1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */ 4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */ 5 6 #include <linux/bitfield.h> 7 #include <linux/bits.h> 8 #include <linux/completion.h> 9 #include <linux/delay.h> 10 #include <linux/dma-buf.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/interrupt.h> 13 #include <linux/kref.h> 14 #include <linux/list.h> 15 #include <linux/math64.h> 16 #include <linux/mm.h> 17 #include <linux/moduleparam.h> 18 #include <linux/scatterlist.h> 19 #include <linux/spinlock.h> 20 #include <linux/srcu.h> 21 #include <linux/types.h> 22 #include <linux/uaccess.h> 23 #include <linux/wait.h> 24 #include <drm/drm_file.h> 25 #include <drm/drm_gem.h> 26 #include <drm/drm_prime.h> 27 #include <drm/drm_print.h> 28 #include <uapi/drm/qaic_accel.h> 29 30 #include "qaic.h" 31 32 #define SEM_VAL_MASK GENMASK_ULL(11, 0) 33 #define SEM_INDEX_MASK GENMASK_ULL(4, 0) 34 #define BULK_XFER BIT(3) 35 #define GEN_COMPLETION BIT(4) 36 #define INBOUND_XFER 1 37 #define OUTBOUND_XFER 2 38 #define REQHP_OFF 0x0 /* we read this */ 39 #define REQTP_OFF 0x4 /* we write this */ 40 #define RSPHP_OFF 0x8 /* we write this */ 41 #define RSPTP_OFF 0xc /* we read this */ 42 43 #define ENCODE_SEM(val, index, sync, cmd, flags) \ 44 ({ \ 45 FIELD_PREP(GENMASK(11, 0), (val)) | \ 46 FIELD_PREP(GENMASK(20, 16), (index)) | \ 47 FIELD_PREP(BIT(22), (sync)) | \ 48 FIELD_PREP(GENMASK(26, 24), (cmd)) | \ 49 FIELD_PREP(GENMASK(30, 29), (flags)) | \ 50 FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \ 51 }) 52 #define NUM_EVENTS 128 53 #define NUM_DELAYS 10 54 55 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */ 56 module_param(wait_exec_default_timeout_ms, uint, 0600); 57 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO"); 58 59 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */ 60 module_param(datapath_poll_interval_us, uint, 0600); 61 MODULE_PARM_DESC(datapath_poll_interval_us, 62 "Amount of time to sleep between activity when datapath polling is enabled"); 63 64 struct dbc_req { 65 /* 66 * A request ID is assigned to each memory handle going in DMA queue. 67 * As a single memory handle can enqueue multiple elements in DMA queue 68 * all of them will have the same request ID. 69 */ 70 __le16 req_id; 71 /* Future use */ 72 __u8 seq_id; 73 /* 74 * Special encoded variable 75 * 7 0 - Do not force to generate MSI after DMA is completed 76 * 1 - Force to generate MSI after DMA is completed 77 * 6:5 Reserved 78 * 4 1 - Generate completion element in the response queue 79 * 0 - No Completion Code 80 * 3 0 - DMA request is a Link list transfer 81 * 1 - DMA request is a Bulk transfer 82 * 2 Reserved 83 * 1:0 00 - No DMA transfer involved 84 * 01 - DMA transfer is part of inbound transfer 85 * 10 - DMA transfer has outbound transfer 86 * 11 - NA 87 */ 88 __u8 cmd; 89 __le32 resv; 90 /* Source address for the transfer */ 91 __le64 src_addr; 92 /* Destination address for the transfer */ 93 __le64 dest_addr; 94 /* Length of transfer request */ 95 __le32 len; 96 __le32 resv2; 97 /* Doorbell address */ 98 __le64 db_addr; 99 /* 100 * Special encoded variable 101 * 7 1 - Doorbell(db) write 102 * 0 - No doorbell write 103 * 6:2 Reserved 104 * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary 105 * 01 - 16 bit access, db address must be aligned to 16bit-boundary 106 * 10 - 8 bit access, db address must be aligned to 8bit-boundary 107 * 11 - Reserved 108 */ 109 __u8 db_len; 110 __u8 resv3; 111 __le16 resv4; 112 /* 32 bit data written to doorbell address */ 113 __le32 db_data; 114 /* 115 * Special encoded variable 116 * All the fields of sem_cmdX are passed from user and all are ORed 117 * together to form sem_cmd. 118 * 0:11 Semaphore value 119 * 15:12 Reserved 120 * 20:16 Semaphore index 121 * 21 Reserved 122 * 22 Semaphore Sync 123 * 23 Reserved 124 * 26:24 Semaphore command 125 * 28:27 Reserved 126 * 29 Semaphore DMA out bound sync fence 127 * 30 Semaphore DMA in bound sync fence 128 * 31 Enable semaphore command 129 */ 130 __le32 sem_cmd0; 131 __le32 sem_cmd1; 132 __le32 sem_cmd2; 133 __le32 sem_cmd3; 134 } __packed; 135 136 struct dbc_rsp { 137 /* Request ID of the memory handle whose DMA transaction is completed */ 138 __le16 req_id; 139 /* Status of the DMA transaction. 0 : Success otherwise failure */ 140 __le16 status; 141 } __packed; 142 143 inline int get_dbc_req_elem_size(void) 144 { 145 return sizeof(struct dbc_req); 146 } 147 148 inline int get_dbc_rsp_elem_size(void) 149 { 150 return sizeof(struct dbc_rsp); 151 } 152 153 static void free_slice(struct kref *kref) 154 { 155 struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count); 156 157 list_del(&slice->slice); 158 drm_gem_object_put(&slice->bo->base); 159 sg_free_table(slice->sgt); 160 kfree(slice->sgt); 161 kfree(slice->reqs); 162 kfree(slice); 163 } 164 165 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out, 166 struct sg_table *sgt_in, u64 size, u64 offset) 167 { 168 int total_len, len, nents, offf = 0, offl = 0; 169 struct scatterlist *sg, *sgn, *sgf, *sgl; 170 struct sg_table *sgt; 171 int ret, j; 172 173 /* find out number of relevant nents needed for this mem */ 174 total_len = 0; 175 sgf = NULL; 176 sgl = NULL; 177 nents = 0; 178 179 size = size ? size : PAGE_SIZE; 180 for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) { 181 len = sg_dma_len(sg); 182 183 if (!len) 184 continue; 185 if (offset >= total_len && offset < total_len + len) { 186 sgf = sg; 187 offf = offset - total_len; 188 } 189 if (sgf) 190 nents++; 191 if (offset + size >= total_len && 192 offset + size <= total_len + len) { 193 sgl = sg; 194 offl = offset + size - total_len; 195 break; 196 } 197 total_len += len; 198 } 199 200 if (!sgf || !sgl) { 201 ret = -EINVAL; 202 goto out; 203 } 204 205 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); 206 if (!sgt) { 207 ret = -ENOMEM; 208 goto out; 209 } 210 211 ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 212 if (ret) 213 goto free_sgt; 214 215 /* copy relevant sg node and fix page and length */ 216 sgn = sgf; 217 for_each_sgtable_sg(sgt, sg, j) { 218 memcpy(sg, sgn, sizeof(*sg)); 219 if (sgn == sgf) { 220 sg_dma_address(sg) += offf; 221 sg_dma_len(sg) -= offf; 222 sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf); 223 } else { 224 offf = 0; 225 } 226 if (sgn == sgl) { 227 sg_dma_len(sg) = offl - offf; 228 sg_set_page(sg, sg_page(sgn), offl - offf, offf); 229 sg_mark_end(sg); 230 break; 231 } 232 sgn = sg_next(sgn); 233 } 234 235 *sgt_out = sgt; 236 return ret; 237 238 free_sgt: 239 