1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2022 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include <uapi/drm/habanalabs_accel.h> 9 #include "habanalabs.h" 10 #include "../include/hw_ip/mmu/mmu_general.h" 11 12 #include <linux/uaccess.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pci-p2pdma.h> 16 17 MODULE_IMPORT_NS(DMA_BUF); 18 19 #define HL_MMU_DEBUG 0 20 21 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */ 22 #define DRAM_POOL_PAGE_SIZE SZ_8M 23 24 #define MEM_HANDLE_INVALID ULONG_MAX 25 26 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, 27 struct hl_mem_in *args, u64 *handle); 28 29 static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size) 30 { 31 struct asic_fixed_properties *prop = &hdev->asic_prop; 32 u64 psize; 33 34 /* 35 * for ASIC that supports setting the allocation page size by user we will address 36 * user's choice only if it is not 0 (as 0 means taking the default page size) 37 */ 38 if (prop->supports_user_set_page_size && args->alloc.page_size) { 39 psize = args->alloc.page_size; 40 41 if (!is_power_of_2(psize)) { 42 dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize); 43 return -EINVAL; 44 } 45 } else { 46 psize = prop->device_mem_alloc_default_page_size; 47 } 48 49 *page_size = psize; 50 51 return 0; 52 } 53 54 /* 55 * The va ranges in context object contain a list with the available chunks of 56 * device virtual memory. 57 * There is one range for host allocations and one for DRAM allocations. 58 * 59 * On initialization each range contains one chunk of all of its available 60 * virtual range which is a half of the total device virtual range. 61 * 62 * On each mapping of physical pages, a suitable virtual range chunk (with a 63 * minimum size) is selected from the list. If the chunk size equals the 64 * requested size, the chunk is returned. Otherwise, the chunk is split into 65 * two chunks - one to return as result and a remainder to stay in the list. 66 * 67 * On each Unmapping of a virtual address, the relevant virtual chunk is 68 * returned to the list. The chunk is added to the list and if its edges match 69 * the edges of the adjacent chunks (means a contiguous chunk can be created), 70 * the chunks are merged. 71 * 72 * On finish, the list is checked to have only one chunk of all the relevant 73 * virtual range (which is a half of the device total virtual range). 74 * If not (means not all mappings were unmapped), a warning is printed. 75 */ 76 77 /* 78 * alloc_device_memory() - allocate device memory. 79 * @ctx: pointer to the context structure. 80 * @args: host parameters containing the requested size. 81 * @ret_handle: result handle. 82 * 83 * This function does the following: 84 * - Allocate the requested size rounded up to 'dram_page_size' pages. 85 * - Return unique handle for later map/unmap/free. 86 */ 87 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args, 88 u32 *ret_handle) 89 { 90 struct hl_device *hdev = ctx->hdev; 91 struct hl_vm *vm = &hdev->vm; 92 struct hl_vm_phys_pg_pack *phys_pg_pack; 93 u64 paddr = 0, total_size, num_pgs, i; 94 u32 num_curr_pgs, page_size; 95 bool contiguous; 96 int handle, rc; 97 98 num_curr_pgs = 0; 99 100 rc = set_alloc_page_size(hdev, args, &page_size); 101 if (rc) 102 return rc; 103 104 num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size); 105 total_size = num_pgs * page_size; 106 107 if (!total_size) { 108 dev_err(hdev->dev, "Cannot allocate 0 bytes\n"); 109 return -EINVAL; 110 } 111 112 contiguous = args->flags & HL_MEM_CONTIGUOUS; 113 114 if (contiguous) { 115 if (is_power_of_2(page_size)) 116 paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool, 117 total_size, NULL, page_size); 118 else 119 paddr = gen_pool_alloc(vm->dram_pg_pool, total_size); 120 if (!paddr) { 121 dev_err(hdev->dev, 122 "Cannot allocate %llu contiguous pages with total size of %llu\n", 123 num_pgs, total_size); 124 return -ENOMEM; 125 } 126 } 127 128 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); 129 if (!phys_pg_pack) { 130 rc = -ENOMEM; 131 goto pages_pack_err; 132 } 133 134 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK; 135 phys_pg_pack->asid = ctx->asid; 136 phys_pg_pack->npages = num_pgs; 137 phys_pg_pack->page_size = page_size; 138 phys_pg_pack->total_size = total_size; 139 phys_pg_pack->flags = args->flags; 140 phys_pg_pack->contiguous = contiguous; 141 142 phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL); 143 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { 144 rc = -ENOMEM; 145 goto pages_arr_err; 146 } 147 148 if (phys_pg_pack->contiguous) { 149 for (i = 0 ; i < num_pgs ; i++) 150 phys_pg_pack->pages[i] = paddr + i * page_size; 151 } else { 152 for (i = 0 ; i < num_pgs ; i++) { 153 if (is_power_of_2(page_size)) 154 phys_pg_pack->pages[i] = 155 (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool, 156 page_size, NULL, 157 page_size); 158 else 159 phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool, 160 page_size); 161 162 if (!phys_pg_pack->pages[i]) { 163 dev_err(hdev->dev, 164 "Cannot allocate device memory (out of memory)\n"); 165 rc = -ENOMEM; 166 goto page_err; 167 } 168 169 num_curr_pgs++; 170 } 171 } 172 173 spin_lock(&vm->idr_lock); 174 handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0, 175 GFP_ATOMIC); 176 spin_unlock(&vm->idr_lock); 177 178 if (handle < 0) { 179 dev_err(hdev->dev, "Failed to get handle for page\n"); 180 rc = -EFAULT; 181 goto idr_err; 182 } 183 184 for (i = 0 ; i < num_pgs ; i++) 185 kref_get(&vm->dram_pg_pool_refcount); 186 187 phys_pg_pack->handle = handle; 188 189 atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem); 190 atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem); 191 192 *ret_handle = handle; 193 194 return 0; 195 196 idr_err: 197 page_err: 198 if (!phys_pg_pack->contiguous) 199 for (i = 0 ; i < num_curr_pgs ; i++) 200 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i], 201 page_size); 202 203 kvfree(phys_pg_pack->pages); 204 pages_arr_err: 205 kfree(phys_pg_pack); 206 pages_pack_err: 207 if (contiguous) 208 gen_pool_free(vm->dram_pg_pool, paddr, total_size); 209 210 return rc; 211 } 212 213 /** 214 * dma_map_host_va() - DMA mapping of the given host virtual address. 215 * @hdev: habanalabs device structure. 216 * @addr: the host virtual address of the memory area. 217 * @size: the size of the memory area. 218 * @p_userptr: pointer to result userptr structure. 219 * 220 * This function does the following: 221 * - Allocate userptr structure. 222 * - Pin the given host memory using the userptr structure. 223 * - Perform DMA mapping to have the DMA addresses of the pages. 224 */ 225 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size, 226 struct hl_userptr **p_userptr) 227 { 228 struct hl_userptr *userptr; 229 int rc; 230 231 userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); 232 if (!userptr) { 233 rc = -ENOMEM; 234 goto userptr_err; 235 } 236 237 rc = hl_pin_host_memory(hdev, addr, size, userptr); 238 if (rc) 239 goto pin_err; 240 241 userptr->dma_mapped = true; 242 userptr->dir = DMA_BIDIRECTIONAL; 243 userptr->vm_type = VM_TYPE_USERPTR; 244 245 *p_userptr = userptr; 246 247 rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL); 248 if (rc) { 249 dev_err(hdev->dev, "failed to map sgt with DMA region\n"); 250 goto dma_map_err; 251 } 252 253 return 0; 254 255 dma_map_err: 256 hl_unpin_host_memory(hdev, userptr); 257 pin_err: 258 kfree(userptr); 259 userptr_err: 260 261 return rc; 262 } 263 264 /** 265 * dma_unmap_host_va() - DMA unmapping of the given host virtual address. 266 * @hdev: habanalabs device structure. 