1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020-2023 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 #include <linux/highmem.h> 8 9 #include "ivpu_drv.h" 10 #include "ivpu_hw_mtl_reg.h" 11 #include "ivpu_hw_reg_io.h" 12 #include "ivpu_mmu.h" 13 #include "ivpu_mmu_context.h" 14 #include "ivpu_pm.h" 15 16 #define IVPU_MMU_IDR0_REF 0x080f3e0f 17 #define IVPU_MMU_IDR0_REF_SIMICS 0x080f3e1f 18 #define IVPU_MMU_IDR1_REF 0x0e739d18 19 #define IVPU_MMU_IDR3_REF 0x0000003c 20 #define IVPU_MMU_IDR5_REF 0x00040070 21 #define IVPU_MMU_IDR5_REF_SIMICS 0x00000075 22 #define IVPU_MMU_IDR5_REF_FPGA 0x00800075 23 24 #define IVPU_MMU_CDTAB_ENT_SIZE 64 25 #define IVPU_MMU_CDTAB_ENT_COUNT_LOG2 8 /* 256 entries */ 26 #define IVPU_MMU_CDTAB_ENT_COUNT ((u32)1 << IVPU_MMU_CDTAB_ENT_COUNT_LOG2) 27 28 #define IVPU_MMU_STREAM_ID0 0 29 #define IVPU_MMU_STREAM_ID3 3 30 31 #define IVPU_MMU_STRTAB_ENT_SIZE 64 32 #define IVPU_MMU_STRTAB_ENT_COUNT 4 33 #define IVPU_MMU_STRTAB_CFG_LOG2SIZE 2 34 #define IVPU_MMU_STRTAB_CFG IVPU_MMU_STRTAB_CFG_LOG2SIZE 35 36 #define IVPU_MMU_Q_COUNT_LOG2 4 /* 16 entries */ 37 #define IVPU_MMU_Q_COUNT ((u32)1 << IVPU_MMU_Q_COUNT_LOG2) 38 #define IVPU_MMU_Q_WRAP_BIT (IVPU_MMU_Q_COUNT << 1) 39 #define IVPU_MMU_Q_WRAP_MASK (IVPU_MMU_Q_WRAP_BIT - 1) 40 #define IVPU_MMU_Q_IDX_MASK (IVPU_MMU_Q_COUNT - 1) 41 #define IVPU_MMU_Q_IDX(val) ((val) & IVPU_MMU_Q_IDX_MASK) 42 43 #define IVPU_MMU_CMDQ_CMD_SIZE 16 44 #define IVPU_MMU_CMDQ_SIZE (IVPU_MMU_Q_COUNT * IVPU_MMU_CMDQ_CMD_SIZE) 45 46 #define IVPU_MMU_EVTQ_CMD_SIZE 32 47 #define IVPU_MMU_EVTQ_SIZE (IVPU_MMU_Q_COUNT * IVPU_MMU_EVTQ_CMD_SIZE) 48 49 #define IVPU_MMU_CMD_OPCODE GENMASK(7, 0) 50 51 #define IVPU_MMU_CMD_SYNC_0_CS GENMASK(13, 12) 52 #define IVPU_MMU_CMD_SYNC_0_MSH GENMASK(23, 22) 53 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR GENMASK(27, 24) 54 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR GENMASK(27, 24) 55 #define IVPU_MMU_CMD_SYNC_0_MSI_DATA GENMASK(63, 32) 56 57 #define IVPU_MMU_CMD_CFGI_0_SSEC BIT(10) 58 #define IVPU_MMU_CMD_CFGI_0_SSV BIT(11) 59 #define IVPU_MMU_CMD_CFGI_0_SSID GENMASK(31, 12) 60 #define IVPU_MMU_CMD_CFGI_0_SID GENMASK(63, 32) 61 #define IVPU_MMU_CMD_CFGI_1_RANGE GENMASK(4, 0) 62 63 #define IVPU_MMU_CMD_TLBI_0_ASID GENMASK(63, 48) 64 #define IVPU_MMU_CMD_TLBI_0_VMID GENMASK(47, 32) 65 66 #define CMD_PREFETCH_CFG 0x1 67 #define CMD_CFGI_STE 0x3 68 #define CMD_CFGI_ALL 0x4 69 #define CMD_CFGI_CD 0x5 70 #define CMD_CFGI_CD_ALL 0x6 71 #define CMD_TLBI_NH_ASID 0x11 72 #define CMD_TLBI_EL2_ALL 0x20 73 #define CMD_TLBI_NSNH_ALL 0x30 74 #define CMD_SYNC 0x46 75 76 #define IVPU_MMU_EVT_F_UUT 0x01 77 #define IVPU_MMU_EVT_C_BAD_STREAMID 0x02 78 #define IVPU_MMU_EVT_F_STE_FETCH 0x03 79 #define IVPU_MMU_EVT_C_BAD_STE 0x04 80 #define IVPU_MMU_EVT_F_BAD_ATS_TREQ 0x05 81 #define IVPU_MMU_EVT_F_STREAM_DISABLED 0x06 82 #define IVPU_MMU_EVT_F_TRANSL_FORBIDDEN 0x07 83 #define IVPU_MMU_EVT_C_BAD_SUBSTREAMID 0x08 84 #define IVPU_MMU_EVT_F_CD_FETCH 0x09 85 #define IVPU_MMU_EVT_C_BAD_CD 0x0a 86 #define IVPU_MMU_EVT_F_WALK_EABT 0x0b 87 #define IVPU_MMU_EVT_F_TRANSLATION 0x10 88 #define IVPU_MMU_EVT_F_ADDR_SIZE 0x11 89 #define IVPU_MMU_EVT_F_ACCESS 0x12 90 #define IVPU_MMU_EVT_F_PERMISSION 0x13 91 #define IVPU_MMU_EVT_F_TLB_CONFLICT 0x20 92 #define IVPU_MMU_EVT_F_CFG_CONFLICT 0x21 93 #define IVPU_MMU_EVT_E_PAGE_REQUEST 0x24 94 #define IVPU_MMU_EVT_F_VMS_FETCH 0x25 95 96 #define IVPU_MMU_EVT_OP_MASK GENMASK_ULL(7, 0) 97 #define IVPU_MMU_EVT_SSID_MASK GENMASK_ULL(31, 12) 98 99 #define