kfree(sgt); 240 out: 241 *sgt_out = NULL; 242 return ret; 243 } 244 245 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice, 246 struct qaic_attach_slice_entry *req) 247 { 248 __le64 db_addr = cpu_to_le64(req->db_addr); 249 __le32 db_data = cpu_to_le32(req->db_data); 250 struct scatterlist *sg; 251 __u8 cmd = BULK_XFER; 252 int presync_sem; 253 u64 dev_addr; 254 __u8 db_len; 255 int i; 256 257 if (!slice->no_xfer) 258 cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER); 259 260 if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8)) 261 return -EINVAL; 262 263 presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync; 264 if (presync_sem > 1) 265 return -EINVAL; 266 267 presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 | 268 req->sem2.presync << 2 | req->sem3.presync << 3; 269 270 switch (req->db_len) { 271 case 32: 272 db_len = BIT(7); 273 break; 274 case 16: 275 db_len = BIT(7) | 1; 276 break; 277 case 8: 278 db_len = BIT(7) | 2; 279 break; 280 case 0: 281 db_len = 0; /* doorbell is not active for this command */ 282 break; 283 default: 284 return -EINVAL; /* should never hit this */ 285 } 286 287 /* 288 * When we end up splitting up a single request (ie a buf slice) into 289 * multiple DMA requests, we have to manage the sync data carefully. 290 * There can only be one presync sem. That needs to be on every xfer 291 * so that the DMA engine doesn't transfer data before the receiver is 292 * ready. We only do the doorbell and postsync sems after the xfer. 293 * To guarantee previous xfers for the request are complete, we use a 294 * fence. 295 */ 296 dev_addr = req->dev_addr; 297 for_each_sgtable_sg(slice->sgt, sg, i) { 298 slice->reqs[i].cmd = cmd; 299 slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? 300 sg_dma_address(sg) : dev_addr); 301 slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? 302 dev_addr : sg_dma_address(sg)); 303 /* 304 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA 305 * segment size is set to UINT_MAX by qaic and hence return 306 * values of sg_dma_len(sg) can never exceed u32 range. So, 307 * by down sizing we are not corrupting the value. 308 */ 309 slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg)); 310 switch (presync_sem) { 311 case BIT(0): 312 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, 313 req->sem0.index, 314 req->sem0.presync, 315 req->sem0.cmd, 316 req->sem0.flags)); 317 break; 318 case BIT(1): 319 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, 320 req->sem1.index, 321 req->sem1.presync, 322 req->sem1.cmd, 323 req->sem1.flags)); 324 break; 325 case BIT(2): 326 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, 327 req->sem2.index, 328 req->sem2.presync, 329 req->sem2.cmd, 330 req->sem2.flags)); 331 break; 332 case BIT(3): 333 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, 334 req->sem3.index, 335 req->sem3.presync, 336 req->sem3.cmd, 337 req->sem3.flags)); 338 break; 339 } 340 dev_addr += sg_dma_len(sg); 341 } 342 /* add post transfer stuff to last segment */ 343 i--; 344 slice->reqs[i].cmd |= GEN_COMPLETION; 345 slice->reqs[i].db_addr = db_addr; 346 slice->reqs[i].db_len = db_len; 347 slice->reqs[i].db_data = db_data; 348 /* 349 * Add a fence if we have more than one request going to the hardware 350 * representing the entirety of the user request, and the user request 351 * has no presync condition. 352 * Fences are expensive, so we try to avoid them. We rely on the 353 * hardware behavior to avoid needing one when there is a presync 354 * condition. When a presync exists, all requests for that same 355 * presync will be queued into a fifo. Thus, since we queue the 356 * post xfer activity only on the last request we queue, the hardware 357 * will ensure that the last queued request is processed last, thus 358 * making sure the post xfer activity happens at the right time without 359 * a fence. 360 */ 361 if (i && !presync_sem) 362 req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ? 363 QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE); 364 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index, 365 req->sem0.presync, req->sem0.cmd, 366 req->sem0.flags)); 367 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index, 368 req->sem1.presync, req->sem1.cmd, 369 req->sem1.flags)); 370 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index, 371 req->sem2.presync, req->sem2.cmd, 372 req->sem2.flags)); 373 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index, 374 req->sem3.presync, req->sem3.cmd, 375 req->sem3.flags)); 376 377 return 0; 378 } 379 380 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo, 381 struct qaic_attach_slice_entry *slice_ent) 382 { 383 struct sg_table *sgt = NULL; 384 struct bo_slice *slice; 385 int ret; 386 387 ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset); 388 if (ret) 389 goto out; 390 391 slice = kmalloc(sizeof(*slice), GFP_KERNEL); 392 if (!slice) { 393 ret = -ENOMEM; 394 goto free_sgt; 395 } 396 397 slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL); 398 if (!slice->reqs) { 399 ret = -ENOMEM; 400 goto free_slice; 401 } 402 403 slice->no_xfer = !slice_ent->size; 404 slice->sgt = sgt; 405 slice->nents = sgt->nents; 406 slice->dir = bo->dir; 407 slice->bo = bo; 408 slice->size = slice_ent->size; 409 slice->offset = slice_ent->offset; 410 411 ret = encode_reqs(qdev, slice, slice_ent); 412 if (ret) 413 goto free_req; 414 415 bo->total_slice_nents += sgt->nents; 416 kref_init(&slice->ref_count); 417 drm_gem_object_get(&bo->base); 418 list_add_tail(&slice->slice, &bo->slices); 419 420 return 0; 421 422 free_req: 423 kfree(slice->reqs); 424 free_slice: 425 kfree(slice); 426 free_sgt: 427 sg_free_table(sgt); 428 kfree(sgt); 429 out: 430 return ret; 431 } 432 433 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size) 434 { 435 struct scatterlist *sg; 436 struct sg_table *sgt; 437 struct page **pages; 438 int *pages_order; 439 int buf_extra; 440 int max_order; 441 int nr_pages; 442 int ret = 0; 443 int i, j, k; 444 int order; 445 446 if (size) { 447 nr_pages = DIV_ROUND_UP(size, PAGE_SIZE); 448 /* 449 * calculate how much extra we are going to allocate, to remove 450 * later 451 */ 452 buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE; 453 max_order = min(MAX_ORDER - 1, get_order(size)); 454 } else { 455 /* allocate a single page for book keeping */ 456 nr_pages = 1; 457 buf_extra = 0; 458 max_order = 0; 459 } 460 461 pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL); 462 if (!pages) { 463 ret = -ENOMEM; 464 goto out; 465 } 466 pages_order = (void *)pages + sizeof(*pages) * nr_pages; 467 468 /* 469 * Allocate requested memory using alloc_pages. It is possible to allocate 470 * the requested memory in multiple chunks by calling alloc_pages 471 * multiple times. Use SG table to handle multiple allocated pages. 