1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */ 4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */ 5 6 #include <asm/byteorder.h> 7 #include <linux/completion.h> 8 #include <linux/crc32.h> 9 #include <linux/delay.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/kref.h> 12 #include <linux/list.h> 13 #include <linux/mhi.h> 14 #include <linux/mm.h> 15 #include <linux/moduleparam.h> 16 #include <linux/mutex.h> 17 #include <linux/overflow.h> 18 #include <linux/pci.h> 19 #include <linux/scatterlist.h> 20 #include <linux/types.h> 21 #include <linux/uaccess.h> 22 #include <linux/workqueue.h> 23 #include <linux/wait.h> 24 #include <drm/drm_device.h> 25 #include <drm/drm_file.h> 26 #include <uapi/drm/qaic_accel.h> 27 28 #include "qaic.h" 29 30 #define MANAGE_MAGIC_NUMBER ((__force __le32)0x43494151) /* "QAIC" in little endian */ 31 #define QAIC_DBC_Q_GAP SZ_256 32 #define QAIC_DBC_Q_BUF_ALIGN SZ_4K 33 #define QAIC_MANAGE_EXT_MSG_LENGTH SZ_64K /* Max DMA message length */ 34 #define QAIC_WRAPPER_MAX_SIZE SZ_4K 35 #define QAIC_MHI_RETRY_WAIT_MS 100 36 #define QAIC_MHI_RETRY_MAX 20 37 38 static unsigned int control_resp_timeout_s = 60; /* 60 sec default */ 39 module_param(control_resp_timeout_s, uint, 0600); 40 MODULE_PARM_DESC(control_resp_timeout_s, "Timeout for NNC responses from QSM"); 41 42 struct manage_msg { 43 u32 len; 44 u32 count; 45 u8 data[]; 46 }; 47 48 /* 49 * wire encoding structures for the manage protocol. 50 * All fields are little endian on the wire 51 */ 52 struct wire_msg_hdr { 53 __le32 crc32; /* crc of everything following this field in the message */ 54 __le32 magic_number; 55 __le32 sequence_number; 56 __le32 len; /* length of this message */ 57 __le32 count; /* number of transactions in this message */ 58 __le32 handle; /* unique id to track the resources consumed */ 59 __le32 partition_id; /* partition id for the request (signed) */ 60 __le32 padding; /* must be 0 */ 61 } __packed; 62 63 struct wire_msg { 64 struct wire_msg_hdr hdr; 65 u8 data[]; 66 } __packed; 67 68 struct wire_trans_hdr { 69 __le32 type; 70 __le32 len; 71 } __packed; 72 73 /* Each message sent from driver to device are organized in a list of wrapper_msg */ 74 struct wrapper_msg { 75 struct list_head list; 76 struct kref ref_count; 77 u32 len; /* length of data to transfer */ 78 struct wrapper_list *head; 79 union { 80 struct wire_msg msg; 81 struct wire_trans_hdr trans; 82 }; 83 }; 84 85 struct wrapper_list { 86 struct list_head list; 87 spinlock_t lock; /* Protects the list state during additions and removals */ 88 }; 89 90 struct wire_trans_passthrough { 91 struct wire_trans_hdr hdr; 92 u8 data[]; 93 } __packed; 94 95 struct wire_addr_size_pair { 96 __le64 addr; 97 __le64 size; 98 } __packed; 99 100 struct wire_trans_dma_xfer { 101 struct wire_trans_hdr hdr; 102 __le32 tag; 103 __le32 count; 104 __le32 dma_chunk_id; 105 __le32 padding; 106 struct wire_addr_size_pair data[]; 107 } __packed; 108 109 /* Initiated by device to continue the DMA xfer of a large piece of data */ 110 struct wire_trans_dma_xfer_cont { 111 struct wire_trans_hdr hdr; 112 __le32 dma_chunk_id; 113 __le32 padding; 114 __le64 xferred_size; 115 } __packed; 116 117 struct wire_trans_activate_to_dev { 118 struct wire_trans_hdr hdr; 119 __le64 req_q_addr; 120 __le64 rsp_q_addr; 121 __le32 req_q_size; 122 __le32 rsp_q_size; 123 __le32 buf_len; 124 __le32 options; /* unused, but BIT(16) has meaning to the device */ 125 } __packed; 126 127 struct wire_trans_activate_from_dev { 128 struct wire_trans_hdr hdr; 129 __le32 status; 130 __le32 dbc_id; 131 __le64 options; /* unused */ 132 } __packed; 133 134 struct wire_trans_deactivate_from_dev { 135 struct wire_trans_hdr hdr; 136 __le32 status; 137 __le32 dbc_id; 138 } __packed; 139 140 struct wire_trans_terminate_to_dev { 141 struct wire_trans_hdr hdr; 142 __le32 handle; 143 __le32 padding; 144 } __packed; 145 146 struct wire_trans_terminate_from_dev { 147 struct wire_trans_hdr hdr; 148 __le32 status; 149 __le32 padding; 150 } __packed; 151 152 struct wire_trans_status_to_dev { 153 struct wire_trans_hdr hdr; 154 } __packed; 155 156 struct wire_trans_status_from_dev { 157 struct wire_trans_hdr hdr; 158 __le16 major; 159 __le16 minor; 160 __le32 status; 161 __le64 status_flags; 162 } __packed; 163 164 struct wire_trans_validate_part_to_dev { 165 struct wire_trans_hdr hdr; 166 __le32 part_id; 167 __le32 padding; 168 } __packed; 169 170 struct wire_trans_validate_part_from_dev { 171 struct wire_trans_hdr hdr; 172 __le32 status; 173 __le32 padding; 174 } __packed; 175 176 struct xfer_queue_elem { 177 /* 178 * Node in list of ongoing transfer request on control channel. 179 * Maintained by root device struct. 180 */ 181 struct list_head list; 182 /* Sequence number of this transfer request */ 183 u32 seq_num; 184 /* This is used to wait on until completion of transfer request */ 185 struct completion xfer_done; 186 /* Received data from device */ 187 void *buf; 188 }; 189 190 struct dma_xfer { 191 /* Node in list of DMA transfers which is used for cleanup */ 192 struct list_head list; 193 /* SG table of memory used for DMA */ 194 struct sg_table *sgt; 195 /* Array pages used for DMA */ 196 struct page **page_list; 197 /* Number of pages used for DMA */ 198 unsigned long nr_pages; 199 }; 200 201 struct ioctl_resources { 202 /* List of all DMA transfers which is used later for cleanup */ 203 struct list_head dma_xfers; 204 /* Base address of request queue which belongs to a DBC */ 205 void *buf; 206 /* 207 * Base bus address of request queue which belongs to a DBC. Response 208 * queue base bus address can be calculated by adding size of request 209 * queue to base bus address of request queue. 