1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2022 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include <uapi/drm/habanalabs_accel.h> 9 #include "habanalabs.h" 10 #include "../include/hw_ip/mmu/mmu_general.h" 11 12 #include <linux/uaccess.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pci-p2pdma.h> 16 17 MODULE_IMPORT_NS(DMA_BUF); 18 19 #define HL_MMU_DEBUG 0 20 21 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */ 22 #define DRAM_POOL_PAGE_SIZE SZ_8M 23 24 #define MEM_HANDLE_INVALID ULONG_MAX 25 26 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, 27 struct hl_mem_in *args, u64 *handle); 28 29 static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size) 30 { 31 struct asic_fixed_properties *prop = &hdev->asic_prop; 32 u64 psize; 33 34 /* 35 * for ASIC that supports setting the allocation page size by user we will address 36 * user's choice only if it is not 0 (as 0 means taking the default page size) 37 */ 38 if (prop->supports_user_set_page_size && args->alloc.page_size) { 39 psize = args->alloc.page_size; 40 41 if (!is_power_of_2(psize)) { 42 dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize); 43 return -EINVAL; 44 } 45 } else { 46 psize = prop->device_mem_alloc_default_page_size; 47 } 48 49 *page_size = psize; 50 51 return 0; 52 } 53 54 /* 55 * The va ranges in context object contain a list with the available chunks of 56 * device virtual memory. 57 * There is one range for host allocations and one for DRAM allocations. 58 * 59 * On initialization each range contains one chunk of all of its available 60 * virtual range which is a half of the total device virtual range. 61 * 62 * On each mapping of physical pages, a suitable virtual range chunk (with a 63 * minimum size) is selected from the list. If the chunk size equals the 64 * requested size, the chunk is returned. Otherwise, the chunk is split into 65 * two chunks - one to return as result and a remainder to stay in the list. 66 * 67 * On each Unmapping of a virtual address, the relevant virtual chunk is 68 * returned to the list. The chunk is added to the list and if its edges match 69 * the edges of the adjacent chunks (means a contiguous chunk can be created), 70 * the chunks are merged. 71 * 72 * On finish, the list is checked to have only one chunk of all the relevant 73 * virtual range (which is a half of the device total virtual range). 74 * If not (means not all mappings were unmapped), a warning is printed. 75 */ 76 77 /* 78 * alloc_device_memory() - allocate device memory. 79 * @ctx: pointer to the context structure. 80 * @args: host parameters containing the requested size. 81 * @ret_handle: result handle. 82 * 83 * This function does the following: 84 * - Allocate the requested size rounded up to 'dram_page_size' pages. 85 * - Return unique handle for later map/unmap/free. 86 */ 87 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args, 88 u32 *ret_handle) 89 { 90 struct hl_device *hdev = ctx->hdev; 91 struct hl_vm *vm = &hdev->vm; 92 struct hl_vm_phys_pg_pack *phys_pg_pack; 93 u64 paddr = 0, total_size, num_pgs, i; 94 u32 num_curr_pgs, page_size; 95 bool contiguous; 96 int handle, rc; 97 98 num_curr_pgs = 0; 99 100 rc = set_alloc_page_size(hdev, args, &page_size); 101 if (rc) 102 return rc; 103 104 num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size); 105 total_size = num_pgs * page_size; 106 107 if (!total_size) { 108 dev_err(hdev->dev, "Cannot allocate 0 bytes\n"); 109 return -EINVAL; 110 } 111 112 contiguous = args->flags & HL_MEM_CONTIGUOUS; 113 114 if (contiguous) { 115 if (is_power_of_2(page_size)) 116 paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool, 117 total_size, NULL, page_size); 118 else 119 paddr = gen_pool_alloc(vm->dram_pg_pool, total_size); 120 if (!paddr) { 121 dev_err(hdev->dev, 122 "Cannot allocate %llu contiguous pages with total size of %llu\n", 123 num_pgs, total_size); 124 return -ENOMEM; 125 } 126 } 127 128 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); 129 if (!phys_pg_pack) { 130 rc = -ENOMEM; 131 goto pages_pack_err; 132 } 133 134 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK; 135 phys_pg_pack->asid = ctx->asid; 136 phys_pg_pack->npages = num_pgs; 137 phys_pg_pack->page_size = page_size; 138 phys_pg_pack->total_size = total_size; 139 phys_pg_pack->flags = args->flags; 140 phys_pg_pack->contiguous = contiguous; 141 142 phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL); 143 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { 144 rc = -ENOMEM; 145 goto pages_arr_err; 146 } 147 148 if (phys_pg_pack->contiguous) { 149 for (i = 0 ; i < num_pgs ; i++) 150 phys_pg_pack->pages[i] = paddr + i * page_size; 151 } else { 152 for (i = 0 ; i < num_pgs ; i++) { 153 if (is_power_of_2(page_size)) 154 phys_pg_pack->pages[i] = 155 (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool, 156 page_size, NULL, 157 page_size); 158 else 159 phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool, 160 page_size); 161 162 if (!phys_pg_pack->pages[i]) { 163 dev_err(hdev->dev, 164 "Cannot allocate device memory (out of memory)\n"); 165 rc = -ENOMEM; 166 goto page_err; 167 } 168 169 num_curr_pgs++; 170 } 171 } 172 173 spin_lock(&vm->idr_lock); 174 handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0, 175 GFP_ATOMIC); 176 spin_unlock(&vm->idr_lock); 177 178 if (handle < 0) { 179 dev_err(hdev->dev, "Failed to get handle for page\n"); 180 rc = -EFAULT; 181 goto idr_err; 182 } 183 184 for (i = 0 ; i < num_pgs ; i++) 185 kref_get(&vm->dram_pg_pool_refcount); 186 187 phys_pg_pack->handle = handle; 188 189 atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem); 190 atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem); 191 192 *ret_handle = handle; 193 194 return 0; 195 196 idr_err: 197 page_err: 198 if (!phys_pg_pack->contiguous) 199 for (i = 0 ; i < num_curr_pgs ; i++) 200 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i], 201 page_size); 202 203 kvfree(phys_pg_pack->pages); 204 pages_arr_err: 205 kfree(phys_pg_pack); 206 pages_pack_err: 207 if (contiguous) 208 gen_pool_free(vm->dram_pg_pool, paddr, total_size); 209 210 return rc; 211 } 212 213 /** 214 * dma_map_host_va() - DMA mapping of the given host virtual address. 215 * @hdev: habanalabs device structure. 216 * @addr: the host virtual address of the memory area. 217 * @size: the size of the memory area. 218 * @p_userptr: pointer to result userptr structure. 219 * 220 * This function does the following: 221 * - Allocate userptr structure. 222 * - Pin the given host memory using the userptr structure. 223 * - Perform DMA mapping to have the DMA addresses of the pages. 224 */ 225 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size, 226 struct hl_userptr **p_userptr) 227 { 228 struct hl_userptr *userptr; 229 int rc; 230 231 userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); 232 if (!userptr) { 233 rc = -ENOMEM; 234 goto userptr_err; 235 } 236 237 rc = hl_pin_host_memory(hdev, addr, size, userptr); 238 if (rc) 239 goto pin_err; 240 241 userptr->dma_mapped = true; 242 userptr->dir = DMA_BIDIRECTIONAL; 243 userptr->vm_type = VM_TYPE_USERPTR; 244 245 *p_userptr = userptr; 246 247 rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL); 248 if (rc) { 249 dev_err(hdev->dev, "failed to map sgt with DMA region\n"); 250 goto dma_map_err; 251 } 252 253 return 0; 254 255 dma_map_err: 256 hl_unpin_host_memory(hdev, userptr); 257 pin_err: 258 kfree(userptr); 259 userptr_err: 260 261 return rc; 262 } 263 264 /** 265 * dma_unmap_host_va() - DMA unmapping of the given host virtual address. 266 * @hdev: habanalabs device structure. 267 * @userptr: userptr to free. 268 * 269 * This function does the following: 270 * - Unpins the physical pages. 271 * - Frees the userptr structure. 272 */ 273 static void dma_unmap_host_va(struct hl_device *hdev, 274 struct hl_userptr *userptr) 275 { 276 hl_unpin_host_memory(hdev, userptr); 277 kfree(userptr); 278 } 279 280 /** 281 * dram_pg_pool_do_release() - free DRAM pages pool 282 * @ref: pointer to reference object. 283 * 284 * This function does the following: 285 * - Frees the idr structure of physical pages handles. 286 * - Frees the generic pool of DRAM physical pages. 287 */ 288 static void dram_pg_pool_do_release(struct kref *ref) 289 { 290 struct hl_vm *vm = container_of(ref, struct hl_vm, 291 dram_pg_pool_refcount); 292 293 /* 294 * free the idr here as only here we know for sure that there are no 295 * allocated physical pages and hence there are no handles in use 296 */ 297 idr_destroy(&vm->phys_pg_pack_handles); 298 gen_pool_destroy(vm->dram_pg_pool); 299 } 300 301 /** 302 * free_phys_pg_pack() - free physical page pack. 303 * @hdev: habanalabs device structure. 304 * @phys_pg_pack: physical page pack to free. 305 * 306 * This function does the following: 307 * - For DRAM memory only 308 * - iterate over the pack, free each physical block structure by 309 * returning it to the general pool. 310 * - Free the hl_vm_phys_pg_pack structure. 311 */ 312 static void free_phys_pg_pack(struct hl_device *hdev, 313 struct hl_vm_phys_pg_pack *phys_pg_pack) 314 { 315 struct hl_vm *vm = &hdev->vm; 316 u64 i; 317 318 if (phys_pg_pack->created_from_userptr) 319 goto end; 320 321 if (phys_pg_pack->contiguous) { 322 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0], 323 phys_pg_pack->total_size); 324 325 for (i = 0; i < phys_pg_pack->npages ; i++) 326 kref_put(&vm->dram_pg_pool_refcount, 327 dram_pg_pool_do_release); 328 } else { 329 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 330 gen_pool_free(vm->dram_pg_pool, 331 phys_pg_pack->pages[i], 332 phys_pg_pack->page_size); 333 kref_put(&vm->dram_pg_pool_refcount, 334 dram_pg_pool_do_release); 335 } 336 } 337 338 end: 339 kvfree(phys_pg_pack->pages); 340 kfree(phys_pg_pack); 341 342 return; 343 } 344 345 /** 346 * free_device_memory() - free device memory. 347 * @ctx: pointer to the context structure. 348 * @args: host parameters containing the requested size. 349 * 350 * This function does the following: 351 * - Free the device memory related to the given handle. 352 */ 353 static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args) 354 { 355 struct hl_device *hdev = ctx->hdev; 356 struct hl_vm *vm = &hdev->vm; 357 struct hl_vm_phys_pg_pack *phys_pg_pack; 358 u32 handle = args->free.handle; 359 360 spin_lock(&vm->idr_lock); 361 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); 362 if (!phys_pg_pack) { 363 spin_unlock(&vm->idr_lock); 364 dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle); 365 return -EINVAL; 366 } 367 368 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) { 369 spin_unlock(&vm->idr_lock); 370 dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle); 371 return -EINVAL; 372 } 373 374 /* must remove from idr before the freeing of the physical pages as the refcount of the pool 375 * is also the trigger of the idr destroy 376 */ 377 idr_remove(&vm->phys_pg_pack_handles, handle); 378 spin_unlock(&vm->idr_lock); 379 380 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem); 381 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem); 382 383 free_phys_pg_pack(hdev, phys_pg_pack); 384 385 return 0; 386 } 387 388 /** 389 * clear_va_list_locked() - free virtual addresses list. 390 * @hdev: habanalabs device structure. 