472 */ 473 i = 0; 474 while (nr_pages > 0) { 475 order = min(get_order(nr_pages * PAGE_SIZE), max_order); 476 while (1) { 477 pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER | 478 __GFP_NOWARN | __GFP_ZERO | 479 (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL), 480 order); 481 if (pages[i]) 482 break; 483 if (!order--) { 484 ret = -ENOMEM; 485 goto free_partial_alloc; 486 } 487 } 488 489 max_order = order; 490 pages_order[i] = order; 491 492 nr_pages -= 1 << order; 493 if (nr_pages <= 0) 494 /* account for over allocation */ 495 buf_extra += abs(nr_pages) * PAGE_SIZE; 496 i++; 497 } 498 499 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL); 500 if (!sgt) { 501 ret = -ENOMEM; 502 goto free_partial_alloc; 503 } 504 505 if (sg_alloc_table(sgt, i, GFP_KERNEL)) { 506 ret = -ENOMEM; 507 goto free_sgt; 508 } 509 510 /* Populate the SG table with the allocated memory pages */ 511 sg = sgt->sgl; 512 for (k = 0; k < i; k++, sg = sg_next(sg)) { 513 /* Last entry requires special handling */ 514 if (k < i - 1) { 515 sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0); 516 } else { 517 sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0); 518 sg_mark_end(sg); 519 } 520 } 521 522 kvfree(pages); 523 *sgt_out = sgt; 524 return ret; 525 526 free_sgt: 527 kfree(sgt); 528 free_partial_alloc: 529 for (j = 0; j < i; j++) 530 __free_pages(pages[j], pages_order[j]); 531 kvfree(pages); 532 out: 533 *sgt_out = NULL; 534 return ret; 535 } 536 537 static bool invalid_sem(struct qaic_sem *sem) 538 { 539 if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK || 540 !(sem->presync == 0 || sem->presync == 1) || sem->pad || 541 sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) || 542 sem->cmd > QAIC_SEM_WAIT_GT_0) 543 return true; 544 return false; 545 } 546 547 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent, 548 u32 count, u64 total_size) 549 { 550 int i; 551 552 for (i = 0; i < count; i++) { 553 if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 || 554 slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) || 555 invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) || 556 invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3)) 557 return -EINVAL; 558 559 if (slice_ent[i].offset + slice_ent[i].size > total_size) 560 return -EINVAL; 561 } 562 563 return 0; 564 } 565 566 static void qaic_free_sgt(struct sg_table *sgt) 567 { 568 struct scatterlist *sg; 569 570 for (sg = sgt->sgl; sg; sg = sg_next(sg)) 571 if (sg_page(sg)) 572 __free_pages(sg_page(sg), get_order(sg->length)); 573 sg_free_table(sgt); 574 kfree(sgt); 575 } 576 577 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent, 578 const struct drm_gem_object *obj) 579 { 580 struct qaic_bo *bo = to_qaic_bo(obj); 581 582 drm_printf_indent(p, indent, "user requested size=%llu\n", bo->size); 583 } 584 585 static const struct vm_operations_struct drm_vm_ops = { 586 .open = drm_gem_vm_open, 587 .close = drm_gem_vm_close, 588 }; 589 590 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma) 591 { 592 struct qaic_bo *bo = to_qaic_bo(obj); 593 unsigned long offset = 0; 594 struct scatterlist *sg; 595 int ret = 0; 596 597 if (obj->import_attach) 598 return -EINVAL; 599 600 for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) { 601 if (sg_page(sg)) { 602 ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)), 603 sg->length, vma->vm_page_prot); 604 if (ret) 605 goto out; 606 offset += sg->length; 607 } 608 } 609 610 out: 611 return ret; 612 } 613 614 static void qaic_free_object(struct drm_gem_object *obj) 615 { 616 struct qaic_bo *bo = to_qaic_bo(obj); 617 618 if (obj->import_attach) { 619 /* DMABUF/PRIME Path */ 620 drm_prime_gem_destroy(obj, NULL); 621 } else { 622 /* Private buffer allocation path */ 623 qaic_free_sgt(bo->sgt); 624 } 625 626 drm_gem_object_release(obj); 627 kfree(bo); 628 } 629 630 static const struct drm_gem_object_funcs qaic_gem_funcs = { 631 .free = qaic_free_object, 632 .print_info = qaic_gem_print_info, 633 .mmap = qaic_gem_object_mmap, 634 .vm_ops = &drm_vm_ops, 635 }; 636 637 static struct qaic_bo *qaic_alloc_init_bo(void) 638 { 639 struct qaic_bo *bo; 640 641 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 642 if (!bo) 643 return ERR_PTR(-ENOMEM); 644 645 INIT_LIST_HEAD(&bo->slices); 646 init_completion(&bo->xfer_done); 647 complete_all(&bo->xfer_done); 648 649 return bo; 650 } 651 652 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 653 { 654 struct qaic_create_bo *args = data; 655 int usr_rcu_id, qdev_rcu_id; 656 struct drm_gem_object *obj; 657 struct qaic_device *qdev; 658 struct qaic_user *usr; 659 struct qaic_bo *bo; 660 size_t size; 661 int ret; 662 663 if (args->pad) 664 return -EINVAL; 665 666 size = PAGE_ALIGN(args->size); 667 if (size == 0) 668 return -EINVAL; 669 670 usr = file_priv->driver_priv; 671 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 672 if (!usr->qddev) { 673 ret = -ENODEV; 674 goto unlock_usr_srcu; 675 } 676 677 qdev = usr->qddev->qdev; 678 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 679 if (qdev->in_reset) { 680 ret = -ENODEV; 681 goto unlock_dev_srcu; 682 } 683 684 bo = qaic_alloc_init_bo(); 685 if (IS_ERR(bo)) { 686 ret = PTR_ERR(bo); 687 goto unlock_dev_srcu; 688 } 689 obj = &bo->base; 690 691 drm_gem_private_object_init(dev, obj, size); 692 693 obj->funcs = &qaic_gem_funcs; 694 ret = create_sgt(qdev, &bo->sgt, size); 695 if (ret) 696 goto free_bo; 697 698 bo->size = args->size; 699 700 ret = drm_gem_handle_create(file_priv, obj, &args->handle); 701 if (ret) 702 goto free_sgt; 703 704 bo->handle = args->handle; 705 drm_gem_object_put(obj); 706 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 707 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 708 709 return 0; 710 711 free_sgt: 712 qaic_free_sgt(bo->sgt); 713 free_bo: 714 kfree(bo); 715 unlock_dev_srcu: 716 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 717 unlock_usr_srcu: 718 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 719 return ret; 720 } 721 722 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 723 { 724 struct qaic_mmap_bo *args = data; 725 int usr_rcu_id, qdev_rcu_id; 726 struct drm_gem_object *obj; 727 struct qaic_device *qdev; 728 struct qaic_user *usr; 729 int