210 */ 211 dma_addr_t dma_addr; 212 /* Total size of request queue and response queue in byte */ 213 u32 total_size; 214 /* Total number of elements that can be queued in each of request and response queue */ 215 u32 nelem; 216 /* Base address of response queue which belongs to a DBC */ 217 void *rsp_q_base; 218 /* Status of the NNC message received */ 219 u32 status; 220 /* DBC id of the DBC received from device */ 221 u32 dbc_id; 222 /* 223 * DMA transfer request messages can be big in size and it may not be 224 * possible to send them in one shot. In such cases the messages are 225 * broken into chunks, this field stores ID of such chunks. 226 */ 227 u32 dma_chunk_id; 228 /* Total number of bytes transferred for a DMA xfer request */ 229 u64 xferred_dma_size; 230 /* Header of transaction message received from user. Used during DMA xfer request. */ 231 void *trans_hdr; 232 }; 233 234 struct resp_work { 235 struct work_struct work; 236 struct qaic_device *qdev; 237 void *buf; 238 }; 239 240 /* 241 * Since we're working with little endian messages, its useful to be able to 242 * increment without filling a whole line with conversions back and forth just 243 * to add one(1) to a message count. 244 */ 245 static __le32 incr_le32(__le32 val) 246 { 247 return cpu_to_le32(le32_to_cpu(val) + 1); 248 } 249 250 static u32 gen_crc(void *msg) 251 { 252 struct wrapper_list *wrappers = msg; 253 struct wrapper_msg *w; 254 u32 crc = ~0; 255 256 list_for_each_entry(w, &wrappers->list, list) 257 crc = crc32(crc, &w->msg, w->len); 258 259 return crc ^ ~0; 260 } 261 262 static u32 gen_crc_stub(void *msg) 263 { 264 return 0; 265 } 266 267 static bool valid_crc(void *msg) 268 { 269 struct wire_msg_hdr *hdr = msg; 270 bool ret; 271 u32 crc; 272 273 /* 274 * The output of this algorithm is always converted to the native 275 * endianness. 276 */ 277 crc = le32_to_cpu(hdr->crc32); 278 hdr->crc32 = 0; 279 ret = (crc32(~0, msg, le32_to_cpu(hdr->len)) ^ ~0) == crc; 280 hdr->crc32 = cpu_to_le32(crc); 281 return ret; 282 } 283 284 static bool valid_crc_stub(void *msg) 285 { 286 return true; 287 } 288 289 static void free_wrapper(struct kref *ref) 290 { 291 struct wrapper_msg *wrapper = container_of(ref, struct wrapper_msg, ref_count); 292 293 list_del(&wrapper->list); 294 kfree(wrapper); 295 } 296 297 static void save_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources, 298 struct qaic_user *usr) 299 { 300 u32 dbc_id = resources->dbc_id; 301 302 if (resources->buf) { 303 wait_event_interruptible(qdev->dbc[dbc_id].dbc_release, !qdev->dbc[dbc_id].in_use); 304 qdev->dbc[dbc_id].req_q_base = resources->buf; 305 qdev->dbc[dbc_id].rsp_q_base = resources->rsp_q_base; 306 qdev->dbc[dbc_id].dma_addr = resources->dma_addr; 307 qdev->dbc[dbc_id].total_size = resources->total_size; 308 qdev->dbc[dbc_id].nelem = resources->nelem; 309 enable_dbc(qdev, dbc_id, usr); 310 qdev->dbc[dbc_id].in_use = true; 311 resources->buf = NULL; 312 } 313 } 314 315 static void free_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources) 316 { 317 if (resources->buf) 318 dma_free_coherent(&qdev->pdev->dev, resources->total_size, resources->buf, 319 resources->dma_addr); 320 resources->buf = NULL; 321 } 322 323 static void free_dma_xfers(struct qaic_device *qdev, struct ioctl_resources *resources) 324 { 325 struct dma_xfer *xfer; 326 struct dma_xfer *x; 327 int i; 328 329 list_for_each_entry_safe(xfer, x, &resources->dma_xfers, list) { 330 dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0); 331 sg_free_table(xfer->sgt); 332 kfree(xfer->sgt); 333 for (i = 0; i < xfer->nr_pages; ++i) 334 put_page(xfer->page_list[i]); 335 kfree(xfer->page_list); 336 list_del(&xfer->list); 337 kfree(xfer); 338 } 339 } 340 341 static struct wrapper_msg *add_wrapper(struct wrapper_list *wrappers, u32 size) 342 { 343 struct wrapper_msg *w = kzalloc(size, GFP_KERNEL); 344 345 if (!w) 346 return NULL; 347 list_add_tail(&w->list, &wrappers->list); 348 kref_init(&w->ref_count); 349 w->head = wrappers; 350 return w; 351 } 352 353 static int encode_passthrough(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers, 354 u32 *user_len) 355 { 356 struct qaic_manage_trans_passthrough *in_trans = trans; 357 struct wire_trans_passthrough *out_trans; 358 struct wrapper_msg *trans_wrapper; 359 struct wrapper_msg *wrapper; 360 struct wire_msg *msg; 361 u32 msg_hdr_len; 362 363 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 364 msg = &wrapper->msg; 365 msg_hdr_len = le32_to_cpu(msg->hdr.len); 366 367 if (in_trans->hdr.len % 8 != 0) 368 return -EINVAL; 369 370 if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_EXT_MSG_LENGTH) 371 return -ENOSPC; 372 373 trans_wrapper = add_wrapper(wrappers, 374 offsetof(struct wrapper_msg, trans) + in_trans->hdr.len); 375 if (!trans_wrapper) 376 return -ENOMEM; 377 trans_wrapper->len = in_trans->hdr.len; 378 out_trans = (struct wire_trans_passthrough *)&trans_wrapper->trans; 379 380 memcpy(out_trans->data, in_trans->data, in_trans->hdr.len - sizeof(in_trans->hdr)); 381 msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len); 382 msg->hdr.count = incr_le32(msg->hdr.count); 383 *user_len += in_trans->hdr.len; 384 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_PASSTHROUGH_TO_DEV); 385 out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len); 386 387 return 0; 388 } 389 390 /* returns error code for failure, 0 if enough pages alloc'd, 1 if dma_cont is needed */ 391 static int find_and_map_user_pages(struct qaic_device *qdev, 392 struct qaic_manage_trans_dma_xfer *in_trans, 393 struct ioctl_resources *resources, struct dma_xfer *xfer) 394 { 395 u64 xfer_start_addr, remaining, end, total; 396 unsigned long need_pages; 397 struct page **page_list; 398 unsigned long nr_pages; 399 struct sg_table *sgt; 400 int ret; 401 int i; 402 403 if (check_add_overflow(in_trans->addr, resources->xferred_dma_size, &xfer_start_addr)) 404 return -EINVAL; 405 406 if (in_trans->size < resources->xferred_dma_size) 407 return -EINVAL; 408 remaining = in_trans->size - resources->xferred_dma_size; 409 if (remaining == 0) 410 return 0; 411 412 if (check_add_overflow(xfer_start_addr, remaining, &end)) 413 return -EINVAL; 414 415 total = remaining + offset_in_page(xfer_start_addr); 416 if (total >= SIZE_MAX) 417 return -EINVAL; 418 419 need_pages = DIV_ROUND_UP(total, PAGE_SIZE); 420 421 nr_pages = need_pages; 422 423 while (1) { 424 page_list = kmalloc_array(nr_pages, sizeof(*page_list), GFP_KERNEL | __GFP_NOWARN); 425 if (!page_list) { 426 nr_pages = nr_pages / 2; 427 if (!nr_pages) 428 return -ENOMEM; 429 } else { 430 break; 431 } 432 } 433 434 ret = get_user_pages_fast(xfer_start_addr, nr_pages, 0, page_list); 435 if (ret < 0) 436 goto free_page_list; 437 if (ret != nr_pages) { 438 nr_pages = ret; 439 ret = -EFAULT; 440 goto put_pages; 441 } 442 443 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL); 444 if (!sgt) { 445 ret = -ENOMEM; 446 goto put_pages; 447 } 448 449 ret = sg_alloc_table_from_pages(sgt, page_list, nr_pages, 450 offset_in_page(xfer_start_addr), 451 remaining, GFP_KERNEL); 452 if (ret) { 453 ret = -ENOMEM; 454 goto free_sgt; 455 } 456 457 ret = dma_map_sgtable(&qdev->pdev->dev, sgt, DMA_TO_DEVICE, 0); 458 if (ret) 459 goto free_table; 460 461 xfer->sgt = sgt; 462 xfer->page_list = page_list; 463 xfer->nr_pages = nr_pages; 464 465 return need_pages > nr_pages ? 1 : 0; 466 467 free_table: 468 sg_free_table(sgt); 469 free_sgt: 470 kfree(sgt); 471 put_pages: 472 for (i = 0; i < nr_pages; ++i) 473 put_page(page_list[i]); 474 free_page_list: 475 kfree(page_list); 476 return ret; 477 } 478 479 /* returns error code for failure, 0 if everything was encoded, 1 if dma_cont is needed */ 480 static int encode_addr_size_pairs(struct dma_xfer *xfer, struct wrapper_list *wrappers, 481 struct ioctl_resources *resources, u32 msg_hdr_len, u32 *size, 482 struct wire_trans_dma_xfer **out_trans) 483 { 484 struct wrapper_msg *trans_wrapper; 485 struct sg_table *sgt = xfer->sgt; 486 struct wire_addr_size_pair *asp; 487 struct scatterlist *sg; 488 struct wrapper_msg *w; 489 unsigned int dma_len; 490 u64 dma_chunk_len; 491 void *boundary; 492 int nents_dma; 493 int nents; 494 int i; 495 496 nents = sgt->nents; 497 nents_dma = nents; 498 *size = QAIC_MANAGE_EXT_MSG_LENGTH - msg_hdr_len - sizeof(**out_trans); 499 for_each_sgtable_dma_sg(sgt, sg, i) { 500 *size -= sizeof(*asp); 501 /* Save 1K for possible follow-up transactions. */ 502 if (*size < SZ_1K) { 503 nents_dma = i; 504 break; 505 } 506 } 507 508 trans_wrapper = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE); 509 if (!trans_wrapper) 510 return -ENOMEM; 511 *out_trans = (struct wire_trans_dma_xfer *)&trans_wrapper->trans; 512 513 asp = (*out_trans)->data; 514 boundary = (void *)trans_wrapper + QAIC_WRAPPER_MAX_SIZE; 515 *size = 0; 516 517 dma_len = 0; 518 w = trans_wrapper; 519 dma_chunk_len = 0; 520 for_each_sg(sgt->sgl, sg, nents_dma, i) { 521 asp->size = cpu_to_le64(dma_len); 522 dma_chunk_len += dma_len; 523 if (dma_len) { 524 asp++; 525 if ((void *)asp + sizeof(*asp) > boundary) { 526 w->len = (void *)asp - (void *)&w->msg; 527 *size += w->len; 528 w = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE); 529 if (!w) 530 return -ENOMEM; 531 boundary = (void *)w + QAIC_WRAPPER_MAX_SIZE; 532 asp = (struct wire_addr_size_pair *)&w->msg; 533 } 534 } 535 asp->addr = cpu_to_le64(sg_dma_address(sg)); 536 dma_len = sg_dma_len(sg); 537 } 538 /* finalize the last segment */ 539 asp->size = cpu_to_le64(dma_len); 540 w->len = (void *)asp + sizeof(*asp) - (void *)&w->msg; 541 *size += w->len; 542 dma_chunk_len += dma_len; 543 resources->xferred_dma_size += dma_chunk_len; 544 545 return nents_dma < nents ? 1 : 0; 546 } 547 548 static void cleanup_xfer(struct qaic_device *qdev, struct dma_xfer *xfer) 549 { 550 int i; 551 552 dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0); 553 sg_free_table(xfer->sgt); 554 kfree(xfer->sgt); 555 for (i = 0; i < xfer->nr_pages; ++i) 556 put_page(xfer->page_list[i]); 557 kfree(xfer->page_list); 558 } 559 560 static int encode_dma(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers, 561 u32 *user_len, struct ioctl_resources *resources, struct qaic_user *usr) 562 { 563 struct qaic_manage_trans_dma_xfer *in_trans = trans; 564 struct wire_trans_dma_xfer *out_trans; 565 struct wrapper_msg *wrapper; 566 struct dma_xfer *xfer; 567 struct wire_msg *msg; 568 bool need_cont_dma; 569 u32 msg_hdr_len; 570 u32 size; 571 int ret; 572 573 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 574 msg = &wrapper->msg; 575 msg_hdr_len = le32_to_cpu(msg->hdr.len); 576 577 /* There should be enough space to hold at least one ASP entry. */ 578 if (size_add(msg_hdr_len, sizeof(*out_trans) + sizeof(struct wire_addr_size_pair)) > 579 QAIC_MANAGE_EXT_MSG_LENGTH) 580 return -ENOMEM; 581 582 xfer = kmalloc(sizeof(*xfer), GFP_KERNEL); 583 if (!xfer) 584 return -ENOMEM; 585 586 ret = find_and_map_user_pages(qdev, in_trans, resources, xfer); 587 if (ret < 0) 588 goto free_xfer; 589 590 need_cont_dma = (bool)ret; 591 592 ret = encode_addr_size_pairs(xfer, wrappers, resources, msg_hdr_len, &size, &out_trans); 593 if (ret < 0) 594 goto cleanup_xfer; 595 596 need_cont_dma = need_cont_dma || (bool)ret; 597 598 msg->hdr.len = cpu_to_le32(msg_hdr_len + size); 599 msg->hdr.count = incr_le32(msg->hdr.count); 600 601 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV); 602 out_trans->hdr.len = cpu_to_le32(size); 603 out_trans->tag = cpu_to_le32(in_trans->tag); 604 out_trans->count = cpu_to_le32((size - sizeof(*out_trans)) / 605 sizeof(struct wire_addr_size_pair)); 606 607 *user_len += in_trans->hdr.len; 608 609 if (resources->dma_chunk_id) { 610 out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id); 611 } else if (need_cont_dma) { 612 while (resources->dma_chunk_id == 0) 613 resources->dma_chunk_id = atomic_inc_return(&usr->chunk_id); 614 615 out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id); 616 } 617 resources->trans_hdr = trans; 618 619 list_add(&xfer->list, &resources->dma_xfers); 620 return 0; 621 622 cleanup_xfer: 623 cleanup_xfer(qdev, xfer); 624 free_xfer: 625 kfree(xfer); 626 return ret; 627 } 628 629 static int encode_activate(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers, 630 u32 *user_len, struct ioctl_resources *resources) 631 { 632 struct qaic_manage_trans_activate_to_dev *in_trans = trans; 633 struct wire_trans_activate_to_dev *out_trans; 634 struct wrapper_msg *trans_wrapper; 635 struct wrapper_msg *wrapper; 636 struct wire_msg *msg; 637 dma_addr_t dma_addr; 638 u32 msg_hdr_len; 639 void *buf; 640 u32 nelem; 641 u32 size; 642 int ret; 643 644 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 645 msg = &wrapper->msg; 646 msg_hdr_len = le32_to_cpu(msg->hdr.len); 647 648 if (size_add(msg_hdr_len, sizeof(*out_trans)) > QAIC_MANAGE_MAX_MSG_LENGTH) 649 return -ENOSPC; 650 651 if (!in_trans->queue_size) 652 return -EINVAL; 653 654 if (in_trans->pad) 655 return -EINVAL; 656 657 nelem = in_trans->queue_size; 658 size = (get_dbc_req_elem_size() + get_dbc_rsp_elem_size()) * nelem; 659 if (size / nelem != get_dbc_req_elem_size() + get_dbc_rsp_elem_size()) 660 return -EINVAL; 661 662 if (size + QAIC_DBC_Q_GAP + QAIC_DBC_Q_BUF_ALIGN < size) 663 return -EINVAL; 664 665 size = ALIGN((size + QAIC_DBC_Q_GAP), QAIC_DBC_Q_BUF_ALIGN); 666 667 buf = dma_alloc_coherent(&qdev->pdev->dev, size, &dma_addr, GFP_KERNEL); 668 if (!buf) 669 return -ENOMEM; 670 671 trans_wrapper = add_wrapper(wrappers, 672 offsetof(struct wrapper_msg, trans) + sizeof(*out_trans)); 673 if (!trans_wrapper) { 674 ret = -ENOMEM; 675 goto free_dma; 676 } 677 trans_wrapper->len = sizeof(*out_trans); 678 out_trans = (struct wire_trans_activate_to_dev *)&trans_wrapper->trans; 679 680 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_ACTIVATE_TO_DEV); 681 out_trans->hdr.len = cpu_to_le32(sizeof(*out_trans)); 682 out_trans->buf_len = cpu_to_le32(size); 683 out_trans->req_q_addr = cpu_to_le64(dma_addr); 684 out_trans->req_q_size = cpu_to_le32(nelem); 685 out_trans->rsp_q_addr = cpu_to_le64(dma_addr + size - nelem * get_dbc_rsp_elem_size()); 686 out_trans->rsp_q_size = cpu_to_le32(nelem); 687 out_trans->options = cpu_to_le32(in_trans->options); 688 689 *user_len += in_trans->hdr.len; 690 msg->hdr.len = cpu_to_le32(msg_hdr_len + sizeof(*out_trans)); 691 msg->hdr.count = incr_le32(msg->hdr.count); 692 693 resources->buf = buf; 694 resources->dma_addr = dma_addr; 695 resources->total_size = size; 696 resources->nelem = nelem; 697 resources->rsp_q_base = buf + size - nelem * get_dbc_rsp_elem_size(); 698 return 0; 699 700 free_dma: 701 dma_free_coherent(&qdev->pdev->dev, size, buf, dma_addr); 702 return ret; 703 } 704 705 static int encode_deactivate(struct qaic_device *qdev, void *trans, 706 u32 *user_len, struct qaic_user *usr) 707 { 708 struct qaic_manage_trans_deactivate *in_trans = trans; 709 710 if (in_trans->dbc_id >= qdev->num_dbc || in_trans->pad) 711 return -EINVAL; 712 713 *user_len += in_trans->hdr.len; 714 715 return disable_dbc(qdev, in_trans->dbc_id, usr); 716 } 717 718 static int encode_status(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers, 719 u32 *user_len) 720 { 721 struct qaic_manage_trans_status_to_dev *in_trans = trans; 722 struct wire_trans_status_to_dev *out_trans; 723 struct wrapper_msg *trans_wrapper; 724 struct wrapper_msg *wrapper; 725 struct wire_msg *msg; 726 u32 msg_hdr_len; 727 728 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 729 msg = &wrapper->msg; 730 msg_hdr_len = le32_to_cpu(msg->hdr.len); 731 732 if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_MAX_MSG_LENGTH) 733 return -ENOSPC; 734 735 trans_wrapper = add_wrapper(wrappers, sizeof(*trans_wrapper)); 736 if (!trans_wrapper) 737 return -ENOMEM; 738 739 trans_wrapper->len = sizeof(*out_trans); 740 out_trans = (struct wire_trans_status_to_dev *)&trans_wrapper->trans; 741 742 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_STATUS_TO_DEV); 743 out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len); 744 msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len); 745 msg->hdr.count = incr_le32(msg->hdr.count); 746 *user_len += in_trans->hdr.len; 747 748 return 0; 749 } 750 751 static int encode_message(struct qaic_device *qdev, struct manage_msg *user_msg, 752 struct wrapper_list *wrappers, struct ioctl_resources *resources, 753 struct qaic_user *usr) 754 { 755 struct qaic_manage_trans_hdr *trans_hdr; 756 struct wrapper_msg *wrapper; 757 struct wire_msg *msg; 758 u32 user_len = 0; 759 int ret; 760 int i; 761 762 if (!user_msg->count || 763 user_msg->len < sizeof(*trans_hdr)) { 764 ret = -EINVAL; 765 goto out; 766 } 767 768 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 769 msg = &wrapper->msg; 770 771 msg->hdr.len = cpu_to_le32(sizeof(msg->hdr)); 772 773 if (resources->dma_chunk_id) { 774 ret = encode_dma(qdev, resources->trans_hdr, wrappers, &user_len, resources, usr); 775 msg->hdr.count = cpu_to_le32(1); 776 goto out; 777 } 778 779 for (i = 0; i < user_msg->count; ++i) { 780 if (user_len > user_msg->len - sizeof(*trans_hdr)) { 781 ret = -EINVAL; 782 break; 783 } 784 trans_hdr = (struct qaic_manage_trans_hdr *)(user_msg->data + user_len); 785 if (trans_hdr->len < sizeof(trans_hdr) || 786 size_add(user_len, trans_hdr->len) > user_msg->len) { 787 ret = -EINVAL; 788 break; 789 } 790 791 switch (trans_hdr->type) { 792 case