xref: /openbmc/linux/drivers/acpi/acpi_lpss.c (revision 4da722ca)
1 /*
2  * ACPI support for Intel Lynxpoint LPSS.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/acpi.h>
14 #include <linux/clkdev.h>
15 #include <linux/clk-provider.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/mutex.h>
19 #include <linux/platform_device.h>
20 #include <linux/platform_data/clk-lpss.h>
21 #include <linux/platform_data/x86/pmc_atom.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pwm.h>
25 #include <linux/delay.h>
26 
27 #include "internal.h"
28 
29 ACPI_MODULE_NAME("acpi_lpss");
30 
31 #ifdef CONFIG_X86_INTEL_LPSS
32 
33 #include <asm/cpu_device_id.h>
34 #include <asm/intel-family.h>
35 #include <asm/iosf_mbi.h>
36 
37 #define LPSS_ADDR(desc) ((unsigned long)&desc)
38 
39 #define LPSS_CLK_SIZE	0x04
40 #define LPSS_LTR_SIZE	0x18
41 
42 /* Offsets relative to LPSS_PRIVATE_OFFSET */
43 #define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
44 #define LPSS_RESETS			0x04
45 #define LPSS_RESETS_RESET_FUNC		BIT(0)
46 #define LPSS_RESETS_RESET_APB		BIT(1)
47 #define LPSS_GENERAL			0x08
48 #define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
49 #define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
50 #define LPSS_SW_LTR			0x10
51 #define LPSS_AUTO_LTR			0x14
52 #define LPSS_LTR_SNOOP_REQ		BIT(15)
53 #define LPSS_LTR_SNOOP_MASK		0x0000FFFF
54 #define LPSS_LTR_SNOOP_LAT_1US		0x800
55 #define LPSS_LTR_SNOOP_LAT_32US		0xC00
56 #define LPSS_LTR_SNOOP_LAT_SHIFT	5
57 #define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
58 #define LPSS_LTR_MAX_VAL		0x3FF
59 #define LPSS_TX_INT			0x20
60 #define LPSS_TX_INT_MASK		BIT(1)
61 
62 #define LPSS_PRV_REG_COUNT		9
63 
64 /* LPSS Flags */
65 #define LPSS_CLK			BIT(0)
66 #define LPSS_CLK_GATE			BIT(1)
67 #define LPSS_CLK_DIVIDER		BIT(2)
68 #define LPSS_LTR			BIT(3)
69 #define LPSS_SAVE_CTX			BIT(4)
70 #define LPSS_NO_D3_DELAY		BIT(5)
71 
72 struct lpss_private_data;
73 
74 struct lpss_device_desc {
75 	unsigned int flags;
76 	const char *clk_con_id;
77 	unsigned int prv_offset;
78 	size_t prv_size_override;
79 	struct property_entry *properties;
80 	void (*setup)(struct lpss_private_data *pdata);
81 };
82 
83 static const struct lpss_device_desc lpss_dma_desc = {
84 	.flags = LPSS_CLK,
85 };
86 
87 struct lpss_private_data {
88 	void __iomem *mmio_base;
89 	resource_size_t mmio_size;
90 	unsigned int fixed_clk_rate;
91 	struct clk *clk;
92 	const struct lpss_device_desc *dev_desc;
93 	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
94 };
95 
96 /* LPSS run time quirks */
97 static unsigned int lpss_quirks;
98 
99 /*
100  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
101  *
102  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
103  * it can be powered off automatically whenever the last LPSS device goes down.
104  * In case of no power any access to the DMA controller will hang the system.
105  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
106  * well as on ASuS T100TA transformer.
107  *
108  * This quirk overrides power state of entire LPSS island to keep DMA powered
109  * on whenever we have at least one other device in use.
110  */
111 #define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)
112 
113 /* UART Component Parameter Register */
114 #define LPSS_UART_CPR			0xF4
115 #define LPSS_UART_CPR_AFCE		BIT(4)
116 
117 static void lpss_uart_setup(struct lpss_private_data *pdata)
118 {
119 	unsigned int offset;
120 	u32 val;
121 
122 	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
123 	val = readl(pdata->mmio_base + offset);
124 	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
125 
126 	val = readl(pdata->mmio_base + LPSS_UART_CPR);
127 	if (!(val & LPSS_UART_CPR_AFCE)) {
128 		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
129 		val = readl(pdata->mmio_base + offset);
130 		val |= LPSS_GENERAL_UART_RTS_OVRD;
131 		writel(val, pdata->mmio_base + offset);
132 	}
133 }
134 
135 static void lpss_deassert_reset(struct lpss_private_data *pdata)
136 {
137 	unsigned int offset;
138 	u32 val;
139 
140 	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
141 	val = readl(pdata->mmio_base + offset);
142 	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
143 	writel(val, pdata->mmio_base + offset);
144 }
145 
146 /*
147  * BYT PWM used for backlight control by the i915 driver on systems without
148  * the Crystal Cove PMIC.