267 * @userptr: userptr to free. 268 * 269 * This function does the following: 270 * - Unpins the physical pages. 271 * - Frees the userptr structure. 272 */ 273 static void dma_unmap_host_va(struct hl_device *hdev, 274 struct hl_userptr *userptr) 275 { 276 hl_unpin_host_memory(hdev, userptr); 277 kfree(userptr); 278 } 279 280 /** 281 * dram_pg_pool_do_release() - free DRAM pages pool 282 * @ref: pointer to reference object. 283 * 284 * This function does the following: 285 * - Frees the idr structure of physical pages handles. 286 * - Frees the generic pool of DRAM physical pages. 287 */ 288 static void dram_pg_pool_do_release(struct kref *ref) 289 { 290 struct hl_vm *vm = container_of(ref, struct hl_vm, 291 dram_pg_pool_refcount); 292 293 /* 294 * free the idr here as only here we know for sure that there are no 295 * allocated physical pages and hence there are no handles in use 296 */ 297 idr_destroy(&vm->phys_pg_pack_handles); 298 gen_pool_destroy(vm->dram_pg_pool); 299 } 300 301 /** 302 * free_phys_pg_pack() - free physical page pack. 303 * @hdev: habanalabs device structure. 304 * @phys_pg_pack: physical page pack to free. 305 * 306 * This function does the following: 307 * - For DRAM memory only 308 * - iterate over the pack, free each physical block structure by 309 * returning it to the general pool. 310 * - Free the hl_vm_phys_pg_pack structure. 311 */ 312 static void free_phys_pg_pack(struct hl_device *hdev, 313 struct hl_vm_phys_pg_pack *phys_pg_pack) 314 { 315 struct hl_vm *vm = &hdev->vm; 316 u64 i; 317 318 if (phys_pg_pack->created_from_userptr) 319 goto end; 320 321 if (phys_pg_pack->contiguous) { 322 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0], 323 phys_pg_pack->total_size); 324 325 for (i = 0; i < phys_pg_pack->npages ; i++) 326 kref_put(&vm->dram_pg_pool_refcount, 327 dram_pg_pool_do_release); 328 } else { 329 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 330 gen_pool_free(vm->dram_pg_pool, 331 phys_pg_pack->pages[i], 332 phys_pg_pack->page_size); 333 kref_put(&vm->dram_pg_pool_refcount, 334 dram_pg_pool_do_release); 335 } 336 } 337 338 end: 339 kvfree(phys_pg_pack->pages); 340 kfree(phys_pg_pack); 341 342 return; 343 } 344 345 /** 346 * free_device_memory() - free device memory. 347 * @ctx: pointer to the context structure. 348 * @args: host parameters containing the requested size. 349 * 350 * This function does the following: 351 * - Free the device memory related to the given handle. 352 */ 353 static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args) 354 { 355 struct hl_device *hdev = ctx->hdev; 356 struct hl_vm *vm = &hdev->vm; 357 struct hl_vm_phys_pg_pack *phys_pg_pack; 358 u32 handle = args->free.handle; 359 360 spin_lock(&vm->idr_lock); 361 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); 362 if (!phys_pg_pack) { 363 spin_unlock(&vm->idr_lock); 364 dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle); 365 return -EINVAL; 366 } 367 368 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) { 369 spin_unlock(&vm->idr_lock); 370 dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle); 371 return -EINVAL; 372 } 373 374 /* must remove from idr before the freeing of the physical pages as the refcount of the pool 375 * is also the trigger of the idr destroy 376 */ 377 idr_remove(&vm->phys_pg_pack_handles, handle); 378 spin_unlock(&vm->idr_lock); 379 380 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem); 381 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem); 382 383 free_phys_pg_pack(hdev, phys_pg_pack); 384 385 return 0; 386 } 387 388 /** 389 * clear_va_list_locked() - free virtual addresses list. 390 * @hdev: habanalabs device structure. 391 * @va_list: list of virtual addresses to free. 392 * 393 * This function does the following: 394 * - Iterate over the list and free each virtual addresses block. 395 * 396 * This function should be called only when va_list lock is taken. 397 */ 398 static void clear_va_list_locked(struct hl_device *hdev, 399 struct list_head *va_list) 400 { 401 struct hl_vm_va_block *va_block, *tmp; 402 403 list_for_each_entry_safe(va_block, tmp, va_list, node) { 404 list_del(&va_block->node); 405 kfree(va_block); 406 } 407 } 408 409 /** 410 * print_va_list_locked() - print virtual addresses list. 411 * @hdev: habanalabs device structure. 412 * @va_list: list of virtual addresses to print. 413 * 414 * This function does the following: 415 * - Iterate over the list and print each virtual addresses block. 416 * 417 * This function should be called only when va_list lock is taken. 418 */ 419 static void print_va_list_locked(struct hl_device *hdev, 420 struct list_head *va_list) 421 { 422 #if HL_MMU_DEBUG 423 struct hl_vm_va_block *va_block; 424 425 dev_dbg(hdev->dev, "print va list:\n"); 426 427 list_for_each_entry(va_block, va_list, node) 428 dev_dbg(hdev->dev, 429 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n", 430 va_block->start, va_block->end, va_block->size); 431 #endif 432 } 433 434 /** 435 * merge_va_blocks_locked() - merge a virtual block if possible. 436 * @hdev: pointer to the habanalabs device structure. 437 * @va_list: pointer to the virtual addresses block list. 438 * @va_block: virtual block to merge with adjacent blocks. 439 * 440 * This function does the following: 441 * - Merge the given blocks with the adjacent blocks if their virtual ranges 442 * create a contiguous virtual range. 443 * 444 * This Function should be called only when va_list lock is taken. 445 */ 446 static void merge_va_blocks_locked(struct hl_device *hdev, 447 struct list_head *va_list, struct hl_vm_va_block *va_block) 448 { 449 struct hl_vm_va_block *prev, *next; 450 451 prev = list_prev_entry(va_block, node); 452 if (&prev->node != va_list && prev->end + 1 == va_block->start) { 453 prev->end = va_block->end; 454 prev->size = prev->end - prev->start + 1; 455 list_del(&va_block->node); 456 kfree(va_block); 457 va_block = prev; 458 } 459 460 next = list_next_entry(va_block, node); 461 if (&next->node != va_list && va_block->end + 1 == next->start) { 462 next->start = va_block->start; 463 next->size = next->end - next->start + 1; 464 list_del(&va_block->node); 465 kfree(va_block); 466 } 467 } 468 469 /** 470 * add_va_block_locked() - add a virtual block to the virtual addresses list. 471 * @hdev: pointer to the habanalabs device structure. 472 * @va_list: pointer to the virtual addresses block list. 473 * @start: start virtual address. 474 * @end: end virtual address. 475 * 476 * This function does the following: 477 * - Add the given block to the virtual blocks list and merge with other blocks 478 * if a contiguous virtual block can be created. 479 * 480 * This Function should be called only when va_list lock is taken. 481 */ 482 static int add_va_block_locked(struct hl_device *hdev, 483 struct list_head *va_list, u64 start, u64 end) 484 { 485 struct hl_vm_va_block *va_block, *res = NULL; 486 u64 size = end - start + 1; 487 488 print_va_list_locked(hdev, va_list); 489 490 list_for_each_entry(va_block, va_list, node) { 491 /* TODO: remove upon matureness */ 492 if (hl_mem_area_crosses_range(start, size, va_block->start, 493 va_block->end)) { 494 dev_err(hdev->dev, 495 "block crossing ranges at start 0x%llx, end 0x%llx\n", 496 va_block->start, va_block->end); 497 return -EINVAL; 498 } 499 500 if (va_block->end < start) 501 res = va_block; 502 } 503 504 va_block = kmalloc(sizeof(*va_block), GFP_KERNEL); 505 if (!va_block) 506 return -ENOMEM; 507 508 va_block->start = start; 509 va_block->end = end; 510 va_block->size = size; 511 512 if (!res) 513 list_add(&va_block->node, va_list); 514 else 515 list_add(&va_block->node, &res->node); 516 517 merge_va_blocks_locked(hdev, va_list, va_block); 518 519 print_va_list_locked(hdev, va_list); 520 521 return 0; 522 } 523 524 /** 525 * add_va_block() - wrapper for add_va_block_locked. 