QAIC_TRANS_PASSTHROUGH_FROM_USR: 793 ret = encode_passthrough(qdev, trans_hdr, wrappers, &user_len); 794 break; 795 case QAIC_TRANS_DMA_XFER_FROM_USR: 796 ret = encode_dma(qdev, trans_hdr, wrappers, &user_len, resources, usr); 797 break; 798 case QAIC_TRANS_ACTIVATE_FROM_USR: 799 ret = encode_activate(qdev, trans_hdr, wrappers, &user_len, resources); 800 break; 801 case QAIC_TRANS_DEACTIVATE_FROM_USR: 802 ret = encode_deactivate(qdev, trans_hdr, &user_len, usr); 803 break; 804 case QAIC_TRANS_STATUS_FROM_USR: 805 ret = encode_status(qdev, trans_hdr, wrappers, &user_len); 806 break; 807 default: 808 ret = -EINVAL; 809 break; 810 } 811 812 if (ret) 813 break; 814 } 815 816 if (user_len != user_msg->len) 817 ret = -EINVAL; 818 out: 819 if (ret) { 820 free_dma_xfers(qdev, resources); 821 free_dbc_buf(qdev, resources); 822 return ret; 823 } 824 825 return 0; 826 } 827 828 static int decode_passthrough(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg, 829 u32 *msg_len) 830 { 831 struct qaic_manage_trans_passthrough *out_trans; 832 struct wire_trans_passthrough *in_trans = trans; 833 u32 len; 834 835 out_trans = (void *)user_msg->data + user_msg->len; 836 837 len = le32_to_cpu(in_trans->hdr.len); 838 if (len % 8 != 0) 839 return -EINVAL; 840 841 if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH) 842 return -ENOSPC; 843 844 memcpy(out_trans->data, in_trans->data, len - sizeof(in_trans->hdr)); 845 user_msg->len += len; 846 *msg_len += len; 847 out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type); 848 out_trans->hdr.len = len; 849 850 return 0; 851 } 852 853 static int decode_activate(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg, 854 u32 *msg_len, struct ioctl_resources *resources, struct qaic_user *usr) 855 { 856 struct qaic_manage_trans_activate_from_dev *out_trans; 857 struct wire_trans_activate_from_dev *in_trans = trans; 858 u32 len; 859 860 out_trans = (void *)user_msg->data + user_msg->len; 861 862 len = le32_to_cpu(in_trans->hdr.len); 863 if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH) 864 return -ENOSPC; 865 866 user_msg->len += len; 867 *msg_len += len; 868 out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type); 869 out_trans->hdr.len = len; 870 out_trans->status = le32_to_cpu(in_trans->status); 871 out_trans->dbc_id = le32_to_cpu(in_trans->dbc_id); 872 out_trans->options = le64_to_cpu(in_trans->options); 873 874 if (!resources->buf) 875 /* how did we get an activate response without a request? */ 876 return -EINVAL; 877 878 if (out_trans->dbc_id >= qdev->num_dbc) 879 /* 880 * The device assigned an invalid resource, which should never 881 * happen. Return an error so the user can try to recover. 882 */ 883 return -ENODEV; 884 885 if (out_trans->status) 886 /* 887 * Allocating resources failed on device side. This is not an 888 * expected behaviour, user is expected to handle this situation. 889 */ 890 return -ECANCELED; 891 892 resources->status = out_trans->status; 893 resources->dbc_id = out_trans->dbc_id; 894 save_dbc_buf(qdev, resources, usr); 895 896 return 0; 897 } 898 899 static int decode_deactivate(struct qaic_device *qdev, void *trans, u32 *msg_len, 900 struct qaic_user *usr) 901 { 902 struct wire_trans_deactivate_from_dev *in_trans = trans; 903 u32 dbc_id = le32_to_cpu(in_trans->dbc_id); 904 u32 status = le32_to_cpu(in_trans->status); 905 906 if (dbc_id >= qdev->num_dbc) 907 /* 908 * The device assigned an invalid resource, which should never 909 * happen. Inject an error so the user can try to recover. 910 */ 911 return -ENODEV; 912 913 if (status) { 914 /* 915 * Releasing resources failed on the device side, which puts 916 * us in a bind since they may still be in use, so enable the 917 * dbc. User is expected to retry deactivation. 918 */ 919 enable_dbc(qdev, dbc_id, usr); 920 return -ECANCELED; 921 } 922 923 release_dbc(qdev, dbc_id); 924 *msg_len += sizeof(*in_trans); 925 926 return 0; 927 } 928 929 static int decode_status(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg, 930 u32 *user_len, struct wire_msg *msg) 931 { 932 struct qaic_manage_trans_status_from_dev *out_trans; 933 struct wire_trans_status_from_dev *in_trans = trans; 934 u32 len; 935 936 out_trans = (void *)user_msg->data + user_msg->len; 937 938 len = le32_to_cpu(in_trans->hdr.len); 939 if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH) 940 return -ENOSPC; 941 942 out_trans->hdr.type = QAIC_TRANS_STATUS_FROM_DEV; 943 out_trans->hdr.len = len; 944 out_trans->major = le16_to_cpu(in_trans->major); 945 out_trans->minor = le16_to_cpu(in_trans->minor); 946 out_trans->status_flags = le64_to_cpu(in_trans->status_flags); 947 out_trans->status = le32_to_cpu(in_trans->status); 948 *user_len += le32_to_cpu(in_trans->hdr.len); 949 user_msg->len += len; 950 951 if (out_trans->status) 952 return -ECANCELED; 953 if (out_trans->status_flags & BIT(0) && !valid_crc(msg)) 954 return -EPIPE; 955 956 return 0; 957 } 958 959 static int decode_message(struct qaic_device *qdev, struct manage_msg *user_msg, 960 struct wire_msg *msg, struct ioctl_resources *resources, 961 struct qaic_user *usr) 962 { 963 u32 msg_hdr_len = le32_to_cpu(msg->hdr.len); 964 struct wire_trans_hdr *trans_hdr; 965 u32 msg_len = 0; 966 int ret; 967 int i; 968 969 if (msg_hdr_len < sizeof(*trans_hdr) || 970 msg_hdr_len > QAIC_MANAGE_MAX_MSG_LENGTH) 971 return -EINVAL; 972 973 user_msg->len = 0; 974 user_msg->count = le32_to_cpu(msg->hdr.count); 975 976 for (i = 0; i < user_msg->count; ++i) { 977 u32 hdr_len; 978 979 if (msg_len > msg_hdr_len - sizeof(*trans_hdr)) 980 return -EINVAL; 981 982 trans_hdr = (struct wire_trans_hdr *)(msg->data + msg_len); 983 hdr_len = le32_to_cpu(trans_hdr->len); 984 if (hdr_len < sizeof(*trans_hdr) || 985 size_add(msg_len, hdr_len) > msg_hdr_len) 986 