1 /* 2 * ACPI support for Intel Lynxpoint LPSS. 3 * 4 * Copyright (C) 2013, Intel Corporation 5 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> 6 * Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/acpi.h> 14 #include <linux/clkdev.h> 15 #include <linux/clk-provider.h> 16 #include <linux/err.h> 17 #include <linux/io.h> 18 #include <linux/mutex.h> 19 #include <linux/platform_device.h> 20 #include <linux/platform_data/clk-lpss.h> 21 #include <linux/platform_data/x86/pmc_atom.h> 22 #include <linux/pm_domain.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pwm.h> 25 #include <linux/delay.h> 26 27 #include "internal.h" 28 29 ACPI_MODULE_NAME("acpi_lpss"); 30 31 #ifdef CONFIG_X86_INTEL_LPSS 32 33 #include <asm/cpu_device_id.h> 34 #include <asm/intel-family.h> 35 #include <asm/iosf_mbi.h> 36 37 #define LPSS_ADDR(desc) ((unsigned long)&desc) 38 39 #define LPSS_CLK_SIZE 0x04 40 #define LPSS_LTR_SIZE 0x18 41 42 /* Offsets relative to LPSS_PRIVATE_OFFSET */ 43 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16)) 44 #define LPSS_RESETS 0x04 45 #define LPSS_RESETS_RESET_FUNC BIT(0) 46 #define LPSS_RESETS_RESET_APB BIT(1) 47 #define LPSS_GENERAL 0x08 48 #define LPSS_GENERAL_LTR_MODE_SW BIT(2) 49 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3) 50 #define LPSS_SW_LTR 0x10 51 #define LPSS_AUTO_LTR 0x14 52 #define LPSS_LTR_SNOOP_REQ BIT(15) 53 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF 54 #define LPSS_LTR_SNOOP_LAT_1US 0x800 55 #define LPSS_LTR_SNOOP_LAT_32US 0xC00 56 #define LPSS_LTR_SNOOP_LAT_SHIFT 5 57 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000 58 #define LPSS_LTR_MAX_VAL 0x3FF 59 #define LPSS_TX_INT 0x20 60 #define LPSS_TX_INT_MASK BIT(1) 61 62 #define LPSS_PRV_REG_COUNT 9 63 64 /* LPSS Flags */ 65 #define LPSS_CLK BIT(0) 66 #define LPSS_CLK_GATE BIT(1) 67 #define LPSS_CLK_DIVIDER BIT(2) 68 #define LPSS_LTR BIT(3) 69 #define LPSS_SAVE_CTX BIT(4) 70 #define LPSS_NO_D3_DELAY BIT(5) 71 72 /* Crystal Cove PMIC shares same ACPI ID between different platforms */ 73 #define BYT_CRC_HRV 2 74 #define CHT_CRC_HRV 3 75 76 struct lpss_private_data; 77 78 struct lpss_device_desc { 79 unsigned int flags; 80 const char *clk_con_id; 81 unsigned int prv_offset; 82 size_t prv_size_override; 83 struct property_entry *properties; 84 void (*setup)(struct lpss_private_data *pdata); 85 }; 86 87 static const struct lpss_device_desc lpss_dma_desc = { 88 .flags = LPSS_CLK, 89 }; 90 91 struct lpss_private_data { 92 struct acpi_device *adev; 93 void __iomem *mmio_base; 94 resource_size_t mmio_size; 95 unsigned int fixed_clk_rate; 96 struct clk *clk; 97 const struct lpss_device_desc *dev_desc; 98 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT]; 99 }; 100 101 /* LPSS run time quirks */ 102 static unsigned int lpss_quirks; 103 104 /* 105 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device. 106 * 107 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover 108 * it can be powered off automatically whenever the last LPSS device goes down. 109 * In case of no power any access to the DMA controller will hang the system. 110 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as 111 * well as on ASuS T100TA transformer. 112 * 113 * This quirk overrides power state of entire LPSS island to keep DMA powered 114 * on whenever we have at least one other device in use. 115 */ 116 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0) 117 118 /* UART Component Parameter Register */ 119 #define LPSS_UART_CPR 0xF4 120 #define LPSS_UART_CPR_AFCE BIT(4) 121 122 static void lpss_uart_setup(struct lpss_private_data *pdata) 123 { 124 unsigned int offset; 125 u32 val; 126 127 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT; 128 val = readl(pdata->mmio_base + offset); 129 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset); 130 131 val = readl(pdata->mmio_base + LPSS_UART_CPR); 132 if (!