391 * @va_list: list of virtual addresses to free. 392 * 393 * This function does the following: 394 * - Iterate over the list and free each virtual addresses block. 395 * 396 * This function should be called only when va_list lock is taken. 397 */ 398 static void clear_va_list_locked(struct hl_device *hdev, 399 struct list_head *va_list) 400 { 401 struct hl_vm_va_block *va_block, *tmp; 402 403 list_for_each_entry_safe(va_block, tmp, va_list, node) { 404 list_del(&va_block->node); 405 kfree(va_block); 406 } 407 } 408 409 /** 410 * print_va_list_locked() - print virtual addresses list. 411 * @hdev: habanalabs device structure. 412 * @va_list: list of virtual addresses to print. 413 * 414 * This function does the following: 415 * - Iterate over the list and print each virtual addresses block. 416 * 417 * This function should be called only when va_list lock is taken. 418 */ 419 static void print_va_list_locked(struct hl_device *hdev, 420 struct list_head *va_list) 421 { 422 #if HL_MMU_DEBUG 423 struct hl_vm_va_block *va_block; 424 425 dev_dbg(hdev->dev, "print va list:\n"); 426 427 list_for_each_entry(va_block, va_list, node) 428 dev_dbg(hdev->dev, 429 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n", 430 va_block->start, va_block->end, va_block->size); 431 #endif 432 } 433 434 /** 435 * merge_va_blocks_locked() - merge a virtual block if possible. 436 * @hdev: pointer to the habanalabs device structure. 437 * @va_list: pointer to the virtual addresses block list. 438 * @va_block: virtual block to merge with adjacent blocks. 439 * 440 * This function does the following: 441 * - Merge the given blocks with the adjacent blocks if their virtual ranges 442 * create a contiguous virtual range. 443 * 444 * This Function should be called only when va_list lock is taken. 445 */ 446 static void merge_va_blocks_locked(struct hl_device *hdev, 447 struct list_head *va_list, struct hl_vm_va_block *va_block) 448 { 449 struct hl_vm_va_block *prev, *next; 450 451 prev = list_prev_entry(va_block, node); 452 if (&prev->node != va_list && prev->end + 1 == va_block->start) { 453 prev->end = va_block->end; 454 prev->size = prev->end - prev->start + 1; 455 list_del(&va_block->node); 456 kfree(va_block); 457 va_block = prev; 458 } 459 460 next = list_next_entry(va_block, node); 461 if (&next->node != va_list && va_block->end + 1 == next->start) { 462 next->start = va_block->start; 463 next->size = next->end - next->start + 1; 464 list_del(&va_block->node); 465 kfree(va_block); 466 } 467 } 468 469 /** 470 * add_va_block_locked() - add a virtual block to the virtual addresses list. 471 * @hdev: pointer to the habanalabs device structure. 472 * @va_list: pointer to the virtual addresses block list. 473 * @start: start virtual address. 474 * @end: end virtual address. 475 * 476 * This function does the following: 477 * - Add the given block to the virtual blocks list and merge with other blocks 478 * if a contiguous virtual block can be created. 479 * 480 * This Function should be called only when va_list lock is taken. 481 */ 482 static int add_va_block_locked(struct hl_device *hdev, 483 struct list_head *va_list, u64 start, u64 end) 484 { 485 struct hl_vm_va_block *va_block, *res = NULL; 486 u64 size = end - start + 1; 487 488 print_va_list_locked(hdev, va_list); 489 490 list_for_each_entry(va_block, va_list, node) { 491 /* TODO: remove upon matureness */ 492 if (hl_mem_area_crosses_range(start, size, va_block->start, 493 va_block->end)) { 494 dev_err(hdev->dev, 495 "block crossing ranges at start 0x%llx, end 0x%llx\n", 496 va_block->start, va_block->end); 497 return -EINVAL; 498 } 499 500 if (va_block->end < start) 501 res = va_block; 502 } 503 504 va_block = kmalloc(sizeof(*va_block), GFP_KERNEL); 505 if (!va_block) 506 return -ENOMEM; 507 508 va_block->start = start; 509 va_block->end = end; 510 va_block->size = size; 511 512 if (!res) 513 list_add(&va_block->node, va_list); 514 else 515 list_add(&va_block->node, &res->node); 516 517 merge_va_blocks_locked(hdev, va_list, va_block); 518 519 print_va_list_locked(hdev, va_list); 520 521 return 0; 522 } 523 524 /** 525 * add_va_block() - wrapper for add_va_block_locked. 526 * @hdev: pointer to the habanalabs device structure. 527 * @va_range: pointer to the virtual addresses range object. 528 * @start: start virtual address. 529 * @end: end virtual address. 530 * 531 * This function does the following: 532 * - Takes the list lock and calls add_va_block_locked. 533 */ 534 static inline int add_va_block(struct hl_device *hdev, 535 struct hl_va_range *va_range, u64 start, u64 end) 536 { 537 int rc; 538 539 mutex_lock(&va_range->lock); 540 rc = add_va_block_locked(hdev, &va_range->list, start, end); 541 mutex_unlock(&va_range->lock); 542 543 return rc; 544 } 545 546 /** 547 * is_hint_crossing_range() - check if hint address crossing specified reserved. 548 * @range_type: virtual space range type. 549 * @start_addr: start virtual address. 550 * @size: block size. 551 * @prop: asic properties structure to retrieve reserved ranges from. 552 */ 553 static inline bool is_hint_crossing_range(enum hl_va_range_type range_type, 554 u64 start_addr, u32 size, struct asic_fixed_properties *prop) { 555 bool range_cross; 556 557 if (range_type == HL_VA_RANGE_TYPE_DRAM) 558 range_cross = 559 hl_mem_area_crosses_range(start_addr, size, 560 prop->hints_dram_reserved_va_range.start_addr, 561 prop->hints_dram_reserved_va_range.end_addr); 562 else if (range_type == HL_VA_RANGE_TYPE_HOST) 563 range_cross = 564 hl_mem_area_crosses_range(start_addr, size, 565 prop->hints_host_reserved_va_range.start_addr, 566 prop->hints_host_reserved_va_range.end_addr); 567 else 568 range_cross = 569 hl_mem_area_crosses_range(start_addr, size, 570 prop->hints_host_hpage_reserved_va_range.start_addr, 571 prop->hints_host_hpage_reserved_va_range.end_addr); 572 573 return range_cross; 574 } 575 576 /** 577 * get_va_block() - get a virtual block for the given size and alignment. 578 * 579 * @hdev: pointer to the habanalabs device structure. 580 * @va_range: pointer to the virtual addresses range. 581 * @size: requested block size. 582 * @hint_addr: hint for requested address by the user. 583 * @va_block_align: required alignment of the virtual block start address. 584 * @range_type: va range type (host, dram) 585 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT 586 * 587 * This function does the following: 588 * - Iterate on the virtual block list to find a suitable virtual block for the 589 * given size, hint address and alignment. 590 * - Reserve the requested block and update the list. 591 * - Return the start address of the virtual block. 592 */ 593 static u64 get_va_block(struct hl_device *hdev, 594 struct hl_va_range *va_range, 595 u64 size, u64 hint_addr, u32 va_block_align, 596 enum hl_va_range_type range_type, 597 u32 flags) 598 { 599 struct hl_vm_va_block *va_block, *new_va_block = NULL; 600 struct asic_fixed_properties *prop = &hdev->asic_prop; 601 u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end, 602 align_mask, reserved_valid_start = 0, reserved_valid_size = 0, 603 dram_hint_mask = prop->dram_hints_align_mask; 604 bool add_prev = false; 605 bool is_align_pow_2 = is_power_of_2(va_range->page_size); 606 bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr); 607 bool force_hint = flags & HL_MEM_FORCE_HINT; 608 int rc; 609 610 if (is_align_pow_2) 611 align_mask = ~((u64)va_block_align - 1); 612 else 613 /* 614 * with non-power-of-2 range we work only with page granularity 615 * and the start address is page aligned, 616 * so no need for alignment checking. 617 */ 618 size = DIV_ROUND_UP_ULL(size, va_range->page_size) * 619 va_range->page_size; 620 621 tmp_hint_addr = hint_addr & ~dram_hint_mask; 622 623 /* Check if we need to ignore hint address */ 624 if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) || 625 (!is_align_pow_2 && is_hint_dram_addr && 626 do_div(tmp_hint_addr, va_range->page_size))) { 627 628 if (force_hint) { 629 /* Hint must be respected, so here we just fail */ 630 dev_err(hdev->dev, 631 "Hint address 0x%llx is not page aligned - cannot be respected\n", 632 hint_addr); 633 return 0; 634 } 635 636 dev_dbg(hdev->dev, 637 "Hint address 0x%llx will be ignored because it is not aligned\n", 638 hint_addr); 639 hint_addr = 0; 640 } 641 642 mutex_lock(&va_range->lock); 643 644 print_va_list_locked(hdev, &va_range->list); 645 646 list_for_each_entry(va_block, &va_range->list, node) { 647 /* Calc the first possible aligned addr */ 648 valid_start = va_block->start; 649 650 if (is_align_pow_2 && (valid_start & (va_block_align - 1))) { 651 valid_start &= align_mask; 652 valid_start += va_block_align; 653 if (valid_start > va_block->end) 654 continue; 655 } 656 657 valid_size = va_block->end - valid_start + 1; 658 if (valid_size < size) 659 continue; 660 661 /* 662 * In case hint address is 0, and hints_range_reservation 663 * property enabled, then avoid allocating va blocks from the 664 * range reserved for hint addresses 665 */ 666 if (prop->hints_range_reservation && !hint_addr) 667 if (is_hint_crossing_range(range_type, valid_start, 668 size, prop)) 669 continue; 670 671 /* Pick the minimal length block which has the required size */ 672 if (!new_va_block || (valid_size < reserved_valid_size)) { 673 new_va_block = va_block; 674 reserved_valid_start = valid_start; 675 reserved_valid_size = valid_size; 676 } 677 678 if (hint_addr && hint_addr >= valid_start && 679 (hint_addr + size) <= va_block->end) { 680 new_va_block = va_block; 681 reserved_valid_start = hint_addr; 682 reserved_valid_size = valid_size; 683 break; 684 } 685 } 686 687 if (!new_va_block) { 688 dev_err(hdev->dev, "no available va block for size %llu\n", 689 size); 690 goto out; 691 } 692 693 if (force_hint && reserved_valid_start != hint_addr) { 694 /* Hint address must be respected. If we are here - this means 695 * we could not respect it. 696 */ 697 dev_err(hdev->dev, 698 "Hint address 0x%llx could not be respected\n", 699 hint_addr); 700 reserved_valid_start = 0; 701 goto out; 702 } 703 704 /* 705 * Check if there is some leftover range due to reserving the new 706 * va block, then return it to the main virtual addresses list. 707 */ 708 if (reserved_valid_start > new_va_block->start) { 709 prev_start = new_va_block->start; 710 prev_end = reserved_valid_start - 1; 711 712 new_va_block->start = reserved_valid_start; 713 new_va_block->size = reserved_valid_size; 714 715 add_prev = true; 716 } 717 718 if (new_va_block->size > size) { 719 new_va_block->start += size; 720 new_va_block->size = new_va_block->end - new_va_block->start + 1; 721 } else { 722 list_del(&new_va_block->node); 723 kfree(new_va_block); 724 } 725 726 if (add_prev) { 727 rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end); 728 if (rc) { 729 reserved_valid_start = 0; 730 goto out; 731 } 732 } 733 734 print_va_list_locked(hdev, &va_range->list); 735 out: 736 mutex_unlock(&va_range->lock); 737 738 return reserved_valid_start; 739 } 740 741 /* 742 * hl_reserve_va_block() - reserve a virtual block of a given size. 743 * @hdev: pointer to the habanalabs device structure. 744 * @ctx: current context 745 * @type: virtual addresses range type. 746 * @size: requested block size. 747 * @alignment: required alignment in bytes of the virtual block start address, 748 * 0 means no alignment. 