526 * @hdev: pointer to the habanalabs device structure. 527 * @va_range: pointer to the virtual addresses range object. 528 * @start: start virtual address. 529 * @end: end virtual address. 530 * 531 * This function does the following: 532 * - Takes the list lock and calls add_va_block_locked. 533 */ 534 static inline int add_va_block(struct hl_device *hdev, 535 struct hl_va_range *va_range, u64 start, u64 end) 536 { 537 int rc; 538 539 mutex_lock(&va_range->lock); 540 rc = add_va_block_locked(hdev, &va_range->list, start, end); 541 mutex_unlock(&va_range->lock); 542 543 return rc; 544 } 545 546 /** 547 * is_hint_crossing_range() - check if hint address crossing specified reserved. 548 * @range_type: virtual space range type. 549 * @start_addr: start virtual address. 550 * @size: block size. 551 * @prop: asic properties structure to retrieve reserved ranges from. 552 */ 553 static inline bool is_hint_crossing_range(enum hl_va_range_type range_type, 554 u64 start_addr, u32 size, struct asic_fixed_properties *prop) { 555 bool range_cross; 556 557 if (range_type == HL_VA_RANGE_TYPE_DRAM) 558 range_cross = 559 hl_mem_area_crosses_range(start_addr, size, 560 prop->hints_dram_reserved_va_range.start_addr, 561 prop->hints_dram_reserved_va_range.end_addr); 562 else if (range_type == HL_VA_RANGE_TYPE_HOST) 563 range_cross = 564 hl_mem_area_crosses_range(start_addr, size, 565 prop->hints_host_reserved_va_range.start_addr, 566 prop->hints_host_reserved_va_range.end_addr); 567 else 568 range_cross = 569 hl_mem_area_crosses_range(start_addr, size, 570 prop->hints_host_hpage_reserved_va_range.start_addr, 571 prop->hints_host_hpage_reserved_va_range.end_addr); 572 573 return range_cross; 574 } 575 576 /** 577 * get_va_block() - get a virtual block for the given size and alignment. 578 * 579 * @hdev: pointer to the habanalabs device structure. 580 * @va_range: pointer to the virtual addresses range. 581 * @size: requested block size. 582 * @hint_addr: hint for requested address by the user. 583 * @va_block_align: required alignment of the virtual block start address. 584 * @range_type: va range type (host, dram) 585 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT 586 * 587 * This function does the following: 588 * - Iterate on the virtual block list to find a suitable virtual block for the 589 * given size, hint address and alignment. 590 * - Reserve the requested block and update the list. 591 * - Return the start address of the virtual block. 592 */ 593 static u64 get_va_block(struct hl_device *hdev, 594 struct hl_va_range *va_range, 595 u64 size, u64 hint_addr, u32 va_block_align, 596 enum hl_va_range_type range_type, 597 u32 flags) 598 { 599 struct hl_vm_va_block *va_block, *new_va_block = NULL; 600 struct asic_fixed_properties *prop = &hdev->asic_prop; 601 u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end, 602 align_mask, reserved_valid_start = 0, reserved_valid_size = 0, 603 dram_hint_mask = prop->dram_hints_align_mask; 604 bool add_prev = false; 605 bool is_align_pow_2 = is_power_of_2(va_range->page_size); 606 bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr); 607 bool force_hint = flags & HL_MEM_FORCE_HINT; 608 int rc; 609 610 if (is_align_pow_2) 611 align_mask = ~((u64)va_block_align - 1); 612 else 613 /* 614 * with non-power-of-2 range we work only with page granularity 615 * and the start address is page aligned, 616 * so no need for alignment checking. 617 */ 618 size = DIV_ROUND_UP_ULL(size, va_range->page_size) * 619 va_range->page_size; 620 621 tmp_hint_addr = hint_addr & ~dram_hint_mask; 622 623 /* Check if we need to ignore hint address */ 624 if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) || 625 (!is_align_pow_2 && is_hint_dram_addr && 626 do_div(tmp_hint_addr, va_range->page_size))) { 627 628 if (force_hint) { 629 /* Hint must be respected, so here we just fail */ 630 dev_err(hdev->dev, 631 "Hint address 0x%llx is not page aligned - cannot be respected\n", 632 hint_addr); 633 return 0; 634 } 635 636 dev_dbg(hdev->dev, 637 "Hint address 0x%llx will be ignored because it is not aligned\n", 638 hint_addr); 639 hint_addr = 0; 640 } 641 642 mutex_lock(&va_range->lock); 643 644 print_va_list_locked(hdev, &va_range->list); 645 646 list_for_each_entry(va_block, &va_range->list, node) { 647 /* Calc the first possible aligned addr */ 648 valid_start = va_block->start; 649 650 if (is_align_pow_2 && (valid_start & (va_block_align - 1))) { 651 valid_start &= align_mask; 652 valid_start += va_block_align; 653 if (valid_start > va_block->end) 654 continue; 655 } 656 657 valid_size = va_block->end - valid_start + 1; 658 if (valid_size < size) 659 continue; 660 661 /* 662 * In case hint address is 0, and hints_range_reservation 663 * property enabled, then avoid allocating va blocks from the 664 * range reserved for hint addresses 665 */ 666 if (prop->hints_range_reservation && !hint_addr) 667 if (is_hint_crossing_range(range_type, valid_start, 668 size, prop)) 669 continue; 670 671 /* Pick the minimal length block which has the required size */ 672 if (!new_va_block || (valid_size < reserved_valid_size)) { 673 new_va_block = va_block; 674 reserved_valid_start = valid_start; 675 reserved_valid_size = valid_size; 676 } 677 678 if (hint_addr && hint_addr >= valid_start && 679 (hint_addr + size) <= va_block->end) { 680 new_va_block = va_block; 681 reserved_valid_start = hint_addr; 682 reserved_valid_size = valid_size; 683 break; 684 } 685 } 686 687 if (!new_va_block) { 688 dev_err(hdev->dev, "no available va block for size %llu\n", 689 size); 690 goto out; 691 } 692 693 if (force_hint && reserved_valid_start != hint_addr) { 694 /* Hint address must be respected. If we are here - this means 695 * we could not respect it. 696 */ 697 dev_err(hdev->dev, 698 "Hint address 0x%llx could not be respected\n", 699 hint_addr); 700 reserved_valid_start = 0; 701 goto out; 702 } 703 704 /* 705 * Check if there is some leftover range due to reserving the new 706 * va block, then return it to the main virtual addresses list. 707 */ 708 if (reserved_valid_start > new_va_block->start) { 709 prev_start = new_va_block->start; 710 prev_end = reserved_valid_start - 1; 711 712 new_va_block->start = reserved_valid_start; 713 new_va_block->size = reserved_valid_size; 714 715 add_prev = true; 716 } 717 718 if (new_va_block->size > size) { 719 new_va_block->start += size; 720 new_va_block->size = new_va_block->end - new_va_block->start + 1; 721 } else { 722 list_del(&new_va_block->node); 723 kfree(new_va_block); 724 } 725 726 if (add_prev) { 727 rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end); 728 if (rc) { 729 reserved_valid_start = 0; 730 goto out; 731 } 732 } 733 734 print_va_list_locked(hdev, &va_range->list); 735 out: 736 mutex_unlock(&va_range->lock); 737 738 return reserved_valid_start; 739 } 740 741 /* 742 * hl_reserve_va_block() - reserve a virtual block of a given size. 743 * @hdev: pointer to the habanalabs device structure. 744 * @ctx: current context 745 * @type: virtual addresses range type. 746 * @size: requested block size. 747 * @alignment: required alignment in bytes of the virtual block start address, 748 * 0 means no alignment. 749 * 750 * This function does the following: 751 * - Iterate on the virtual block list to find a suitable virtual block for the 752 * given size and alignment. 