149  */
150 static struct pwm_lookup byt_pwm_lookup[] = {
151 	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
152 			       "pwm_backlight", 0, PWM_POLARITY_NORMAL,
153 			       "pwm-lpss-platform"),
154 };
155 
156 static void byt_pwm_setup(struct lpss_private_data *pdata)
157 {
158 	if (!acpi_dev_present("INT33FD", NULL, -1))
159 		pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
160 }
161 
162 #define LPSS_I2C_ENABLE			0x6c
163 
164 static void byt_i2c_setup(struct lpss_private_data *pdata)
165 {
166 	lpss_deassert_reset(pdata);
167 
168 	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
169 		pdata->fixed_clk_rate = 133000000;
170 
171 	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
172 }
173 
174 /* BSW PWM used for backlight control by the i915 driver */
175 static struct pwm_lookup bsw_pwm_lookup[] = {
176 	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
177 			       "pwm_backlight", 0, PWM_POLARITY_NORMAL,
178 			       "pwm-lpss-platform"),
179 };
180 
181 static void bsw_pwm_setup(struct lpss_private_data *pdata)
182 {
183 	pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
184 }
185 
186 static const struct lpss_device_desc lpt_dev_desc = {
187 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
188 	.prv_offset = 0x800,
189 };
190 
191 static const struct lpss_device_desc lpt_i2c_dev_desc = {
192 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
193 	.prv_offset = 0x800,
194 };
195 
196 static struct property_entry uart_properties[] = {
197 	PROPERTY_ENTRY_U32("reg-io-width", 4),
198 	PROPERTY_ENTRY_U32("reg-shift", 2),
199 	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
200 	{ },
201 };
202 
203 static const struct lpss_device_desc lpt_uart_dev_desc = {
204 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
205 	.clk_con_id = "baudclk",
206 	.prv_offset = 0x800,
207 	.setup = lpss_uart_setup,
208 	.properties = uart_properties,
209 };
210 
211 static const struct lpss_device_desc lpt_sdio_dev_desc = {
212 	.flags = LPSS_LTR,
213 	.prv_offset = 0x1000,
214 	.prv_size_override = 0x1018,
215 };
216 
217 static const struct lpss_device_desc byt_pwm_dev_desc = {
218 	.flags = LPSS_SAVE_CTX,
219 	.setup = byt_pwm_setup,
220 };
221 
222 static const struct lpss_device_desc bsw_pwm_dev_desc = {
223 	.flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
224 	.setup = bsw_pwm_setup,
225 };
226 
227 static const struct lpss_device_desc byt_uart_dev_desc = {
228 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
229 	.clk_con_id = "baudclk",
230 	.prv_offset = 0x800,
231 	.setup = lpss_uart_setup,
232 	.properties = uart_properties,
233 };
234 
235 static const struct lpss_device_desc bsw_uart_dev_desc = {
236 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
237 			| LPSS_NO_D3_DELAY,
238 	.clk_con_id = "baudclk",
239 	.prv_offset = 0x800,
240 	.setup = lpss_uart_setup,
241 	.properties = uart_properties,
242 };
243 
244 static const struct lpss_device_desc byt_spi_dev_desc = {
245 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
246 	.prv_offset = 0x400,
247 };
248 
249 static const struct lpss_device_desc byt_sdio_dev_desc = {
250 	.flags = LPSS_CLK,
251 };
252 
253 static const struct lpss_device_desc byt_i2c_dev_desc = {
254 	.flags = LPSS_CLK | LPSS_SAVE_CTX,
255 	.prv_offset = 0x800,
256 	.setup = byt_i2c_setup,
257 };
258 
259 static const struct lpss_device_desc bsw_i2c_dev_desc = {
260 	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
261 	.prv_offset = 0x800,
262 	.setup = byt_i2c_setup,
263 };
264 
265 static const struct lpss_device_desc bsw_spi_dev_desc = {
266 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
267 			| LPSS_NO_D3_DELAY,
268 	.prv_offset = 0x400,
269 	.setup = lpss_deassert_reset,
270 };
271 
272 #define ICPU(model)	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
273 
274 static const struct x86_cpu_id lpss_cpu_ids[] = {
275 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1),	/* Valleyview, Bay Trail */
276 	ICPU(INTEL_FAM6_ATOM_AIRMONT),	/* Braswell, Cherry Trail */
277 	{}
278 };
279 
280 #else
281 
282 #define LPSS_ADDR(desc) (0UL)
283 
284 #endif /* CONFIG_X86_INTEL_LPSS */
