xref: /openbmc/linux/drivers/acpi/acpi_pad.c (revision 2010776f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <asm/mwait.h>
21 #include <xen/xen.h>
22 
23 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
24 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
25 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
26 static DEFINE_MUTEX(isolated_cpus_lock);
27 static DEFINE_MUTEX(round_robin_lock);
28 
29 static unsigned long power_saving_mwait_eax;
30 
31 static unsigned char tsc_detected_unstable;
32 static unsigned char tsc_marked_unstable;
33 
34 static void power_saving_mwait_init(void)
35 {
36 	unsigned int eax, ebx, ecx, edx;
37 	unsigned int highest_cstate = 0;
38 	unsigned int highest_subcstate = 0;
39 	int i;
40 
41 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
42 		return;
43 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
44 		return;
45 
46 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
47 
48 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
49 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
50 		return;
51 
52 	edx >>= MWAIT_SUBSTATE_SIZE;
53 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
54 		if (edx & MWAIT_SUBSTATE_MASK) {
55 			highest_cstate = i;
56 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
57 		}
58 	}
59 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
60 		(highest_subcstate - 1);
61 
62 #if defined(CONFIG_X86)
63 	switch (boot_cpu_data.x86_vendor) {
64 	case X86_VENDOR_HYGON:
65 	case X86_VENDOR_AMD:
66 	case X86_VENDOR_INTEL:
67 	case X86_VENDOR_ZHAOXIN:
68 		/*
69 		 * AMD Fam10h TSC will tick in all
70 		 * C/P/S0/S1 states when this bit is set.
71 		 */
72 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
73 			tsc_detected_unstable = 1;
74 		break;
75 	default:
76 		/* TSC could halt in idle */
77 		tsc_detected_unstable = 1;
78 	}
79 #endif
80 }
81 
82 static unsigned long cpu_weight[NR_CPUS];
83 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
84 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
85 static void round_robin_cpu(unsigned int tsk_index)
86 {
87 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
88 	cpumask_var_t tmp;
89 	int cpu;
90 	unsigned long min_weight = -1;
91 	unsigned long preferred_cpu;
92 
93 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
94 		return;
95 
96 	mutex_lock(&round_robin_lock);
97 	cpumask_clear(tmp);
98 	for_each_cpu(cpu, pad_busy_cpus)
99 		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
100 	cpumask_andnot(tmp, cpu_online_mask, tmp);
101 	/* avoid HT sibilings if possible */
102 	if (cpumask_empty(tmp))
103 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
104 	if (cpumask_empty(tmp)) {
105 		mutex_unlock(&round_robin_lock);
106 		free_cpumask_var(tmp);
107 		return;
108 	}
109 	for_each_cpu(cpu, tmp) {
110 		if (cpu_weight[cpu] < min_weight) {
111 			min_weight = cpu_weight[cpu];
112 			preferred_cpu = cpu;
113 		}
114 	}
115 
116 	if (tsk_in_cpu[tsk_index] != -1)
117 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
118 	tsk_in_cpu[tsk_index] = preferred_cpu;
119 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
120 	cpu_weight[preferred_cpu]++;
121 	mutex_unlock(&round_robin_lock);
122 
123 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
124 
125 	free_cpumask_var(tmp);
126 }
127 
128 static void exit_round_robin(unsigned int tsk_index)
129 {
130 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
131 
132 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
133 	tsk_in_cpu[tsk_index] = -1;
134 }
135 
136 static unsigned int idle_pct = 5; /* percentage */
137 static unsigned int round_robin_time = 1; /* second */
138 static int power_saving_thread(void *data)
139 {
140 	int do_sleep;
141 	unsigned int tsk_index = (unsigned long)data;
142 	u64 last_jiffies = 0;
143 
144 	sched_set_fifo_low(current);
145 
146 	while (!kthread_should_stop()) {
147 		unsigned long expire_time;
148 
149 		/* round robin to cpus */
150 		expire_time = last_jiffies + round_robin_time * HZ;
151 		if (time_before(expire_time, jiffies)) {
152 			last_jiffies = jiffies;
153 			round_robin_cpu(tsk_index);
154 		}
155 
156 		do_sleep = 0;
157 
158 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
159 
160 		while (!need_resched()) {
161 			if (tsc_detected_unstable && !tsc_marked_unstable) {
162 				/* TSC could halt in idle, so notify users */
163 				mark_tsc_unstable("TSC halts in idle");
164 				tsc_marked_unstable = 1;
165 			}
166 			local_irq_disable();
167 			tick_broadcast_enable();
168 			tick_broadcast_enter();
169 			stop_critical_timings();
170 
171 			mwait_idle_with_hints(power_saving_mwait_eax, 1);
172 
173 			start_critical_timings();
174 			tick_broadcast_exit();
175 			local_irq_enable();
176 
177 			if (time_before(expire_time, jiffies)) {
178 				do_sleep = 1;
179 				break;
180 			}
181 		}
182 
183 		/*
184 		 * current sched_rt has threshold for rt task running time.