749 * 750 * This function does the following: 751 * - Iterate on the virtual block list to find a suitable virtual block for the 752 * given size and alignment. 753 * - Reserve the requested block and update the list. 754 * - Return the start address of the virtual block. 755 */ 756 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 757 enum hl_va_range_type type, u64 size, u32 alignment) 758 { 759 return get_va_block(hdev, ctx->va_range[type], size, 0, 760 max(alignment, ctx->va_range[type]->page_size), 761 type, 0); 762 } 763 764 /** 765 * hl_get_va_range_type() - get va_range type for the given address and size. 766 * @ctx: context to fetch va_range from. 767 * @address: the start address of the area we want to validate. 768 * @size: the size in bytes of the area we want to validate. 769 * @type: returned va_range type. 770 * 771 * Return: true if the area is inside a valid range, false otherwise. 772 */ 773 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size, 774 enum hl_va_range_type *type) 775 { 776 int i; 777 778 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) { 779 if (hl_mem_area_inside_range(address, size, 780 ctx->va_range[i]->start_addr, 781 ctx->va_range[i]->end_addr)) { 782 *type = i; 783 return 0; 784 } 785 } 786 787 return -EINVAL; 788 } 789 790 /** 791 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block. 792 * @hdev: pointer to the habanalabs device structure 793 * @ctx: pointer to the context structure. 794 * @start_addr: start virtual address. 795 * @size: number of bytes to unreserve. 796 * 797 * This function does the following: 798 * - Takes the list lock and calls add_va_block_locked. 799 */ 800 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 801 u64 start_addr, u64 size) 802 { 803 enum hl_va_range_type type; 804 int rc; 805 806 rc = hl_get_va_range_type(ctx, start_addr, size, &type); 807 if (rc) { 808 dev_err(hdev->dev, 809 "cannot find va_range for va %#llx size %llu", 810 start_addr, size); 811 return rc; 812 } 813 814 rc = add_va_block(hdev, ctx->va_range[type], start_addr, 815 start_addr + size - 1); 816 if (rc) 817 dev_warn(hdev->dev, 818 "add va block failed for vaddr: 0x%llx\n", start_addr); 819 820 return rc; 821 } 822 823 /** 824 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host 825 * memory 826 * @ctx: pointer to the context structure. 827 * @userptr: userptr to initialize from. 828 * @pphys_pg_pack: result pointer. 829 * @force_regular_page: tell the function to ignore huge page optimization, 830 * even if possible. Needed for cases where the device VA 831 * is allocated before we know the composition of the 832 * physical pages 833 * 834 * This function does the following: 835 * - Pin the physical pages related to the given virtual block. 836 * - Create a physical page pack from the physical pages related to the given 837 * virtual block. 838 */ 839 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx, 840 struct hl_userptr *userptr, 841 struct hl_vm_phys_pg_pack **pphys_pg_pack, 842 bool force_regular_page) 843 { 844 u32 npages, page_size = PAGE_SIZE, 845 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size; 846 u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size); 847 struct hl_vm_phys_pg_pack *phys_pg_pack; 848 bool first = true, is_huge_page_opt; 849 u64 page_mask, total_npages; 850 struct scatterlist *sg; 851 dma_addr_t dma_addr; 852 int rc, i, j; 853 854 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); 855 if (!phys_pg_pack) 856 return -ENOMEM; 857 858 phys_pg_pack->vm_type = userptr->vm_type; 859 phys_pg_pack->created_from_userptr = true; 860 phys_pg_pack->asid = ctx->asid; 861 atomic_set(&phys_pg_pack->mapping_cnt, 1); 862 863 is_huge_page_opt = (force_regular_page ? false : true); 864 865 /* Only if all dma_addrs are aligned to 2MB and their 866 * sizes is at least 2MB, we can use huge page mapping. 867 * We limit the 2MB optimization to this condition, 868 * since later on we acquire the related VA range as one 869 * consecutive block. 870 */ 871 total_npages = 0; 872 for_each_sgtable_dma_sg(userptr->sgt, sg, i) { 873 npages = hl_get_sg_info(sg, &dma_addr); 874 875 total_npages += npages; 876 877 if ((npages % pgs_in_huge_page) || 878 (dma_addr & (huge_page_size - 1))) 879 is_huge_page_opt = false; 880 } 881 882 if (is_huge_page_opt) { 883 page_size = huge_page_size; 884 do_div(total_npages, pgs_in_huge_page); 885 } 886 887 page_mask = ~(((u64) page_size) - 1); 888 889 phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64), 890 GFP_KERNEL); 891 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { 892 rc = -ENOMEM; 893 goto page_pack_arr_mem_err; 894 } 895 896 phys_pg_pack->npages = total_npages; 897 phys_pg_pack->page_size = page_size; 898 phys_pg_pack->total_size = total_npages * page_size; 899 900 j = 0; 901 for_each_sgtable_dma_sg(userptr->sgt, sg, i) { 902 npages = hl_get_sg_info(sg, &dma_addr); 903 904 /* align down to physical page size and save the offset */ 905 if (first) { 906 first = false; 907 phys_pg_pack->offset = dma_addr & (page_size - 1); 908 dma_addr &= page_mask; 909 } 910 911 while (npages) { 912 phys_pg_pack->pages[j++] = dma_addr; 913 dma_addr += page_size; 914 915 if (is_huge_page_opt) 916 npages -= pgs_in_huge_page; 917 else 918 npages--; 919 } 920 } 921 922 *pphys_pg_pack = phys_pg_pack; 923 924 return 0; 925 926 page_pack_arr_mem_err: 927 kfree(phys_pg_pack); 928 929 return rc; 930 } 931 932 /** 933 * map_phys_pg_pack() - maps the physical page pack.. 934 * @ctx: pointer to the context structure. 935 * @vaddr: start address of the virtual area to map from. 936 * @phys_pg_pack: the pack of physical pages to map to. 937 * 938 * This function does the following: 939 * - Maps each chunk of virtual memory to matching physical chunk. 940 * - Stores number of successful mappings in the given argument. 941 * - Returns 0 on success, error code otherwise. 942 */ 943 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, 944 struct hl_vm_phys_pg_pack *phys_pg_pack) 945 { 946 struct hl_device *hdev = ctx->hdev; 947 u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i; 948 u32 page_size = phys_pg_pack->page_size; 949 int rc = 0; 950 bool is_host_addr; 951 952 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 953 paddr = phys_pg_pack->pages[i]; 954 955 rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size, 956 (i + 1) == phys_pg_pack->npages); 957 if (rc) { 958 dev_err(hdev->dev, 959 "map failed for handle %u, npages: %llu, mapped: %llu", 960 phys_pg_pack->handle, phys_pg_pack->npages, 961 mapped_pg_cnt); 962 goto err; 963 } 964 965 mapped_pg_cnt++; 966 next_vaddr += page_size; 967 } 968 969 return 0; 970 971 err: 972 is_host_addr = !hl_is_dram_va(hdev, vaddr); 973 974 next_vaddr = vaddr; 975 for (i = 0 ; i < mapped_pg_cnt ; i++) { 976 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, 977 (i + 1) == mapped_pg_cnt)) 978 dev_warn_ratelimited(hdev->dev, 979 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n", 980 phys_pg_pack->handle, next_vaddr, 981 phys_pg_pack->pages[i], page_size); 982 983 next_vaddr += page_size; 984 985 /* 986 * unmapping on Palladium can be really long, so avoid a CPU 987 * soft lockup bug by sleeping a little between unmapping pages 988 * 989 * In addition, on host num of pages could be huge, 990 * because page size could be 4KB, so when unmapping host 991 * pages sleep every 32K pages to avoid soft lockup 992 */ 993 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) 994 usleep_range(50, 200); 995 } 996 997 return rc; 998 } 999 1000 /** 1001 * unmap_phys_pg_pack() - unmaps the physical page pack. 1002 * @ctx: pointer to the context structure. 1003 * @vaddr: start address of the virtual area to unmap. 1004 * @phys_pg_pack: the pack of physical pages to unmap. 1005 */ 1006 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, 1007 struct hl_vm_phys_pg_pack *phys_pg_pack) 1008 { 1009 struct hl_device *hdev = ctx->hdev; 1010 u64 next_vaddr, i; 1011 bool is_host_addr; 1012 u32 page_size; 1013 1014 is_host_addr = !hl_is_dram_va(hdev, vaddr); 1015 page_size = phys_pg_pack->page_size; 1016 next_vaddr = vaddr; 1017 1018 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) { 1019 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, 1020 (i + 1) == phys_pg_pack->npages)) 1021 dev_warn_ratelimited(hdev->dev, 1022 "unmap failed for vaddr: 0x%llx\n", next_vaddr); 1023 1024 /* 1025 * unmapping on Palladium can be really long, so avoid a CPU 1026 * soft lockup bug by sleeping a little between unmapping pages 1027 * 1028 * In addition, on host num of pages could be huge, 1029 * because page size could be 4KB, so when unmapping host 1030 * pages sleep every 32K pages to avoid soft lockup 1031 */ 1032 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) 1033 usleep_range(50, 200); 1034 } 1035 } 1036 1037 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args, 1038 u64 *paddr) 1039 { 1040 struct hl_device *hdev = ctx->hdev; 1041 struct hl_vm *vm = &hdev->vm; 1042 struct hl_vm_phys_pg_pack *phys_pg_pack; 1043 u32 handle; 1044 1045 handle = lower_32_bits(args->map_device.handle); 1046 spin_lock(&vm->idr_lock); 1047 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); 1048 if (!phys_pg_pack) { 1049 spin_unlock(&vm->idr_lock); 1050 dev_err(hdev->dev, "no match for handle %u\n", handle); 1051 return -EINVAL; 1052 } 1053 1054 *paddr = phys_pg_pack->pages[0]; 1055 1056 spin_unlock(&vm->idr_lock); 1057 1058 return 0; 1059 } 1060 1061 /** 1062 * map_device_va() - map the given memory. 1063 * @ctx: pointer to the context structure. 1064 * @args: host parameters with handle/host virtual address. 1065 * @device_addr: pointer to result device virtual address. 1066 * 1067 * This function does the following: 1068 * - If given a physical device memory handle, map to a device virtual block 1069 * and return the start address of this block. 1070 * - If given a host virtual address and size, find the related physical pages, 1071 * map a device virtual block to this pages and return the start address of 1072 * this block. 