return -EINVAL; 987 988 switch (le32_to_cpu(trans_hdr->type)) { 989 case QAIC_TRANS_PASSTHROUGH_FROM_DEV: 990 ret = decode_passthrough(qdev, trans_hdr, user_msg, &msg_len); 991 break; 992 case QAIC_TRANS_ACTIVATE_FROM_DEV: 993 ret = decode_activate(qdev, trans_hdr, user_msg, &msg_len, resources, usr); 994 break; 995 case QAIC_TRANS_DEACTIVATE_FROM_DEV: 996 ret = decode_deactivate(qdev, trans_hdr, &msg_len, usr); 997 break; 998 case QAIC_TRANS_STATUS_FROM_DEV: 999 ret = decode_status(qdev, trans_hdr, user_msg, &msg_len, msg); 1000 break; 1001 default: 1002 return -EINVAL; 1003 } 1004 1005 if (ret) 1006 return ret; 1007 } 1008 1009 if (msg_len != (msg_hdr_len - sizeof(msg->hdr))) 1010 return -EINVAL; 1011 1012 return 0; 1013 } 1014 1015 static void *msg_xfer(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 seq_num, 1016 bool ignore_signal) 1017 { 1018 struct xfer_queue_elem elem; 1019 struct wire_msg *out_buf; 1020 struct wrapper_msg *w; 1021 long ret = -EAGAIN; 1022 int xfer_count = 0; 1023 int retry_count; 1024 1025 if (qdev->in_reset) { 1026 mutex_unlock(&qdev->cntl_mutex); 1027 return ERR_PTR(-ENODEV); 1028 } 1029 1030 /* Attempt to avoid a partial commit of a message */ 1031 list_for_each_entry(w, &wrappers->list, list) 1032 xfer_count++; 1033 1034 for (retry_count = 0; retry_count < QAIC_MHI_RETRY_MAX; retry_count++) { 1035 if (xfer_count <= mhi_get_free_desc_count(qdev->cntl_ch, DMA_TO_DEVICE)) { 1036 ret = 0; 1037 break; 1038 } 1039 msleep_interruptible(QAIC_MHI_RETRY_WAIT_MS); 1040 if (signal_pending(current)) 1041 break; 1042 } 1043 1044 if (ret) { 1045 mutex_unlock(&qdev->cntl_mutex); 1046 return ERR_PTR(ret); 1047 } 1048 1049 elem.seq_num = seq_num; 1050 elem.buf = NULL; 1051 init_completion(&elem.xfer_done); 1052 if (likely(!qdev->cntl_lost_buf)) { 1053 /* 1054 * The max size of request to device is QAIC_MANAGE_EXT_MSG_LENGTH. 1055 * The max size of response from device is QAIC_MANAGE_MAX_MSG_LENGTH. 1056 */ 1057 out_buf = kmalloc(QAIC_MANAGE_MAX_MSG_LENGTH, GFP_KERNEL); 1058 if (!out_buf) { 1059 mutex_unlock(&qdev->cntl_mutex); 1060 return ERR_PTR(-ENOMEM); 1061 } 1062 1063 ret = mhi_queue_buf(qdev->cntl_ch, DMA_FROM_DEVICE, out_buf, 1064 QAIC_MANAGE_MAX_MSG_LENGTH, MHI_EOT); 1065 if (ret) { 1066 mutex_unlock(&qdev->cntl_mutex); 1067 return ERR_PTR(ret); 1068 } 1069 } else { 1070 /* 1071 * we lost a buffer because we queued a recv buf, but then 1072 * queuing the corresponding tx buf failed. To try to avoid 1073 * a memory leak, lets reclaim it and use it for this 1074 * transaction. 1075 */ 1076 qdev->cntl_lost_buf = false; 1077 } 1078 1079 list_for_each_entry(w, &wrappers->list, list) { 1080 kref_get(&w->ref_count); 1081 retry_count = 0; 1082 ret = mhi_queue_buf(qdev->cntl_ch, DMA_TO_DEVICE, &w->msg, w->len, 1083 list_is_last(&w->list, &wrappers->list) ? MHI_EOT : MHI_CHAIN); 1084 if (ret) { 1085 qdev->cntl_lost_buf = true; 1086 kref_put(&w->ref_count, free_wrapper); 1087 mutex_unlock(&qdev->cntl_mutex); 1088 return ERR_PTR(ret); 1089 } 1090 } 1091 1092 list_add_tail(&elem.list, &qdev->cntl_xfer_list); 1093 mutex_unlock(&qdev->cntl_mutex); 1094 1095 if (ignore_signal) 1096 ret = wait_for_completion_timeout(&elem.xfer_done, control_resp_timeout_s * HZ); 1097 else 1098 ret = wait_for_completion_interruptible_timeout(&elem.xfer_done, 1099 control_resp_timeout_s * HZ); 1100 /* 1101 * not using _interruptable because we have to cleanup or we'll 1102 * likely cause memory corruption 1103 */ 1104 mutex_lock(&qdev->cntl_mutex); 1105 if (!list_empty(&elem.list)) 1106 list_del(&elem.list); 1107 if (!ret && !elem.buf) 1108 ret = -ETIMEDOUT; 1109 else if (ret > 0 && !elem.buf) 1110 ret = -EIO; 1111 mutex_unlock(&qdev->cntl_mutex); 1112 1113 if (ret < 0) { 1114 kfree(elem.buf); 1115 return ERR_PTR(ret); 1116 } else if (!qdev->valid_crc(elem.buf)) { 1117 kfree(elem.buf); 1118 return ERR_PTR(-EPIPE); 1119 } 1120 1121 return elem.buf; 1122 } 1123 1124 /* Add a transaction to abort the outstanding DMA continuation */ 1125 static int abort_dma_cont(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 dma_chunk_id) 1126 { 1127 struct wire_trans_dma_xfer *out_trans; 1128 u32 size = sizeof(*out_trans); 1129 struct wrapper_msg *wrapper; 1130 struct wrapper_msg *w; 1131 struct wire_msg *msg; 1132 1133 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 1134 msg = &wrapper->msg; 1135 1136 /* Remove all but the first wrapper which has the msg header */ 1137 list_for_each_entry_safe(wrapper, w, &wrappers->list, list) 1138 if (!list_is_first(&wrapper->list, &wrappers->list)) 1139 kref_put(&wrapper->ref_count, free_wrapper); 1140 1141 wrapper = add_wrapper(wrappers, offsetof(struct wrapper_msg, trans) + sizeof(*out_trans)); 1142 1143 if (!wrapper) 1144 return -ENOMEM; 1145 1146 out_trans = (struct wire_trans_dma_xfer *)&wrapper->trans; 1147 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV); 1148 out_trans->hdr.len = cpu_to_le32(size); 1149 out_trans->tag = cpu_to_le32(0); 1150 out_trans->count = cpu_to_le32(0); 1151 out_trans->dma_chunk_id = cpu_to_le32(dma_chunk_id); 1152 1153 msg->hdr.len = cpu_to_le32(size + sizeof(*msg)); 1154 msg->hdr.count = cpu_to_le32(1); 1155 wrapper->len = size; 1156 1157 return 0; 1158 } 1159 1160 static struct wrapper_list *alloc_wrapper_list(void) 1161 { 1162 struct wrapper_list *wrappers; 1163 1164 wrappers = kmalloc(sizeof(*wrappers), GFP_KERNEL); 1165 if (!wrappers) 1166 return NULL; 1167 INIT_LIST_HEAD(&wrappers->list); 1168 spin_lock_init(&wrappers->lock); 1169 1170 return wrappers; 1171 } 1172 1173 static int qaic_manage_msg_xfer(struct qaic_device *qdev, struct qaic_user *usr, 1174 struct manage_msg *user_msg, struct ioctl_resources *resources, 1175 struct wire_msg **rsp) 1176 { 1177 struct wrapper_list *wrappers; 1178 struct