285 
286 static const struct acpi_device_id acpi_lpss_device_ids[] = {
287 	/* Generic LPSS devices */
288 	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
289 
290 	/* Lynxpoint LPSS devices */
291 	{ "INT33C0", LPSS_ADDR(lpt_dev_desc) },
292 	{ "INT33C1", LPSS_ADDR(lpt_dev_desc) },
293 	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
294 	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
295 	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
296 	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
297 	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
298 	{ "INT33C7", },
299 
300 	/* BayTrail LPSS devices */
301 	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
302 	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
303 	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
304 	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
305 	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
306 	{ "INT33B2", },
307 	{ "INT33FC", },
308 
309 	/* Braswell LPSS devices */
310 	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
311 	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
312 	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
313 	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
314 
315 	/* Broadwell LPSS devices */
316 	{ "INT3430", LPSS_ADDR(lpt_dev_desc) },
317 	{ "INT3431", LPSS_ADDR(lpt_dev_desc) },
318 	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
319 	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
320 	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
321 	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
322 	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
323 	{ "INT3437", },
324 
325 	/* Wildcat Point LPSS devices */
326 	{ "INT3438", LPSS_ADDR(lpt_dev_desc) },
327 
328 	{ }
329 };
330 
331 #ifdef CONFIG_X86_INTEL_LPSS
332 
333 static int is_memory(struct acpi_resource *res, void *not_used)
334 {
335 	struct resource r;
336 	return !acpi_dev_resource_memory(res, &r);
337 }
338 
339 /* LPSS main clock device. */
340 static struct platform_device *lpss_clk_dev;
341 
342 static inline void lpt_register_clock_device(void)
343 {
344 	lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
345 }
346 
347 static int register_device_clock(struct acpi_device *adev,
348 				 struct lpss_private_data *pdata)
349 {
350 	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
351 	const char *devname = dev_name(&adev->dev);
352 	struct clk *clk = ERR_PTR(-ENODEV);
353 	struct lpss_clk_data *clk_data;
354 	const char *parent, *clk_name;
355 	void __iomem *prv_base;
356 
357 	if (!lpss_clk_dev)
358 		lpt_register_clock_device();
359 
360 	clk_data = platform_get_drvdata(lpss_clk_dev);
361 	if (!clk_data)
362 		return -ENODEV;
363 	clk = clk_data->clk;
364 
365 	if (!pdata->mmio_base
366 	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
367 		return -ENODATA;
368 
369 	parent = clk_data->name;
370 	prv_base = pdata->mmio_base + dev_desc->prv_offset;
371 
372 	if (pdata->fixed_clk_rate) {
373 		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
374 					      pdata->fixed_clk_rate);
375 		goto out;
376 	}
377 
378 	if (dev_desc->flags & LPSS_CLK_GATE) {
379 		clk = clk_register_gate(NULL, devname, parent, 0,
380 					prv_base, 0, 0, NULL);
381 		parent = devname;
382 	}
383 
384 	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
385 		/* Prevent division by zero */
386 		if (!readl(prv_base))
387 			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
388 
389 		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
390 		if (!clk_name)
391 			return -ENOMEM;
392 		clk = clk_register_fractional_divider(NULL, clk_name, parent,
393 						      0, prv_base,
394 						      1, 15, 16, 15, 0, NULL);
395 		parent = clk_name;
396 
397 		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
398 		if (!clk_name) {
399 			kfree(parent);
400 			return -ENOMEM;
401 		}
402 		clk = clk_register_gate(NULL, clk_name, parent,
403 					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
404 					prv_base, 31, 0, NULL);
405 		kfree(parent);
406 		kfree(clk_name);
407 	}
408 out:
409 	if (IS_ERR(clk))