1073 */ 1074 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr) 1075 { 1076 struct hl_vm_phys_pg_pack *phys_pg_pack; 1077 enum hl_va_range_type va_range_type = 0; 1078 struct hl_device *hdev = ctx->hdev; 1079 struct hl_userptr *userptr = NULL; 1080 u32 handle = 0, va_block_align; 1081 struct hl_vm_hash_node *hnode; 1082 struct hl_vm *vm = &hdev->vm; 1083 struct hl_va_range *va_range; 1084 bool is_userptr, do_prefetch; 1085 u64 ret_vaddr, hint_addr; 1086 enum vm_type *vm_type; 1087 int rc; 1088 1089 /* set map flags */ 1090 is_userptr = args->flags & HL_MEM_USERPTR; 1091 do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH); 1092 1093 /* Assume failure */ 1094 *device_addr = 0; 1095 1096 if (is_userptr) { 1097 u64 addr = args->map_host.host_virt_addr, 1098 size = args->map_host.mem_size; 1099 u32 page_size = hdev->asic_prop.pmmu.page_size, 1100 huge_page_size = hdev->asic_prop.pmmu_huge.page_size; 1101 1102 rc = dma_map_host_va(hdev, addr, size, &userptr); 1103 if (rc) 1104 return rc; 1105 1106 rc = init_phys_pg_pack_from_userptr(ctx, userptr, 1107 &phys_pg_pack, false); 1108 if (rc) { 1109 dev_err(hdev->dev, 1110 "unable to init page pack for vaddr 0x%llx\n", 1111 addr); 1112 goto init_page_pack_err; 1113 } 1114 1115 vm_type = (enum vm_type *) userptr; 1116 hint_addr = args->map_host.hint_addr; 1117 handle = phys_pg_pack->handle; 1118 1119 /* get required alignment */ 1120 if (phys_pg_pack->page_size == page_size) { 1121 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 1122 va_range_type = HL_VA_RANGE_TYPE_HOST; 1123 /* 1124 * huge page alignment may be needed in case of regular 1125 * page mapping, depending on the host VA alignment 1126 */ 1127 if (addr & (huge_page_size - 1)) 1128 va_block_align = page_size; 1129 else 1130 va_block_align = huge_page_size; 1131 } else { 1132 /* 1133 * huge page alignment is needed in case of huge page 1134 * mapping 1135 */ 1136 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; 1137 va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE; 1138 va_block_align = huge_page_size; 1139 } 1140 } else { 1141 handle = lower_32_bits(args->map_device.handle); 1142 1143 spin_lock(&vm->idr_lock); 1144 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); 1145 if (!phys_pg_pack) { 1146 spin_unlock(&vm->idr_lock); 1147 dev_err(hdev->dev, 1148 "no match for handle %u\n", handle); 1149 return -EINVAL; 1150 } 1151 1152 /* increment now to avoid freeing device memory while mapping */ 1153 atomic_inc(&phys_pg_pack->mapping_cnt); 1154 1155 spin_unlock(&vm->idr_lock); 1156 1157 vm_type = (enum vm_type *) phys_pg_pack; 1158 1159 hint_addr = args->map_device.hint_addr; 1160 1161 /* DRAM VA alignment is the same as the MMU page size */ 1162 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; 1163 va_range_type = HL_VA_RANGE_TYPE_DRAM; 1164 va_block_align = hdev->asic_prop.dmmu.page_size; 1165 } 1166 1167 /* 1168 * relevant for mapping device physical memory only, as host memory is 1169 * implicitly shared 1170 */ 1171 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) && 1172 phys_pg_pack->asid != ctx->asid) { 1173 dev_err(hdev->dev, 1174 "Failed to map memory, handle %u is not shared\n", 1175 handle); 1176 rc = -EPERM; 1177 goto shared_err; 1178 } 1179 1180 hnode = kzalloc(sizeof(*hnode), GFP_KERNEL); 1181 if (!hnode) { 1182 rc = -ENOMEM; 1183 goto hnode_err; 1184 } 1185 1186 if (hint_addr && phys_pg_pack->offset) { 1187 if (args->flags & HL_MEM_FORCE_HINT) { 1188 /* Fail if hint must be respected but it can't be */ 1189 dev_err(hdev->dev, 1190 "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n", 1191 hint_addr, phys_pg_pack->offset); 1192 rc = -EINVAL; 1193 goto va_block_err; 1194 } 1195 dev_dbg(hdev->dev, 1196 "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n", 1197 hint_addr, phys_pg_pack->offset); 1198 } 1199 1200 ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size, 1201 hint_addr, va_block_align, 1202 va_range_type, args->flags); 1203 if (!ret_vaddr) { 1204 dev_err(hdev->dev, "no available va block for handle %u\n", 1205 handle); 1206 rc = -ENOMEM; 1207 goto va_block_err; 1208 } 1209 1210 mutex_lock(&hdev->mmu_lock); 1211 1212 rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack); 1213 if (rc) { 1214 dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle); 1215 mutex_unlock(&hdev->mmu_lock); 1216 goto map_err; 1217 } 1218 1219 rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV, 1220 ctx->asid, ret_vaddr, phys_pg_pack->total_size); 1221 mutex_unlock(&hdev->mmu_lock); 1222 if (rc) 1223 goto map_err; 1224 1225 /* 1226 * prefetch is done upon user's request. it is performed in WQ as and so can 1227 * be outside the MMU lock. the operation itself is already protected by the mmu lock 1228 */ 1229 if (do_prefetch) { 1230 rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr, 1231 phys_pg_pack->total_size); 1232 if (rc) 1233 goto map_err; 1234 } 1235 1236 ret_vaddr += phys_pg_pack->offset; 1237 1238 hnode->ptr = vm_type; 1239 hnode->vaddr = ret_vaddr; 1240 hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle; 1241 1242 mutex_lock(&ctx->mem_hash_lock); 1243 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr); 1244 mutex_unlock(&ctx->mem_hash_lock); 1245 1246 *device_addr = ret_vaddr; 1247 1248 if (is_userptr) 1249 free_phys_pg_pack(hdev, phys_pg_pack); 1250 1251 return rc; 1252 1253 map_err: 1254 if (add_va_block(hdev, va_range, ret_vaddr, 1255 ret_vaddr + phys_pg_pack->total_size - 1)) 1256 dev_warn(hdev->dev, 1257 "release va block failed for handle 0x%x, vaddr: 0x%llx\n", 1258 handle, ret_vaddr); 1259 1260 va_block_err: 1261 kfree(hnode); 1262 hnode_err: 1263 shared_err: 1264 atomic_dec(&phys_pg_pack->mapping_cnt); 1265 if (is_userptr) 1266 free_phys_pg_pack(hdev, phys_pg_pack); 1267 init_page_pack_err: 1268 if (is_userptr) 1269 dma_unmap_host_va(hdev, userptr); 1270 1271 return rc; 1272 } 1273 1274 /* Should be called while the context's mem_hash_lock is taken */ 1275 static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr) 1276 { 1277 struct hl_vm_hash_node *hnode; 1278 1279 hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr) 1280 if (vaddr == hnode->vaddr) 1281 return hnode; 1282 1283 return NULL; 1284 } 1285 1286 /** 1287 * unmap_device_va() - unmap the given device virtual address. 1288 * @ctx: pointer to the context structure. 1289 * @args: host parameters with device virtual address to unmap. 1290 * @ctx_free: true if in context free flow, false otherwise. 1291 * 1292 * This function does the following: 1293 * - unmap the physical pages related to the given virtual address. 1294 * - return the device virtual block to the virtual block list. 1295 */ 1296 static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, 1297 bool ctx_free) 1298 { 1299 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 1300 u64 vaddr = args->unmap.device_virt_addr; 1301 struct asic_fixed_properties *prop; 1302 struct hl_device *hdev = ctx->hdev; 1303 struct hl_userptr *userptr = NULL; 1304 struct hl_vm_hash_node *hnode; 1305 struct hl_va_range *va_range; 1306 enum vm_type *vm_type; 1307 bool is_userptr; 1308 int rc = 0; 1309 1310 prop = &hdev->asic_prop; 1311 1312 /* protect from double entrance */ 1313 mutex_lock(&ctx->mem_hash_lock); 1314 hnode = get_vm_hash_node_locked(ctx, vaddr); 1315 if (!hnode) { 1316 mutex_unlock(&ctx->mem_hash_lock); 1317 dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr); 1318 return -EINVAL; 1319 } 1320 1321 if (hnode->export_cnt) { 1322 mutex_unlock(&ctx->mem_hash_lock); 1323 dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr); 1324 return -EINVAL; 1325 } 1326 1327 hash_del(&hnode->node); 1328 mutex_unlock(&ctx->mem_hash_lock); 1329 1330 vm_type = hnode->ptr; 1331 1332 if (*vm_type == VM_TYPE_USERPTR) { 1333 is_userptr = true; 1334 userptr = hnode->ptr; 1335 1336 rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack, 1337 false); 1338 if (rc) { 1339 dev_err(hdev->dev, 1340 "unable to init page pack for vaddr 0x%llx\n", 1341 vaddr); 1342 goto vm_type_err; 1343 } 1344 1345 if (phys_pg_pack->page_size == 1346 hdev->asic_prop.pmmu.page_size) 1347 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 1348 else 1349 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; 1350 } else if (*vm_type == VM_TYPE_PHYS_PACK) { 1351 is_userptr = false; 1352 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; 1353 phys_pg_pack = hnode->ptr; 1354 } else { 1355 dev_warn(hdev->dev, 1356 "unmap failed, unknown vm desc for vaddr 0x%llx\n", 1357 vaddr); 1358 rc = -EFAULT; 1359 goto vm_type_err; 1360 } 1361 1362 if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) { 1363 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr); 1364 rc = -EINVAL; 1365 goto mapping_cnt_err; 1366 } 1367 1368 if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size)) 1369 vaddr = prop->dram_base_address + 1370 DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address, 1371 phys_pg_pack->page_size) * 1372 phys_pg_pack->page_size; 1373 else 1374 vaddr &= ~(((u64) phys_pg_pack->page_size) - 1); 1375 1376 mutex_lock(&hdev->mmu_lock); 1377 1378 unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack); 1379 1380 /* 1381 * During context free this function is called in a loop to clean all 1382 * the context mappings. Hence the cache invalidation can be called once 1383 * at the loop end rather than for each iteration 1384 */ 1385 if (!ctx_free) 1386 rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr, 1387 phys_pg_pack->total_size); 1388 1389 mutex_unlock(&hdev->mmu_lock); 1390 1391 /* 1392 * If the context is closing we don't need to check for the MMU cache 1393 * invalidation return code and update the VA free list as in this flow 1394 * we invalidate the MMU cache outside of this unmap function and the VA 1395 * free list will be freed anyway. 1396 */ 1397 if (!ctx_free) { 1398 int tmp_rc; 1399 1400 tmp_rc = add_va_block(hdev, va_range, vaddr, 1401 vaddr + phys_pg_pack->total_size - 1); 1402 if (tmp_rc) { 1403 dev_warn(hdev->dev, 1404 "add va block failed for vaddr: 0x%llx\n", 1405 vaddr); 1406 if (!rc) 1407 rc = tmp_rc; 1408 } 1409 } 1410 1411 atomic_dec(&phys_pg_pack->mapping_cnt); 1412 kfree(hnode); 1413 1414 if (is_userptr) { 1415 free_phys_pg_pack(hdev, phys_pg_pack); 1416 dma_unmap_host_va(hdev, userptr); 1417 } 1418 1419 return rc; 1420 1421 mapping_cnt_err: 1422 if (is_userptr) 1423 free_phys_pg_pack(hdev, phys_pg_pack); 1424 vm_type_err: 1425 mutex_lock(&ctx->mem_hash_lock); 1426 hash_add(ctx->mem_hash, &hnode->node, vaddr); 1427 mutex_unlock(&ctx->mem_hash_lock); 1428 1429 return rc; 1430 } 1431 1432 static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size) 1433 { 1434 u32 block_id; 1435 int rc; 1436 1437 *handle = 0; 1438 if (size) 1439 *size = 0; 1440 1441 rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id); 1442 if (rc) 1443 return rc; 1444 1445 *handle = block_id | HL_MMAP_TYPE_BLOCK; 1446 *handle <<= PAGE_SHIFT; 1447 1448 return 0; 1449 } 1450 1451 static void hw_block_vm_close(struct vm_area_struct *vma) 1452 { 1453 struct hl_vm_hw_block_list_node *lnode = 1454 (struct hl_vm_hw_block_list_node *) vma->vm_private_data; 1455 struct hl_ctx *ctx = lnode->ctx; 1456 long new_mmap_size; 1457 1458 new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start); 1459 if (new_mmap_size > 0) { 1460 lnode->mapped_size = new_mmap_size; 1461 return; 1462 } 1463 1464 mutex_lock(&ctx->hw_block_list_lock); 1465 list_del(&lnode->node); 1466 mutex_unlock(&ctx->hw_block_list_lock); 1467 hl_ctx_put(ctx); 1468 kfree(lnode); 1469 vma->vm_private_data = NULL; 1470 } 1471 1472 static const struct vm_operations_struct hw_block_vm_ops = { 1473 .close = hw_block_vm_close 1474 }; 1475 1476 /** 1477 * hl_hw_block_mmap() - mmap a hw block to user. 1478 * @hpriv: pointer to the private data of the fd 1479 * @vma: pointer to vm_area_struct of the process 1480 * 1481 * Driver increments context reference for every HW block mapped in order 1482 * to prevent user from closing FD without unmapping first 1483 */ 1484 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) 1485 { 1486 struct hl_vm_hw_block_list_node *lnode; 1487 struct hl_device *hdev = hpriv->hdev; 1488 struct hl_ctx *ctx = hpriv->ctx; 1489 u32 block_id, block_size; 1490 int rc; 1491 1492 /* We use the page offset to hold the block id and thus we need to clear 1493 * it before doing the mmap itself 1494 */ 1495 block_id = vma->vm_pgoff; 1496 vma->vm_pgoff = 0; 1497 1498 /* Driver only allows mapping of a complete HW block */ 1499 block_size = vma->vm_end - vma->vm_start; 1500 1501 if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) { 1502 dev_err(hdev->dev, 1503 "user pointer is invalid - 0x%lx\n", 1504 vma->vm_start); 1505 1506 return -EINVAL; 1507 } 1508 1509 lnode = kzalloc(sizeof(*lnode), GFP_KERNEL); 1510 if (!lnode) 1511 return -ENOMEM; 1512 1513 rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size); 1514 if (rc) { 1515 kfree(lnode); 1516 return rc; 1517 } 1518 1519 hl_ctx_get(ctx); 1520 1521 lnode->ctx = ctx; 1522 lnode->vaddr = vma->vm_start; 1523 lnode->block_size = block_size; 1524 lnode->mapped_size = lnode->block_size; 1525 lnode->id = block_id; 1526 1527 vma->vm_private_data = lnode; 1528 vma->vm_ops = &hw_block_vm_ops; 1529 1530 mutex_lock(&ctx->hw_block_list_lock); 1531 list_add_tail(&lnode->node, &ctx->hw_block_mem_list); 1532 mutex_unlock(&ctx->hw_block_list_lock); 1533 1534 vma->vm_pgoff = block_id; 1535 1536 return 0; 1537 } 1538 1539 static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size, 1540 struct device *dev, enum dma_data_direction dir) 1541 { 1542 dma_addr_t addr; 1543 int rc; 1544 1545 addr = dma_map_resource(dev, bar_address, chunk_size, dir, 1546 DMA_ATTR_SKIP_CPU_SYNC); 1547 rc = dma_mapping_error(dev, addr); 1548 if (rc) 1549 return rc; 1550 1551 sg_set_page(sg, NULL, chunk_size, 0); 1552 sg_dma_address(sg) = addr; 1553 sg_dma_len(sg) = chunk_size; 1554 1555 return 0; 1556 } 1557 1558 static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages, 1559 u64 page_size, u64 exported_size, 1560 struct device *dev, enum dma_data_direction dir) 1561 { 1562 u64 chunk_size, bar_address, dma_max_seg_size, cur_size_to_export, cur_npages; 1563 struct asic_fixed_properties *prop; 1564 int rc, i, j, nents, cur_page; 1565 struct scatterlist *sg; 1566 struct sg_table *sgt; 1567 1568 prop = &hdev->asic_prop; 1569 1570 dma_max_seg_size = dma_get_max_seg_size(dev); 1571 1572 /* We would like to align the max segment size to PAGE_SIZE, so the 1573 * SGL will contain aligned addresses that can be easily mapped to 1574 * an MMU 1575 */ 1576 dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE); 1577 if (dma_max_seg_size < PAGE_SIZE) { 1578 dev_err_ratelimited(hdev->dev, 1579 "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n", 1580 dma_max_seg_size); 1581 return ERR_PTR(-EINVAL); 1582 } 1583 1584 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); 1585 if (!sgt) 1586 return ERR_PTR(-ENOMEM); 1587 1588 /* remove export size restrictions in case not explicitly defined */ 1589 cur_size_to_export = exported_size ? exported_size : (npages * page_size); 1590 1591 /* If the size of each page is larger than the dma max segment size, 1592 * then we can't combine pages and the number of entries in the SGL 1593 * will just be the 1594 * <number of pages> * <chunks of max segment size in each page> 1595 */ 1596 if (page_size > dma_max_seg_size) { 1597 /* we should limit number of pages according to the exported size */ 1598 cur_npages = DIV_ROUND_UP_SECTOR_T(cur_size_to_export, page_size); 1599 nents = cur_npages * DIV_ROUND_UP_SECTOR_T(page_size, dma_max_seg_size); 1600 } else { 1601 cur_npages = npages; 1602 1603 /* Get number of non-contiguous chunks */ 1604 for (i = 1, nents = 1, chunk_size = page_size ; i < cur_npages ; i++) { 1605 if (pages[i - 1] + page_size != pages[i] || 1606 chunk_size + page_size > dma_max_seg_size) { 1607 nents++; 1608 chunk_size = page_size; 1609 continue; 1610 } 1611 1612 chunk_size += page_size; 1613 } 1614 } 1615 1616 rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO); 1617 if (rc) 1618 goto error_free; 1619 1620 cur_page = 0; 1621 1622 if (page_size > dma_max_seg_size) { 1623 u64 size_left, cur_device_address = 0; 1624 1625 size_left = page_size; 1626 1627 /* Need to split each page into the number of chunks of 1628 * dma_max_seg_size 1629 */ 1630 for_each_sgtable_dma_sg(sgt, sg, i) { 1631 if (size_left == page_size) 1632 cur_device_address = 1633 pages[cur_page] - prop->dram_base_address; 1634 else 1635 cur_device_address += dma_max_seg_size; 1636 1637 /* make sure not to export over exported size */ 1638 chunk_size = min3(size_left, dma_max_seg_size, cur_size_to_export); 1639 1640 bar_address = hdev->dram_pci_bar_start + cur_device_address; 1641 1642 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir); 1643 if (rc) 1644 goto error_unmap; 1645 1646 cur_size_to_export -= chunk_size; 1647 1648 if (size_left > dma_max_seg_size) { 1649 size_left -= dma_max_seg_size; 1650 } else { 1651 cur_page++; 1652 size_left = page_size; 1653 } 1654 } 1655 } else { 1656 /* Merge pages and put them into the scatterlist */ 1657 for_each_sgtable_dma_sg(sgt, sg, i) { 1658 chunk_size = page_size; 1659 for (j = cur_page + 1 ; j < cur_npages ; j++) { 1660 if (pages[j - 1] + page_size != pages[j] || 1661 chunk_size + page_size > dma_max_seg_size) 1662 break; 1663 1664 chunk_size += page_size; 1665 } 1666 1667 bar_address = hdev->dram_pci_bar_start + 1668 (pages[cur_page] - prop->dram_base_address); 1669 1670 /* make sure not to export over exported size */ 1671 chunk_size = min(chunk_size, cur_size_to_export); 1672 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir); 1673 if (rc) 1674 goto error_unmap; 1675 1676 cur_size_to_export -= chunk_size; 1677 cur_page = j; 1678 } 1679 } 1680 1681 /* Because we are not going to include a CPU list we want to have some 1682 * chance that other users will detect this by setting the orig_nents 1683 * to 0 and using only nents (length of DMA list) when going over the 1684 * sgl 1685 */ 1686 sgt->orig_nents = 0; 1687 1688 return sgt; 1689 1690 error_unmap: 1691 for_each_sgtable_dma_sg(sgt, sg, i) { 1692 if (!sg_dma_len(sg)) 1693 continue; 1694 1695 dma_unmap_resource(dev, sg_dma_address(sg), 1696 sg_dma_len(sg), dir, 1697 DMA_ATTR_SKIP_CPU_SYNC); 1698 } 1699 1700 sg_free_table(sgt); 1701 1702 error_free: 1703 kfree(sgt); 1704 return ERR_PTR(rc); 1705 } 1706 1707 static int hl_dmabuf_attach(struct dma_buf *dmabuf, 1708 struct dma_buf_attachment *attachment) 1709 { 1710 struct hl_dmabuf_priv *hl_dmabuf; 1711 struct hl_device *hdev; 1712 int rc; 1713 1714 hl_dmabuf = dmabuf->priv; 1715 hdev = hl_dmabuf->ctx->hdev; 1716 1717 rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true); 1718 1719 if (rc < 0) 1720 attachment->peer2peer = false; 1721 return 0; 1722 } 1723 1724 static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment, 1725 enum dma_data_direction dir) 1726 { 1727 struct dma_buf *dma_buf = attachment->dmabuf; 1728 struct hl_vm_phys_pg_pack *phys_pg_pack; 1729 struct hl_dmabuf_priv *hl_dmabuf; 1730 struct hl_device *hdev; 1731 struct sg_table *sgt; 1732 1733 hl_dmabuf = dma_buf->priv; 1734 hdev = hl_dmabuf->ctx->hdev; 1735 phys_pg_pack = hl_dmabuf->phys_pg_pack; 1736 1737 if (!attachment->peer2peer) { 1738 dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n"); 1739 return ERR_PTR(-EPERM); 1740 } 1741 1742 if (phys_pg_pack) 1743 sgt = alloc_sgt_from_device_pages(hdev, 1744 phys_pg_pack->pages, 1745 phys_pg_pack->npages, 1746 phys_pg_pack->page_size, 1747 phys_pg_pack->exported_size, 1748 attachment->dev, 1749 dir); 1750 else 1751 sgt = alloc_sgt_from_device_pages(hdev, 1752 &hl_dmabuf->device_address, 1753 1, 1754 hl_dmabuf->dmabuf->size, 1755 0, 1756 attachment->dev, 1757 dir); 1758 1759 if (IS_ERR(sgt)) 1760 dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt)); 1761 1762 return sgt; 1763 } 1764 1765 static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment, 1766 struct sg_table *sgt, 1767 enum dma_data_direction dir) 1768 { 1769 struct scatterlist *sg; 1770 int i; 1771 1772 /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives 1773 * only in the 'device' domain (after all, it maps a PCI bar address which points to the 1774 * device memory). 1775 * 1776 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform 1777 * a sync of the memory to the CPU's cache, as it never resided inside that cache. 1778 */ 1779 for_each_sgtable_dma_sg(sgt, sg, i) 1780 dma_unmap_resource(attachment->dev, sg_dma_address(sg), 1781 sg_dma_len(sg), dir, 1782 DMA_ATTR_SKIP_CPU_SYNC); 1783 1784 /* Need to restore orig_nents because sg_free_table use that field */ 1785 sgt->orig_nents = sgt->nents; 1786 sg_free_table(sgt); 1787 kfree(sgt); 1788 } 1789 1790 static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr) 1791 { 1792 struct hl_device *hdev = ctx->hdev; 1793 struct hl_vm_hash_node *hnode; 1794 1795 /* get the memory handle */ 1796 mutex_lock(&ctx->mem_hash_lock); 1797 hnode = get_vm_hash_node_locked(ctx, addr); 1798 if (!hnode) { 1799 mutex_unlock(&ctx->mem_hash_lock); 1800 dev_dbg(hdev->dev, "map address %#llx not found\n", addr); 1801 return ERR_PTR(-EINVAL); 1802 } 1803 1804 if (upper_32_bits(hnode->handle)) { 1805 mutex_unlock(&ctx->mem_hash_lock); 1806 dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n", 1807 hnode->handle, addr); 1808 return ERR_PTR(-EINVAL); 1809 } 1810 1811 /* 1812 * node found, increase export count so this memory cannot be unmapped 1813 * and the hash node cannot be deleted. 1814 */ 1815 hnode->export_cnt++; 1816 mutex_unlock(&ctx->mem_hash_lock); 1817 1818 return hnode; 1819 } 1820 1821 static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode) 1822 { 1823 mutex_lock(&ctx->mem_hash_lock); 1824 hnode->export_cnt--; 1825 mutex_unlock(&ctx->mem_hash_lock); 1826 } 1827 1828 static void hl_release_dmabuf(struct dma_buf *dmabuf) 1829 { 1830 struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv; 1831 struct hl_ctx *ctx; 1832 1833 if (!hl_dmabuf) 1834 return; 1835 1836 ctx = hl_dmabuf->ctx; 1837 1838 if (hl_dmabuf->memhash_hnode) 1839 memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode); 1840 1841 atomic_dec(&ctx->hdev->dmabuf_export_cnt); 1842 hl_ctx_put(ctx); 1843 1844 /* Paired with get_file() in export_dmabuf() */ 1845 fput(ctx->hpriv->filp); 1846 1847 kfree(hl_dmabuf); 1848 } 1849 1850 static const struct dma_buf_ops habanalabs_dmabuf_ops = { 1851 .attach = hl_dmabuf_attach, 1852 .map_dma_buf = hl_map_dmabuf, 1853 .unmap_dma_buf = hl_unmap_dmabuf, 1854 .release = hl_release_dmabuf, 1855 }; 1856 1857 static int export_dmabuf(struct hl_ctx *ctx, 1858 struct hl_dmabuf_priv *hl_dmabuf, 1859 u64 total_size, int flags, int *dmabuf_fd) 1860 { 1861 DEFINE_DMA_BUF_EXPORT_INFO(exp_info); 1862 struct hl_device *hdev = ctx->hdev; 1863 int rc, fd; 1864 1865 exp_info.ops = &habanalabs_dmabuf_ops; 1866 exp_info.size = total_size; 1867 exp_info.flags = flags; 1868 exp_info.priv = hl_dmabuf; 1869 1870 hl_dmabuf->dmabuf = dma_buf_export(&exp_info); 1871 if (IS_ERR(hl_dmabuf->dmabuf)) { 1872 dev_err(hdev->dev, "failed to export dma-buf\n"); 1873 return PTR_ERR(hl_dmabuf->dmabuf); 1874 } 1875 1876 fd = dma_buf_fd(hl_dmabuf->dmabuf, flags); 1877 if (fd < 0) { 1878 dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd); 1879 rc = fd; 1880 goto err_dma_buf_put; 1881 } 1882 1883 hl_dmabuf->ctx = ctx; 1884 hl_ctx_get(hl_dmabuf->ctx); 1885 atomic_inc(&ctx->hdev->dmabuf_export_cnt); 1886 1887 /* Get compute device file to enforce release order, such that all exported dma-buf will be 1888 * released first and only then the compute device. 1889 * Paired with fput() in hl_release_dmabuf(). 