IVPU_MMU_Q_BASE_RWA BIT(62) 100 #define IVPU_MMU_Q_BASE_ADDR_MASK GENMASK_ULL(51, 5) 101 #define IVPU_MMU_STRTAB_BASE_RA BIT(62) 102 #define IVPU_MMU_STRTAB_BASE_ADDR_MASK GENMASK_ULL(51, 6) 103 104 #define IVPU_MMU_IRQ_EVTQ_EN BIT(2) 105 #define IVPU_MMU_IRQ_GERROR_EN BIT(0) 106 107 #define IVPU_MMU_CR0_ATSCHK BIT(4) 108 #define IVPU_MMU_CR0_CMDQEN BIT(3) 109 #define IVPU_MMU_CR0_EVTQEN BIT(2) 110 #define IVPU_MMU_CR0_PRIQEN BIT(1) 111 #define IVPU_MMU_CR0_SMMUEN BIT(0) 112 113 #define IVPU_MMU_CR1_TABLE_SH GENMASK(11, 10) 114 #define IVPU_MMU_CR1_TABLE_OC GENMASK(9, 8) 115 #define IVPU_MMU_CR1_TABLE_IC GENMASK(7, 6) 116 #define IVPU_MMU_CR1_QUEUE_SH GENMASK(5, 4) 117 #define IVPU_MMU_CR1_QUEUE_OC GENMASK(3, 2) 118 #define IVPU_MMU_CR1_QUEUE_IC GENMASK(1, 0) 119 #define IVPU_MMU_CACHE_NC 0 120 #define IVPU_MMU_CACHE_WB 1 121 #define IVPU_MMU_CACHE_WT 2 122 #define IVPU_MMU_SH_NSH 0 123 #define IVPU_MMU_SH_OSH 2 124 #define IVPU_MMU_SH_ISH 3 125 126 #define IVPU_MMU_CMDQ_OP GENMASK_ULL(7, 0) 127 128 #define IVPU_MMU_CD_0_TCR_T0SZ GENMASK_ULL(5, 0) 129 #define IVPU_MMU_CD_0_TCR_TG0 GENMASK_ULL(7, 6) 130 #define IVPU_MMU_CD_0_TCR_IRGN0 GENMASK_ULL(9, 8) 131 #define IVPU_MMU_CD_0_TCR_ORGN0 GENMASK_ULL(11, 10) 132 #define IVPU_MMU_CD_0_TCR_SH0 GENMASK_ULL(13, 12) 133 #define IVPU_MMU_CD_0_TCR_EPD0 BIT_ULL(14) 134 #define IVPU_MMU_CD_0_TCR_EPD1 BIT_ULL(30) 135 #define IVPU_MMU_CD_0_ENDI BIT(15) 136 #define IVPU_MMU_CD_0_V BIT(31) 137 #define IVPU_MMU_CD_0_TCR_IPS GENMASK_ULL(34, 32) 138 #define IVPU_MMU_CD_0_TCR_TBI0 BIT_ULL(38) 139 #define IVPU_MMU_CD_0_AA64 BIT(41) 140 #define IVPU_MMU_CD_0_S BIT(44) 141 #define IVPU_MMU_CD_0_R BIT(45) 142 #define IVPU_MMU_CD_0_A BIT(46) 143 #define IVPU_MMU_CD_0_ASET BIT(47) 144 #define IVPU_MMU_CD_0_ASID GENMASK_ULL(63, 48) 145 146 #define IVPU_MMU_CD_1_TTB0_MASK GENMASK_ULL(51, 4) 147 148 #define IVPU_MMU_STE_0_S1CDMAX GENMASK_ULL(63, 59) 149 #define IVPU_MMU_STE_0_S1FMT GENMASK_ULL(5, 4) 150 #define IVPU_MMU_STE_0_S1FMT_LINEAR 0 151 #define IVPU_MMU_STE_DWORDS 8 152 #define IVPU_MMU_STE_0_CFG_S1_TRANS 5 153 #define IVPU_MMU_STE_0_CFG GENMASK_ULL(3, 1) 154 #define IVPU_MMU_STE_0_S1CTXPTR_MASK GENMASK_ULL(51, 6) 155 #define IVPU_MMU_STE_0_V BIT(0) 156 157 #define IVPU_MMU_STE_1_STRW_NSEL1 0ul 158 #define IVPU_MMU_STE_1_CONT GENMASK_ULL(16, 13) 159 #define IVPU_MMU_STE_1_STRW GENMASK_ULL(31, 30) 160 #define IVPU_MMU_STE_1_PRIVCFG GENMASK_ULL(49, 48) 161 #define IVPU_MMU_STE_1_PRIVCFG_UNPRIV 2ul 162 #define IVPU_MMU_STE_1_INSTCFG GENMASK_ULL(51, 50) 163 #define IVPU_MMU_STE_1_INSTCFG_DATA 2ul 164 #define IVPU_MMU_STE_1_MEV BIT(19) 165 #define IVPU_MMU_STE_1_S1STALLD BIT(27) 166 #define IVPU_MMU_STE_1_S1C_CACHE_NC 0ul 167 #define IVPU_MMU_STE_1_S1C_CACHE_WBRA 1ul 168 #define IVPU_MMU_STE_1_S1C_CACHE_WT 2ul 169 #define IVPU_MMU_STE_1_S1C_CACHE_WB 3ul 170 #define IVPU_MMU_STE_1_S1CIR GENMASK_ULL(3, 2) 171 #define IVPU_MMU_STE_1_S1COR GENMASK_ULL(5, 4) 172 #define IVPU_MMU_STE_1_S1CSH GENMASK_ULL(7, 6) 173 #define IVPU_MMU_STE_1_S1DSS GENMASK_ULL(1, 0) 174 #define IVPU_MMU_STE_1_S1DSS_TERMINATE 0x0 175 176 #define IVPU_MMU_REG_TIMEOUT_US (10 * USEC_PER_MSEC) 177 #define IVPU_MMU_QUEUE_TIMEOUT_US (100 * USEC_PER_MSEC) 178 179 #define IVPU_MMU_GERROR_ERR_MASK ((REG_FLD(MTL_VPU_HOST_MMU_GERROR, CMDQ)) | \ 180 (REG_FLD(MTL_VPU_HOST_MMU_GERROR, EVTQ_ABT)) | \ 181 (REG_FLD(MTL_VPU_HOST_MMU_GERROR, PRIQ_ABT)) | \ 182 (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_CMDQ_ABT)) | \ 183 (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_EVTQ_ABT)) | \ 