410 		return PTR_ERR(clk);
411 
412 	pdata->clk = clk;
413 	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
414 	return 0;
415 }
416 
417 static int acpi_lpss_create_device(struct acpi_device *adev,
418 				   const struct acpi_device_id *id)
419 {
420 	const struct lpss_device_desc *dev_desc;
421 	struct lpss_private_data *pdata;
422 	struct resource_entry *rentry;
423 	struct list_head resource_list;
424 	struct platform_device *pdev;
425 	int ret;
426 
427 	dev_desc = (const struct lpss_device_desc *)id->driver_data;
428 	if (!dev_desc) {
429 		pdev = acpi_create_platform_device(adev, NULL);
430 		return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
431 	}
432 	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
433 	if (!pdata)
434 		return -ENOMEM;
435 
436 	INIT_LIST_HEAD(&resource_list);
437 	ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
438 	if (ret < 0)
439 		goto err_out;
440 
441 	list_for_each_entry(rentry, &resource_list, node)
442 		if (resource_type(rentry->res) == IORESOURCE_MEM) {
443 			if (dev_desc->prv_size_override)
444 				pdata->mmio_size = dev_desc->prv_size_override;
445 			else
446 				pdata->mmio_size = resource_size(rentry->res);
447 			pdata->mmio_base = ioremap(rentry->res->start,
448 						   pdata->mmio_size);
449 			break;
450 		}
451 
452 	acpi_dev_free_resource_list(&resource_list);
453 
454 	if (!pdata->mmio_base) {
455 		ret = -ENOMEM;
456 		goto err_out;
457 	}
458 
459 	pdata->dev_desc = dev_desc;
460 
461 	if (dev_desc->setup)
462 		dev_desc->setup(pdata);
463 
464 	if (dev_desc->flags & LPSS_CLK) {
465 		ret = register_device_clock(adev, pdata);
466 		if (ret) {
467 			/* Skip the device, but continue the namespace scan. */
468 			ret = 0;
469 			goto err_out;
470 		}
471 	}
472 
473 	/*
474 	 * This works around a known issue in ACPI tables where LPSS devices
475 	 * have _PS0 and _PS3 without _PSC (and no power resources), so
476 	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
477 	 */
478 	ret = acpi_device_fix_up_power(adev);
479 	if (ret) {
480 		/* Skip the device, but continue the namespace scan. */
481 		ret = 0;
482 		goto err_out;
483 	}
484 
485 	adev->driver_data = pdata;
486 	pdev = acpi_create_platform_device(adev, dev_desc->properties);
487 	if (!IS_ERR_OR_NULL(pdev)) {
488 		return 1;
489 	}
490 
491 	ret = PTR_ERR(pdev);
492 	adev->driver_data = NULL;
493 
494  err_out:
495 	kfree(pdata);
496 	return ret;
497 }
498 
499 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
500 {
501 	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
502 }
503 
504 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
505 			     unsigned int reg)
506 {
507 	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
508 }
509 
510 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
511 {
512 	struct acpi_device *adev;
513 	struct lpss_private_data *pdata;
514 	unsigned long flags;
515 	int ret;
516 
517 	ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
518 	if (WARN_ON(ret))
519 		return ret;
520 
521 	spin_lock_irqsave(&dev->power.lock, flags);
522 	if (pm_runtime_suspended(dev)) {
523 		ret = -EAGAIN;
524 		goto out;
525 	}
526 	pdata = acpi_driver_data(adev);
527 	if (WARN_ON(!pdata || !pdata->mmio_base)) {
528 		ret = -ENODEV;
529 		goto out;
530 	}
531 	*val = __lpss_reg_read(pdata, reg);
532 
533  out:
534 	spin_unlock_irqrestore(&dev->power.lock, flags);
535 	return ret;
536 }
537 
538 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
539 			     char *buf)
540 {
541 	u32 ltr_value = 0;
542 	unsigned int reg;
543 	int ret;
544 
545 	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
546 	ret = lpss_reg_read(dev, reg, &ltr_value);
547 	if (ret)
548 		return ret;
549 
550 	return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
551 }
552 
553 static ssize_t lpss_ltr_mode_show(struct device *dev,
554 				  struct device_attribute *attr, char *buf)
555 {
556 	u32 ltr_mode = 0;
557 	char *outstr;
558 	int ret;
559 
560 	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
561 	if (ret)
562 		return ret;
563 
564 	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
565 	return sprintf(buf, "%s\n", outstr);