753 * - Reserve the requested block and update the list. 754 * - Return the start address of the virtual block. 755 */ 756 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 757 enum hl_va_range_type type, u64 size, u32 alignment) 758 { 759 return get_va_block(hdev, ctx->va_range[type], size, 0, 760 max(alignment, ctx->va_range[type]->page_size), 761 type, 0); 762 } 763 764 /** 765 * hl_get_va_range_type() - get va_range type for the given address and size. 766 * @ctx: context to fetch va_range from. 767 * @address: the start address of the area we want to validate. 768 * @size: the size in bytes of the area we want to validate. 769 * @type: returned va_range type. 770 * 771 * Return: true if the area is inside a valid range, false otherwise. 772 */ 773 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size, 774 enum hl_va_range_type *type) 775 { 776 int i; 777 778 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) { 779 if (hl_mem_area_inside_range(address, size, 780 ctx->va_range[i]->start_addr, 781 ctx->va_range[i]->end_addr)) { 782 *type = i; 783 return 0; 784 } 785 } 786 787 return -EINVAL; 788 } 789 790 /** 791 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block. 792 * @hdev: pointer to the habanalabs device structure 793 * @ctx: pointer to the context structure. 794 * @start_addr: start virtual address. 795 * @size: number of bytes to unreserve. 796 * 797 * This function does the following: 798 * - Takes the list lock and calls add_va_block_locked. 799 */ 800 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 801 u64 start_addr, u64 size) 802 { 803 enum hl_va_range_type type; 804 int rc; 805 806 rc = hl_get_va_range_type(ctx, start_addr, size, &type); 807 if (rc) { 808 dev_err(hdev->dev, 809 "cannot find va_range for va %#llx size %llu", 810 start_addr, size); 811 return rc; 812 } 813 814 rc = add_va_block(hdev, ctx->va_range[type], start_addr, 815 start_addr + size - 1); 816 if (rc) 817 dev_warn(hdev->dev, 818 "add va block failed for vaddr: 0x%llx\n", start_addr); 819 820 return rc; 821 } 822 823 /** 824 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host 825 * memory 826 * @ctx: pointer to the context structure. 827 * @userptr: userptr to initialize from. 828 * @pphys_pg_pack: result pointer. 829 * @force_regular_page: tell the function to ignore huge page optimization, 830 * even if possible. Needed for cases where the device VA 831 * is allocated before we know the composition of the 832 * physical pages 833 * 834 * This function does the following: 835 * - Pin the physical pages related to the given virtual block. 836 * - Create a physical page pack from the physical pages related to the given 837 * virtual block. 838 */ 839 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx, 840 struct hl_userptr *userptr, 841 struct hl_vm_phys_pg_pack **pphys_pg_pack, 842 bool force_regular_page) 843 { 844 u32 npages, page_size = PAGE_SIZE, 845 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size; 846 u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size); 847 struct hl_vm_phys_pg_pack *phys_pg_pack; 848 bool first = true, is_huge_page_opt; 849 u64 page_mask, total_npages; 850 struct scatterlist *sg; 851 dma_addr_t dma_addr; 852 int rc, i, j; 853 854 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); 855 if (!phys_pg_pack) 856 return -ENOMEM; 857 858 phys_pg_pack->vm_type = userptr->vm_type; 859 phys_pg_pack->created_from_userptr = true; 860 phys_pg_pack->asid = ctx->asid; 861 atomic_set(&phys_pg_pack->mapping_cnt, 1); 862 863 is_huge_page_opt = (force_regular_page ? false : true); 864 865 /* Only if all dma_addrs are aligned to 2MB and their 866 * sizes is at least 2MB, we can use huge page mapping. 867 * We limit the 2MB optimization to this condition, 868 * since later on we acquire the related VA range as one 869 * consecutive block. 870 */ 871 total_npages = 0; 872 for_each_sgtable_dma_sg(userptr->sgt, sg, i) { 873 npages = hl_get_sg_info(sg, &dma_addr); 874 875 total_npages += npages; 876 877 if ((npages % pgs_in_huge_page) || 878 (dma_addr & (huge_page_size - 1))) 879 is_huge_page_opt = false; 880 } 881 882 if (is_huge_page_opt) { 883 page_size = huge_page_size; 884 do_div(total_npages, pgs_in_huge_page); 885 } 886 887 page_mask = ~(((u64) page_size) - 1); 888 889 phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64), 890 GFP_KERNEL); 891 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { 892 rc = -ENOMEM; 893 goto page_pack_arr_mem_err; 894 } 895 896 phys_pg_pack->npages = total_npages; 897 phys_pg_pack->page_size = page_size; 898 phys_pg_pack->total_size = total_npages * page_size; 899 900 j = 0; 901 for_each_sgtable_dma_sg(userptr->sgt, sg, i) { 902 npages = hl_get_sg_info(sg, &dma_addr); 903 904 /* align down to physical page size and save the offset */ 905 if (first) { 906 first = false; 907 phys_pg_pack->offset = dma_addr & (page_size - 1); 908 dma_addr &= page_mask; 909 } 910 911 while (npages) { 912 phys_pg_pack->pages[j++] = dma_addr; 913 dma_addr += page_size; 914 915 if (is_huge_page_opt) 916 npages -= pgs_in_huge_page; 917 else 918 npages--; 919 } 920 } 921 922 *pphys_pg_pack = phys_pg_pack; 923 924 return 0; 925 926 page_pack_arr_mem_err: 927 kfree(phys_pg_pack); 928 929 return rc; 930 } 931 932 /** 933 * map_phys_pg_pack() - maps the physical page pack.. 934 * @ctx: pointer to the context structure. 935 * @vaddr: start address of the virtual area to map from. 936 * @phys_pg_pack: the pack of physical pages to map to. 937 * 938 * This function does the following: 939 * - Maps each chunk of virtual memory to matching physical chunk. 940 * - Stores number of successful mappings in the given argument. 941 * - Returns 0 on success, error code otherwise. 942 */ 943 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, 944 struct hl_vm_phys_pg_pack *phys_pg_pack) 945 { 946 struct hl_device *hdev = ctx->hdev; 947 u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i; 948 u32 page_size = phys_pg_pack->page_size; 949 int rc = 0; 950 bool is_host_addr; 951 952 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 953 paddr = phys_pg_pack->pages[i]; 954 955 rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size, 956 (i + 1) == phys_pg_pack->npages); 957 if (rc) { 958 dev_err(hdev->dev, 959 "map failed for handle %u, npages: %llu, mapped: %llu", 960 phys_pg_pack->handle, phys_pg_pack->npages, 961 mapped_pg_cnt); 962 goto err; 963 } 964 965 mapped_pg_cnt++; 966 next_vaddr += page_size; 967 } 968 969 return 0; 970 971 err: 972 is_host_addr = !hl_is_dram_va(hdev, vaddr); 973 974 next_vaddr = vaddr; 975 for (i = 0 ; i < mapped_pg_cnt ; i++) { 976 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, 977 (i + 1) == mapped_pg_cnt)) 978 dev_warn_ratelimited(hdev->dev, 979 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n", 980 phys_pg_pack->handle, next_vaddr, 981 phys_pg_pack->pages[i], page_size); 982 983 next_vaddr += page_size; 984 985 /* 986 * unmapping on Palladium can be really long, so avoid a CPU 987 * soft lockup bug by sleeping a little between unmapping pages 988 * 989 * In addition, on host num of pages could be huge, 990 * because page size could be 4KB, so when unmapping host 991 * pages sleep every 32K pages to avoid soft lockup 992 */ 993 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) 994 usleep_range(50, 200); 995 } 996 997 return rc; 998 } 999 1000 /** 1001 * unmap_phys_pg_pack() - unmaps the physical page pack. 1002 * @ctx: pointer to the context structure. 1003 * @vaddr: start address of the virtual area to unmap. 