184 (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_PRIQ_ABT)) | \ 185 (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_ABT))) 186 187 static char *ivpu_mmu_event_to_str(u32 cmd) 188 { 189 switch (cmd) { 190 case IVPU_MMU_EVT_F_UUT: 191 return "Unsupported Upstream Transaction"; 192 case IVPU_MMU_EVT_C_BAD_STREAMID: 193 return "Transaction StreamID out of range"; 194 case IVPU_MMU_EVT_F_STE_FETCH: 195 return "Fetch of STE caused external abort"; 196 case IVPU_MMU_EVT_C_BAD_STE: 197 return "Used STE invalid"; 198 case IVPU_MMU_EVT_F_BAD_ATS_TREQ: 199 return "Address Request disallowed for a StreamID"; 200 case IVPU_MMU_EVT_F_STREAM_DISABLED: 201 return "Transaction marks non-substream disabled"; 202 case IVPU_MMU_EVT_F_TRANSL_FORBIDDEN: 203 return "MMU bypass is disallowed for this StreamID"; 204 case IVPU_MMU_EVT_C_BAD_SUBSTREAMID: 205 return "Invalid StreamID"; 206 case IVPU_MMU_EVT_F_CD_FETCH: 207 return "Fetch of CD caused external abort"; 208 case IVPU_MMU_EVT_C_BAD_CD: 209 return "Fetched CD invalid"; 210 case IVPU_MMU_EVT_F_WALK_EABT: 211 return " An external abort occurred fetching a TLB"; 212 case IVPU_MMU_EVT_F_TRANSLATION: 213 return "Translation fault"; 214 case IVPU_MMU_EVT_F_ADDR_SIZE: 215 return " Output address caused address size fault"; 216 case IVPU_MMU_EVT_F_ACCESS: 217 return "Access flag fault"; 218 case IVPU_MMU_EVT_F_PERMISSION: 219 return "Permission fault occurred on page access"; 220 case IVPU_MMU_EVT_F_TLB_CONFLICT: 221 return "A TLB conflict"; 222 case IVPU_MMU_EVT_F_CFG_CONFLICT: 223 return "A configuration cache conflict"; 224 case IVPU_MMU_EVT_E_PAGE_REQUEST: 225 return "Page request hint from a client device"; 226 case IVPU_MMU_EVT_F_VMS_FETCH: 227 return "Fetch of VMS caused external abort"; 228 default: 229 return "Unknown CMDQ command"; 230 } 231 } 232 233 static void ivpu_mmu_config_check(struct ivpu_device *vdev) 234 { 235 u32 val_ref; 236 u32 val; 237 238 if (ivpu_is_simics(vdev)) 239 val_ref = IVPU_MMU_IDR0_REF_SIMICS; 240 else 241 val_ref = IVPU_MMU_IDR0_REF; 242 243 val = REGV_RD32(MTL_VPU_HOST_MMU_IDR0); 244 if (val != val_ref) 245 ivpu_dbg(vdev, MMU, "IDR0 0x%x != IDR0_REF 0x%x\n", val, val_ref); 246 247 val = REGV_RD32(MTL_VPU_HOST_MMU_IDR1); 248 if (val != IVPU_MMU_IDR1_REF) 249 ivpu_dbg(vdev, MMU, "IDR1 0x%x != IDR1_REF 0x%x\n", val, IVPU_MMU_IDR1_REF); 250 251 val = REGV_RD32(MTL_VPU_HOST_MMU_IDR3); 252 if (val != IVPU_MMU_IDR3_REF) 253 ivpu_dbg(vdev, MMU, "IDR3 0x%x != IDR3_REF 0x%x\n", val, IVPU_MMU_IDR3_REF); 254 255 if (ivpu_is_simics(vdev)) 256 val_ref = IVPU_MMU_IDR5_REF_SIMICS; 257 else if (ivpu_is_fpga(vdev)) 258 val_ref = IVPU_MMU_IDR5_REF_FPGA; 259 else 260 val_ref = IVPU_MMU_IDR5_REF; 261 262 val = REGV_RD32(MTL_VPU_HOST_MMU_IDR5); 263 if (val != val_ref) 264 ivpu_dbg(vdev, MMU, "IDR5 0x%x != IDR5_REF 0x%x\n", val, val_ref); 265 } 266 267 static int ivpu_mmu_cdtab_alloc(struct ivpu_device *vdev) 268 { 269 struct ivpu_mmu_info *mmu = vdev->mmu; 270 struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab; 271 size_t size = IVPU_MMU_CDTAB_ENT_COUNT * IVPU_MMU_CDTAB_ENT_SIZE; 272 273 cdtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &cdtab->dma, GFP_KERNEL); 274 if (!cdtab->base) 275 return -ENOMEM; 276 277 ivpu_dbg(vdev, MMU, "CDTAB alloc: dma=%pad size=%zu\n", &cdtab->dma, size); 278 279 return 0; 280 } 281 282 static int ivpu_mmu_strtab_alloc(struct ivpu_device *vdev) 283 { 284 struct ivpu_mmu_info *mmu = vdev->mmu; 285 struct ivpu_mmu_strtab *strtab = &mmu->strtab; 286 size_t size = IVPU_MMU_STRTAB_ENT_COUNT * IVPU_MMU_STRTAB_ENT_SIZE; 287 288 strtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &strtab->dma, GFP_KERNEL); 289 if (!strtab->base) 290 return -ENOMEM; 291 292 strtab->base_cfg = IVPU_MMU_STRTAB_CFG; 293 strtab->dma_q = IVPU_MMU_STRTAB_BASE_RA; 294 strtab->dma_q |= strtab->dma & IVPU_MMU_STRTAB_BASE_ADDR_MASK; 295 296 ivpu_dbg(vdev, MMU, "STRTAB alloc: dma=%pad dma_q=%pad size=%zu\n", 297 &strtab->dma, &strtab->dma_q, size); 298 299 return 0; 300 } 301 302 static int ivpu_mmu_cmdq_alloc(struct ivpu_device *vdev) 303 { 304 struct ivpu_mmu_info *mmu = vdev->mmu; 305 struct ivpu_mmu_queue *q = &mmu->cmdq; 306 307 q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_CMDQ_SIZE, &q->dma, GFP_KERNEL); 308 if (!q->base) 309 return -ENOMEM; 310 311 q->dma_q = IVPU_MMU_Q_BASE_RWA; 312 q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK; 313 q->dma_q |= IVPU_MMU_Q_COUNT_LOG2; 314 315 ivpu_dbg(vdev, MMU, "CMDQ alloc: dma=%pad dma_q=%pad size=%u\n", 316 &q->dma, &q->dma_q, IVPU_MMU_CMDQ_SIZE); 317 318 return 0; 319 } 320 321 static int ivpu_mmu_evtq_alloc(struct ivpu_device *vdev) 322 { 323 struct ivpu_mmu_info *mmu = vdev->mmu; 324 struct ivpu_mmu_queue *q = &mmu->evtq; 325 326 q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_EVTQ_SIZE, &q->dma, GFP_KERNEL); 327 if (!q->base) 328 return -ENOMEM; 329 330 q->dma_q = IVPU_MMU_Q_BASE_RWA; 331 q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK; 332 q->dma_q |= IVPU_MMU_Q_COUNT_LOG2; 333 334 ivpu_dbg(vdev, MMU, "EVTQ alloc: dma=%pad dma_q=%pad size=%u\n", 335 &q->dma, &q->dma_q, IVPU_MMU_EVTQ_SIZE); 336 337 return 0; 338 } 339 340 static int ivpu_mmu_structs_alloc(struct ivpu_device *vdev) 341 { 342 int ret; 343 344 ret = ivpu_mmu_cdtab_alloc(vdev); 345 if (ret) { 346 ivpu_err(vdev, "Failed to allocate cdtab: %d\n", ret); 347 return ret; 348 } 349 350 ret = ivpu_mmu_strtab_alloc(vdev); 351 if (ret) { 352 ivpu_err(vdev, "Failed to allocate strtab: %d\n", ret); 353 return ret; 354 } 355 356 ret = ivpu_mmu_cmdq_alloc(vdev); 357 if (ret) { 358 ivpu_err(vdev, "Failed to allocate cmdq: %d\n", ret); 359 return ret; 360 } 361 362 ret = ivpu_mmu_evtq_alloc(vdev); 363 if (ret) 364 ivpu_err(vdev, "Failed to allocate evtq: %d\n", ret); 365 366 return ret; 367 } 368 369 static int ivpu_mmu_reg_write(struct ivpu_device *vdev, u32 reg, u32 val) 370 { 371 u32 reg_ack = reg + 4; /* ACK register is 4B after base register */ 372 u32 val_ack; 373 int ret; 374 375 REGV_WR32(reg, val); 376 377 ret = REGV_POLL(reg_ack, val_ack, (val == val_ack), IVPU_MMU_REG_TIMEOUT_US); 378 if (ret) 379 ivpu_err(vdev, "Failed to write register 0x%x\n", reg); 380 381 return ret; 382 } 383 384 static int ivpu_mmu_irqs_setup(struct ivpu_device *vdev) 385 { 386 u32 irq_ctrl = IVPU_MMU_IRQ_EVTQ_EN | IVPU_MMU_IRQ_GERROR_EN; 387 int ret; 388 389 ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_IRQ_CTRL, 0); 390 if (ret) 391 return ret; 392 393 return ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_IRQ_CTRL, irq_ctrl); 394 } 395 396 static int ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device *vdev) 397 { 398 struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq; 399 400 return REGV_POLL(MTL_VPU_HOST_MMU_CMDQ_CONS, cmdq->cons, (cmdq->prod == cmdq->cons), 401 IVPU_MMU_QUEUE_TIMEOUT_US); 402 } 403 404 static int ivpu_mmu_cmdq_cmd_write(struct ivpu_device *vdev, const char *name, u64 data0, u64 data1) 405 { 406 struct ivpu_mmu_queue *q = &vdev->mmu->cmdq; 407 u64 *queue_buffer = q->base; 408 int idx = IVPU_MMU_Q_IDX(q->prod) * (IVPU_MMU_CMDQ_CMD_SIZE / sizeof(*queue_buffer)); 409 410 if (!CIRC_SPACE(IVPU_MMU_Q_IDX(q->prod), IVPU_MMU_Q_IDX(q->cons), IVPU_MMU_Q_COUNT)) { 411 ivpu_err(vdev, "Failed to write MMU CMD %s\n", name); 412 return -EBUSY; 413 } 414 415 queue_buffer[idx] = data0; 416 queue_buffer[idx + 1] = data1; 417 q->prod = (q->prod + 1) & IVPU_MMU_Q_WRAP_MASK; 418 419 ivpu_dbg(vdev, MMU, "CMD write: %s data: 0x%llx 0x%llx\n", name, data0, data1); 420 421 return 0; 422 } 423 424 static int ivpu_mmu_cmdq_sync(struct ivpu_device *vdev) 425 { 426 struct ivpu_mmu_queue *q = &vdev->mmu->cmdq; 427 u64 val; 428 int ret; 429 430 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_SYNC) | 431 FIELD_PREP(IVPU_MMU_CMD_SYNC_0_CS, 0x2) | 432 FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSH, 0x3) | 433 FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSI_ATTR, 0xf); 434 435 ret = ivpu_mmu_cmdq_cmd_write(vdev, "SYNC", val, 0); 436 if (ret) 437 return ret; 438 439 clflush_cache_range(q->base, IVPU_MMU_CMDQ_SIZE); 440 REGV_WR32(MTL_VPU_HOST_MMU_CMDQ_PROD, q->prod); 441 442 ret = ivpu_mmu_cmdq_wait_for_cons(vdev); 443 if (ret) 444 ivpu_err(vdev, "Timed out waiting for consumer: %d\n", ret); 445 446 return ret; 447 } 448 449 static int ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device *vdev) 450 { 451 u64 data0 = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_CFGI_ALL); 452 u64 data1 = FIELD_PREP(IVPU_MMU_CMD_CFGI_1_RANGE, 0x1f); 453 454 return ivpu_mmu_cmdq_cmd_write(vdev, "CFGI_ALL", data0, data1); 455 } 456 457 static int ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device *vdev, u16 ssid) 458 { 459 u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NH_ASID) | 460 FIELD_PREP(IVPU_MMU_CMD_TLBI_0_ASID, ssid); 461 462 return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NH_ASID", val, 0); 463 } 464 465 static int ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device *vdev) 466 { 467 u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NSNH_ALL); 468 469 return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NSNH_ALL", val, 0); 470 } 471 472 static int ivpu_mmu_reset(struct ivpu_device *vdev) 473 { 474 struct ivpu_mmu_info *mmu = vdev->mmu; 475 u32 val; 476 int ret; 477 478 memset(mmu->cmdq.base, 0, IVPU_MMU_CMDQ_SIZE); 479 clflush_cache_range(mmu->cmdq.base, IVPU_MMU_CMDQ_SIZE); 480 mmu->cmdq.prod = 0; 481 mmu->cmdq.cons = 0; 482 483 memset(mmu->evtq.base, 0, IVPU_MMU_EVTQ_SIZE); 484 clflush_cache_range(mmu->evtq.base, IVPU_MMU_EVTQ_SIZE); 485 mmu->evtq.prod = 0; 486 mmu->evtq.cons = 0; 487 488 ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, 0); 489 if (ret) 490 return ret; 491 492 val = FIELD_PREP(IVPU_MMU_CR1_TABLE_SH, IVPU_MMU_SH_ISH) | 493 FIELD_PREP(IVPU_MMU_CR1_TABLE_OC, IVPU_MMU_CACHE_WB) | 494 FIELD_PREP(IVPU_MMU_CR1_TABLE_IC, IVPU_MMU_CACHE_WB) | 495 FIELD_PREP(IVPU_MMU_CR1_QUEUE_SH, IVPU_MMU_SH_ISH) | 496 FIELD_PREP(IVPU_MMU_CR1_QUEUE_OC, IVPU_MMU_CACHE_WB) | 497 FIELD_PREP(IVPU_MMU_CR1_QUEUE_IC, IVPU_MMU_CACHE_WB); 498 REGV_WR32(MTL_VPU_HOST_MMU_CR1, val); 499 500 REGV_WR64(MTL_VPU_HOST_MMU_STRTAB_BASE, mmu->strtab.dma_q); 501 REGV_WR32(MTL_VPU_HOST_MMU_STRTAB_BASE_CFG, mmu->strtab.base_cfg); 502 503 REGV_WR64(MTL_VPU_HOST_MMU_CMDQ_BASE, mmu->cmdq.dma_q); 504 REGV_WR32(MTL_VPU_HOST_MMU_CMDQ_PROD, 0); 505 REGV_WR32(MTL_VPU_HOST_MMU_CMDQ_CONS, 0); 506 507 val = IVPU_MMU_CR0_CMDQEN; 508 ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val); 509 if (ret) 510 return ret; 511 512 ret = ivpu_mmu_cmdq_write_cfgi_all(vdev); 