1890 */ 1891 get_file(ctx->hpriv->filp); 1892 1893 *dmabuf_fd = fd; 1894 1895 return 0; 1896 1897 err_dma_buf_put: 1898 hl_dmabuf->dmabuf->priv = NULL; 1899 dma_buf_put(hl_dmabuf->dmabuf); 1900 return rc; 1901 } 1902 1903 static int validate_export_params_common(struct hl_device *hdev, u64 device_addr, u64 size) 1904 { 1905 if (!IS_ALIGNED(device_addr, PAGE_SIZE)) { 1906 dev_dbg(hdev->dev, 1907 "exported device memory address 0x%llx should be aligned to 0x%lx\n", 1908 device_addr, PAGE_SIZE); 1909 return -EINVAL; 1910 } 1911 1912 if (size < PAGE_SIZE) { 1913 dev_dbg(hdev->dev, 1914 "exported device memory size %llu should be equal to or greater than %lu\n", 1915 size, PAGE_SIZE); 1916 return -EINVAL; 1917 } 1918 1919 return 0; 1920 } 1921 1922 static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size) 1923 { 1924 struct asic_fixed_properties *prop = &hdev->asic_prop; 1925 u64 bar_address; 1926 int rc; 1927 1928 rc = validate_export_params_common(hdev, device_addr, size); 1929 if (rc) 1930 return rc; 1931 1932 if (device_addr < prop->dram_user_base_address || 1933 (device_addr + size) > prop->dram_end_address || 1934 (device_addr + size) < device_addr) { 1935 dev_dbg(hdev->dev, 1936 "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n", 1937 device_addr, size); 1938 return -EINVAL; 1939 } 1940 1941 bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address); 1942 1943 if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) || 1944 (bar_address + size) < bar_address) { 1945 dev_dbg(hdev->dev, 1946 "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n", 1947 device_addr, size); 1948 return -EINVAL; 1949 } 1950 1951 return 0; 1952 } 1953 1954 static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset, 1955 struct hl_vm_phys_pg_pack *phys_pg_pack) 1956 { 1957 struct asic_fixed_properties *prop = &hdev->asic_prop; 1958 u64 bar_address; 1959 int i, rc; 1960 1961 rc = validate_export_params_common(hdev, device_addr, size); 1962 if (rc) 1963 return rc; 1964 1965 if ((offset + size) > phys_pg_pack->total_size) { 1966 dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n", 1967 offset, size, phys_pg_pack->total_size); 1968 return -EINVAL; 1969 } 1970 1971 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 1972 1973 bar_address = hdev->dram_pci_bar_start + 1974 (phys_pg_pack->pages[i] - prop->dram_base_address); 1975 1976 if ((bar_address + phys_pg_pack->page_size) > 1977 (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) || 1978 (bar_address + phys_pg_pack->page_size) < bar_address) { 1979 dev_dbg(hdev->dev, 1980 "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n", 1981 phys_pg_pack->pages[i], 1982 phys_pg_pack->page_size); 1983 1984 return -EINVAL; 1985 } 1986 } 1987 1988 return 0; 1989 } 1990 1991 static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev, 1992 struct hl_vm_hash_node *hnode) 1993 { 1994 struct hl_vm_phys_pg_pack *phys_pg_pack; 1995 struct hl_vm *vm = &hdev->vm; 1996 1997 spin_lock(&vm->idr_lock); 1998 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle); 1999 if (!phys_pg_pack) { 2000 spin_unlock(&vm->idr_lock); 2001 dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle); 2002 return ERR_PTR(-EINVAL); 2003 } 2004 2005 spin_unlock(&vm->idr_lock); 2006 2007 if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) { 2008 dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle); 2009 return ERR_PTR(-EINVAL); 2010 } 2011 2012 return phys_pg_pack; 2013 } 2014 2015 /** 2016 * export_dmabuf_from_addr() - export a dma-buf object for the given memory 2017 * address and size. 2018 * @ctx: pointer to the context structure. 2019 * @addr: device address. 2020 * @size: size of device memory to export. 2021 * @offset: the offset into the buffer from which to start exporting 2022 * @flags: DMA-BUF file/FD flags. 2023 * @dmabuf_fd: pointer to result FD that represents the dma-buf object. 2024 * 2025 * Create and export a dma-buf object for an existing memory allocation inside 2026 * the device memory, and return a FD which is associated with the dma-buf 2027 * object. 2028 * 2029 * Return: 0 on success, non-zero for failure. 2030 */ 2031 static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset, 2032 int flags, int *dmabuf_fd) 2033 { 2034 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 2035 struct hl_vm_hash_node *hnode = NULL; 2036 struct asic_fixed_properties *prop; 2037 struct hl_dmabuf_priv *hl_dmabuf; 2038 struct hl_device *hdev; 2039 u64 export_addr; 2040 int rc; 2041 2042 hdev = ctx->hdev; 2043 prop = &hdev->asic_prop; 2044 2045 /* offset must be 0 in devices without virtual memory support */ 2046 if (!prop->dram_supports_virtual_memory && offset) { 2047 dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n"); 2048 return -EINVAL; 2049 } 2050 2051 export_addr = addr + offset; 2052 2053 hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL); 2054 if (!hl_dmabuf) 2055 return -ENOMEM; 2056 2057 if (prop->dram_supports_virtual_memory) { 2058 hnode = memhash_node_export_get(ctx, addr); 2059 if (IS_ERR(hnode)) { 2060 rc = PTR_ERR(hnode); 2061 goto err_free_dmabuf_wrapper; 2062 } 2063 phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode); 2064 if (IS_ERR(phys_pg_pack)) { 2065 rc = PTR_ERR(phys_pg_pack); 2066 goto dec_memhash_export_cnt; 2067 } 2068 rc = validate_export_params(hdev, export_addr, size, offset, phys_pg_pack); 2069 if (rc) 2070 goto dec_memhash_export_cnt; 2071 2072 phys_pg_pack->exported_size = size; 2073 hl_dmabuf->phys_pg_pack = phys_pg_pack; 2074 hl_dmabuf->memhash_hnode = hnode; 2075 } else { 2076 rc = validate_export_params_no_mmu(hdev, export_addr, size); 2077 if (rc) 2078 goto err_free_dmabuf_wrapper; 2079 } 2080 2081 hl_dmabuf->device_address = export_addr; 2082 2083 rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd); 2084 if (rc) 2085 goto dec_memhash_export_cnt; 2086 2087 return 0; 2088 2089 dec_memhash_export_cnt: 2090 if (prop->dram_supports_virtual_memory) 2091 memhash_node_export_put(ctx, hnode); 2092 err_free_dmabuf_wrapper: 2093 kfree(hl_dmabuf); 2094 return rc; 2095 } 2096 2097 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args) 2098 { 2099 struct hl_device *hdev = hpriv->hdev; 2100 u64 block_handle, device_addr = 0; 2101 struct hl_ctx *ctx = hpriv->ctx; 2102 u32 handle = 0, block_size; 2103 int rc; 2104 2105 switch (args->in.op) { 2106 case HL_MEM_OP_ALLOC: 2107 if (args->in.alloc.mem_size == 0) { 2108 dev_err(hdev->dev, "alloc size must be larger than 0\n"); 2109 rc = -EINVAL; 2110 goto out; 2111 } 2112 2113 /* Force contiguous as there are no real MMU 2114 * translations to overcome physical memory gaps 2115 */ 2116 args->in.flags |= HL_MEM_CONTIGUOUS; 2117 rc = alloc_device_memory(ctx, &args->in, &handle); 2118 2119 memset(args, 0, sizeof(*args)); 2120 args->out.handle = (__u64) handle; 2121 break; 2122 2123 case HL_MEM_OP_FREE: 2124 rc = free_device_memory(ctx, &args->in); 2125 break; 2126 2127 case HL_MEM_OP_MAP: 2128 if (args->in.flags & HL_MEM_USERPTR) { 2129 dev_err(hdev->dev, "Failed to map host memory when MMU is disabled\n"); 2130 rc = -EPERM; 2131 } else { 2132 rc = get_paddr_from_handle(ctx, &args->in, &device_addr); 2133 memset(args, 0, sizeof(*args)); 2134 args->out.device_virt_addr = device_addr; 2135 } 2136 2137 break; 2138 2139 case HL_MEM_OP_UNMAP: 2140 rc = 0; 2141 break; 2142 2143 case HL_MEM_OP_MAP_BLOCK: 2144 rc = map_block(hdev, args->in.map_block.block_addr, &block_handle, &block_size); 2145 args->out.block_handle = block_handle; 2146 args->out.block_size = block_size; 2147 break; 2148 2149 case HL_MEM_OP_EXPORT_DMABUF_FD: 2150 dev_err(hdev->dev, "Failed to export dma-buf object when MMU is disabled\n"); 2151 rc = -EPERM; 2152 break; 2153 2154 case HL_MEM_OP_TS_ALLOC: 2155 rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle); 2156 break; 2157 default: 2158 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); 2159 rc = -EINVAL; 2160 break; 2161 } 2162 2163 out: 2164 return rc; 2165 } 2166 2167 static void ts_buff_release(struct hl_mmap_mem_buf *buf) 2168 { 2169 struct hl_ts_buff *ts_buff = buf->private; 2170 2171 vfree(ts_buff->kernel_buff_address); 2172 vfree(ts_buff->user_buff_address); 2173 kfree(ts_buff); 2174 } 2175 2176 static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args) 2177 { 2178 struct hl_ts_buff *ts_buff = buf->private; 2179 2180 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE); 2181 return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0); 2182 } 2183 2184 static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args) 2185 { 2186 struct hl_ts_buff *ts_buff = NULL; 2187 u32 num_elements; 2188 size_t size; 2189 void *p; 2190 2191 num_elements = *(u32 *)args; 2192 2193 ts_buff = kzalloc(sizeof(*ts_buff), gfp); 2194 if (!ts_buff) 2195 return -ENOMEM; 2196 2197 /* Allocate the user buffer */ 2198 size = num_elements * sizeof(u64); 2199 p = vmalloc_user(size); 2200 if (!p) 2201 goto free_mem; 2202 2203 ts_buff->user_buff_address = p; 2204 buf->mappable_size = size; 2205 2206 /* Allocate the internal kernel buffer */ 2207 size = num_elements * sizeof(struct hl_user_pending_interrupt); 2208 p = vzalloc(size); 2209 if (!p) 2210 goto free_user_buff; 2211 2212 ts_buff->kernel_buff_address = p; 2213 ts_buff->kernel_buff_size = size; 2214 2215 buf->private = ts_buff; 2216 2217 return 0; 2218 2219 free_user_buff: 2220 vfree(ts_buff->user_buff_address); 2221 free_mem: 2222 kfree(ts_buff); 2223 return -ENOMEM; 2224 } 2225 2226 static struct hl_mmap_mem_buf_behavior hl_ts_behavior = { 2227 .topic = "TS", 2228 .mem_id = HL_MMAP_TYPE_TS_BUFF, 2229 .mmap = hl_ts_mmap, 2230 .alloc = hl_ts_alloc_buf, 2231 .release = ts_buff_release, 2232 }; 2233 2234 /** 2235 * allocate_timestamps_buffers() - allocate timestamps buffers 2236 * This function will allocate ts buffer that will later on be mapped to the user 2237 * in order to be able to read the timestamp. 2238 * in addition it'll allocate an extra buffer for registration management. 2239 * since we cannot fail during registration for out-of-memory situation, so 2240 * we'll prepare a pool which will be used as user interrupt nodes and instead 2241 * of dynamically allocating nodes while registration we'll pick the node from 2242 * this pool. in addition it'll add node to the mapping hash which will be used 2243 * to map user ts buffer to the internal kernel ts buffer. 2244 * @hpriv: pointer to the private data of the fd 2245 * @args: ioctl input 2246 * @handle: user timestamp buffer handle as an output 2247 */ 2248 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle) 2249 { 2250 struct hl_mem_mgr *mmg = &hpriv->mem_mgr; 2251 struct hl_mmap_mem_buf *buf; 2252 2253 if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) { 2254 dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n", 2255 args->num_of_elements, TS_MAX_ELEMENTS_NUM); 2256 return -EINVAL; 2257 } 2258 2259 buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements); 2260 if (!buf) 2261 return -ENOMEM; 2262 2263 *handle = buf->handle; 2264 2265 return 0; 2266 } 2267 2268 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data) 2269 { 2270 enum hl_device_status status; 2271 union hl_mem_args *args = data; 2272 struct hl_device *hdev = hpriv->hdev; 2273 struct hl_ctx *ctx = hpriv->ctx; 2274 u64 block_handle, device_addr = 0; 2275 u32 handle = 0, block_size; 2276 int rc, dmabuf_fd = -EBADF; 2277 2278 if (!hl_device_operational(hdev, &status)) { 2279 dev_dbg_ratelimited(hdev->dev, 2280 "Device is %s. Can't execute MEMORY IOCTL\n", 2281 hdev->status[status]); 2282 return -EBUSY; 2283 } 2284 2285 if (!hdev->mmu_enable) 2286 return mem_ioctl_no_mmu(hpriv, args); 2287 2288 switch (args->in.op) { 2289 case HL_MEM_OP_ALLOC: 2290 if (args->in.alloc.mem_size == 0) { 2291 dev_err(hdev->dev, 2292 "alloc size must be larger than 0\n"); 2293 rc = -EINVAL; 2294 goto out; 2295 } 2296 2297 /* If DRAM does not support virtual memory the driver won't 2298 * handle the allocation/freeing of that memory. However, for 2299 * system administration/monitoring purposes, the driver will 2300 * keep track of the amount of DRAM memory that is allocated 2301 * and freed by the user. Because this code totally relies on 2302 * the user's input, the driver can't ensure the validity 2303 * of this accounting. 