1004 * @phys_pg_pack: the pack of physical pages to unmap. 1005 */ 1006 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, 1007 struct hl_vm_phys_pg_pack *phys_pg_pack) 1008 { 1009 struct hl_device *hdev = ctx->hdev; 1010 u64 next_vaddr, i; 1011 bool is_host_addr; 1012 u32 page_size; 1013 1014 is_host_addr = !hl_is_dram_va(hdev, vaddr); 1015 page_size = phys_pg_pack->page_size; 1016 next_vaddr = vaddr; 1017 1018 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) { 1019 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, 1020 (i + 1) == phys_pg_pack->npages)) 1021 dev_warn_ratelimited(hdev->dev, 1022 "unmap failed for vaddr: 0x%llx\n", next_vaddr); 1023 1024 /* 1025 * unmapping on Palladium can be really long, so avoid a CPU 1026 * soft lockup bug by sleeping a little between unmapping pages 1027 * 1028 * In addition, on host num of pages could be huge, 1029 * because page size could be 4KB, so when unmapping host 1030 * pages sleep every 32K pages to avoid soft lockup 1031 */ 1032 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) 1033 usleep_range(50, 200); 1034 } 1035 } 1036 1037 /** 1038 * map_device_va() - map the given memory. 1039 * @ctx: pointer to the context structure. 1040 * @args: host parameters with handle/host virtual address. 1041 * @device_addr: pointer to result device virtual address. 1042 * 1043 * This function does the following: 1044 * - If given a physical device memory handle, map to a device virtual block 1045 * and return the start address of this block. 1046 * - If given a host virtual address and size, find the related physical pages, 1047 * map a device virtual block to this pages and return the start address of 1048 * this block. 1049 */ 1050 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr) 1051 { 1052 struct hl_vm_phys_pg_pack *phys_pg_pack; 1053 enum hl_va_range_type va_range_type = 0; 1054 struct hl_device *hdev = ctx->hdev; 1055 struct hl_userptr *userptr = NULL; 1056 u32 handle = 0, va_block_align; 1057 struct hl_vm_hash_node *hnode; 1058 struct hl_vm *vm = &hdev->vm; 1059 struct hl_va_range *va_range; 1060 bool is_userptr, do_prefetch; 1061 u64 ret_vaddr, hint_addr; 1062 enum vm_type *vm_type; 1063 int rc; 1064 1065 /* set map flags */ 1066 is_userptr = args->flags & HL_MEM_USERPTR; 1067 do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH); 1068 1069 /* Assume failure */ 1070 *device_addr = 0; 1071 1072 if (is_userptr) { 1073 u64 addr = args->map_host.host_virt_addr, 1074 size = args->map_host.mem_size; 1075 u32 page_size = hdev->asic_prop.pmmu.page_size, 1076 huge_page_size = hdev->asic_prop.pmmu_huge.page_size; 1077 1078 rc = dma_map_host_va(hdev, addr, size, &userptr); 1079 if (rc) 1080 return rc; 1081 1082 rc = init_phys_pg_pack_from_userptr(ctx, userptr, 1083 &phys_pg_pack, false); 1084 if (rc) { 1085 dev_err(hdev->dev, 1086 "unable to init page pack for vaddr 0x%llx\n", 1087 addr); 1088 goto init_page_pack_err; 1089 } 1090 1091 vm_type = (enum vm_type *) userptr; 1092 hint_addr = args->map_host.hint_addr; 1093 handle = phys_pg_pack->handle; 1094 1095 /* get required alignment */ 1096 if (phys_pg_pack->page_size == page_size) { 1097 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 1098 va_range_type = HL_VA_RANGE_TYPE_HOST; 1099 /* 1100 * huge page alignment may be needed in case of regular 1101 * page mapping, depending on the host VA alignment 1102 */ 1103 if (addr & (huge_page_size - 1)) 1104 va_block_align = page_size; 1105 else 1106 va_block_align = huge_page_size; 1107 } else { 1108 /* 1109 * huge page alignment is needed in case of huge page 1110 * mapping 1111 */ 1112 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; 1113 va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE; 1114 va_block_align = huge_page_size; 1115 } 1116 } else { 1117 handle = lower_32_bits(args->map_device.handle); 1118 1119 spin_lock(&vm->idr_lock); 1120 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); 1121 if (!phys_pg_pack) { 1122 spin_unlock(&vm->idr_lock); 1123 dev_err(hdev->dev, 1124 "no match for handle %u\n", handle); 1125 return -EINVAL; 1126 } 1127 1128 /* increment now to avoid freeing device memory while mapping */ 1129 atomic_inc(&phys_pg_pack->mapping_cnt); 1130 1131 spin_unlock(&vm->idr_lock); 1132 1133 vm_type = (enum vm_type *) phys_pg_pack; 1134 1135 hint_addr = args->map_device.hint_addr; 1136 1137 /* DRAM VA alignment is the same as the MMU page size */ 1138 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; 1139 va_range_type = HL_VA_RANGE_TYPE_DRAM; 1140 va_block_align = hdev->asic_prop.dmmu.page_size; 1141 } 1142 1143 /* 1144 * relevant for mapping device physical memory only, as host memory is 1145 * implicitly shared 1146 */ 1147 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) && 1148 phys_pg_pack->asid != ctx->asid) { 1149 dev_err(hdev->dev, 1150 "Failed to map memory, handle %u is not shared\n", 1151 handle); 1152 rc = -EPERM; 1153 goto shared_err; 1154 } 1155 1156 hnode = kzalloc(sizeof(*hnode), GFP_KERNEL); 1157 if (!hnode) { 1158 rc = -ENOMEM; 1159 goto hnode_err; 1160 } 1161 1162 if (hint_addr && phys_pg_pack->offset) { 1163 if (args->flags & HL_MEM_FORCE_HINT) { 1164 /* Fail if hint must be respected but it can't be */ 1165 dev_err(hdev->dev, 1166 "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n", 1167 hint_addr, phys_pg_pack->offset); 1168 rc = -EINVAL; 1169 goto va_block_err; 1170 } 1171 dev_dbg(hdev->dev, 1172 "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n", 1173 hint_addr, phys_pg_pack->offset); 1174 } 1175 1176 ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size, 1177 hint_addr, va_block_align, 1178 va_range_type, args->flags); 1179 if (!ret_vaddr) { 1180 dev_err(hdev->dev, "no available va block for handle %u\n", 1181 handle); 1182 rc = -ENOMEM; 1183 goto va_block_err; 1184 } 1185 1186 mutex_lock(&hdev->mmu_lock); 1187 1188 rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack); 1189 if (rc) { 1190 dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle); 1191 mutex_unlock(&hdev->mmu_lock); 1192 goto map_err; 1193 } 1194 1195 rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV, 1196 ctx->asid, ret_vaddr, phys_pg_pack->total_size); 1197 mutex_unlock(&hdev->mmu_lock); 1198 if (rc) 1199 goto map_err; 1200 1201 /* 1202 * prefetch is done upon user's request. it is performed in WQ as and so can 1203 * be outside the MMU lock. the operation itself is already protected by the mmu lock 1204 */ 1205 if (do_prefetch) { 1206 rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr, 1207 phys_pg_pack->total_size); 1208 if (rc) 1209 goto map_err; 1210 } 1211 1212 ret_vaddr += phys_pg_pack->offset; 1213 1214 hnode->ptr = vm_type; 1215 hnode->vaddr = ret_vaddr; 1216 hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle; 1217 1218 mutex_lock(&ctx->mem_hash_lock); 1219 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr); 1220 mutex_unlock(&ctx->mem_hash_lock); 1221 1222 *device_addr = ret_vaddr; 1223 1224 if (is_userptr) 1225 free_phys_pg_pack(hdev, phys_pg_pack); 1226 1227 return rc; 1228 1229 map_err: 1230 if (add_va_block(hdev, va_range, ret_vaddr, 1231 ret_vaddr + phys_pg_pack->total_size - 1)) 1232 dev_warn(hdev->dev, 1233 "release va block failed for handle 0x%x, vaddr: 0x%llx\n", 1234 handle, ret_vaddr); 1235 1236 va_block_err: 1237 kfree(hnode); 1238 hnode_err: 1239 shared_err: 1240 atomic_dec(&phys_pg_pack->mapping_cnt); 1241 if (is_userptr) 1242 free_phys_pg_pack(hdev, phys_pg_pack); 1243 init_page_pack_err: 1244 if (is_userptr) 1245 dma_unmap_host_va(hdev, userptr); 1246 1247 return rc; 1248 } 1249 1250 /* Should be called while the context's mem_hash_lock is taken */ 1251 static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr) 1252 { 1253 struct hl_vm_hash_node *hnode; 1254 1255 hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr) 1256 if (vaddr == hnode->vaddr) 1257 return hnode; 1258 1259 return NULL; 1260 } 1261 1262 /** 1263 * unmap_device_va() - unmap the given device virtual address. 