566 }
567 
568 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
569 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
570 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
571 
572 static struct attribute *lpss_attrs[] = {
573 	&dev_attr_auto_ltr.attr,
574 	&dev_attr_sw_ltr.attr,
575 	&dev_attr_ltr_mode.attr,
576 	NULL,
577 };
578 
579 static const struct attribute_group lpss_attr_group = {
580 	.attrs = lpss_attrs,
581 	.name = "lpss_ltr",
582 };
583 
584 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
585 {
586 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
587 	u32 ltr_mode, ltr_val;
588 
589 	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
590 	if (val < 0) {
591 		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
592 			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
593 			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
594 		}
595 		return;
596 	}
597 	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
598 	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
599 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
600 		val = LPSS_LTR_MAX_VAL;
601 	} else if (val > LPSS_LTR_MAX_VAL) {
602 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
603 		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
604 	} else {
605 		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
606 	}
607 	ltr_val |= val;
608 	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
609 	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
610 		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
611 		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
612 	}
613 }
614 
615 #ifdef CONFIG_PM
616 /**
617  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
618  * @dev: LPSS device
619  * @pdata: pointer to the private data of the LPSS device
620  *
621  * Most LPSS devices have private registers which may loose their context when
622  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
623  * prv_reg_ctx array.
624  */
625 static void acpi_lpss_save_ctx(struct device *dev,
626 			       struct lpss_private_data *pdata)
627 {
628 	unsigned int i;
629 
630 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
631 		unsigned long offset = i * sizeof(u32);
632 
633 		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
634 		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
635 			pdata->prv_reg_ctx[i], offset);
636 	}
637 }
638 
639 /**
640  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
641  * @dev: LPSS device
642  * @pdata: pointer to the private data of the LPSS device
643  *
644  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
645  */
646 static void acpi_lpss_restore_ctx(struct device *dev,
647 				  struct lpss_private_data *pdata)
648 {
649 	unsigned int i;
650 
651 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
652 		unsigned long offset = i * sizeof(u32);
653 
654 		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
655 		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
656 			pdata->prv_reg_ctx[i], offset);
657 	}
658 }
659 
660 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
661 {
662 	/*
663 	 * The following delay is needed or the subsequent write operations may
664 	 * fail. The LPSS devices are actually PCI devices and the PCI spec
665 	 * expects 10ms delay before the device can be accessed after D3 to D0
666 	 * transition. However some platforms like BSW does not need this delay.
667 	 */
668 	unsigned int delay = 10;	/* default 10ms delay */
669 
670 	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
671 		delay = 0;
672 
673 	msleep(delay);
674 }
675 
676 static int acpi_lpss_activate(struct device *dev)
677 {
678 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
679 	int ret;
680 
681 	ret = acpi_dev_runtime_resume(dev);
682 	if (ret)
683 		return ret;
684 
685 	acpi_lpss_d3_to_d0_delay(pdata);
686 
687 	/*
688 	 * This is called only on ->probe() stage where a device is either in
689 	 * known state defined by BIOS or most likely powered off. Due to this
690 	 * we have to deassert reset line to be sure that ->probe() will
691 	 * recognize the device.