(val & LPSS_UART_CPR_AFCE)) { 133 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL; 134 val = readl(pdata->mmio_base + offset); 135 val |= LPSS_GENERAL_UART_RTS_OVRD; 136 writel(val, pdata->mmio_base + offset); 137 } 138 } 139 140 static void lpss_deassert_reset(struct lpss_private_data *pdata) 141 { 142 unsigned int offset; 143 u32 val; 144 145 offset = pdata->dev_desc->prv_offset + LPSS_RESETS; 146 val = readl(pdata->mmio_base + offset); 147 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC; 148 writel(val, pdata->mmio_base + offset); 149 } 150 151 /* 152 * BYT PWM used for backlight control by the i915 driver on systems without 153 * the Crystal Cove PMIC. 154 */ 155 static struct pwm_lookup byt_pwm_lookup[] = { 156 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0", 157 "pwm_backlight", 0, PWM_POLARITY_NORMAL, 158 "pwm-lpss-platform"), 159 }; 160 161 static void byt_pwm_setup(struct lpss_private_data *pdata) 162 { 163 struct acpi_device *adev = pdata->adev; 164 165 /* Only call pwm_add_table for the first PWM controller */ 166 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1")) 167 return; 168 169 if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV)) 170 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup)); 171 } 172 173 #define LPSS_I2C_ENABLE 0x6c 174 175 static void byt_i2c_setup(struct lpss_private_data *pdata) 176 { 177 lpss_deassert_reset(pdata); 178 179 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset)) 180 pdata->fixed_clk_rate = 133000000; 181 182 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE); 183 } 184 185 /* BSW PWM used for backlight control by the i915 driver */ 186 static struct pwm_lookup bsw_pwm_lookup[] = { 187 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0", 188 "pwm_backlight", 0, PWM_POLARITY_NORMAL, 189 "pwm-lpss-platform"), 190 }; 191 192 static void bsw_pwm_setup(struct lpss_private_data *pdata) 193 { 194 struct acpi_device *adev = pdata->adev; 195 196 /* Only call pwm_add_table for the first PWM controller */ 197 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1")) 198 return; 199 200 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup)); 201 } 202 203 static const struct lpss_device_desc lpt_dev_desc = { 204 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR, 205 .prv_offset = 0x800, 206 }; 207 208 static const struct lpss_device_desc lpt_i2c_dev_desc = { 209 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR, 210 .prv_offset = 0x800, 211 }; 212 213 static struct property_entry uart_properties[] = { 214 PROPERTY_ENTRY_U32("reg-io-width", 4), 215 PROPERTY_ENTRY_U32("reg-shift", 2), 216 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"), 217 { }, 218 }; 219 220 static const struct lpss_device_desc lpt_uart_dev_desc = { 221 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR, 222 .clk_con_id = "baudclk", 223 .prv_offset = 0x800, 224 .setup = lpss_uart_setup, 225 .properties = uart_properties, 226 }; 227 228 static const struct lpss_device_desc lpt_sdio_dev_desc = { 229 .flags = LPSS_LTR, 230 .prv_offset = 0x1000, 231 .prv_size_override = 0x1018, 232 }; 233 234 static const struct lpss_device_desc byt_pwm_dev_desc = { 235 .flags = LPSS_SAVE_CTX, 236 .setup = byt_pwm_setup, 237 }; 238 239 static const struct lpss_device_desc bsw_pwm_dev_desc = { 240 .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY, 241 .setup = bsw_pwm_setup, 242 }; 243 244 static const struct lpss_device_desc byt_uart_dev_desc = { 245 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX, 246 .clk_con_id = "baudclk", 247 .prv_offset = 0x800, 248 .setup = lpss_uart_setup, 249 .properties = uart_properties, 250 }; 251 252 static const struct lpss_device_desc bsw_uart_dev_desc = { 253 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX 254 | LPSS_NO_D3_DELAY, 255 .clk_con_id = "baudclk", 256 .prv_offset = 0x800, 257 .setup = lpss_uart_setup, 258 .properties = uart_properties, 259 }; 260 261 static const struct lpss_device_desc byt_spi_dev_desc = { 262 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX, 263 .prv_offset = 0x400, 264 }; 265 266 static const struct lpss_device_desc byt_sdio_dev_desc = { 267 .flags = LPSS_CLK, 268 }; 269 270 static const struct lpss_device_desc byt_i2c_dev_desc = { 271 .flags = LPSS_CLK | LPSS_SAVE_CTX, 272 .prv_offset = 0x800, 273 .setup = byt_i2c_setup, 274 }; 275 276 static const struct lpss_device_desc bsw_i2c_dev_desc = { 277 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY, 278 .prv_offset = 0x800, 279 .setup = byt_i2c_setup, 280 }; 281 282 static const struct lpss_device_desc bsw_spi_dev_desc = { 283 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX 284 | LPSS_NO_D3_DELAY, 285 .prv_offset = 0x400, 286 .setup = lpss_deassert_reset, 287 }; 288 289 #define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, } 290 291 static const struct x86_cpu_id lpss_cpu_ids[] = { 292 ICPU(INTEL_FAM6_ATOM_SILVERMONT1), /* Valleyview, Bay Trail */ 293 ICPU(INTEL_FAM6_ATOM_AIRMONT), /* Braswell, Cherry Trail */ 294 {} 295 }; 296 297 #else 298 299 #define LPSS_ADDR(desc) (0UL) 300 301 #endif /* CONFIG_X86_INTEL_LPSS */ 302 303 static const struct acpi_device_id acpi_lpss_device_ids[] = { 304 /* Generic LPSS devices */ 305 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) }, 306 307 /* Lynxpoint LPSS devices */ 308 { "INT33C0", LPSS_ADDR(lpt_dev_desc) }, 309 { "INT33C1", LPSS_ADDR(lpt_dev_desc) }, 310 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) }, 311 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) }, 312 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) }, 313 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) }, 314 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) }, 315 { "INT33C7", }, 316 317 /* BayTrail LPSS devices */ 318 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) }, 319 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) }, 320 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) }, 321 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) }, 322 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) }, 323 { "INT33B2", }, 324 { "INT33FC", }, 325 326 /* Braswell LPSS devices */ 327 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) }, 328 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) }, 329 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) }, 330 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) }, 331 332 /* Broadwell LPSS devices */ 333 { "INT3430", LPSS_ADDR(lpt_dev_desc) }, 334 { "INT3431", LPSS_ADDR(lpt_dev_desc) }, 335 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) }, 336 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) }, 337 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) }, 338 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) }, 339 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) }, 340 { "INT3437", }, 341 342 /* Wildcat Point LPSS devices */ 343 { "INT3438", LPSS_ADDR(lpt_dev_desc) }, 344 345 { } 346 }; 347 348 #ifdef CONFIG_X86_INTEL_LPSS 349 350 static int is_memory(struct acpi_resource *res, void *not_used) 351 { 352 struct resource r; 353 return !acpi_dev_resource_memory(res, &r); 354 } 355 356 /* LPSS main clock device. */ 357 static struct platform_device *lpss_clk_dev; 358 359 static inline void lpt_register_clock_device(void) 360 { 361 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0); 362 } 363 364 static int register_device_clock(struct acpi_device *adev, 365 struct lpss_private_data *pdata) 366 { 367 const struct lpss_device_desc *dev_desc = pdata->dev_desc; 368 const char *devname = dev_name(&adev->dev); 369 struct clk *clk; 370 struct lpss_clk_data *clk_data; 371 const char *parent, *clk_name; 372 void __iomem *prv_base; 373 374 if (!lpss_clk_dev) 375 lpt_register_clock_device(); 376 377 clk_data = platform_get_drvdata(lpss_clk_dev); 378 if (!clk_data) 379 return -ENODEV; 380 clk = clk_data->clk; 381 382 if (!pdata->mmio_base 383 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE) 384 return -ENODATA; 385 386 parent = clk_data->name; 387 prv_base = pdata->mmio_base + dev_desc->prv_offset; 388 389 if (pdata->fixed_clk_rate) { 390 clk = clk_register_fixed_rate(NULL, devname, parent, 0, 391 pdata->fixed_clk_rate); 392 goto out; 393 } 394 395 if (dev_desc->flags & LPSS_CLK_GATE) { 396 clk = clk_register_gate(NULL, devname, parent, 0, 397 prv_base, 0, 0, NULL); 398 parent = devname; 399 } 400 401 if (dev_desc->flags & LPSS_CLK_DIVIDER) { 402 /* Prevent division by zero */ 403 if (!readl(prv_base)) 404 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base); 405 406 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname); 407 if (!clk_name) 408 return -ENOMEM; 409 clk = clk_register_fractional_divider(NULL, clk_name, parent, 410 0, prv_base, 411 1, 15, 16, 15, 0, NULL); 412 parent = clk_name; 413 414 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname); 415 if (!clk_name) { 416 