wrapper_msg *wrapper; 1179 struct wrapper_msg *w; 1180 bool all_done = false; 1181 struct wire_msg *msg; 1182 int ret; 1183 1184 wrappers = alloc_wrapper_list(); 1185 if (!wrappers) 1186 return -ENOMEM; 1187 1188 wrapper = add_wrapper(wrappers, sizeof(*wrapper)); 1189 if (!wrapper) { 1190 kfree(wrappers); 1191 return -ENOMEM; 1192 } 1193 1194 msg = &wrapper->msg; 1195 wrapper->len = sizeof(*msg); 1196 1197 ret = encode_message(qdev, user_msg, wrappers, resources, usr); 1198 if (ret && resources->dma_chunk_id) 1199 ret = abort_dma_cont(qdev, wrappers, resources->dma_chunk_id); 1200 if (ret) 1201 goto encode_failed; 1202 1203 ret = mutex_lock_interruptible(&qdev->cntl_mutex); 1204 if (ret) 1205 goto lock_failed; 1206 1207 msg->hdr.magic_number = MANAGE_MAGIC_NUMBER; 1208 msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++); 1209 1210 if (usr) { 1211 msg->hdr.handle = cpu_to_le32(usr->handle); 1212 msg->hdr.partition_id = cpu_to_le32(usr->qddev->partition_id); 1213 } else { 1214 msg->hdr.handle = 0; 1215 msg->hdr.partition_id = cpu_to_le32(QAIC_NO_PARTITION); 1216 } 1217 1218 msg->hdr.padding = cpu_to_le32(0); 1219 msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers)); 1220 1221 /* msg_xfer releases the mutex */ 1222 *rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, false); 1223 if (IS_ERR(*rsp)) 1224 ret = PTR_ERR(*rsp); 1225 1226 lock_failed: 1227 free_dma_xfers(qdev, resources); 1228 encode_failed: 1229 spin_lock(&wrappers->lock); 1230 list_for_each_entry_safe(wrapper, w, &wrappers->list, list) 1231 kref_put(&wrapper->ref_count, free_wrapper); 1232 all_done = list_empty(&wrappers->list); 1233 spin_unlock(&wrappers->lock); 1234 if (all_done) 1235 kfree(wrappers); 1236 1237 return ret; 1238 } 1239 1240 static int qaic_manage(struct qaic_device *qdev, struct qaic_user *usr, struct manage_msg *user_msg) 1241 { 1242 struct wire_trans_dma_xfer_cont *dma_cont = NULL; 1243 struct ioctl_resources resources; 1244 struct wire_msg *rsp = NULL; 1245 int ret; 1246 1247 memset(&resources, 0, sizeof(struct ioctl_resources)); 1248 1249 INIT_LIST_HEAD(&resources.dma_xfers); 1250 1251 if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH || 1252 user_msg->count > QAIC_MANAGE_MAX_MSG_LENGTH / sizeof(struct qaic_manage_trans_hdr)) 1253 return -EINVAL; 1254 1255 dma_xfer_continue: 1256 ret = qaic_manage_msg_xfer(qdev, usr, user_msg, &resources, &rsp); 1257 if (ret) 1258 return ret; 1259 /* dma_cont should be the only transaction if present */ 1260 if (le32_to_cpu(rsp->hdr.count) == 1) { 1261 dma_cont = (struct wire_trans_dma_xfer_cont *)rsp->data; 1262 if (le32_to_cpu(dma_cont->hdr.type) != QAIC_TRANS_DMA_XFER_CONT) 1263 dma_cont = NULL; 1264 } 1265 if (dma_cont) { 1266 if (le32_to_cpu(dma_cont->dma_chunk_id) == resources.dma_chunk_id && 1267 le64_to_cpu(dma_cont->xferred_size) == resources.xferred_dma_size) { 1268 kfree(rsp); 1269 goto dma_xfer_continue; 1270 } 1271 1272 ret = -EINVAL; 1273 goto dma_cont_failed; 1274 } 1275 1276 ret = decode_message(qdev, user_msg, rsp, &resources, usr); 1277 1278 dma_cont_failed: 1279 free_dbc_buf(qdev, &resources); 1280 kfree(rsp); 1281 return ret; 1282 } 1283 1284 int qaic_manage_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1285 { 1286 struct qaic_manage_msg *user_msg = data; 1287 struct qaic_device *qdev; 1288 struct manage_msg *msg; 1289 struct qaic_user *usr; 1290 u8 __user *user_data; 1291 int qdev_rcu_id; 1292 int usr_rcu_id; 1293 int ret; 1294 1295 if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH) 1296 return -EINVAL; 1297 1298 usr = file_priv->driver_priv; 1299 1300 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1301 if (!usr->qddev) { 1302 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1303 return -ENODEV; 1304 } 1305 1306 qdev = usr->qddev->qdev; 1307 1308 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1309 if (qdev->in_reset) { 1310 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1311 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1312 return -ENODEV; 1313 } 1314 1315 msg = kzalloc(QAIC_MANAGE_MAX_MSG_LENGTH + sizeof(*msg), GFP_KERNEL); 1316 if (!msg) { 1317 ret = -ENOMEM; 1318 goto out; 1319 } 1320 1321 msg->len = user_msg->len; 1322 msg->count = user_msg->count; 1323 1324 user_data = u64_to_user_ptr(user_msg->data); 1325 1326 if (copy_from_user(msg->data, user_data, user_msg->len)) { 1327 ret = -EFAULT; 1328 goto free_msg; 1329 } 1330 1331 ret = qaic_manage(qdev, usr, msg); 1332 1333 /* 1334 * If the qaic_manage() is successful then we copy the message onto 1335 * userspace memory but we have an exception for -ECANCELED. 1336 * For -ECANCELED, it means that device has NACKed the message with a 1337 * status error code which userspace would like to know. 1338 */ 1339 if (ret == -ECANCELED || !ret) { 1340 if (copy_to_user(user_data, msg->data, msg->len)) { 1341 ret = -EFAULT; 1342 } else { 1343 user_msg->len = msg->len; 1344 user_msg->count = msg->count; 1345 } 1346 } 1347 1348 free_msg: 1349 kfree(msg); 1350 out: 1351 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1352 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1353 return ret; 1354 } 1355 1356 int get_cntl_version(struct qaic_device *qdev, struct qaic_user *usr, u16 *major, u16 *minor) 1357 { 1358 struct qaic_manage_trans_status_from_dev *status_result; 1359 struct qaic_manage_trans_status_to_dev *status_query; 1360 struct manage_msg *user_msg; 1361 int ret; 1362 1363 user_msg = kmalloc(sizeof(*user_msg) + sizeof(*status_result), GFP_KERNEL); 1364 if (!user_msg) { 1365 ret = -ENOMEM; 1366 goto out; 1367 } 1368 user_msg->len = sizeof(*status_query); 1369 user_msg->count = 1; 1370 1371 status_query = (struct qaic_manage_trans_status_to_dev *)user_msg->data; 1372 status_query->hdr.type = QAIC_TRANS_STATUS_FROM_USR; 