692 	 */
693 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
694 		lpss_deassert_reset(pdata);
695 
696 	return 0;
697 }
698 
699 static void acpi_lpss_dismiss(struct device *dev)
700 {
701 	acpi_dev_runtime_suspend(dev);
702 }
703 
704 #ifdef CONFIG_PM_SLEEP
705 static int acpi_lpss_suspend_late(struct device *dev)
706 {
707 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
708 	int ret;
709 
710 	ret = pm_generic_suspend_late(dev);
711 	if (ret)
712 		return ret;
713 
714 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
715 		acpi_lpss_save_ctx(dev, pdata);
716 
717 	return acpi_dev_suspend_late(dev);
718 }
719 
720 static int acpi_lpss_resume_early(struct device *dev)
721 {
722 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
723 	int ret;
724 
725 	ret = acpi_dev_resume_early(dev);
726 	if (ret)
727 		return ret;
728 
729 	acpi_lpss_d3_to_d0_delay(pdata);
730 
731 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
732 		acpi_lpss_restore_ctx(dev, pdata);
733 
734 	return pm_generic_resume_early(dev);
735 }
736 #endif /* CONFIG_PM_SLEEP */
737 
738 /* IOSF SB for LPSS island */
739 #define LPSS_IOSF_UNIT_LPIOEP		0xA0
740 #define LPSS_IOSF_UNIT_LPIO1		0xAB
741 #define LPSS_IOSF_UNIT_LPIO2		0xAC
742 
743 #define LPSS_IOSF_PMCSR			0x84
744 #define LPSS_PMCSR_D0			0
745 #define LPSS_PMCSR_D3hot		3
746 #define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)
747 
748 #define LPSS_IOSF_GPIODEF0		0x154
749 #define LPSS_GPIODEF0_DMA1_D3		BIT(2)
750 #define LPSS_GPIODEF0_DMA2_D3		BIT(3)
751 #define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
752 #define LPSS_GPIODEF0_DMA_LLP		BIT(13)
753 
754 static DEFINE_MUTEX(lpss_iosf_mutex);
755 
756 static void lpss_iosf_enter_d3_state(void)
757 {
758 	u32 value1 = 0;
759 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
760 	u32 value2 = LPSS_PMCSR_D3hot;
761 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
762 	/*
763 	 * PMC provides an information about actual status of the LPSS devices.
764 	 * Here we read the values related to LPSS power island, i.e. LPSS
765 	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
766 	 */
767 	u32 func_dis, d3_sts_0, pmc_status, pmc_mask = 0xfe000ffe;
768 	int ret;
769 
770 	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
771 	if (ret)
772 		return;
773 
774 	mutex_lock(&lpss_iosf_mutex);
775 
776 	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
777 	if (ret)
778 		goto exit;
779 
780 	/*
781 	 * Get the status of entire LPSS power island per device basis.
782 	 * Shutdown both LPSS DMA controllers if and only if all other devices
783 	 * are already in D3hot.
784 	 */
785 	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_mask;
786 	if (pmc_status)
787 		goto exit;
788 
789 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
790 			LPSS_IOSF_PMCSR, value2, mask2);
791 
792 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
793 			LPSS_IOSF_PMCSR, value2, mask2);
794 
795 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
796 			LPSS_IOSF_GPIODEF0, value1, mask1);
797 exit:
798 	mutex_unlock(&lpss_iosf_mutex);
799 }
800 
801 static void lpss_iosf_exit_d3_state(void)
802 {
803 	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
804 		     LPSS_GPIODEF0_DMA_LLP;
805 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
806 	u32 value2 = LPSS_PMCSR_D0;
807 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
808 
809 	mutex_lock(&lpss_iosf_mutex);
810 
811 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
812 			LPSS_IOSF_GPIODEF0, value1, mask1);
813 
814 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
815 			LPSS_IOSF_PMCSR, value2, mask2);
816 
817 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
818 			LPSS_IOSF_PMCSR, value2, mask2);
819 
820 	mutex_unlock(&lpss_iosf_mutex);
821 }
822 
823 static int acpi_lpss_runtime_suspend(struct device *dev)
824 {
825 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
826 	int ret;
827 
828 	ret = pm_generic_runtime_suspend(dev);
829 	if (ret)
830 		return ret;
831 
832 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
833 		acpi_lpss_save_ctx(dev, pdata);
834 
835 	ret = acpi_dev_runtime_suspend(dev);
836 
837 	/*
838 	 * This call must be last in the sequence, otherwise PMC will return
839 	 * wrong status for devices being about to be powered off. See
840 	 * lpss_iosf_enter_d3_state() for further information.
841 	 */
842 	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
843 		lpss_iosf_enter_d3_state();
844 
845 	return ret;
846 }
847 
848 static int acpi_lpss_runtime_resume(struct device *dev)
849 {
850 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
851 	int ret;
852 
853 	/*
854 	 * This call is kept first to be in symmetry with
855 	 * acpi_lpss_runtime_suspend() one.