513 if (ret) 514 return ret; 515 516 ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev); 517 if (ret) 518 return ret; 519 520 ret = ivpu_mmu_cmdq_sync(vdev); 521 if (ret) 522 return ret; 523 524 REGV_WR64(MTL_VPU_HOST_MMU_EVTQ_BASE, mmu->evtq.dma_q); 525 REGV_WR32(MTL_VPU_HOST_MMU_EVTQ_PROD_SEC, 0); 526 REGV_WR32(MTL_VPU_HOST_MMU_EVTQ_CONS_SEC, 0); 527 528 val |= IVPU_MMU_CR0_EVTQEN; 529 ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val); 530 if (ret) 531 return ret; 532 533 val |= IVPU_MMU_CR0_ATSCHK; 534 ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val); 535 if (ret) 536 return ret; 537 538 ret = ivpu_mmu_irqs_setup(vdev); 539 if (ret) 540 return ret; 541 542 val |= IVPU_MMU_CR0_SMMUEN; 543 return ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val); 544 } 545 546 static void ivpu_mmu_strtab_link_cd(struct ivpu_device *vdev, u32 sid) 547 { 548 struct ivpu_mmu_info *mmu = vdev->mmu; 549 struct ivpu_mmu_strtab *strtab = &mmu->strtab; 550 struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab; 551 u64 *entry = strtab->base + (sid * IVPU_MMU_STRTAB_ENT_SIZE); 552 u64 str[2]; 553 554 str[0] = FIELD_PREP(IVPU_MMU_STE_0_CFG, IVPU_MMU_STE_0_CFG_S1_TRANS) | 555 FIELD_PREP(IVPU_MMU_STE_0_S1CDMAX, IVPU_MMU_CDTAB_ENT_COUNT_LOG2) | 556 FIELD_PREP(IVPU_MMU_STE_0_S1FMT, IVPU_MMU_STE_0_S1FMT_LINEAR) | 557 IVPU_MMU_STE_0_V | 558 (cdtab->dma & IVPU_MMU_STE_0_S1CTXPTR_MASK); 559 560 str[1] = FIELD_PREP(IVPU_MMU_STE_1_S1DSS, IVPU_MMU_STE_1_S1DSS_TERMINATE) | 561 FIELD_PREP(IVPU_MMU_STE_1_S1CIR, IVPU_MMU_STE_1_S1C_CACHE_NC) | 562 FIELD_PREP(IVPU_MMU_STE_1_S1COR, IVPU_MMU_STE_1_S1C_CACHE_NC) | 563 FIELD_PREP(IVPU_MMU_STE_1_S1CSH, IVPU_MMU_SH_NSH) | 564 FIELD_PREP(IVPU_MMU_STE_1_PRIVCFG, IVPU_MMU_STE_1_PRIVCFG_UNPRIV) | 565 FIELD_PREP(IVPU_MMU_STE_1_INSTCFG, IVPU_MMU_STE_1_INSTCFG_DATA) | 566 FIELD_PREP(IVPU_MMU_STE_1_STRW, IVPU_MMU_STE_1_STRW_NSEL1) | 567 FIELD_PREP(IVPU_MMU_STE_1_CONT, IVPU_MMU_STRTAB_CFG_LOG2SIZE) | 568 IVPU_MMU_STE_1_MEV | 569 IVPU_MMU_STE_1_S1STALLD; 570 571 WRITE_ONCE(entry[1], str[1]); 572 WRITE_ONCE(entry[0], str[0]); 573 574 clflush_cache_range(entry, IVPU_MMU_STRTAB_ENT_SIZE); 575 576 ivpu_dbg(vdev, MMU, "STRTAB write entry (SSID=%u): 0x%llx, 0x%llx\n", sid, str[0], str[1]); 577 } 578 579 static int ivpu_mmu_strtab_init(struct ivpu_device *vdev) 580 { 581 ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID0); 582 ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID3); 583 584 return 0; 585 } 586 587 int ivpu_mmu_invalidate_tlb(struct ivpu_device *vdev, u16 ssid) 588 { 589 struct ivpu_mmu_info *mmu = vdev->mmu; 590 int ret; 591 592 ret = mutex_lock_interruptible(&mmu->lock); 593 if (ret) 594 return ret; 595 596 if (!mmu->on) { 597 ret = 0; 598 goto unlock; 599 } 600 601 ret = ivpu_mmu_cmdq_write_tlbi_nh_asid(vdev, ssid); 602 if (ret) 603 goto unlock; 604 605 ret = ivpu_mmu_cmdq_sync(vdev); 606 unlock: 607 mutex_unlock(&mmu->lock); 608 return ret; 609 } 610 611 static int ivpu_mmu_cd_add(struct ivpu_device *vdev, u32 ssid, u64 cd_dma) 612 { 613 struct ivpu_mmu_info *mmu = vdev->mmu; 614 struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab; 615 u64 *entry; 616 u64 cd[4]; 617 int ret; 618 619 if (ssid > IVPU_MMU_CDTAB_ENT_COUNT) 620 return -EINVAL; 621 622 entry = cdtab->base + (ssid * IVPU_MMU_CDTAB_ENT_SIZE); 623 624 if (cd_dma != 0) { 625 cd[0] = FIELD_PREP(IVPU_MMU_CD_0_TCR_T0SZ, 26) | 626 FIELD_PREP(IVPU_MMU_CD_0_TCR_TG0, 0) | 627 FIELD_PREP(IVPU_MMU_CD_0_TCR_IRGN0, 0) | 628 FIELD_PREP(IVPU_MMU_CD_0_TCR_ORGN0, 