185 		 * When a rt task uses 95% CPU time, the rt thread will be
186 		 * scheduled out for 5% CPU time to not starve other tasks. But
187 		 * the mechanism only works when all CPUs have RT task running,
188 		 * as if one CPU hasn't RT task, RT task from other CPUs will
189 		 * borrow CPU time from this CPU and cause RT task use > 95%
190 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
191 		 */
192 		if (unlikely(do_sleep))
193 			schedule_timeout_killable(HZ * idle_pct / 100);
194 
195 		/* If an external event has set the need_resched flag, then
196 		 * we need to deal with it, or this loop will continue to
197 		 * spin without calling __mwait().
198 		 */
199 		if (unlikely(need_resched()))
200 			schedule();
201 	}
202 
203 	exit_round_robin(tsk_index);
204 	return 0;
205 }
206 
207 static struct task_struct *ps_tsks[NR_CPUS];
208 static unsigned int ps_tsk_num;
209 static int create_power_saving_task(void)
210 {
211 	int rc;
212 
213 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
214 		(void *)(unsigned long)ps_tsk_num,
215 		"acpi_pad/%d", ps_tsk_num);
216 
217 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
218 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
219 		ps_tsks[ps_tsk_num] = NULL;
220 	} else {
221 		rc = 0;
222 		ps_tsk_num++;
223 	}
224 
225 	return rc;
226 }
227 
228 static void destroy_power_saving_task(void)
229 {
230 	if (ps_tsk_num > 0) {
231 		ps_tsk_num--;
232 		kthread_stop(ps_tsks[ps_tsk_num]);
233 		ps_tsks[ps_tsk_num] = NULL;
234 	}
235 }
236 
237 static void set_power_saving_task_num(unsigned int num)
238 {
239 	if (num > ps_tsk_num) {
240 		while (ps_tsk_num < num) {
241 			if (create_power_saving_task())
242 				return;
243 		}
244 	} else if (num < ps_tsk_num) {
245 		while (ps_tsk_num > num)
246 			destroy_power_saving_task();
247 	}
248 }
249 
250 static void acpi_pad_idle_cpus(unsigned int num_cpus)
251 {
252 	cpus_read_lock();
253 
254 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
255 	set_power_saving_task_num(num_cpus);
256 
257 	cpus_read_unlock();
258 }
259 
260 static uint32_t acpi_pad_idle_cpus_num(void)
261 {
262 	return ps_tsk_num;
263 }
264 
265 static ssize_t rrtime_store(struct device *dev,
266 	struct device_attribute *attr, const char *buf, size_t count)
267 {
268 	unsigned long num;
269 
270 	if (kstrtoul(buf, 0, &num))
271 		return -EINVAL;
272 	if (num < 1 || num >= 100)
273 		return -EINVAL;
274 	mutex_lock(&isolated_cpus_lock);
275 	round_robin_time = num;
276 	mutex_unlock(&isolated_cpus_lock);
277 	return count;
278 }
279 
280 static ssize_t rrtime_show(struct device *dev,
281 	struct device_attribute *attr, char *buf)
282 {
283 	return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
284 }
285 static DEVICE_ATTR_RW(rrtime);
286 
287 static ssize_t idlepct_store(struct device *dev,
288 	struct device_attribute *attr, const char *buf, size_t count)
289 {
290 	unsigned long num;
291 
292 	if (kstrtoul(buf, 0, &num))
293 		return -EINVAL;
294 	if (num < 1 || num >= 100)
295 		return -EINVAL;
296 	mutex_lock(&isolated_cpus_lock);
297 	idle_pct = num;
298 	mutex_unlock(&isolated_cpus_lock);
299 	return count;
300 }
301 
302 static ssize_t idlepct_show(struct device *dev,
303 	struct device_attribute *attr, char *buf)
304 {
305 	return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
306 }
307 static DEVICE_ATTR_RW(idlepct);
308 
309 static ssize_t idlecpus_store(struct device *dev,
310 	struct device_attribute *attr, const char *buf, size_t count)
311 {
312 	unsigned long num;
313 
314 	if (kstrtoul(buf, 0, &num))
315 		return -EINVAL;
316 	mutex_lock(&isolated_cpus_lock);
317 	acpi_pad_idle_cpus(num);
318 	mutex_unlock(&isolated_cpus_lock);
319 	return count;
320 }
321 
322 static ssize_t idlecpus_show(struct device *dev,
323 	struct device_attribute *attr, char *buf)
324 {
325 	return cpumap_print_to_pagebuf(false, buf,
326 				       to_cpumask(pad_busy_cpus_bits));
327 }
328 
329 static DEVICE_ATTR_RW(idlecpus);
330 
331 static int acpi_pad_add_sysfs(struct acpi_device *device)
332 {
333 	int result;
334 
335 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
336 	if (result)
337 		return -ENODEV;
338 	result = device_create_file(&device->dev, &dev_attr_idlepct);
339 	if (result) {