856 	 */
857 	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
858 		lpss_iosf_exit_d3_state();
859 
860 	ret = acpi_dev_runtime_resume(dev);
861 	if (ret)
862 		return ret;
863 
864 	acpi_lpss_d3_to_d0_delay(pdata);
865 
866 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
867 		acpi_lpss_restore_ctx(dev, pdata);
868 
869 	return pm_generic_runtime_resume(dev);
870 }
871 #endif /* CONFIG_PM */
872 
873 static struct dev_pm_domain acpi_lpss_pm_domain = {
874 #ifdef CONFIG_PM
875 	.activate = acpi_lpss_activate,
876 	.dismiss = acpi_lpss_dismiss,
877 #endif
878 	.ops = {
879 #ifdef CONFIG_PM
880 #ifdef CONFIG_PM_SLEEP
881 		.prepare = acpi_subsys_prepare,
882 		.complete = pm_complete_with_resume_check,
883 		.suspend = acpi_subsys_suspend,
884 		.suspend_late = acpi_lpss_suspend_late,
885 		.resume_early = acpi_lpss_resume_early,
886 		.freeze = acpi_subsys_freeze,
887 		.poweroff = acpi_subsys_suspend,
888 		.poweroff_late = acpi_lpss_suspend_late,
889 		.restore_early = acpi_lpss_resume_early,
890 #endif
891 		.runtime_suspend = acpi_lpss_runtime_suspend,
892 		.runtime_resume = acpi_lpss_runtime_resume,
893 #endif
894 	},
895 };
896 
897 static int acpi_lpss_platform_notify(struct notifier_block *nb,
898 				     unsigned long action, void *data)
899 {
900 	struct platform_device *pdev = to_platform_device(data);
901 	struct lpss_private_data *pdata;
902 	struct acpi_device *adev;
903 	const struct acpi_device_id *id;
904 
905 	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
906 	if (!id || !id->driver_data)
907 		return 0;
908 
909 	if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
910 		return 0;
911 
912 	pdata = acpi_driver_data(adev);
913 	if (!pdata)
914 		return 0;
915 
916 	if (pdata->mmio_base &&
917 	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
918 		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
919 		return 0;
920 	}
921 
922 	switch (action) {
923 	case BUS_NOTIFY_BIND_DRIVER:
924 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
925 		break;
926 	case BUS_NOTIFY_DRIVER_NOT_BOUND:
927 	case BUS_NOTIFY_UNBOUND_DRIVER:
928 		dev_pm_domain_set(&pdev->dev, NULL);
929 		break;
930 	case BUS_NOTIFY_ADD_DEVICE:
931 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
932 		if (pdata->dev_desc->flags & LPSS_LTR)
933 			return sysfs_create_group(&pdev->dev.kobj,
934 						  &lpss_attr_group);
935 		break;
936 	case BUS_NOTIFY_DEL_DEVICE:
937 		if (pdata->dev_desc->flags & LPSS_LTR)
938 			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
939 		dev_pm_domain_set(&pdev->dev, NULL);
940 		break;
941 	default:
942 		break;
943 	}
944 
945 	return 0;
946 }
947 
948 static struct notifier_block acpi_lpss_nb = {
949 	.notifier_call = acpi_lpss_platform_notify,
950 };
951 
952 static void acpi_lpss_bind(struct device *dev)
953 {
954 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
955 
956 	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
957 		return;
958 
959 	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
960 		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
961 	else
962 		dev_err(dev, "MMIO size insufficient to access LTR\n");
963 }
964 
965 static void acpi_lpss_unbind(struct device *dev)
966 {
967 	dev->power.set_latency_tolerance = NULL;
968 }
969 
970 static struct acpi_scan_handler lpss_handler = {
971 	.ids = acpi_lpss_device_ids,
972 	.attach = acpi_lpss_create_device,
973 	.bind = acpi_lpss_bind,
974 	.unbind = acpi_lpss_unbind,
975 };
976 
977 void __init acpi_lpss_init(void)
978 {
979 	const struct x86_cpu_id *id;
980 	int ret;
981 
982 	ret = lpt_clk_init();
983 	if (ret)
984 		return;
985 
986 	id = x86_match_cpu(lpss_cpu_ids);
987 	if (id)
988 		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
989 
990 	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
991 	acpi_scan_add_handler(&lpss_handler);
992 }
993 
994 #else
995 
996 static struct acpi_scan_handler lpss_handler = {
997 	.ids = acpi_lpss_device_ids,
998 };
999 
1000 void __init acpi_lpss_init(void)
1001 {
1002 	acpi_scan_add_handler(&lpss_handler);
1003 }
1004 
1005 #endif /* CONFIG_X86_INTEL_LPSS */
1006