0) | 629 FIELD_PREP(IVPU_MMU_CD_0_TCR_SH0, 0) | 630 FIELD_PREP(IVPU_MMU_CD_0_TCR_IPS, 3) | 631 FIELD_PREP(IVPU_MMU_CD_0_ASID, ssid) | 632 IVPU_MMU_CD_0_TCR_EPD1 | 633 IVPU_MMU_CD_0_AA64 | 634 IVPU_MMU_CD_0_R | 635 IVPU_MMU_CD_0_ASET | 636 IVPU_MMU_CD_0_V; 637 cd[1] = cd_dma & IVPU_MMU_CD_1_TTB0_MASK; 638 cd[2] = 0; 639 cd[3] = 0x0000000000007444; 640 641 /* For global context generate memory fault on VPU */ 642 if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID) 643 cd[0] |= IVPU_MMU_CD_0_A; 644 } else { 645 memset(cd, 0, sizeof(cd)); 646 } 647 648 WRITE_ONCE(entry[1], cd[1]); 649 WRITE_ONCE(entry[2], cd[2]); 650 WRITE_ONCE(entry[3], cd[3]); 651 WRITE_ONCE(entry[0], cd[0]); 652 653 clflush_cache_range(entry, IVPU_MMU_CDTAB_ENT_SIZE); 654 655 ivpu_dbg(vdev, MMU, "CDTAB %s entry (SSID=%u, dma=%pad): 0x%llx, 0x%llx, 0x%llx, 0x%llx\n", 656 cd_dma ? "write" : "clear", ssid, &cd_dma, cd[0], cd[1], cd[2], cd[3]); 657 658 ret = mutex_lock_interruptible(&mmu->lock); 659 if (ret) 660 return ret; 661 662 if (!mmu->on) { 663 ret = 0; 664 goto unlock; 665 } 666 667 ret = ivpu_mmu_cmdq_write_cfgi_all(vdev); 668 if (ret) 669 goto unlock; 670 671 ret = ivpu_mmu_cmdq_sync(vdev); 672 unlock: 673 mutex_unlock(&mmu->lock); 674 return ret; 675 } 676 677 static int ivpu_mmu_cd_add_gbl(struct ivpu_device *vdev) 678 { 679 int ret; 680 681 ret = ivpu_mmu_cd_add(vdev, 0, vdev->gctx.pgtable.pgd_dma); 682 if (ret) 683 ivpu_err(vdev, "Failed to add global CD entry: %d\n", ret); 684 685 return ret; 686 } 687 688 static int ivpu_mmu_cd_add_user(struct ivpu_device *vdev, u32 ssid, dma_addr_t cd_dma) 689 { 690 int ret; 691 692 if (ssid == 0) { 693 ivpu_err(vdev, "Invalid SSID: %u\n", ssid); 694 return -EINVAL; 695 } 696 697 ret = ivpu_mmu_cd_add(vdev, ssid, cd_dma); 698 if (ret) 699 ivpu_err(vdev, "Failed to add CD entry SSID=%u: %d\n", ssid, ret); 700 701 return ret; 702 } 703 704 int ivpu_mmu_init(struct ivpu_device *vdev) 705 { 706 struct ivpu_mmu_info *mmu = vdev->mmu; 707 int ret; 708 709 ivpu_dbg(vdev, MMU, "Init..\n"); 710 711 drmm_mutex_init(&vdev->drm, &mmu->lock); 712 ivpu_mmu_config_check(vdev); 713 714 ret = ivpu_mmu_structs_alloc(vdev); 715 if (ret) 716 return ret; 717 718 ret = ivpu_mmu_strtab_init(vdev); 719 if (ret) { 720 ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret); 721 return ret; 722 } 723 724 ret = ivpu_mmu_cd_add_gbl(vdev); 725 if (ret) { 726 ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret); 727 return ret; 728 } 729 730 ret = ivpu_mmu_enable(vdev); 731 if (ret) { 732 ivpu_err(vdev, "Failed to resume MMU: %d\n", ret); 733 return ret; 734 } 735 736 ivpu_dbg(vdev, MMU, "Init done\n"); 737 738 return 0; 739 } 740 741 int ivpu_mmu_enable(struct ivpu_device *vdev) 742 { 743 struct ivpu_mmu_info *mmu = vdev->mmu; 744 int ret; 745 746 mutex_lock(&mmu->lock); 747 748 mmu->on = true; 749 750 ret = ivpu_mmu_reset(vdev); 751 if (ret) { 752 ivpu_err(vdev, "Failed to reset MMU: %d\n", ret); 753 goto err; 754 } 755 756 ret = ivpu_mmu_cmdq_write_cfgi_all(vdev); 757 if (ret) 758 goto err; 759 760 ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev); 761 if (ret) 762 goto err; 763 764 ret = ivpu_mmu_cmdq_sync(vdev); 765 if (ret) 766 goto err; 767 768 mutex_unlock(&mmu->lock); 769 770 return 0; 771 err: 772 mmu->on = false; 773 mutex_unlock(&mmu->lock); 774 return ret; 775 } 776 777 void ivpu_mmu_disable(struct ivpu_device *vdev) 778 { 779 struct ivpu_mmu_info *mmu = vdev->mmu; 780 781 mutex_lock(&mmu->lock); 782 mmu->on = false; 783 mutex_unlock(&mmu->lock); 784 } 