kfree(parent); 417 return -ENOMEM; 418 } 419 clk = clk_register_gate(NULL, clk_name, parent, 420 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE, 421 prv_base, 31, 0, NULL); 422 kfree(parent); 423 kfree(clk_name); 424 } 425 out: 426 if (IS_ERR(clk)) 427 return PTR_ERR(clk); 428 429 pdata->clk = clk; 430 clk_register_clkdev(clk, dev_desc->clk_con_id, devname); 431 return 0; 432 } 433 434 struct lpss_device_links { 435 const char *supplier_hid; 436 const char *supplier_uid; 437 const char *consumer_hid; 438 const char *consumer_uid; 439 u32 flags; 440 }; 441 442 /* 443 * The _DEP method is used to identify dependencies but instead of creating 444 * device links for every handle in _DEP, only links in the following list are 445 * created. That is necessary because, in the general case, _DEP can refer to 446 * devices that might not have drivers, or that are on different buses, or where 447 * the supplier is not enumerated until after the consumer is probed. 448 */ 449 static const struct lpss_device_links lpss_device_links[] = { 450 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME}, 451 }; 452 453 static bool hid_uid_match(const char *hid1, const char *uid1, 454 const char *hid2, const char *uid2) 455 { 456 return !strcmp(hid1, hid2) && uid1 && uid2 && !strcmp(uid1, uid2); 457 } 458 459 static bool acpi_lpss_is_supplier(struct acpi_device *adev, 460 const struct lpss_device_links *link) 461 { 462 return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev), 463 link->supplier_hid, link->supplier_uid); 464 } 465 466 static bool acpi_lpss_is_consumer(struct acpi_device *adev, 467 const struct lpss_device_links *link) 468 { 469 return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev), 470 link->consumer_hid, link->consumer_uid); 471 } 472 473 struct hid_uid { 474 const char *hid; 475 const char *uid; 476 }; 477 478 static int match_hid_uid(struct device *dev, void *data) 479 { 480 struct acpi_device *adev = ACPI_COMPANION(dev); 481 struct hid_uid *id = data; 482 483 if (!adev) 484 return 0; 485 486 return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev), 487 id->hid, id->uid); 488 } 489 490 static struct device *acpi_lpss_find_device(const char *hid, const char *uid) 491 { 492 struct hid_uid data = { 493 .hid = hid, 494 .uid = uid, 495 }; 496 497 return bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid); 498 } 499 500 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle) 501 { 502 struct acpi_handle_list dep_devices; 503 acpi_status status; 504 int i; 505 506 if (!acpi_has_method(adev->handle, "_DEP")) 507 return false; 508 509 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL, 510 &dep_devices); 511 if (ACPI_FAILURE(status)) { 512 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n"); 513 return false; 514 } 515 516 for (i = 0; i < dep_devices.count; i++) { 517 if (dep_devices.handles[i] == handle) 518 return true; 519 } 520 521 return false; 522 } 523 524 static void acpi_lpss_link_consumer(struct device *dev1, 525 const struct lpss_device_links *link) 526 { 527 struct device *dev2; 528 529 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid); 530 if (!dev2) 531 return; 532 533 if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1))) 534 device_link_add(dev2, dev1, link->flags); 535 536 put_device(dev2); 537 } 538 539 static void acpi_lpss_link_supplier(struct device *dev1, 540 const struct lpss_device_links *link) 541 { 542 struct device *dev2; 543 544 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid); 545 if (!dev2) 546 return; 547 548 if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2))) 549 device_link_add(dev1, dev2, link->flags); 550 551 put_device(dev2); 552 } 553 554 static void acpi_lpss_create_device_links(struct acpi_device *adev, 555 struct platform_device *pdev) 556 { 557 int i; 558 559 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) { 560 const struct lpss_device_links *link = &lpss_device_links[i]; 561 562 if (acpi_lpss_is_supplier(adev, link)) 563 acpi_lpss_link_consumer(&pdev->dev, link); 564 565 if (acpi_lpss_is_consumer(adev, link)) 566 acpi_lpss_link_supplier(&pdev->dev, link); 567 } 568 } 569 570 static int acpi_lpss_create_device(struct acpi_device *adev, 571 const struct acpi_device_id *id) 572 { 573 