1264 * @ctx: pointer to the context structure. 1265 * @args: host parameters with device virtual address to unmap. 1266 * @ctx_free: true if in context free flow, false otherwise. 1267 * 1268 * This function does the following: 1269 * - unmap the physical pages related to the given virtual address. 1270 * - return the device virtual block to the virtual block list. 1271 */ 1272 static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, 1273 bool ctx_free) 1274 { 1275 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 1276 u64 vaddr = args->unmap.device_virt_addr; 1277 struct asic_fixed_properties *prop; 1278 struct hl_device *hdev = ctx->hdev; 1279 struct hl_userptr *userptr = NULL; 1280 struct hl_vm_hash_node *hnode; 1281 struct hl_va_range *va_range; 1282 enum vm_type *vm_type; 1283 bool is_userptr; 1284 int rc = 0; 1285 1286 prop = &hdev->asic_prop; 1287 1288 /* protect from double entrance */ 1289 mutex_lock(&ctx->mem_hash_lock); 1290 hnode = get_vm_hash_node_locked(ctx, vaddr); 1291 if (!hnode) { 1292 mutex_unlock(&ctx->mem_hash_lock); 1293 dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr); 1294 return -EINVAL; 1295 } 1296 1297 if (hnode->export_cnt) { 1298 mutex_unlock(&ctx->mem_hash_lock); 1299 dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr); 1300 return -EINVAL; 1301 } 1302 1303 hash_del(&hnode->node); 1304 mutex_unlock(&ctx->mem_hash_lock); 1305 1306 vm_type = hnode->ptr; 1307 1308 if (*vm_type == VM_TYPE_USERPTR) { 1309 is_userptr = true; 1310 userptr = hnode->ptr; 1311 1312 rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack, 1313 false); 1314 if (rc) { 1315 dev_err(hdev->dev, 1316 "unable to init page pack for vaddr 0x%llx\n", 1317 vaddr); 1318 goto vm_type_err; 1319 } 1320 1321 if (phys_pg_pack->page_size == 1322 hdev->asic_prop.pmmu.page_size) 1323 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 1324 else 1325 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; 1326 } else if (*vm_type == VM_TYPE_PHYS_PACK) { 1327 is_userptr = false; 1328 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; 1329 phys_pg_pack = hnode->ptr; 1330 } else { 1331 dev_warn(hdev->dev, 1332 "unmap failed, unknown vm desc for vaddr 0x%llx\n", 1333 vaddr); 1334 rc = -EFAULT; 1335 goto vm_type_err; 1336 } 1337 1338 if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) { 1339 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr); 1340 rc = -EINVAL; 1341 goto mapping_cnt_err; 1342 } 1343 1344 if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size)) 1345 vaddr = prop->dram_base_address + 1346 DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address, 1347 phys_pg_pack->page_size) * 1348 phys_pg_pack->page_size; 1349 else 1350 vaddr &= ~(((u64) phys_pg_pack->page_size) - 1); 1351 1352 mutex_lock(&hdev->mmu_lock); 1353 1354 unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack); 1355 1356 /* 1357 * During context free this function is called in a loop to clean all 1358 * the context mappings. Hence the cache invalidation can be called once 1359 * at the loop end rather than for each iteration 1360 */ 1361 if (!ctx_free) 1362 rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr, 1363 phys_pg_pack->total_size); 1364 1365 mutex_unlock(&hdev->mmu_lock); 1366 1367 /* 1368 * If the context is closing we don't need to check for the MMU cache 1369 * invalidation return code and update the VA free list as in this flow 1370 * we invalidate the MMU cache outside of this unmap function and the VA 1371 * free list will be freed anyway. 1372 */ 1373 if (!ctx_free) { 1374 int tmp_rc; 1375 1376 tmp_rc = add_va_block(hdev, va_range, vaddr, 1377 vaddr + phys_pg_pack->total_size - 1); 1378 if (tmp_rc) { 1379 dev_warn(hdev->dev, 1380 "add va block failed for vaddr: 0x%llx\n", 1381 vaddr); 1382 if (!rc) 1383 rc = tmp_rc; 1384 } 1385 } 1386 1387 atomic_dec(&phys_pg_pack->mapping_cnt); 1388 kfree(hnode); 1389 1390 if (is_userptr) { 1391 free_phys_pg_pack(hdev, phys_pg_pack); 1392 dma_unmap_host_va(hdev, userptr); 1393 } 1394 1395 return rc; 1396 1397 mapping_cnt_err: 1398 if (is_userptr) 1399 free_phys_pg_pack(hdev, phys_pg_pack); 1400 vm_type_err: 1401 mutex_lock(&ctx->mem_hash_lock); 1402 hash_add(ctx->mem_hash, &hnode->node, vaddr); 1403 mutex_unlock(&ctx->mem_hash_lock); 1404 1405 return rc; 1406 } 1407 1408 static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size) 1409 { 1410 u32 block_id; 1411 int rc; 1412 1413 *handle = 0; 1414 if (size) 1415 *size = 0; 1416 1417 rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id); 1418 if (rc) 1419 return rc; 1420 1421 *handle = block_id | HL_MMAP_TYPE_BLOCK; 1422 *handle <<= PAGE_SHIFT; 1423 1424 return 0; 1425 } 1426 1427 static void hw_block_vm_close(struct vm_area_struct *vma) 1428 { 1429 struct hl_vm_hw_block_list_node *lnode = 1430 (struct hl_vm_hw_block_list_node *) vma->vm_private_data; 1431 struct hl_ctx *ctx = lnode->ctx; 1432 long new_mmap_size; 1433 1434 new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start); 1435 if (new_mmap_size > 0) { 1436 lnode->mapped_size = new_mmap_size; 1437 return; 1438 } 1439 1440 mutex_lock(&ctx->hw_block_list_lock); 1441 list_del(&lnode->node); 1442 mutex_unlock(&ctx->hw_block_list_lock); 1443 hl_ctx_put(ctx); 1444 kfree(lnode); 1445 vma->vm_private_data = NULL; 1446 } 1447 1448 static const struct vm_operations_struct hw_block_vm_ops = { 1449 .close = hw_block_vm_close 1450 }; 1451 1452 /** 1453 * hl_hw_block_mmap() - mmap a hw block to user. 1454 * @hpriv: pointer to the private data of the fd 1455 * @vma: pointer to vm_area_struct of the process 1456 * 1457 * Driver increments context reference for every HW block mapped in order 1458 * to prevent user from closing FD without unmapping first 1459 */ 1460 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) 1461 { 1462 struct hl_vm_hw_block_list_node *lnode; 1463 struct hl_device *hdev = hpriv->hdev; 1464 struct hl_ctx *ctx = hpriv->ctx; 1465 u32 block_id, block_size; 1466 int rc; 1467 1468 /* We use the page offset to hold the block id and thus we need to clear 1469 * it before doing the mmap itself 1470 */ 1471 block_id = vma->vm_pgoff; 1472 vma->vm_pgoff = 0; 1473 1474 /* Driver only allows mapping of a complete HW block */ 1475 block_size = vma->vm_end - vma->vm_start; 1476 1477 if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) { 1478 dev_err(hdev->dev, 1479 "user pointer is invalid - 0x%lx\n", 1480 vma->vm_start); 1481 1482 return -EINVAL; 1483 } 1484 1485 lnode = kzalloc(sizeof(*lnode), GFP_KERNEL); 1486 if (!lnode) 1487 return -ENOMEM; 1488 1489 rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size); 1490 if (rc) { 1491 kfree(lnode); 1492 return rc; 1493 } 1494 1495 hl_ctx_get(ctx); 1496 1497 lnode->ctx = ctx; 1498 lnode->vaddr = vma->vm_start; 1499 lnode->block_size = block_size; 1500 lnode->mapped_size = lnode->block_size; 1501 lnode->id = block_id; 1502 1503 vma->vm_private_data = lnode; 1504 vma->vm_ops = &hw_block_vm_ops; 1505 1506 mutex_lock(&ctx->hw_block_list_lock); 1507 list_add_tail(&lnode->node, &ctx->hw_block_mem_list); 1508 mutex_unlock(&ctx->hw_block_list_lock); 1509 1510 vma->vm_pgoff = block_id; 1511 1512 return 0; 1513 } 1514 1515 static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size, 