785 786 static void ivpu_mmu_dump_event(struct ivpu_device *vdev, u32 *event) 787 { 788 u32 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]); 789 u32 op = FIELD_GET(IVPU_MMU_EVT_OP_MASK, event[0]); 790 u64 fetch_addr = ((u64)event[7]) << 32 | event[6]; 791 u64 in_addr = ((u64)event[5]) << 32 | event[4]; 792 u32 sid = event[1]; 793 794 ivpu_err(vdev, "MMU EVTQ: 0x%x (%s) SSID: %d SID: %d, e[2] %08x, e[3] %08x, in addr: 0x%llx, fetch addr: 0x%llx\n", 795 op, ivpu_mmu_event_to_str(op), ssid, sid, event[2], event[3], in_addr, fetch_addr); 796 } 797 798 static u32 *ivpu_mmu_get_event(struct ivpu_device *vdev) 799 { 800 struct ivpu_mmu_queue *evtq = &vdev->mmu->evtq; 801 u32 idx = IVPU_MMU_Q_IDX(evtq->cons); 802 u32 *evt = evtq->base + (idx * IVPU_MMU_EVTQ_CMD_SIZE); 803 804 evtq->prod = REGV_RD32(MTL_VPU_HOST_MMU_EVTQ_PROD_SEC); 805 if (!CIRC_CNT(IVPU_MMU_Q_IDX(evtq->prod), IVPU_MMU_Q_IDX(evtq->cons), IVPU_MMU_Q_COUNT)) 806 return NULL; 807 808 clflush_cache_range(evt, IVPU_MMU_EVTQ_CMD_SIZE); 809 810 evtq->cons = (evtq->cons + 1) & IVPU_MMU_Q_WRAP_MASK; 811 REGV_WR32(MTL_VPU_HOST_MMU_EVTQ_CONS_SEC, evtq->cons); 812 813 return evt; 814 } 815 816 void ivpu_mmu_irq_evtq_handler(struct ivpu_device *vdev) 817 { 818 bool schedule_recovery = false; 819 u32 *event; 820 u32 ssid; 821 822 ivpu_dbg(vdev, IRQ, "MMU event queue\n"); 823 824 while ((event = ivpu_mmu_get_event(vdev)) != NULL) { 825 ivpu_mmu_dump_event(vdev, event); 826 827 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]); 828 if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID) 829 schedule_recovery = true; 830 else 831 ivpu_mmu_user_context_mark_invalid(vdev, ssid); 832 } 833 834 if (schedule_recovery) 835 ivpu_pm_schedule_recovery(vdev); 836 } 837 838 void ivpu_mmu_irq_gerr_handler(struct ivpu_device *vdev) 839 { 840 u32 gerror_val, gerrorn_val, active; 841 842 ivpu_dbg(vdev, IRQ, "MMU error\n"); 843 844 gerror_val = REGV_RD32(MTL_VPU_HOST_MMU_GERROR); 845 gerrorn_val = REGV_RD32(MTL_VPU_HOST_MMU_GERRORN); 846 847 active = gerror_val ^ gerrorn_val; 848 if (!(active & IVPU_MMU_GERROR_ERR_MASK)) 849 return; 850 851 if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_ABT, active)) 852 ivpu_warn_ratelimited(vdev, "MMU MSI ABT write aborted\n"); 853 854 if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_PRIQ_ABT, active)) 855 ivpu_warn_ratelimited(vdev, "MMU PRIQ MSI ABT write aborted\n"); 856 857 if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_EVTQ_ABT, active)) 858 ivpu_warn_ratelimited(vdev, "MMU EVTQ MSI ABT write aborted\n"); 859 860 if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_CMDQ_ABT, active)) 861 ivpu_warn_ratelimited(vdev, "MMU CMDQ MSI ABT write aborted\n"); 862 863 if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, PRIQ_ABT, active)) 864 ivpu_err_ratelimited(vdev, "MMU PRIQ write aborted\n"); 865 866 if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, EVTQ_ABT, active)) 867 ivpu_err_ratelimited(vdev, "MMU EVTQ write aborted\n"); 868 869 if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, CMDQ, active)) 870 ivpu_err_ratelimited(vdev, "MMU CMDQ write aborted\n"); 871 872 REGV_WR32(MTL_VPU_HOST_MMU_GERRORN, gerror_val); 873 } 874 875 int ivpu_mmu_set_pgtable(struct ivpu_device *vdev, int ssid, struct ivpu_mmu_pgtable *pgtable) 876 { 877 return ivpu_mmu_cd_add_user(vdev, ssid, pgtable->pgd_dma); 878 } 879 880 void ivpu_mmu_clear_pgtable(struct ivpu_device *vdev, int ssid) 881 { 882 ivpu_mmu_cd_add_user(vdev, ssid, 0); /* 0 will clear CD entry */ 883 } 884