ret; 730 731 usr = file_priv->driver_priv; 732 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 733 if (!usr->qddev) { 734 ret = -ENODEV; 735 goto unlock_usr_srcu; 736 } 737 738 qdev = usr->qddev->qdev; 739 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 740 if (qdev->in_reset) { 741 ret = -ENODEV; 742 goto unlock_dev_srcu; 743 } 744 745 obj = drm_gem_object_lookup(file_priv, args->handle); 746 if (!obj) { 747 ret = -ENOENT; 748 goto unlock_dev_srcu; 749 } 750 751 ret = drm_gem_create_mmap_offset(obj); 752 if (ret == 0) 753 args->offset = drm_vma_node_offset_addr(&obj->vma_node); 754 755 drm_gem_object_put(obj); 756 757 unlock_dev_srcu: 758 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 759 unlock_usr_srcu: 760 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 761 return ret; 762 } 763 764 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf) 765 { 766 struct dma_buf_attachment *attach; 767 struct drm_gem_object *obj; 768 struct qaic_bo *bo; 769 size_t size; 770 int ret; 771 772 bo = qaic_alloc_init_bo(); 773 if (IS_ERR(bo)) { 774 ret = PTR_ERR(bo); 775 goto out; 776 } 777 778 obj = &bo->base; 779 get_dma_buf(dma_buf); 780 781 attach = dma_buf_attach(dma_buf, dev->dev); 782 if (IS_ERR(attach)) { 783 ret = PTR_ERR(attach); 784 goto attach_fail; 785 } 786 787 size = PAGE_ALIGN(attach->dmabuf->size); 788 if (size == 0) { 789 ret = -EINVAL; 790 goto size_align_fail; 791 } 792 793 drm_gem_private_object_init(dev, obj, size); 794 /* 795 * skipping dma_buf_map_attachment() as we do not know the direction 796 * just yet. Once the direction is known in the subsequent IOCTL to 797 * attach slicing, we can do it then. 798 */ 799 800 obj->funcs = &qaic_gem_funcs; 801 obj->import_attach = attach; 802 obj->resv = dma_buf->resv; 803 804 return obj; 805 806 size_align_fail: 807 dma_buf_detach(dma_buf, attach); 808 attach_fail: 809 dma_buf_put(dma_buf); 810 kfree(bo); 811 out: 812 return ERR_PTR(ret); 813 } 814 815 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr) 816 { 817 struct drm_gem_object *obj = &bo->base; 818 struct sg_table *sgt; 819 int ret; 820 821 if (obj->import_attach->dmabuf->size < hdr->size) 822 return -EINVAL; 823 824 sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir); 825 if (IS_ERR(sgt)) { 826 ret = PTR_ERR(sgt); 827 return ret; 828 } 829 830 bo->sgt = sgt; 831 bo->size = hdr->size; 832 833 return 0; 834 } 835 836 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo, 837 struct qaic_attach_slice_hdr *hdr) 838 { 839 int ret; 840 841 if (bo->size != hdr->size) 842 return -EINVAL; 843 844 ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0); 845 if (ret) 846 return -EFAULT; 847 848 return 0; 849 } 850 851 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo, 852 struct qaic_attach_slice_hdr *hdr) 853 { 854 int ret; 855 856 if (bo->base.import_attach) 857 ret = qaic_prepare_import_bo(bo, hdr); 858 else 859 ret = qaic_prepare_export_bo(qdev, bo, hdr); 860 861 if (ret == 0) 862 bo->dir = hdr->dir; 863 864 return ret; 865 } 866 867 static void qaic_unprepare_import_bo(struct qaic_bo *bo) 868 { 869 dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir); 870 bo->sgt = NULL; 871 bo->size = 0; 872 } 873 874 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo) 875 { 876 dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0); 877 } 878 879 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo) 880 { 881 if (bo->base.import_attach) 882 qaic_unprepare_import_bo(bo); 883 else 884 qaic_unprepare_export_bo(qdev, bo); 885 886 bo->dir = 0; 887 } 888 889 static void qaic_free_slices_bo(struct qaic_bo *bo) 890 { 891 struct bo_slice *slice, *temp; 892 893 list_for_each_entry_safe(slice, temp, &bo->slices, slice) 894 kref_put(&slice->ref_count, free_slice); 895 } 896 897 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo, 898 struct qaic_attach_slice_hdr *hdr, 899 struct qaic_attach_slice_entry *slice_ent) 900 { 901 int ret, i; 902 903 for (i = 0; i < hdr->count; i++) { 904 ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]); 905 if (ret) { 906 qaic_free_slices_bo(bo); 907 return ret; 908 } 909 } 910 911 if (bo->total_slice_nents > qdev->dbc[hdr->dbc_id].nelem) { 912 qaic_free_slices_bo(bo); 913 return -ENOSPC; 914 } 915 916 bo->sliced = true; 917 bo->nr_slice = hdr->count; 918 list_add_tail(&bo->bo_list, &qdev->dbc[hdr->dbc_id].bo_lists); 919 920 return 0; 921 } 922 923 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 924 { 925 struct qaic_attach_slice_entry *slice_ent; 926 struct qaic_attach_slice *args = data; 927 int rcu_id, usr_rcu_id, qdev_rcu_id; 928 struct dma_bridge_chan *dbc; 929 struct drm_gem_object *obj; 930 struct qaic_device *qdev; 931 unsigned long arg_size; 932 struct qaic_user *usr; 933 u8 __user *user_data; 934 struct qaic_bo *bo; 935 int ret; 936 937 if (args->hdr.count == 0) 938 return -EINVAL; 939 940 arg_size = args->hdr.count * sizeof(*slice_ent); 941 if (arg_size / args->hdr.count != sizeof(*slice_ent)) 942 return -EINVAL; 943 944 if (args->hdr.size == 0) 945 return -EINVAL; 946 947 if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE)) 948 return -EINVAL; 949 950 if (args->data == 0) 951 return -EINVAL; 952 953 usr = file_priv->driver_priv; 954 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 955 if (!usr->qddev) { 956 ret = -ENODEV; 957 goto unlock_usr_srcu; 958 } 959 960 qdev = usr->qddev->qdev; 961 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 962 if (qdev->in_reset) { 963 ret = -ENODEV; 964 goto unlock_dev_srcu; 965 } 966 967 if (args->hdr.dbc_id >= qdev->num_dbc) { 968 ret = -EINVAL; 969 goto unlock_dev_srcu; 970 } 971 972 user_data = u64_to_user_ptr(args->data); 973 974 slice_ent = kzalloc(arg_size, GFP_KERNEL); 975 if (!slice_ent) { 976 ret = -EINVAL; 977 goto unlock_dev_srcu; 978 } 979 980 ret = copy_from_user(slice_ent, user_data, arg_size); 981 if (ret) { 982 ret = -EFAULT; 983 goto free_slice_ent; 984 } 985 986 ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size); 987 if (ret) 988 goto free_slice_ent; 989 990 obj = drm_gem_object_lookup(file_priv, args->hdr.handle); 991 if (!obj) { 992 ret = -ENOENT; 993 goto free_slice_ent; 994 } 995 996 bo = to_qaic_bo(obj); 997 998 if (bo->sliced) { 999 ret = -EINVAL; 1000 goto put_bo; 1001 } 1002 1003 dbc = &qdev->dbc[args->hdr.dbc_id]; 1004 rcu_id = srcu_read_lock(&dbc->ch_lock); 1005 if (dbc->usr != usr) { 1006 ret = -EINVAL; 1007 goto unlock_ch_srcu; 1008 } 1009 1010 ret = qaic_prepare_bo(qdev, bo, &args->hdr); 1011 if (ret) 1012 goto unlock_ch_srcu; 1013 1014 ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent); 1015 if (ret) 1016 goto unprepare_bo; 1017 1018 if (args->hdr.dir == DMA_TO_DEVICE) 1019 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir); 1020 1021 bo->dbc = dbc; 1022 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1023 drm_gem_object_put(obj); 1024 kfree(slice_ent); 1025 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1026 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1027 1028 return 0; 1029 1030 unprepare_bo: 1031 qaic_unprepare_bo(qdev, bo); 1032 unlock_ch_srcu: 1033 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1034 put_bo: 1035 drm_gem_object_put(obj); 1036 free_slice_ent: 1037 kfree(slice_ent); 1038 unlock_dev_srcu: 1039 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1040 unlock_usr_srcu: 1041 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1042 return ret; 1043 } 1044 1045 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id, 1046 u32 head, u32 *ptail) 1047 { 1048 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1049 struct dbc_req *reqs = slice->reqs; 1050 u32 tail = *ptail; 1051 u32 avail; 1052 1053 avail = head - tail; 1054 if (head <= tail) 1055 avail += dbc->nelem; 1056 1057 --avail; 1058 1059 if (avail < slice->nents) 1060 return -EAGAIN; 1061 1062 if (tail + slice->nents > dbc->nelem) { 1063 avail = dbc->nelem - tail; 1064 avail = min_t(u32, avail, slice->nents); 1065 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1066 sizeof(*reqs) * avail); 1067 reqs += avail; 1068 avail = slice->nents - avail; 1069 if (avail) 1070 memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail); 1071 } else { 1072 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1073 sizeof(*reqs) * slice->nents); 1074 } 1075 1076 *ptail = (tail + slice->nents) % dbc->nelem; 1077 1078 return 0; 1079 } 1080 1081 /* 1082 * Based on the value of resize we may only need to transmit first_n 1083 * entries and the last entry, with last_bytes to send from the last entry. 1084 * Note that first_n could be 0. 1085 */ 1086 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, 1087 u64 resize, u32 dbc_id, u32 head, u32 *ptail) 1088 { 1089 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1090 struct dbc_req *reqs = slice->reqs; 1091 struct dbc_req *last_req; 1092 u32 tail = *ptail; 1093 u64 total_bytes; 1094 u64 last_bytes; 1095 u32 first_n; 1096 u32 avail; 1097 int ret; 1098 int i; 1099 1100 avail = head - tail; 1101 if (head <= tail) 1102 avail += dbc->nelem; 1103 1104 --avail; 1105 1106 total_bytes = 0; 1107 for (i = 0; i < slice->nents; i++) { 1108 total_bytes += le32_to_cpu(reqs[i].len); 1109 if (total_bytes >= resize) 1110 break; 1111 } 1112 1113 if (total_bytes < resize) { 1114 /* User space should have used the full buffer path. */ 1115 ret = -EINVAL; 1116 return ret; 1117 } 1118 1119 first_n = i; 1120 last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize; 1121 1122 if (avail < (first_n + 1)) 1123 return -EAGAIN; 1124 1125 if (first_n) { 1126 if (tail + first_n > dbc->nelem) { 1127 avail = dbc->nelem - tail; 1128 avail = min_t(u32, avail, first_n); 1129 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1130 sizeof(*reqs) * avail); 1131 last_req = reqs + avail; 1132 avail = first_n - avail; 1133 if (avail) 1134 memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail); 1135 } else { 1136 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1137 sizeof(*reqs) * first_n); 1138 } 1139 } 1140 1141 /* Copy over the last entry. Here we need to adjust len to the left over 1142 * size, and set src and dst to the entry it is copied to. 1143 */ 1144 last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size(); 1145 memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs)); 1146 1147 /* 1148 * last_bytes holds size of a DMA segment, maximum DMA segment size is 1149 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32 1150 * range. So, by down sizing we are not corrupting the value. 1151 */ 1152 last_req->len = cpu_to_le32((u32)last_bytes); 1153 last_req->src_addr = reqs[first_n].src_addr; 1154 last_req->dest_addr = reqs[first_n].dest_addr; 1155 1156 *ptail = (tail + first_n + 1) % dbc->nelem; 1157 1158 return 0; 1159 } 1160 1161 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv, 1162 struct qaic_execute_entry *exec, unsigned int count, 1163 bool is_partial, struct dma_bridge_chan *dbc, u32 head, 1164 u32 *tail) 1165 { 1166 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; 1167 struct drm_gem_object *obj; 1168 struct bo_slice *slice; 1169 unsigned long flags; 1170 struct qaic_bo *bo; 1171 bool queued; 1172 int i, j; 1173 int ret; 1174 1175 for (i = 0; i < count; i++) { 1176 /* 1177 * ref count will be decremented when the transfer of this 1178 * buffer is complete. It is inside dbc_irq_threaded_fn(). 1179 */ 1180 obj = drm_gem_object_lookup(file_priv, 1181 is_partial ? pexec[i].handle : exec[i].handle); 1182 if (!obj) { 1183 ret = -ENOENT; 1184 goto failed_to_send_bo; 1185 } 1186 1187 bo = to_qaic_bo(obj); 1188 1189 if (!bo->sliced) { 1190 ret = -EINVAL; 1191 goto failed_to_send_bo; 1192 } 1193 1194 if (is_partial && pexec[i].resize > bo->size) { 1195 ret = -EINVAL; 1196 goto failed_to_send_bo; 1197 } 1198 1199 spin_lock_irqsave(&dbc->xfer_lock, flags); 1200 queued = bo->queued; 1201 bo->queued = true; 1202 if (queued) { 1203 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1204 ret = -EINVAL; 1205 goto failed_to_send_bo; 1206 } 1207 1208 bo->req_id = dbc->next_req_id++; 1209 1210 list_for_each_entry(slice, &bo->slices, slice) { 1211 /* 1212 * If this slice does not fall under the given 1213 * resize then skip this slice and continue the loop 1214 */ 1215 if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset) 1216 continue; 1217 1218 for (j = 0; j < slice->nents; j++) 1219 slice->reqs[j].req_id = cpu_to_le16(bo->req_id); 1220 1221 /* 1222 * If it is a partial execute ioctl call then check if 1223 * resize has cut this slice short then do a partial copy 1224 * else do complete copy 1225 */ 1226 if (is_partial && pexec[i].resize && 1227 pexec[i].resize < slice->offset + slice->size) 1228 ret = copy_partial_exec_reqs(qdev, slice, 1229 pexec[i].resize - slice->offset, 1230 dbc->id, head, tail); 1231 else 1232 ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail); 1233 if (ret) { 1234 bo->queued = false; 1235 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1236 goto failed_to_send_bo; 1237 } 1238 } 1239 reinit_completion(&bo->xfer_done); 1240 list_add_tail(&bo->xfer_list, &dbc->xfer_list); 1241 