1516 struct device *dev, enum dma_data_direction dir) 1517 { 1518 dma_addr_t addr; 1519 int rc; 1520 1521 addr = dma_map_resource(dev, bar_address, chunk_size, dir, 1522 DMA_ATTR_SKIP_CPU_SYNC); 1523 rc = dma_mapping_error(dev, addr); 1524 if (rc) 1525 return rc; 1526 1527 sg_set_page(sg, NULL, chunk_size, 0); 1528 sg_dma_address(sg) = addr; 1529 sg_dma_len(sg) = chunk_size; 1530 1531 return 0; 1532 } 1533 1534 static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages, 1535 u64 page_size, u64 exported_size, 1536 struct device *dev, enum dma_data_direction dir) 1537 { 1538 u64 chunk_size, bar_address, dma_max_seg_size, cur_size_to_export, cur_npages; 1539 struct asic_fixed_properties *prop; 1540 int rc, i, j, nents, cur_page; 1541 struct scatterlist *sg; 1542 struct sg_table *sgt; 1543 1544 prop = &hdev->asic_prop; 1545 1546 dma_max_seg_size = dma_get_max_seg_size(dev); 1547 1548 /* We would like to align the max segment size to PAGE_SIZE, so the 1549 * SGL will contain aligned addresses that can be easily mapped to 1550 * an MMU 1551 */ 1552 dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE); 1553 if (dma_max_seg_size < PAGE_SIZE) { 1554 dev_err_ratelimited(hdev->dev, 1555 "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n", 1556 dma_max_seg_size); 1557 return ERR_PTR(-EINVAL); 1558 } 1559 1560 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); 1561 if (!sgt) 1562 return ERR_PTR(-ENOMEM); 1563 1564 /* remove export size restrictions in case not explicitly defined */ 1565 cur_size_to_export = exported_size ? exported_size : (npages * page_size); 1566 1567 /* If the size of each page is larger than the dma max segment size, 1568 * then we can't combine pages and the number of entries in the SGL 1569 * will just be the 1570 * <number of pages> * <chunks of max segment size in each page> 1571 */ 1572 if (page_size > dma_max_seg_size) { 1573 /* we should limit number of pages according to the exported size */ 1574 cur_npages = DIV_ROUND_UP_SECTOR_T(cur_size_to_export, page_size); 1575 nents = cur_npages * DIV_ROUND_UP_SECTOR_T(page_size, dma_max_seg_size); 1576 } else { 1577 cur_npages = npages; 1578 1579 /* Get number of non-contiguous chunks */ 1580 for (i = 1, nents = 1, chunk_size = page_size ; i < cur_npages ; i++) { 1581 if (pages[i - 1] + page_size != pages[i] || 1582 chunk_size + page_size > dma_max_seg_size) { 1583 nents++; 1584 chunk_size = page_size; 1585 continue; 1586 } 1587 1588 chunk_size += page_size; 1589 } 1590 } 1591 1592 rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO); 1593 if (rc) 1594 goto error_free; 1595 1596 cur_page = 0; 1597 1598 if (page_size > dma_max_seg_size) { 1599 u64 size_left, cur_device_address = 0; 1600 1601 size_left = page_size; 1602 1603 /* Need to split each page into the number of chunks of 1604 * dma_max_seg_size 1605 */ 1606 for_each_sgtable_dma_sg(sgt, sg, i) { 1607 if (size_left == page_size) 1608 cur_device_address = 1609 pages[cur_page] - prop->dram_base_address; 1610 else 1611 cur_device_address += dma_max_seg_size; 1612 1613 /* make sure not to export over exported size */ 1614 chunk_size = min3(size_left, dma_max_seg_size, cur_size_to_export); 1615 1616 bar_address = hdev->dram_pci_bar_start + cur_device_address; 1617 1618 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir); 1619 if (rc) 1620 goto error_unmap; 1621 1622 cur_size_to_export -= chunk_size; 1623 1624 if (size_left > dma_max_seg_size) { 1625 size_left -= dma_max_seg_size; 1626 } else { 1627 cur_page++; 1628 size_left = page_size; 1629 } 1630 } 1631 } else { 1632 /* Merge pages and put them into the scatterlist */ 1633 for_each_sgtable_dma_sg(sgt, sg, i) { 1634 chunk_size = page_size; 1635 for (j = cur_page + 1 ; j < cur_npages ; j++) { 1636 if (pages[j - 1] + page_size != pages[j] || 1637 chunk_size + page_size > dma_max_seg_size) 1638 break; 1639 1640 chunk_size += page_size; 1641 } 1642 1643 bar_address = hdev->dram_pci_bar_start + 1644 (pages[cur_page] - prop->dram_base_address); 1645 1646 /* make sure not to export over exported size */ 1647 chunk_size = min(chunk_size, cur_size_to_export); 1648 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir); 1649 if (rc) 1650 goto error_unmap; 1651 1652 cur_size_to_export -= chunk_size; 1653 cur_page = j; 1654 } 1655 } 1656 1657 /* Because we are not going to include a CPU list we want to have some 1658 * chance that other users will detect this by setting the orig_nents 1659 * to 0 and using only nents (length of DMA list) when going over the 1660 * sgl 1661 */ 1662 sgt->orig_nents = 0; 1663 1664 return sgt; 1665 1666 error_unmap: 1667 for_each_sgtable_dma_sg(sgt, sg, i) { 1668 if (!sg_dma_len(sg)) 1669 continue; 1670 1671 dma_unmap_resource(dev, sg_dma_address(sg), 1672 sg_dma_len(sg), dir, 1673 DMA_ATTR_SKIP_CPU_SYNC); 1674 } 1675 1676 sg_free_table(sgt); 1677 1678 error_free: 1679 kfree(sgt); 1680 return ERR_PTR(rc); 1681 } 1682 1683 static int hl_dmabuf_attach(struct dma_buf *dmabuf, 1684 struct dma_buf_attachment *attachment) 1685 { 1686 struct hl_dmabuf_priv *hl_dmabuf; 1687 struct hl_device *hdev; 1688 int rc; 1689 1690 hl_dmabuf = dmabuf->priv; 1691 hdev = hl_dmabuf->ctx->hdev; 1692 1693 rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true); 1694 1695 if (rc < 0) 1696 attachment->peer2peer = false; 1697 return 0; 1698 } 1699 1700 static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment, 1701 enum dma_data_direction dir) 1702 { 1703 struct dma_buf *dma_buf = attachment->dmabuf; 1704 struct hl_vm_phys_pg_pack *phys_pg_pack; 1705 struct hl_dmabuf_priv *hl_dmabuf; 1706 struct hl_device *hdev; 1707 struct sg_table *sgt; 1708 1709 hl_dmabuf = dma_buf->priv; 1710 hdev = hl_dmabuf->ctx->hdev; 1711 phys_pg_pack = hl_dmabuf->phys_pg_pack; 1712 1713 if (!attachment->peer2peer) { 1714 dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n"); 1715 return ERR_PTR(-EPERM); 1716 } 1717 1718 if (phys_pg_pack) 1719 sgt = alloc_sgt_from_device_pages(hdev, 1720 phys_pg_pack->pages, 1721 phys_pg_pack->npages, 1722 phys_pg_pack->page_size, 1723 phys_pg_pack->exported_size, 1724 attachment->dev, 1725 dir); 1726 else 1727 sgt = alloc_sgt_from_device_pages(hdev, 1728 &hl_dmabuf->device_address, 1729 1, 1730 hl_dmabuf->dmabuf->size, 1731 0, 1732 attachment->dev, 1733 dir); 1734 1735 if (IS_ERR(sgt)) 1736 dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt)); 1737 1738 return sgt; 1739 } 1740 1741 static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment, 1742 struct sg_table *sgt, 1743 enum dma_data_direction dir) 1744 { 1745 struct scatterlist *sg; 1746 int i; 1747 1748 /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives 1749 * only in the 'device' domain (after all, it maps a PCI bar address which points to the 1750 * device memory). 1751 * 1752 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform 1753 * a sync of the memory to the CPU's cache, as it never resided inside that cache. 1754 */ 1755 for_each_sgtable_dma_sg(sgt, sg, i) 1756 dma_unmap_resource(attachment->dev, sg_dma_address(sg), 1757 sg_dma_len(sg), dir, 1758 DMA_ATTR_SKIP_CPU_SYNC); 1759 1760 /* Need to restore orig_nents because sg_free_table use that field */ 1761 sgt->orig_nents = sgt->nents; 1762 sg_free_table(sgt); 1763 kfree(sgt); 1764 } 1765 1766 static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr) 1767 { 1768 struct hl_device *hdev = ctx->hdev; 1769 struct hl_vm_hash_node *hnode; 1770 1771 /* get the memory handle */ 1772 mutex_lock(&ctx->mem_hash_lock); 1773 hnode = get_vm_hash_node_locked(ctx, addr); 1774 if (!hnode) { 1775 mutex_unlock(&ctx->mem_hash_lock); 1776 dev_dbg(hdev->dev, "map address %#llx not found\n", addr); 1777 return ERR_PTR(-EINVAL); 1778 } 1779 1780 if (upper_32_bits(hnode->handle)) { 1781 mutex_unlock(&ctx->mem_hash_lock); 1782 dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n", 1783 hnode->handle, addr); 1784 return ERR_PTR(-EINVAL); 1785 } 1786 1787 /* 1788 * node found, increase export count so this memory cannot be unmapped 1789 * and the hash node cannot be deleted. 