1373 status_query->hdr.len = sizeof(status_query->hdr); 1374 1375 ret = qaic_manage(qdev, usr, user_msg); 1376 if (ret) 1377 goto kfree_user_msg; 1378 status_result = (struct qaic_manage_trans_status_from_dev *)user_msg->data; 1379 *major = status_result->major; 1380 *minor = status_result->minor; 1381 1382 if (status_result->status_flags & BIT(0)) { /* device is using CRC */ 1383 /* By default qdev->gen_crc is programmed to generate CRC */ 1384 qdev->valid_crc = valid_crc; 1385 } else { 1386 /* By default qdev->valid_crc is programmed to bypass CRC */ 1387 qdev->gen_crc = gen_crc_stub; 1388 } 1389 1390 kfree_user_msg: 1391 kfree(user_msg); 1392 out: 1393 return ret; 1394 } 1395 1396 static void resp_worker(struct work_struct *work) 1397 { 1398 struct resp_work *resp = container_of(work, struct resp_work, work); 1399 struct qaic_device *qdev = resp->qdev; 1400 struct wire_msg *msg = resp->buf; 1401 struct xfer_queue_elem *elem; 1402 struct xfer_queue_elem *i; 1403 bool found = false; 1404 1405 mutex_lock(&qdev->cntl_mutex); 1406 list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) { 1407 if (elem->seq_num == le32_to_cpu(msg->hdr.sequence_number)) { 1408 found = true; 1409 list_del_init(&elem->list); 1410 elem->buf = msg; 1411 complete_all(&elem->xfer_done); 1412 break; 1413 } 1414 } 1415 mutex_unlock(&qdev->cntl_mutex); 1416 1417 if (!found) 1418 /* request must have timed out, drop packet */ 1419 kfree(msg); 1420 1421 kfree(resp); 1422 } 1423 1424 static void free_wrapper_from_list(struct wrapper_list *wrappers, struct wrapper_msg *wrapper) 1425 { 1426 bool all_done = false; 1427 1428 spin_lock(&wrappers->lock); 1429 kref_put(&wrapper->ref_count, free_wrapper); 1430 all_done = list_empty(&wrappers->list); 1431 spin_unlock(&wrappers->lock); 1432 1433 if (all_done) 1434 kfree(wrappers); 1435 } 1436 1437 void qaic_mhi_ul_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result) 1438 { 1439 struct wire_msg *msg = mhi_result->buf_addr; 1440 struct wrapper_msg *wrapper = container_of(msg, struct wrapper_msg, msg); 1441 1442 free_wrapper_from_list(wrapper->head, wrapper); 1443 } 1444 1445 void qaic_mhi_dl_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result) 1446 { 1447 struct qaic_device *qdev = dev_get_drvdata(&mhi_dev->dev); 1448 struct wire_msg *msg = mhi_result->buf_addr; 1449 struct resp_work *resp; 1450 1451 if (mhi_result->transaction_status || msg->hdr.magic_number != MANAGE_MAGIC_NUMBER) { 1452 kfree(msg); 1453 return; 1454 } 1455 1456 resp = kmalloc(sizeof(*resp), GFP_ATOMIC); 1457 if (!resp) { 1458 kfree(msg); 1459 return; 1460 } 1461 1462 INIT_WORK(&resp->work, resp_worker); 1463 resp->qdev = qdev; 1464 resp->buf = msg; 1465 queue_work(qdev->cntl_wq, &resp->work); 1466 } 1467 1468 int qaic_control_open(struct qaic_device *qdev) 1469 { 1470 if (!qdev->cntl_ch) 1471 return -ENODEV; 1472 1473 qdev->cntl_lost_buf = false; 1474 /* 1475 * By default qaic should assume that device has CRC enabled. 1476 * Qaic comes to know if device has CRC enabled or disabled during the 1477 * device status transaction, which is the first transaction performed 1478 * on control channel. 1479 * 1480 * So CRC validation of first device status transaction response is 1481 * ignored (by calling valid_crc_stub) and is done later during decoding 1482 * if device has CRC enabled. 1483 * Now that qaic knows whether device has CRC enabled or not it acts 1484 * accordingly. 1485 */ 1486 qdev->gen_crc = gen_crc; 1487 qdev->valid_crc = valid_crc_stub; 1488 1489 return mhi_prepare_for_transfer(qdev->cntl_ch); 1490 } 1491 1492 void qaic_control_close(struct qaic_device *qdev) 1493 { 1494 mhi_unprepare_from_transfer(qdev->cntl_ch); 1495 } 1496 1497 void qaic_release_usr(struct qaic_device *qdev, struct qaic_user *usr) 1498 { 1499 struct wire_trans_terminate_to_dev *trans; 1500 struct wrapper_list *wrappers; 1501 struct wrapper_msg *wrapper; 1502 struct wire_msg *msg; 1503 struct wire_msg *rsp; 1504 1505 wrappers = alloc_wrapper_list(); 1506 if (!wrappers) 1507 return; 1508 1509 wrapper = add_wrapper(wrappers, sizeof(*wrapper) + sizeof(*msg) + sizeof(*trans)); 1510 if (!wrapper) 1511 return; 1512 1513 msg = &wrapper->msg; 1514 1515 trans = (struct wire_trans_terminate_to_dev *)msg->data; 1516 1517 trans->hdr.type = cpu_to_le32(QAIC_TRANS_TERMINATE_TO_DEV); 1518 trans->hdr.len = cpu_to_le32(sizeof(*trans)); 1519 trans->handle = cpu_to_le32(usr->handle); 1520 1521 mutex_lock(&qdev->cntl_mutex); 1522 wrapper->len = sizeof(msg->hdr) + sizeof(*trans); 1523 msg->hdr.magic_number = MANAGE_MAGIC_NUMBER; 1524 msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++); 1525 msg->hdr.len = cpu_to_le32(wrapper->len); 1526 msg->hdr.count = cpu_to_le32(1); 1527 msg->hdr.handle = cpu_to_le32(usr->handle); 1528 msg->hdr.padding = cpu_to_le32(0); 1529 msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers)); 1530 1531 /* 1532 * msg_xfer releases the mutex 1533 * We don't care about the return of msg_xfer since we will not do 1534 * anything different based on what happens. 1535 * We ignore pending signals since one will be set if the user is 1536 * killed, and we need give the device a chance to cleanup, otherwise 1537 * DMA may still be in progress when we return. 1538 */ 1539 rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, true); 1540 if (!IS_ERR(rsp)) 1541 kfree(rsp); 1542 free_wrapper_from_list(wrappers, wrapper); 1543 } 1544 1545 void wake_all_cntl(struct qaic_device *qdev) 1546 { 1547 struct xfer_queue_elem *elem; 1548 struct xfer_queue_elem *i; 1549 1550 mutex_lock(&qdev->cntl_mutex); 1551 list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) { 1552 list_del_init(&elem->list); 1553 complete_all(&elem->xfer_done); 1554 } 1555 mutex_unlock(&qdev->cntl_mutex); 1556 } 1557