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1242 dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir); 1243 } 1244 1245 return 0; 1246 1247 failed_to_send_bo: 1248 if (likely(obj)) 1249 drm_gem_object_put(obj); 1250 for (j = 0; j < i; j++) { 1251 spin_lock_irqsave(&dbc->xfer_lock, flags); 1252 bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list); 1253 obj = &bo->base; 1254 bo->queued = false; 1255 list_del(&bo->xfer_list); 1256 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1257 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1258 drm_gem_object_put(obj); 1259 } 1260 return ret; 1261 } 1262 1263 static void update_profiling_data(struct drm_file *file_priv, 1264 struct qaic_execute_entry *exec, unsigned int count, 1265 bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level) 1266 { 1267 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; 1268 struct drm_gem_object *obj; 1269 struct qaic_bo *bo; 1270 int i; 1271 1272 for (i = 0; i < count; i++) { 1273 /* 1274 * Since we already committed the BO to hardware, the only way 1275 * this should fail is a pending signal. We can't cancel the 1276 * submit to hardware, so we have to just skip the profiling 1277 * data. In case the signal is not fatal to the process, we 1278 * return success so that the user doesn't try to resubmit. 1279 */ 1280 obj = drm_gem_object_lookup(file_priv, 1281 is_partial ? pexec[i].handle : exec[i].handle); 1282 if (!obj) 1283 break; 1284 bo = to_qaic_bo(obj); 1285 bo->perf_stats.req_received_ts = received_ts; 1286 bo->perf_stats.req_submit_ts = submit_ts; 1287 bo->perf_stats.queue_level_before = queue_level; 1288 queue_level += bo->total_slice_nents; 1289 drm_gem_object_put(obj); 1290 } 1291 } 1292 1293 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv, 1294 bool is_partial) 1295 { 1296 struct qaic_partial_execute_entry *pexec; 1297 struct qaic_execute *args = data; 1298 struct qaic_execute_entry *exec; 1299 struct dma_bridge_chan *dbc; 1300 int usr_rcu_id, qdev_rcu_id; 1301 struct qaic_device *qdev; 1302 struct qaic_user *usr; 1303 u8 __user *user_data; 1304 unsigned long n; 1305 u64 received_ts; 1306 u32 queue_level; 1307 u64 submit_ts; 1308 int rcu_id; 1309 u32 head; 1310 u32 tail; 1311 u64 size; 1312 int ret; 1313 1314 received_ts = ktime_get_ns(); 1315 1316 size = is_partial ? sizeof(*pexec) : sizeof(*exec); 1317 n = (unsigned long)size * args->hdr.count; 1318 if (args->hdr.count == 0 || n / args->hdr.count != size) 1319 return -EINVAL; 1320 1321 user_data = u64_to_user_ptr(args->data); 1322 1323 exec = kcalloc(args->hdr.count, size, GFP_KERNEL); 1324 pexec = (struct qaic_partial_execute_entry *)exec; 1325 if (!exec) 1326 return -ENOMEM; 1327 1328 if (copy_from_user(exec, user_data, n)) { 1329 ret = -EFAULT; 1330 goto free_exec; 1331 } 1332 1333 usr = file_priv->driver_priv; 1334 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1335 if (!usr->qddev) { 1336 ret = -ENODEV; 1337 goto unlock_usr_srcu; 1338 } 1339 1340 qdev = usr->qddev->qdev; 1341 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1342 if (qdev->in_reset) { 1343 ret = -ENODEV; 1344 goto unlock_dev_srcu; 1345 } 1346 1347 if (args->hdr.dbc_id >= qdev->num_dbc) { 1348 ret = -EINVAL; 1349 goto unlock_dev_srcu; 1350 } 1351 1352 dbc = &qdev->dbc[args->hdr.dbc_id]; 1353 1354 rcu_id = srcu_read_lock(&dbc->ch_lock); 1355 if (!dbc->usr || dbc->usr->handle != usr->handle) { 1356 ret = -EPERM; 1357 goto release_ch_rcu; 1358 } 1359 1360 head = readl(dbc->dbc_base + REQHP_OFF); 1361 tail = readl(dbc->dbc_base + REQTP_OFF); 1362 1363 if (head == U32_MAX || tail == U32_MAX) { 1364 /* PCI link error */ 1365 ret = -ENODEV; 1366 goto release_ch_rcu; 1367 } 1368 1369 queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail); 1370 1371 ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc, 1372 head, &tail); 1373 if (ret) 1374 goto release_ch_rcu; 1375 1376 /* Finalize commit to hardware */ 1377 submit_ts = ktime_get_ns(); 1378 writel(tail, dbc->dbc_base + REQTP_OFF); 1379 1380 update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts, 1381 submit_ts, queue_level); 1382 1383 if (datapath_polling) 1384 schedule_work(&dbc->poll_work); 1385 1386 release_ch_rcu: 1387 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1388 unlock_dev_srcu: 1389 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1390 unlock_usr_srcu: 1391 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1392 free_exec: 1393 kfree(exec); 1394 return ret; 1395 } 1396 1397 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1398 { 1399 return __qaic_execute_bo_ioctl(dev, data, file_priv, false); 1400 } 1401 1402 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1403 { 1404 return __qaic_execute_bo_ioctl(dev, data, file_priv, true); 1405 } 1406 1407 /* 1408 * Our interrupt handling is a bit more complicated than a simple ideal, but 1409 * sadly necessary. 1410 * 1411 * Each dbc has a completion queue. Entries in the queue correspond to DMA 1412 * requests which the device has processed. The hardware already has a built 1413 * in irq mitigation. When the device puts an entry into the queue, it will 1414 * only trigger an interrupt if the queue was empty. Therefore, when adding 1415 * the Nth event to a non-empty queue, the hardware doesn't trigger an 1416 * interrupt. This means the host doesn't get additional interrupts signaling 1417 * the same thing - the queue has something to process. 1418 * This behavior can be overridden in the DMA request. 1419 * This means that when the host receives an interrupt, it is required to 1420 * drain the queue. 1421 * 1422 * This behavior is what NAPI attempts to accomplish, although we can't use 1423 * NAPI as we don't have a netdev. We use threaded irqs instead. 1424 * 1425 * However, there is a situation where the host drains the queue fast enough 1426 * that every event causes an interrupt. Typically this is not a problem as 1427 * the rate of events would be low. However, that is not the case with 1428 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of 1429 * lprnet, the host receives roughly 80k interrupts per second from the device 1430 * (per /proc/interrupts). While NAPI documentation indicates the host should 1431 * just chug along, sadly that behavior causes instability in some hosts. 1432 * 1433 * Therefore, we implement an interrupt disable scheme similar to NAPI. The 1434 * key difference is that we will delay after draining the queue for a small 1435 * time to allow additional events to come in via polling. Using the above 1436 * lprnet workload, this reduces the number of interrupts processed from 1437 * ~80k/sec to about 64 in 5 minutes and appears to solve the system 1438 * instability. 