const struct lpss_device_desc *dev_desc; 574 struct lpss_private_data *pdata; 575 struct resource_entry *rentry; 576 struct list_head resource_list; 577 struct platform_device *pdev; 578 int ret; 579 580 dev_desc = (const struct lpss_device_desc *)id->driver_data; 581 if (!dev_desc) { 582 pdev = acpi_create_platform_device(adev, NULL); 583 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1; 584 } 585 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); 586 if (!pdata) 587 return -ENOMEM; 588 589 INIT_LIST_HEAD(&resource_list); 590 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL); 591 if (ret < 0) 592 goto err_out; 593 594 list_for_each_entry(rentry, &resource_list, node) 595 if (resource_type(rentry->res) == IORESOURCE_MEM) { 596 if (dev_desc->prv_size_override) 597 pdata->mmio_size = dev_desc->prv_size_override; 598 else 599 pdata->mmio_size = resource_size(rentry->res); 600 pdata->mmio_base = ioremap(rentry->res->start, 601 pdata->mmio_size); 602 break; 603 } 604 605 acpi_dev_free_resource_list(&resource_list); 606 607 if (!pdata->mmio_base) { 608 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */ 609 adev->pnp.type.platform_id = 0; 610 /* Skip the device, but continue the namespace scan. */ 611 ret = 0; 612 goto err_out; 613 } 614 615 pdata->adev = adev; 616 pdata->dev_desc = dev_desc; 617 618 if (dev_desc->setup) 619 dev_desc->setup(pdata); 620 621 if (dev_desc->flags & LPSS_CLK) { 622 ret = register_device_clock(adev, pdata); 623 if (ret) { 624 /* Skip the device, but continue the namespace scan. */ 625 ret = 0; 626 goto err_out; 627 } 628 } 629 630 /* 631 * This works around a known issue in ACPI tables where LPSS devices 632 * have _PS0 and _PS3 without _PSC (and no power resources), so 633 * acpi_bus_init_power() will assume that the BIOS has put them into D0. 634 */ 635 ret = acpi_device_fix_up_power(adev); 636 if (ret) { 637 /* Skip the device, but continue the namespace scan. */ 638 ret = 0; 639 goto err_out; 640 } 641 642 adev->driver_data = pdata; 643 pdev = acpi_create_platform_device(adev, dev_desc->properties); 644 if (!IS_ERR_OR_NULL(pdev)) { 645 acpi_lpss_create_device_links(adev, pdev); 646 return 1; 647 } 648 649 ret = PTR_ERR(pdev); 650 adev->driver_data = NULL; 651 652 err_out: 653 kfree(pdata); 654 return ret; 655 } 656 657 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg) 658 { 659 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg); 660 } 661 662 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata, 663 unsigned int reg) 664 { 665 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg); 666 } 667 668 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val) 669 { 670 struct acpi_device *adev; 671 struct lpss_private_data *pdata; 672 unsigned long flags; 673 int ret; 674 675 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev); 676 if (WARN_ON(ret)) 677 return ret; 678 679 spin_lock_irqsave(&dev->power.lock, flags); 680 if (pm_runtime_suspended(dev)) { 681 ret = -EAGAIN; 682 goto out; 683 } 684 pdata = acpi_driver_data(adev); 685 if (WARN_ON(!pdata || !pdata->mmio_base)) { 686 ret = -ENODEV; 687 goto out; 688 } 689 *val = __lpss_reg_read(pdata, reg); 690 691 out: 692 spin_unlock_irqrestore(&dev->power.lock, flags); 693 return ret; 694 } 695 696 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr, 697 char *buf) 698 { 699 u32 ltr_value = 0; 700 unsigned int reg; 701 int ret; 702 703 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR; 704 ret = lpss_reg_read(dev, reg, <r_value); 705 if (ret) 706 return ret; 707 708 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value); 709 } 710 711 static ssize_t lpss_ltr_mode_show(struct device *dev, 712 struct device_attribute *attr, char *buf) 713 { 714 u32 ltr_mode = 0; 715 char *outstr; 716 int ret; 717 718 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode); 719 if (ret) 720 return ret; 721 722 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto"; 723 return sprintf(buf, "%s\n", outstr); 724 } 725 726 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL); 727 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL); 728 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL); 729 730 static struct attribute *lpss_attrs[] = { 731 &dev_attr_auto_ltr.attr, 732 &dev_attr_sw_ltr.attr, 733 &dev_attr_ltr_mode.attr, 734 NULL, 735 }; 736 737 static const struct attribute_group lpss_attr_group = { 738 .attrs = lpss_attrs, 739 .name = "lpss_ltr", 740 }; 741 742 static void acpi_lpss_set_ltr(struct device *dev, s32 val) 743 { 744 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); 745 u32 ltr_mode, ltr_val; 746 747 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL); 748 if (val < 0) { 749 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) { 750 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW; 751 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL); 752 } 753 return; 754 } 755 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK; 756 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) { 757 ltr_val |= LPSS_LTR_SNOOP_LAT_32US; 758 val = LPSS_LTR_MAX_VAL; 759 } else if (val > LPSS_LTR_MAX_VAL) { 760 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ; 761 val >>= LPSS_LTR_SNOOP_LAT_SHIFT; 762 } else { 763 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ; 764 } 765 ltr_val |= val; 766 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR); 767 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) { 768 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW; 769 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL); 770 } 771 } 772 773 #ifdef CONFIG_PM 774 /** 775 * acpi_lpss_save_ctx() - Save the private registers of LPSS device 776 * @dev: LPSS device 777 * @pdata: pointer to the private data of the LPSS device 778 * 779 * Most LPSS devices have private registers which may loose their context when 780 * the device is powered down. acpi_lpss_save_ctx() saves those registers into 781 * prv_reg_ctx array. 782 */ 783 static void acpi_lpss_save_ctx(struct device *dev, 784 struct lpss_private_data *pdata) 785 { 786 unsigned int i; 787 788 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) { 789 unsigned long offset = i * sizeof(u32); 790 791 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset); 792 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n", 793 pdata->prv_reg_ctx[i], offset); 794 } 795 } 796 797 /** 798 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device 799 * @dev: LPSS device 800 * @pdata: pointer to the private data of the LPSS device 801 * 802 * Restores the registers that were previously stored with acpi_lpss_save_ctx(). 803 */ 804 static void acpi_lpss_restore_ctx(struct device *dev, 805 struct lpss_private_data *pdata) 806 { 807 unsigned int i; 808 809 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) { 810 unsigned long offset = i * sizeof(u32); 811 812 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset); 813 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n", 814 pdata->prv_reg_ctx[i], offset); 815 } 816 } 817 818 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata) 819 { 820 /* 821 * The following delay is needed or the subsequent write operations may 822 * fail. The LPSS devices are actually PCI devices and the PCI spec 823 * expects 10ms delay before the device can be accessed after D3 to D0 824 * transition. However some platforms like BSW does not need this delay. 825 */ 826 unsigned int delay = 10; /* default 10ms delay */ 827 828 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY) 829 delay = 0; 830 831 msleep(delay); 832 } 833 834 static int acpi_lpss_activate(struct device *dev) 835 { 836 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); 837 int ret; 838 839 ret = acpi_dev_resume(dev); 840 if (ret) 841 return ret; 842 843 acpi_lpss_d3_to_d0_delay(pdata); 844 845 /* 846 * This is called only on ->probe() stage where a device is either in 847 * known state defined by BIOS or most likely powered off. Due to this 848 * we have to deassert reset line to be sure that ->probe() will 849 * recognize the device. 