2304 */ 2305 if (!hdev->asic_prop.dram_supports_virtual_memory) { 2306 atomic64_add(args->in.alloc.mem_size, 2307 &ctx->dram_phys_mem); 2308 atomic64_add(args->in.alloc.mem_size, 2309 &hdev->dram_used_mem); 2310 2311 dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); 2312 rc = 0; 2313 2314 memset(args, 0, sizeof(*args)); 2315 args->out.handle = 0; 2316 goto out; 2317 } 2318 2319 rc = alloc_device_memory(ctx, &args->in, &handle); 2320 2321 memset(args, 0, sizeof(*args)); 2322 args->out.handle = (__u64) handle; 2323 break; 2324 2325 case HL_MEM_OP_FREE: 2326 /* If DRAM does not support virtual memory the driver won't 2327 * handle the allocation/freeing of that memory. However, for 2328 * system administration/monitoring purposes, the driver will 2329 * keep track of the amount of DRAM memory that is allocated 2330 * and freed by the user. Because this code totally relies on 2331 * the user's input, the driver can't ensure the validity 2332 * of this accounting. 2333 */ 2334 if (!hdev->asic_prop.dram_supports_virtual_memory) { 2335 atomic64_sub(args->in.alloc.mem_size, 2336 &ctx->dram_phys_mem); 2337 atomic64_sub(args->in.alloc.mem_size, 2338 &hdev->dram_used_mem); 2339 2340 dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); 2341 rc = 0; 2342 2343 goto out; 2344 } 2345 2346 rc = free_device_memory(ctx, &args->in); 2347 break; 2348 2349 case HL_MEM_OP_MAP: 2350 rc = map_device_va(ctx, &args->in, &device_addr); 2351 2352 memset(args, 0, sizeof(*args)); 2353 args->out.device_virt_addr = device_addr; 2354 break; 2355 2356 case HL_MEM_OP_UNMAP: 2357 rc = unmap_device_va(ctx, &args->in, false); 2358 break; 2359 2360 case HL_MEM_OP_MAP_BLOCK: 2361 rc = map_block(hdev, args->in.map_block.block_addr, 2362 &block_handle, &block_size); 2363 args->out.block_handle = block_handle; 2364 args->out.block_size = block_size; 2365 break; 2366 2367 case HL_MEM_OP_EXPORT_DMABUF_FD: 2368 rc = export_dmabuf_from_addr(ctx, 2369 args->in.export_dmabuf_fd.addr, 2370 args->in.export_dmabuf_fd.mem_size, 2371 args->in.export_dmabuf_fd.offset, 2372 args->in.flags, 2373 &dmabuf_fd); 2374 memset(args, 0, sizeof(*args)); 2375 args->out.fd = dmabuf_fd; 2376 break; 2377 2378 case HL_MEM_OP_TS_ALLOC: 2379 rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle); 2380 break; 2381 default: 2382 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); 2383 rc = -EINVAL; 2384 break; 2385 } 2386 2387 out: 2388 return rc; 2389 } 2390 2391 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size, 2392 u32 npages, u64 start, u32 offset, 2393 struct hl_userptr *userptr) 2394 { 2395 int rc; 2396 2397 if (!access_ok((void __user *) (uintptr_t) addr, size)) { 2398 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr); 2399 return -EFAULT; 2400 } 2401 2402 userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL); 2403 if (!userptr->pages) 2404 return -ENOMEM; 2405 2406 rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM, 2407 userptr->pages); 2408 2409 if (rc != npages) { 2410 dev_err(hdev->dev, 2411 "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n", 2412 rc, addr, size, npages); 2413 if (rc < 0) 2414 goto destroy_pages; 2415 npages = rc; 2416 rc = -EFAULT; 2417 goto put_pages; 2418 } 2419 userptr->npages = npages; 2420 2421 rc = sg_alloc_table_from_pages(userptr->sgt, 2422 userptr->pages, 2423 npages, offset, size, GFP_KERNEL); 2424 if (rc < 0) { 2425 dev_err(hdev->dev, "failed to create SG table from pages\n"); 2426 goto put_pages; 2427 } 2428 2429 return 0; 2430 2431 put_pages: 2432 unpin_user_pages(userptr->pages, npages); 2433 destroy_pages: 2434 kvfree(userptr->pages); 2435 return rc; 2436 } 2437 2438 /** 2439 * hl_pin_host_memory() - pins a chunk of host memory. 2440 * @hdev: pointer to the habanalabs device structure. 2441 * @addr: the host virtual address of the memory area. 2442 * @size: the size of the memory area. 2443 * @userptr: pointer to hl_userptr structure. 2444 * 2445 * This function does the following: 2446 * - Pins the physical pages. 2447 * - Create an SG list from those pages. 2448 */ 2449 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 2450 struct hl_userptr *userptr) 2451 { 2452 u64 start, end; 2453 u32 npages, offset; 2454 int rc; 2455 2456 if (!size) { 2457 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size); 2458 return -EINVAL; 2459 } 2460 2461 /* 2462 * If the combination of the address and size requested for this memory 2463 * region causes an integer overflow, return error. 2464 */ 2465 if (((addr + size) < addr) || 2466 PAGE_ALIGN(addr + size) < (addr + size)) { 2467 dev_err(hdev->dev, 2468 "user pointer 0x%llx + %llu causes integer overflow\n", 2469 addr, size); 2470 return -EINVAL; 2471 } 2472 2473 userptr->pid = current->pid; 2474 userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL); 2475 if (!userptr->sgt) 2476 return -ENOMEM; 2477 2478 start = addr & PAGE_MASK; 2479 offset = addr & ~PAGE_MASK; 2480 end = PAGE_ALIGN(addr + size); 2481 npages = (end - start) >> PAGE_SHIFT; 2482 2483 userptr->size = size; 2484 userptr->addr = addr; 2485 userptr->dma_mapped = false; 2486 INIT_LIST_HEAD(&userptr->job_node); 2487 2488 rc = get_user_memory(hdev, addr, size, npages, start, offset, 2489 userptr); 2490 if (rc) { 2491 dev_err(hdev->dev, 2492 "failed to get user memory for address 0x%llx\n", 2493 addr); 2494 goto free_sgt; 2495 } 2496 2497 hl_debugfs_add_userptr(hdev, userptr); 2498 2499 return 0; 2500 2501 free_sgt: 2502 kfree(userptr->sgt); 2503 return rc; 2504 } 2505 2506 /* 2507 * hl_unpin_host_memory - unpins a chunk of host memory. 2508 * @hdev: pointer to the habanalabs device structure 2509 * @userptr: pointer to hl_userptr structure 2510 * 2511 * This function does the following: 2512 * - Unpins the physical pages related to the host memory 2513 * - Free the SG list 2514 */ 2515 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr) 2516 { 2517 hl_debugfs_remove_userptr(hdev, userptr); 2518 2519 if (userptr->dma_mapped) 2520 hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir); 2521 2522 unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true); 2523 kvfree(userptr->pages); 2524 2525 list_del(&userptr->job_node); 2526 2527 sg_free_table(userptr->sgt); 2528 kfree(userptr->sgt); 2529 } 2530 2531 /** 2532 * hl_userptr_delete_list() - clear userptr list. 2533 * @hdev: pointer to the habanalabs device structure. 2534 * @userptr_list: pointer to the list to clear. 2535 * 2536 * This function does the following: 2537 * - Iterates over the list and unpins the host memory and frees the userptr 2538 * structure. 2539 */ 2540 void hl_userptr_delete_list(struct hl_device *hdev, 2541 struct list_head *userptr_list) 2542 { 2543 struct hl_userptr *userptr, *tmp; 2544 2545 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) { 2546 hl_unpin_host_memory(hdev, userptr); 2547 kfree(userptr); 2548 } 2549 2550 INIT_LIST_HEAD(userptr_list); 2551 } 2552 2553 /** 2554 * hl_userptr_is_pinned() - returns whether the given userptr is pinned. 2555 * @hdev: pointer to the habanalabs device structure. 2556 * @addr: user address to check. 2557 * @size: user block size to check. 2558 * @userptr_list: pointer to the list to clear. 2559 * @userptr: pointer to userptr to check. 2560 * 2561 * This function does the following: 2562 * - Iterates over the list and checks if the given userptr is in it, means is 2563 * pinned. If so, returns true, otherwise returns false. 2564 */ 2565 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, 2566 u32 size, struct list_head *userptr_list, 2567 struct hl_userptr **userptr) 2568 { 2569 list_for_each_entry((*userptr), userptr_list, job_node) { 2570 if ((addr == (*userptr)->addr) && (size == (*userptr)->size)) 2571 return true; 2572 } 2573 2574 return false; 2575 } 2576 2577 /** 2578 * va_range_init() - initialize virtual addresses range. 2579 * @hdev: pointer to the habanalabs device structure. 2580 * @va_ranges: pointer to va_ranges array. 2581 * @range_type: virtual address range type. 2582 * @start: range start address, inclusive. 2583 * @end: range end address, inclusive. 2584 * @page_size: page size for this va_range. 2585 * 2586 * This function does the following: 2587 * - Initializes the virtual addresses list of the given range with the given 2588 * addresses. 2589 */ 2590 static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges, 2591 enum hl_va_range_type range_type, u64 start, 2592 u64 end, u32 page_size) 2593 { 2594 struct hl_va_range *va_range = va_ranges[range_type]; 2595 int rc; 2596 2597 INIT_LIST_HEAD(&va_range->list); 2598 2599 /* 2600 * PAGE_SIZE alignment 2601 * it is the caller's responsibility to align the addresses if the 2602 * page size is not a power of 2 2603 */ 2604 2605 if (is_power_of_2(page_size)) { 2606 start = round_up(start, page_size); 2607 2608 /* 2609 * The end of the range is inclusive, hence we need to align it 2610 * to the end of the last full page in the range. For example if 2611 * end = 0x3ff5 with page size 0x1000, we need to align it to 2612 * 0x2fff. The remaining 0xff5 bytes do not form a full page. 2613 */ 2614 end = round_down(end + 1, page_size) - 1; 2615 } 2616 2617 if (start >= end) { 2618 dev_err(hdev->dev, "too small vm range for va list\n"); 2619 return -EFAULT; 2620 } 2621 2622 rc = add_va_block(hdev, va_range, start, end); 2623 2624 if (rc) { 2625 dev_err(hdev->dev, "Failed to init host va list\n"); 2626 return rc; 2627 } 2628 2629 va_range->start_addr = start; 2630 va_range->end_addr = end; 2631 va_range->page_size = page_size; 2632 2633 return 0; 2634 } 2635 2636 /** 2637 * va_range_fini() - clear a virtual addresses range. 2638 * @hdev: pointer to the habanalabs structure. 2639 * @va_range: pointer to virtual addresses range. 2640 * 2641 * This function does the following: 2642 * - Frees the virtual addresses block list and its lock. 2643 */ 2644 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range) 2645 { 2646 mutex_lock(&va_range->lock); 2647 clear_va_list_locked(hdev, &va_range->list); 2648 mutex_unlock(&va_range->lock); 2649 2650 mutex_destroy(&va_range->lock); 2651 kfree(va_range); 2652 } 2653 2654 /** 2655 * vm_ctx_init_with_ranges() - initialize virtual memory for context. 2656 * @ctx: pointer to the habanalabs context structure. 2657 * @host_range_start: host virtual addresses range start. 2658 * @host_range_end: host virtual addresses range end. 2659 * @host_page_size: host page size. 2660 * @host_huge_range_start: host virtual addresses range start for memory 2661 * allocated with huge pages. 2662 * @host_huge_range_end: host virtual addresses range end for memory allocated 2663 * with huge pages. 2664 * @host_huge_page_size: host huge page size. 2665 * @dram_range_start: dram virtual addresses range start. 