1439 */ 1440 irqreturn_t dbc_irq_handler(int irq, void *data) 1441 { 1442 struct dma_bridge_chan *dbc = data; 1443 int rcu_id; 1444 u32 head; 1445 u32 tail; 1446 1447 rcu_id = srcu_read_lock(&dbc->ch_lock); 1448 1449 if (!dbc->usr) { 1450 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1451 return IRQ_HANDLED; 1452 } 1453 1454 head = readl(dbc->dbc_base + RSPHP_OFF); 1455 if (head == U32_MAX) { /* PCI link error */ 1456 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1457 return IRQ_NONE; 1458 } 1459 1460 tail = readl(dbc->dbc_base + RSPTP_OFF); 1461 if (tail == U32_MAX) { /* PCI link error */ 1462 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1463 return IRQ_NONE; 1464 } 1465 1466 if (head == tail) { /* queue empty */ 1467 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1468 return IRQ_NONE; 1469 } 1470 1471 disable_irq_nosync(irq); 1472 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1473 return IRQ_WAKE_THREAD; 1474 } 1475 1476 void irq_polling_work(struct work_struct *work) 1477 { 1478 struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work); 1479 unsigned long flags; 1480 int rcu_id; 1481 u32 head; 1482 u32 tail; 1483 1484 rcu_id = srcu_read_lock(&dbc->ch_lock); 1485 1486 while (1) { 1487 if (dbc->qdev->in_reset) { 1488 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1489 return; 1490 } 1491 if (!dbc->usr) { 1492 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1493 return; 1494 } 1495 spin_lock_irqsave(&dbc->xfer_lock, flags); 1496 if (list_empty(&dbc->xfer_list)) { 1497 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1498 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1499 return; 1500 } 1501 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1502 1503 head = readl(dbc->dbc_base + RSPHP_OFF); 1504 if (head == U32_MAX) { /* PCI link error */ 1505 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1506 return; 1507 } 1508 1509 tail = readl(dbc->dbc_base + RSPTP_OFF); 1510 if (tail == U32_MAX) { /* PCI link error */ 1511 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1512 return; 1513 } 1514 1515 if (head != tail) { 1516 irq_wake_thread(dbc->irq, dbc); 1517 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1518 return; 1519 } 1520 1521 cond_resched(); 1522 usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us); 1523 } 1524 } 1525 1526 irqreturn_t dbc_irq_threaded_fn(int irq, void *data) 1527 { 1528 struct dma_bridge_chan *dbc = data; 1529 int event_count = NUM_EVENTS; 1530 int delay_count = NUM_DELAYS; 1531 struct qaic_device *qdev; 1532 struct qaic_bo *bo, *i; 1533 struct dbc_rsp *rsp; 1534 unsigned long flags; 1535 int rcu_id; 1536 u16 status; 1537 u16 req_id; 1538 u32 head; 1539 u32 tail; 1540 1541 rcu_id = srcu_read_lock(&dbc->ch_lock); 1542 1543 head = readl(dbc->dbc_base + RSPHP_OFF); 1544 if (head == U32_MAX) /* PCI link error */ 1545 goto error_out; 1546 1547 qdev = dbc->qdev; 1548 read_fifo: 1549 1550 if (!event_count) { 1551 event_count = NUM_EVENTS; 1552 cond_resched(); 1553 } 1554 1555 /* 1556 * if this channel isn't assigned or gets unassigned during processing 1557 * we have nothing further to do 1558 */ 1559 if (!dbc->usr) 1560 goto error_out; 1561 1562 tail = readl(dbc->dbc_base + RSPTP_OFF); 1563 if (tail == U32_MAX) /* PCI link error */ 1564 goto error_out; 1565 1566 if (head == tail) { /* queue empty */ 1567 if (delay_count) { 1568 --delay_count; 1569 usleep_range(100, 200); 1570 goto read_fifo; /* check for a new event */ 1571 } 1572 goto normal_out; 1573 } 1574 1575 delay_count = NUM_DELAYS; 1576 while (head != tail) { 1577 if (!event_count) 1578 break; 1579 --event_count; 1580 rsp = dbc->rsp_q_base + head * sizeof(*rsp); 1581 req_id = le16_to_cpu(rsp->req_id); 1582 status = le16_to_cpu(rsp->status); 1583 if (status) 1584 pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status); 1585 spin_lock_irqsave(&dbc->xfer_lock, flags); 1586 /* 1587 * A BO can receive multiple interrupts, since a BO can be 1588 * divided into multiple slices and a buffer receives as many 1589 * interrupts as slices. So until it receives interrupts for 1590 * all the slices we cannot mark that buffer complete. 1591 */ 1592 list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) { 1593 if (bo->req_id == req_id) 1594 bo->nr_slice_xfer_done++; 1595 else 1596 continue; 1597 1598 if (bo->nr_slice_xfer_done < bo->nr_slice) 1599 break; 1600 1601 /* 1602 * At this point we have received all the interrupts for 1603 * BO, which means BO execution is complete. 1604 */ 1605 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1606 bo->nr_slice_xfer_done = 0; 1607 bo->queued = false; 1608 list_del(&bo->xfer_list); 1609 bo->perf_stats.req_processed_ts = ktime_get_ns(); 1610 complete_all(&bo->xfer_done); 1611 drm_gem_object_put(&bo->base); 1612 break; 1613 } 1614 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1615 head = (head + 1) % dbc->nelem; 1616 } 1617 1618 /* 1619 * Update the head pointer of response queue and let the device know 1620 * that we have consumed elements from the queue. 1621 */ 1622 writel(head, dbc->dbc_base + RSPHP_OFF); 1623 1624 /* elements might have been put in the queue while we were processing */ 1625 goto read_fifo; 1626 1627 normal_out: 1628 if (likely(!datapath_polling)) 1629 enable_irq(irq); 1630 else 1631 schedule_work(&dbc->poll_work); 1632 /* checking the fifo and enabling irqs is a race, missed event check */ 1633 tail = readl(dbc->dbc_base + RSPTP_OFF); 1634 if (tail != U32_MAX && head != tail) { 1635 if (likely(!datapath_polling)) 1636 disable_irq_nosync(irq); 1637 goto read_fifo; 1638 } 1639 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1640 return IRQ_HANDLED; 1641 1642 error_out: 1643 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1644 if (likely(!datapath_polling)) 1645 enable_irq(irq); 1646 else 1647 schedule_work(&dbc->poll_work); 1648 1649 return IRQ_HANDLED; 1650 } 1651 1652 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1653 { 1654 struct qaic_wait *args = data; 1655 int usr_rcu_id, qdev_rcu_id; 1656 struct dma_bridge_chan *dbc; 1657 struct drm_gem_object *obj; 1658 struct qaic_device *qdev; 1659 unsigned long timeout; 1660 struct qaic_user *usr; 1661 struct qaic_bo *bo; 1662 int rcu_id; 1663 int ret; 1664 1665 if (args->pad != 0) 1666 return -EINVAL; 1667 1668 usr = file_priv->driver_priv; 1669 