850 */ 851 if (pdata->dev_desc->flags & LPSS_SAVE_CTX) 852 lpss_deassert_reset(pdata); 853 854 return 0; 855 } 856 857 static void acpi_lpss_dismiss(struct device *dev) 858 { 859 acpi_dev_suspend(dev, false); 860 } 861 862 /* IOSF SB for LPSS island */ 863 #define LPSS_IOSF_UNIT_LPIOEP 0xA0 864 #define LPSS_IOSF_UNIT_LPIO1 0xAB 865 #define LPSS_IOSF_UNIT_LPIO2 0xAC 866 867 #define LPSS_IOSF_PMCSR 0x84 868 #define LPSS_PMCSR_D0 0 869 #define LPSS_PMCSR_D3hot 3 870 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0) 871 872 #define LPSS_IOSF_GPIODEF0 0x154 873 #define LPSS_GPIODEF0_DMA1_D3 BIT(2) 874 #define LPSS_GPIODEF0_DMA2_D3 BIT(3) 875 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2) 876 #define LPSS_GPIODEF0_DMA_LLP BIT(13) 877 878 static DEFINE_MUTEX(lpss_iosf_mutex); 879 880 static void lpss_iosf_enter_d3_state(void) 881 { 882 u32 value1 = 0; 883 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP; 884 u32 value2 = LPSS_PMCSR_D3hot; 885 u32 mask2 = LPSS_PMCSR_Dx_MASK; 886 /* 887 * PMC provides an information about actual status of the LPSS devices. 888 * Here we read the values related to LPSS power island, i.e. LPSS 889 * devices, excluding both LPSS DMA controllers, along with SCC domain. 890 */ 891 u32 func_dis, d3_sts_0, pmc_status, pmc_mask = 0xfe000ffe; 892 int ret; 893 894 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis); 895 if (ret) 896 return; 897 898 mutex_lock(&lpss_iosf_mutex); 899 900 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0); 901 if (ret) 902 goto exit; 903 904 /* 905 * Get the status of entire LPSS power island per device basis. 906 * Shutdown both LPSS DMA controllers if and only if all other devices 907 * are already in D3hot. 908 */ 909 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_mask; 910 if (pmc_status) 911 goto exit; 912 913 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE, 914 LPSS_IOSF_PMCSR, value2, mask2); 915 916 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE, 917 LPSS_IOSF_PMCSR, value2, mask2); 918 919 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE, 920 LPSS_IOSF_GPIODEF0, value1, mask1); 921 exit: 922 mutex_unlock(&lpss_iosf_mutex); 923 } 924 925 static void lpss_iosf_exit_d3_state(void) 926 { 927 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 | 928 LPSS_GPIODEF0_DMA_LLP; 929 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP; 930 u32 value2 = LPSS_PMCSR_D0; 931 u32 mask2 = LPSS_PMCSR_Dx_MASK; 932 933 mutex_lock(&lpss_iosf_mutex); 934 935 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE, 936 LPSS_IOSF_GPIODEF0, value1, mask1); 937 938 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE, 939 LPSS_IOSF_PMCSR, value2, mask2); 940 941 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE, 942 LPSS_IOSF_PMCSR, value2, mask2); 943 944 mutex_unlock(&lpss_iosf_mutex); 945 } 946 947 static int acpi_lpss_suspend(struct device *dev, bool wakeup) 948 { 949 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); 950 int ret; 951 952 if (pdata->dev_desc->flags & LPSS_SAVE_CTX) 953 acpi_lpss_save_ctx(dev, pdata); 954 955 ret = acpi_dev_suspend(dev, wakeup); 956 957 /* 958 * This call must be last in the sequence, otherwise PMC will return 959 * wrong status for devices being about to be powered off. See 960 * lpss_iosf_enter_d3_state() for further information. 961 */ 962 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available()) 963 lpss_iosf_enter_d3_state(); 964 965 return ret; 966 } 967 968 static int acpi_lpss_resume(struct device *dev) 969 { 970 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); 971 int ret; 972 973 /* 974 * This call is kept first to be in symmetry with 975 * acpi_lpss_runtime_suspend() one. 976 */ 977 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available()) 978 lpss_iosf_exit_d3_state(); 979 980 ret = acpi_dev_resume(dev); 981 if (ret) 982 return ret; 983 984 acpi_lpss_d3_to_d0_delay(pdata); 985 986 if (pdata->dev_desc->flags & LPSS_SAVE_CTX) 987 acpi_lpss_restore_ctx(dev, pdata); 988 989 return 0; 990 } 991 992 #ifdef CONFIG_PM_SLEEP 993 static int acpi_lpss_suspend_late(struct device *dev) 994 { 995 int ret; 996 997 if (dev_pm_smart_suspend_and_suspended(dev)) 998 return 0; 999 1000 ret = pm_generic_suspend_late(dev); 1001 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev)); 1002 } 1003 1004 static int acpi_lpss_resume_early(struct device *dev) 1005 { 1006 int ret = acpi_lpss_resume(dev); 1007 1008 return ret ? ret : pm_generic_resume_early(dev); 1009 } 1010 #endif /* CONFIG_PM_SLEEP */ 1011 1012 static int acpi_lpss_runtime_suspend(struct device *dev) 1013 { 1014 int ret = pm_generic_runtime_suspend(dev); 1015 1016 return ret ? ret : acpi_lpss_suspend(dev, true); 1017 } 1018 