PAD is used when running as Xen Dom0. */
472 	if (xen_initial_domain())
473 		return -ENODEV;
474 
475 	power_saving_mwait_init();
476 	if (power_saving_mwait_eax == 0)
477 		return -EINVAL;
478 
479 	return acpi_bus_register_driver(&acpi_pad_driver);
480 }
481 
482 static void __exit acpi_pad_exit(void)
483 {
484 	acpi_bus_unregister_driver(&acpi_pad_driver);
485 }
486 
487 module_init(acpi_pad_init);
488 module_exit(acpi_pad_exit);
489 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
490 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
491 MODULE_LICENSE("GPL");
492