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1670 if (!usr->qddev) { 1671 ret = -ENODEV; 1672 goto unlock_usr_srcu; 1673 } 1674 1675 qdev = usr->qddev->qdev; 1676 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1677 if (qdev->in_reset) { 1678 ret = -ENODEV; 1679 goto unlock_dev_srcu; 1680 } 1681 1682 if (args->dbc_id >= qdev->num_dbc) { 1683 ret = -EINVAL; 1684 goto unlock_dev_srcu; 1685 } 1686 1687 dbc = &qdev->dbc[args->dbc_id]; 1688 1689 rcu_id = srcu_read_lock(&dbc->ch_lock); 1690 if (dbc->usr != usr) { 1691 ret = -EPERM; 1692 goto unlock_ch_srcu; 1693 } 1694 1695 obj = drm_gem_object_lookup(file_priv, args->handle); 1696 if (!obj) { 1697 ret = -ENOENT; 1698 goto unlock_ch_srcu; 1699 } 1700 1701 bo = to_qaic_bo(obj); 1702 timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms; 1703 timeout = msecs_to_jiffies(timeout); 1704 ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout); 1705 if (!ret) { 1706 ret = -ETIMEDOUT; 1707 goto put_obj; 1708 } 1709 if (ret > 0) 1710 ret = 0; 1711 1712 if (!dbc->usr) 1713 ret = -EPERM; 1714 1715 put_obj: 1716 drm_gem_object_put(obj); 1717 unlock_ch_srcu: 1718 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1719 unlock_dev_srcu: 1720 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1721 unlock_usr_srcu: 1722 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1723 return ret; 1724 } 1725 1726 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1727 { 1728 struct qaic_perf_stats_entry *ent = NULL; 1729 struct qaic_perf_stats *args = data; 1730 int usr_rcu_id, qdev_rcu_id; 1731 struct drm_gem_object *obj; 1732 struct qaic_device *qdev; 1733 struct qaic_user *usr; 1734 struct qaic_bo *bo; 1735 int ret, i; 1736 1737 usr = file_priv->driver_priv; 1738 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1739 if (!usr->qddev) { 1740 ret = -ENODEV; 1741 goto unlock_usr_srcu; 1742 } 1743 1744 qdev = usr->qddev->qdev; 1745 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1746 if (qdev->in_reset) { 1747 ret = -ENODEV; 1748 goto unlock_dev_srcu; 1749 } 1750 1751 if (args->hdr.dbc_id >= qdev->num_dbc) { 1752 ret = -EINVAL; 1753 goto unlock_dev_srcu; 1754 } 1755 1756 ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL); 1757 if (!ent) { 1758 ret = -EINVAL; 1759 goto unlock_dev_srcu; 1760 } 1761 1762 ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent)); 1763 if (ret) { 1764 ret = -EFAULT; 1765 goto free_ent; 1766 } 1767 1768 for (i = 0; i < args->hdr.count; i++) { 1769 obj = drm_gem_object_lookup(file_priv, ent[i].handle); 1770 if (!obj) { 1771 ret = -ENOENT; 1772 goto free_ent; 1773 } 1774 bo = to_qaic_bo(obj); 1775 /* 1776 * perf stats ioctl is called before wait ioctl is complete then 1777 * the latency information is invalid. 1778 */ 1779 if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) { 1780 ent[i].device_latency_us = 0; 1781 } else { 1782 ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts - 1783 bo->perf_stats.req_submit_ts), 1000); 1784 } 1785 ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts - 1786 bo->perf_stats.req_received_ts), 1000); 1787 ent[i].queue_level_before = bo->perf_stats.queue_level_before; 1788 ent[i].num_queue_element = bo->total_slice_nents; 1789 drm_gem_object_put(obj); 1790 } 1791 1792 if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent))) 1793 ret = -EFAULT; 1794 1795 free_ent: 1796 kfree(ent); 1797 unlock_dev_srcu: 1798 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1799 unlock_usr_srcu: 1800 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1801 return ret; 1802 } 1803 1804 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc) 1805 { 1806 unsigned long flags; 1807 struct qaic_bo *bo; 1808 1809 spin_lock_irqsave(&dbc->xfer_lock, flags); 1810 while (!list_empty(&dbc->xfer_list)) { 1811 bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list); 1812 bo->queued = false; 1813 list_del(&bo->xfer_list); 1814 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1815 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1816 complete_all(&bo->xfer_done); 1817 drm_gem_object_put(&bo->base); 1818 spin_lock_irqsave(&dbc->xfer_lock, flags); 1819 } 1820 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1821 } 1822 1823 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) 1824 { 1825 if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle) 1826 return -EPERM; 1827 1828 qdev->dbc[dbc_id].usr = NULL; 1829 synchronize_srcu(&qdev->dbc[dbc_id].ch_lock); 1830 return 0; 1831 } 1832 1833 /** 1834 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of 1835 * user. Add user context back to DBC to enable it. This function trusts the 1836 * DBC ID passed and expects the DBC to be disabled. 1837 * @qdev: Qranium device handle 1838 * @dbc_id: ID of the DBC 1839 * @usr: User context 1840 */ 1841 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) 1842 { 1843 qdev->dbc[dbc_id].usr = usr; 1844 } 1845 1846 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id) 1847 { 1848 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1849 1850 dbc->usr = NULL; 1851 empty_xfer_list(qdev, dbc); 1852 synchronize_srcu(&dbc->ch_lock); 1853 /* 1854 * Threads holding channel lock, may add more elements in the xfer_list. 1855 * Flush out these elements from xfer_list. 1856 */ 1857 empty_xfer_list(qdev, dbc); 1858 } 1859 1860 void release_dbc(struct qaic_device *qdev, u32 dbc_id) 1861 { 1862 struct bo_slice *slice, *slice_temp; 1863 struct qaic_bo *bo, *bo_temp; 1864 struct dma_bridge_chan *dbc; 1865 1866 dbc = &qdev->dbc[dbc_id]; 1867 if (!dbc->in_use) 1868 return; 1869 1870 wakeup_dbc(qdev, dbc_id); 1871 1872 dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr); 1873 dbc->total_size = 0; 1874 dbc->req_q_base = NULL; 1875 dbc->dma_addr = 0; 1876 dbc->nelem = 0; 1877 dbc->usr = NULL; 1878 1879 list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) { 1880 list_for_each_entry_safe(slice, slice_temp, &bo->slices, slice) 1881 kref_put(&slice->ref_count, free_slice); 1882 bo->sliced = false; 1883 INIT_LIST_HEAD(&bo->slices); 1884 bo->total_slice_nents = 0; 1885 bo->dir = 0; 1886 bo->dbc = NULL; 1887 bo->nr_slice = 0; 1888 bo->nr_slice_xfer_done = 0; 1889 bo->queued = false; 1890 bo->req_id = 0; 1891 init_completion(&bo->xfer_done); 1892 complete_all(&bo->xfer_done); 1893 list_del(&bo->bo_list); 1894 bo->perf_stats.req_received_ts = 0; 1895 bo->perf_stats.req_submit_ts = 0; 1896 bo->perf_stats.req_processed_ts = 0; 1897 bo->perf_stats.queue_level_before = 0; 1898 } 1899 1900 dbc->in_use = false; 1901 wake_up(&dbc->dbc_release); 1902 } 1903