1019 static int acpi_lpss_runtime_resume(struct device *dev) 1020 { 1021 int ret = acpi_lpss_resume(dev); 1022 1023 return ret ? ret : pm_generic_runtime_resume(dev); 1024 } 1025 #endif /* CONFIG_PM */ 1026 1027 static struct dev_pm_domain acpi_lpss_pm_domain = { 1028 #ifdef CONFIG_PM 1029 .activate = acpi_lpss_activate, 1030 .dismiss = acpi_lpss_dismiss, 1031 #endif 1032 .ops = { 1033 #ifdef CONFIG_PM 1034 #ifdef CONFIG_PM_SLEEP 1035 .prepare = acpi_subsys_prepare, 1036 .complete = acpi_subsys_complete, 1037 .suspend = acpi_subsys_suspend, 1038 .suspend_late = acpi_lpss_suspend_late, 1039 .suspend_noirq = acpi_subsys_suspend_noirq, 1040 .resume_noirq = acpi_subsys_resume_noirq, 1041 .resume_early = acpi_lpss_resume_early, 1042 .freeze = acpi_subsys_freeze, 1043 .freeze_late = acpi_subsys_freeze_late, 1044 .freeze_noirq = acpi_subsys_freeze_noirq, 1045 .thaw_noirq = acpi_subsys_thaw_noirq, 1046 .poweroff = acpi_subsys_suspend, 1047 .poweroff_late = acpi_lpss_suspend_late, 1048 .poweroff_noirq = acpi_subsys_suspend_noirq, 1049 .restore_noirq = acpi_subsys_resume_noirq, 1050 .restore_early = acpi_lpss_resume_early, 1051 #endif 1052 .runtime_suspend = acpi_lpss_runtime_suspend, 1053 .runtime_resume = acpi_lpss_runtime_resume, 1054 #endif 1055 }, 1056 }; 1057 1058 static int acpi_lpss_platform_notify(struct notifier_block *nb, 1059 unsigned long action, void *data) 1060 { 1061 struct platform_device *pdev = to_platform_device(data); 1062 struct lpss_private_data *pdata; 1063 struct acpi_device *adev; 1064 const struct acpi_device_id *id; 1065 1066 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev); 1067 if (!id || !id->driver_data) 1068 return 0; 1069 1070 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev)) 1071 return 0; 1072 1073 pdata = acpi_driver_data(adev); 1074 if (!pdata) 1075 return 0; 1076 1077 if (pdata->mmio_base && 1078 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) { 1079 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n"); 1080 return 0; 1081 } 1082 1083 switch (action) { 1084 case BUS_NOTIFY_BIND_DRIVER: 1085 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain); 1086 break; 1087 case BUS_NOTIFY_DRIVER_NOT_BOUND: 1088 case BUS_NOTIFY_UNBOUND_DRIVER: 1089 dev_pm_domain_set(&pdev->dev, NULL); 1090 break; 1091 case BUS_NOTIFY_ADD_DEVICE: 1092 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain); 1093 if (pdata->dev_desc->flags & LPSS_LTR) 1094 return sysfs_create_group(&pdev->dev.kobj, 1095 &lpss_attr_group); 1096 break; 1097 case BUS_NOTIFY_DEL_DEVICE: 1098 if (pdata->dev_desc->flags & LPSS_LTR) 1099 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group); 1100 dev_pm_domain_set(&pdev->dev, NULL); 1101 break; 1102 default: 1103 break; 1104 } 1105 1106 return 0; 1107 } 1108 1109 static struct notifier_block acpi_lpss_nb = { 1110 .notifier_call = acpi_lpss_platform_notify, 1111 }; 1112 1113 static void acpi_lpss_bind(struct device *dev) 1114 { 1115 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); 1116 1117 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR)) 1118 return; 1119 1120 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) 1121 dev->power.set_latency_tolerance = acpi_lpss_set_ltr; 1122 else 1123 dev_err(dev, "MMIO size insufficient to access LTR\n"); 1124 } 1125 1126 static void acpi_lpss_unbind(struct device *dev) 1127 { 1128 dev->power.set_latency_tolerance = NULL; 1129 } 1130 1131 static struct acpi_scan_handler lpss_handler = { 1132 .ids = acpi_lpss_device_ids, 1133 .attach = acpi_lpss_create_device, 1134 .bind = acpi_lpss_bind, 1135 .unbind = acpi_lpss_unbind, 1136 }; 1137 1138 void __init acpi_lpss_init(void) 1139 { 1140 const struct x86_cpu_id *id; 1141 int ret; 1142 1143 ret = lpt_clk_init(); 1144 if (ret) 1145 return; 1146 1147 id = x86_match_cpu(lpss_cpu_ids); 1148 if (id) 1149 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON; 1150 1151 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb); 1152 acpi_scan_add_handler(&lpss_handler); 1153 } 1154 1155 #else 1156 1157 static struct acpi_scan_handler lpss_handler = { 1158 .ids = acpi_lpss_device_ids, 1159 }; 1160 1161 void __init acpi_lpss_init(void) 1162 { 1163 acpi_scan_add_handler(&lpss_handler); 1164 } 1165 1166 #endif /* CONFIG_X86_INTEL_LPSS */ 1167