2666 * @dram_range_end: dram virtual addresses range end. 2667 * @dram_page_size: dram page size. 2668 * 2669 * This function initializes the following: 2670 * - MMU for context. 2671 * - Virtual address to area descriptor hashtable. 2672 * - Virtual block list of available virtual memory. 2673 */ 2674 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx, 2675 u64 host_range_start, 2676 u64 host_range_end, 2677 u32 host_page_size, 2678 u64 host_huge_range_start, 2679 u64 host_huge_range_end, 2680 u32 host_huge_page_size, 2681 u64 dram_range_start, 2682 u64 dram_range_end, 2683 u32 dram_page_size) 2684 { 2685 struct hl_device *hdev = ctx->hdev; 2686 int i, rc; 2687 2688 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) { 2689 ctx->va_range[i] = 2690 kzalloc(sizeof(struct hl_va_range), GFP_KERNEL); 2691 if (!ctx->va_range[i]) { 2692 rc = -ENOMEM; 2693 goto free_va_range; 2694 } 2695 } 2696 2697 rc = hl_mmu_ctx_init(ctx); 2698 if (rc) { 2699 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid); 2700 goto free_va_range; 2701 } 2702 2703 mutex_init(&ctx->mem_hash_lock); 2704 hash_init(ctx->mem_hash); 2705 2706 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2707 2708 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST, 2709 host_range_start, host_range_end, host_page_size); 2710 if (rc) { 2711 dev_err(hdev->dev, "failed to init host vm range\n"); 2712 goto mmu_ctx_fini; 2713 } 2714 2715 if (hdev->pmmu_huge_range) { 2716 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2717 2718 rc = va_range_init(hdev, 2719 ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE, 2720 host_huge_range_start, host_huge_range_end, 2721 host_huge_page_size); 2722 if (rc) { 2723 dev_err(hdev->dev, 2724 "failed to init host huge vm range\n"); 2725 goto clear_host_va_range; 2726 } 2727 } else { 2728 kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); 2729 ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] = 2730 ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 2731 } 2732 2733 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); 2734 2735 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM, 2736 dram_range_start, dram_range_end, dram_page_size); 2737 if (rc) { 2738 dev_err(hdev->dev, "failed to init dram vm range\n"); 2739 goto clear_host_huge_va_range; 2740 } 2741 2742 hl_debugfs_add_ctx_mem_hash(hdev, ctx); 2743 2744 return 0; 2745 2746 clear_host_huge_va_range: 2747 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); 2748 2749 if (hdev->pmmu_huge_range) { 2750 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2751 clear_va_list_locked(hdev, 2752 &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list); 2753 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2754 } 2755 clear_host_va_range: 2756 if (hdev->pmmu_huge_range) 2757 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2758 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2759 clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list); 2760 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2761 mmu_ctx_fini: 2762 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2763 mutex_destroy(&ctx->mem_hash_lock); 2764 hl_mmu_ctx_fini(ctx); 2765 free_va_range: 2766 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) 2767 kfree(ctx->va_range[i]); 2768 2769 return rc; 2770 } 2771 2772 int hl_vm_ctx_init(struct hl_ctx *ctx) 2773 { 2774 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; 2775 u64 host_range_start, host_range_end, host_huge_range_start, 2776 host_huge_range_end, dram_range_start, dram_range_end; 2777 u32 host_page_size, host_huge_page_size, dram_page_size; 2778 2779 atomic64_set(&ctx->dram_phys_mem, 0); 2780 2781 /* 2782 * - If MMU is enabled, init the ranges as usual. 2783 * - If MMU is disabled, in case of host mapping, the returned address 2784 * is the given one. 2785 * In case of DRAM mapping, the returned address is the physical 2786 * address of the memory related to the given handle. 2787 */ 2788 if (!ctx->hdev->mmu_enable) 2789 return 0; 2790 2791 dram_range_start = prop->dmmu.start_addr; 2792 dram_range_end = prop->dmmu.end_addr - 1; 2793 dram_page_size = prop->dram_page_size ? 2794 prop->dram_page_size : prop->dmmu.page_size; 2795 host_range_start = prop->pmmu.start_addr; 2796 host_range_end = prop->pmmu.end_addr - 1; 2797 host_page_size = prop->pmmu.page_size; 2798 host_huge_range_start = prop->pmmu_huge.start_addr; 2799 host_huge_range_end = prop->pmmu_huge.end_addr - 1; 2800 host_huge_page_size = prop->pmmu_huge.page_size; 2801 2802 return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end, 2803 host_page_size, host_huge_range_start, 2804 host_huge_range_end, host_huge_page_size, 2805 dram_range_start, dram_range_end, dram_page_size); 2806 } 2807 2808 /** 2809 * hl_vm_ctx_fini() - virtual memory teardown of context. 2810 * @ctx: pointer to the habanalabs context structure. 2811 * 2812 * This function perform teardown the following: 2813 * - Virtual block list of available virtual memory. 2814 * - Virtual address to area descriptor hashtable. 2815 * - MMU for context. 2816 * 2817 * In addition this function does the following: 2818 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The 2819 * hashtable should be empty as no valid mappings should exist at this 2820 * point. 2821 * - Frees any existing physical page list from the idr which relates to the 2822 * current context asid. 2823 * - This function checks the virtual block list for correctness. At this point 2824 * the list should contain one element which describes the whole virtual 2825 * memory range of the context. Otherwise, a warning is printed. 2826 */ 2827 void hl_vm_ctx_fini(struct hl_ctx *ctx) 2828 { 2829 struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node; 2830 struct hl_device *hdev = ctx->hdev; 2831 struct hl_vm_hash_node *hnode; 2832 struct hl_vm *vm = &hdev->vm; 2833 struct hlist_node *tmp_node; 2834 struct list_head free_list; 2835 struct hl_mem_in args; 2836 int i; 2837 2838 if (!hdev->mmu_enable) 2839 return; 2840 2841 hl_debugfs_remove_ctx_mem_hash(hdev, ctx); 2842 2843 /* 2844 * Clearly something went wrong on hard reset so no point in printing 2845 * another side effect error 2846 */ 2847 if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash)) 2848 dev_dbg(hdev->dev, 2849 "user released device without removing its memory mappings\n"); 2850 2851 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) { 2852 dev_dbg(hdev->dev, 2853 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n", 2854 hnode->vaddr, ctx->asid); 2855 args.unmap.device_virt_addr = hnode->vaddr; 2856 unmap_device_va(ctx, &args, true); 2857 } 2858 2859 mutex_lock(&hdev->mmu_lock); 2860 2861 /* invalidate the cache once after the unmapping loop */ 2862 hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); 2863 hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK); 2864 2865 mutex_unlock(&hdev->mmu_lock); 2866 2867 INIT_LIST_HEAD(&free_list); 2868 2869 spin_lock(&vm->idr_lock); 2870 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i) 2871 if (phys_pg_list->asid == ctx->asid) { 2872 dev_dbg(hdev->dev, 2873 "page list 0x%px of asid %d is still alive\n", 2874 phys_pg_list, ctx->asid); 2875 2876 atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem); 2877 idr_remove(&vm->phys_pg_pack_handles, i); 2878 list_add(&phys_pg_list->node, &free_list); 2879 } 2880 spin_unlock(&vm->idr_lock); 2881 2882 list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node) 2883 free_phys_pg_pack(hdev, phys_pg_list); 2884 2885 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]); 2886 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]); 2887 2888 if (hdev->pmmu_huge_range) 2889 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); 2890 2891 mutex_destroy(&ctx->mem_hash_lock); 2892 hl_mmu_ctx_fini(ctx); 2893 2894 /* In this case we need to clear the global accounting of DRAM usage 2895 * because the user notifies us on allocations. If the user is no more, 2896 * all DRAM is available 2897 */ 2898 if (ctx->asid != HL_KERNEL_ASID_ID && 2899 !hdev->asic_prop.dram_supports_virtual_memory) 2900 atomic64_set(&hdev->dram_used_mem, 0); 2901 } 2902 2903 /** 2904 * hl_vm_init() - initialize virtual memory module. 2905 * @hdev: pointer to the habanalabs device structure. 2906 * 2907 * This function initializes the following: 2908 * - MMU module. 2909 * - DRAM physical pages pool of 2MB. 2910 * - Idr for device memory allocation handles. 2911 */ 2912 int hl_vm_init(struct hl_device *hdev) 2913 { 2914 struct asic_fixed_properties *prop = &hdev->asic_prop; 2915 struct hl_vm *vm = &hdev->vm; 2916 int rc; 2917 2918 if (is_power_of_2(prop->dram_page_size)) 2919 vm->dram_pg_pool = 2920 gen_pool_create(__ffs(prop->dram_page_size), -1); 2921 else 2922 vm->dram_pg_pool = 2923 gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1); 2924 2925 if (!vm->dram_pg_pool) { 2926 dev_err(hdev->dev, "Failed to create dram page pool\n"); 2927 return -ENOMEM; 2928 } 2929 2930 kref_init(&vm->dram_pg_pool_refcount); 2931 2932 rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address, 2933 prop->dram_end_address - prop->dram_user_base_address, 2934 -1); 2935 2936 if (rc) { 2937 dev_err(hdev->dev, 2938 "Failed to add memory to dram page pool %d\n", rc); 2939 goto pool_add_err; 2940 } 2941 2942 spin_lock_init(&vm->idr_lock); 2943 idr_init(&vm->phys_pg_pack_handles); 2944 2945 atomic64_set(&hdev->dram_used_mem, 0); 2946 2947 vm->init_done = true; 2948 2949 return 0; 2950 2951 pool_add_err: 2952 gen_pool_destroy(vm->dram_pg_pool); 2953 2954 return rc; 2955 } 2956 2957 /** 2958 * hl_vm_fini() - virtual memory module teardown. 2959 * @hdev: pointer to the habanalabs device structure. 2960 * 2961 * This function perform teardown to the following: 2962 * - Idr for device memory allocation handles. 2963 * - DRAM physical pages pool of 2MB. 2964 * - MMU module. 2965 */ 2966 void hl_vm_fini(struct hl_device *hdev) 2967 { 2968 struct hl_vm *vm = &hdev->vm; 2969 2970 if (!vm->init_done) 2971 return; 2972 2973 /* 2974 * At this point all the contexts should be freed and hence no DRAM 2975 * memory should be in use. Hence the DRAM pool should be freed here. 2976 */ 2977 if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1) 2978 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n", 2979 __func__); 2980 2981 vm->init_done = false; 2982 } 2983 2984 /** 2985 * hl_hw_block_mem_init() - HW block memory initialization. 2986 * @ctx: pointer to the habanalabs context structure. 2987 * 2988 * This function initializes the HW block virtual mapped addresses list and 2989 * it's lock. 2990 */ 2991 void hl_hw_block_mem_init(struct hl_ctx *ctx) 2992 { 2993 mutex_init(&ctx->hw_block_list_lock); 2994 INIT_LIST_HEAD(&ctx->hw_block_mem_list); 2995 } 2996 2997 /** 2998 * hl_hw_block_mem_fini() - HW block memory teardown. 2999 * @ctx: pointer to the habanalabs context structure. 3000 * 3001 * This function clears the HW block virtual mapped addresses list and destroys 3002 * it's lock. 3003 */ 3004 void hl_hw_block_mem_fini(struct hl_ctx *ctx) 3005 { 3006 struct hl_vm_hw_block_list_node *lnode, *tmp; 3007 3008 if (!list_empty(&ctx->hw_block_mem_list)) 3009 dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n"); 3010 3011 list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) { 3012 list_del(&lnode->node); 3013 kfree(lnode); 3014 } 3015 3016 mutex_destroy(&ctx->hw_block_list_lock); 3017 } 3018