340 		device_remove_file(&device->dev, &dev_attr_idlecpus);
341 		return -ENODEV;
342 	}
343 	result = device_create_file(&device->dev, &dev_attr_rrtime);
344 	if (result) {
345 		device_remove_file(&device->dev, &dev_attr_idlecpus);
346 		device_remove_file(&device->dev, &dev_attr_idlepct);
347 		return -ENODEV;
348 	}
349 	return 0;
350 }
351 
352 static void acpi_pad_remove_sysfs(struct acpi_device *device)
353 {
354 	device_remove_file(&device->dev, &dev_attr_idlecpus);
355 	device_remove_file(&device->dev, &dev_attr_idlepct);
356 	device_remove_file(&device->dev, &dev_attr_rrtime);
357 }
358 
359 /*
360  * Query firmware how many CPUs should be idle
361  * return -1 on failure
362  */
363 static int acpi_pad_pur(acpi_handle handle)
364 {
365 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
366 	union acpi_object *package;
367 	int num = -1;
368 
369 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
370 		return num;
371 
372 	if (!buffer.length || !buffer.pointer)
373 		return num;
374 
375 	package = buffer.pointer;
376 
377 	if (package->type == ACPI_TYPE_PACKAGE &&
378 		package->package.count == 2 &&
379 		package->package.elements[0].integer.value == 1) /* rev 1 */
380 
381 		num = package->package.elements[1].integer.value;
382 
383 	kfree(buffer.pointer);
384 	return num;
385 }
386 
387 static void acpi_pad_handle_notify(acpi_handle handle)
388 {
389 	int num_cpus;
390 	uint32_t idle_cpus;
391 	struct acpi_buffer param = {
392 		.length = 4,
393 		.pointer = (void *)&idle_cpus,
394 	};
395 
396 	mutex_lock(&isolated_cpus_lock);
397 	num_cpus = acpi_pad_pur(handle);
398 	if (num_cpus < 0) {
399 		mutex_unlock(&isolated_cpus_lock);
400 		return;
401 	}
402 	acpi_pad_idle_cpus(num_cpus);
403 	idle_cpus = acpi_pad_idle_cpus_num();
404 	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
405 	mutex_unlock(&isolated_cpus_lock);
406 }
407 
408 static void acpi_pad_notify(acpi_handle handle, u32 event,
409 	void *data)
410 {
411 	struct acpi_device *device = data;
412 
413 	switch (event) {
414 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
415 		acpi_pad_handle_notify(handle);
416 		acpi_bus_generate_netlink_event(device->pnp.device_class,
417 			dev_name(&device->dev), event, 0);
418 		break;
419 	default:
420 		pr_warn("Unsupported event [0x%x]\n", event);
421 		break;
422 	}
423 }
424 
425 static int acpi_pad_add(struct acpi_device *device)
426 {
427 	acpi_status status;
428 
429 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
430 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
431 
432 	if (acpi_pad_add_sysfs(device))
433 		return -ENODEV;
434 
435 	status = acpi_install_notify_handler(device->handle,
436 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
437 	if (ACPI_FAILURE(status)) {
438 		acpi_pad_remove_sysfs(device);
439 		return -ENODEV;
440 	}
441 
442 	return 0;
443 }
444 
445 static int acpi_pad_remove(struct acpi_device *device)
446 {
447 	mutex_lock(&isolated_cpus_lock);
448 	acpi_pad_idle_cpus(0);
449 	mutex_unlock(&isolated_cpus_lock);
450 
451 	acpi_remove_notify_handler(device->handle,
452 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
453 	acpi_pad_remove_sysfs(device);
454 	return 0;
455 }
456 
457 static const struct acpi_device_id pad_device_ids[] = {
458 	{"ACPI000C", 0},
459 	{"", 0},
460 };
461 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
462 
463 static struct acpi_driver acpi_pad_driver = {
464 	.name = "processor_aggregator",
465 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
466 	.ids = pad_device_ids,
467 	.ops = {
468 		.add = acpi_pad_add,
469 		.remove = acpi_pad_remove,
470 	},
471 };
472 
473 static int __init acpi_pad_init(void)
474 {
475 	/* Xen ACPI PAD is used when running as Xen Dom0. */
476 	if (xen_initial_domain())
477 		return -ENODEV;
478 
479 	power_saving_mwait_init();
480 	if (power_saving_mwait_eax == 0)
481 		return -EINVAL;
482 
483 	return acpi_bus_register_driver(&acpi_pad_driver);
484 }
485 
486 static void __exit acpi_pad_exit(void)
487 {
488 	acpi_bus_unregister_driver(&acpi_pad_driver);
489 }
490 
491 module_init(acpi_pad_init);
492 module_exit(acpi_pad_exit);
493 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
494 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
495 MODULE_LICENSE("GPL");
496