1790 */ 1791 hnode->export_cnt++; 1792 mutex_unlock(&ctx->mem_hash_lock); 1793 1794 return hnode; 1795 } 1796 1797 static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode) 1798 { 1799 mutex_lock(&ctx->mem_hash_lock); 1800 hnode->export_cnt--; 1801 mutex_unlock(&ctx->mem_hash_lock); 1802 } 1803 1804 static void hl_release_dmabuf(struct dma_buf *dmabuf) 1805 { 1806 struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv; 1807 struct hl_ctx *ctx; 1808 1809 if (!hl_dmabuf) 1810 return; 1811 1812 ctx = hl_dmabuf->ctx; 1813 1814 if (hl_dmabuf->memhash_hnode) 1815 memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode); 1816 1817 atomic_dec(&ctx->hdev->dmabuf_export_cnt); 1818 hl_ctx_put(ctx); 1819 1820 /* Paired with get_file() in export_dmabuf() */ 1821 fput(ctx->hpriv->filp); 1822 1823 kfree(hl_dmabuf); 1824 } 1825 1826 static const struct dma_buf_ops habanalabs_dmabuf_ops = { 1827 .attach = hl_dmabuf_attach, 1828 .map_dma_buf = hl_map_dmabuf, 1829 .unmap_dma_buf = hl_unmap_dmabuf, 1830 .release = hl_release_dmabuf, 1831 }; 1832 1833 static int export_dmabuf(struct hl_ctx *ctx, 1834 struct hl_dmabuf_priv *hl_dmabuf, 1835 u64 total_size, int flags, int *dmabuf_fd) 1836 { 1837 DEFINE_DMA_BUF_EXPORT_INFO(exp_info); 1838 struct hl_device *hdev = ctx->hdev; 1839 int rc, fd; 1840 1841 exp_info.ops = &habanalabs_dmabuf_ops; 1842 exp_info.size = total_size; 1843 exp_info.flags = flags; 1844 exp_info.priv = hl_dmabuf; 1845 1846 hl_dmabuf->dmabuf = dma_buf_export(&exp_info); 1847 if (IS_ERR(hl_dmabuf->dmabuf)) { 1848 dev_err(hdev->dev, "failed to export dma-buf\n"); 1849 return PTR_ERR(hl_dmabuf->dmabuf); 1850 } 1851 1852 fd = dma_buf_fd(hl_dmabuf->dmabuf, flags); 1853 if (fd < 0) { 1854 dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd); 1855 rc = fd; 1856 goto err_dma_buf_put; 1857 } 1858 1859 hl_dmabuf->ctx = ctx; 1860 hl_ctx_get(hl_dmabuf->ctx); 1861 atomic_inc(&ctx->hdev->dmabuf_export_cnt); 1862 1863 /* Get compute device file to enforce release order, such that all exported dma-buf will be 1864 * released first and only then the compute device. 1865 * Paired with fput() in hl_release_dmabuf(). 1866 */ 1867 get_file(ctx->hpriv->filp); 1868 1869 *dmabuf_fd = fd; 1870 1871 return 0; 1872 1873 err_dma_buf_put: 1874 hl_dmabuf->dmabuf->priv = NULL; 1875 dma_buf_put(hl_dmabuf->dmabuf); 1876 return rc; 1877 } 1878 1879 static int validate_export_params_common(struct hl_device *hdev, u64 device_addr, u64 size) 1880 { 1881 if (!IS_ALIGNED(device_addr, PAGE_SIZE)) { 1882 dev_dbg(hdev->dev, 1883 "exported device memory address 0x%llx should be aligned to 0x%lx\n", 1884 device_addr, PAGE_SIZE); 1885 return -EINVAL; 1886 } 1887 1888 if (size < PAGE_SIZE) { 1889 dev_dbg(hdev->dev, 1890 "exported device memory size %llu should be equal to or greater than %lu\n", 1891 size, PAGE_SIZE); 1892 return -EINVAL; 1893 } 1894 1895 return 0; 1896 } 1897 1898 static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size) 1899 { 1900 struct asic_fixed_properties *prop = &hdev->asic_prop; 1901 u64 bar_address; 1902 int rc; 1903 1904 rc = validate_export_params_common(hdev, device_addr, size); 1905 if (rc) 1906 return rc; 1907 1908 if (device_addr < prop->dram_user_base_address || 1909 (device_addr + size) > prop->dram_end_address || 1910 (device_addr + size) < device_addr) { 1911 dev_dbg(hdev->dev, 1912 "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n", 1913 device_addr, size); 1914 return -EINVAL; 1915 } 1916 1917 bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address); 1918 1919 if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) || 1920 (bar_address + size) < bar_address) { 1921 dev_dbg(hdev->dev, 1922 "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n", 1923 device_addr, size); 1924 return -EINVAL; 1925 } 1926 1927 return 0; 1928 } 1929 1930 static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset, 1931 struct hl_vm_phys_pg_pack *phys_pg_pack) 1932 { 1933 struct asic_fixed_properties *prop = &hdev->asic_prop; 1934 u64 bar_address; 1935 int i, rc; 1936 1937 rc = validate_export_params_common(hdev, device_addr, size); 1938 if (rc) 1939 return rc; 1940 1941 if ((offset + size) > phys_pg_pack->total_size) { 1942 dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n", 1943 offset, size, phys_pg_pack->total_size); 1944 return -EINVAL; 1945 } 1946 1947 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 1948 1949 bar_address = hdev->dram_pci_bar_start + 1950 (phys_pg_pack->pages[i] - prop->dram_base_address); 1951 1952 if ((bar_address + phys_pg_pack->page_size) > 1953 (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) || 1954 (bar_address + phys_pg_pack->page_size) < bar_address) { 1955 dev_dbg(hdev->dev, 1956 "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n", 1957 phys_pg_pack->pages[i], 1958 phys_pg_pack->page_size); 1959 1960 return -EINVAL; 1961 } 1962 } 1963 1964 return 0; 1965 } 1966 1967 static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev, 1968 struct hl_vm_hash_node *hnode) 1969 { 1970 struct hl_vm_phys_pg_pack *phys_pg_pack; 1971 struct hl_vm *vm = &hdev->vm; 1972 1973 spin_lock(&vm->idr_lock); 1974 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle); 1975 if (!phys_pg_pack) { 1976 spin_unlock(&vm->idr_lock); 1977 dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle); 1978 return ERR_PTR(-EINVAL); 1979 } 1980 1981 spin_unlock(&vm->idr_lock); 1982 1983 if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) { 1984 dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle); 1985 return ERR_PTR(-EINVAL); 1986 } 1987 1988 return phys_pg_pack; 1989 } 1990 1991 /** 1992 * export_dmabuf_from_addr() - export a dma-buf object for the given memory 1993 * address and size. 1994 * @ctx: pointer to the context structure. 1995 * @addr: device address. 1996 * @size: size of device memory to export. 1997 * @offset: the offset into the buffer from which to start exporting 1998 * @flags: DMA-BUF file/FD flags. 1999 * @dmabuf_fd: pointer to result FD that represents the dma-buf object. 2000 * 2001 * Create and export a dma-buf object for an existing memory allocation inside 2002 * the device memory, and return a FD which is associated with the dma-buf 2003 * object. 2004 * 2005 * Return: 0 on success, non-zero for failure. 2006 */ 2007 static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset, 2008 int flags, int *dmabuf_fd) 2009 { 2010 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 2011 struct hl_vm_hash_node *hnode = NULL; 2012 struct asic_fixed_properties *prop; 2013 struct hl_dmabuf_priv *hl_dmabuf; 2014 struct hl_device *hdev; 2015 u64 export_addr; 2016 int rc; 2017 2018 hdev = ctx->hdev; 2019 prop = &hdev->asic_prop; 2020 2021 /* offset must be 0 in devices without virtual memory support */ 2022 if (!prop->dram_supports_virtual_memory && offset) { 2023 dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n"); 2024 return -EINVAL; 2025 } 2026 2027 export_addr = addr + offset; 2028 2029 hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL); 2030 if (!hl_dmabuf) 2031 return -ENOMEM; 2032 2033 if (prop->dram_supports_virtual_memory) { 2034 hnode = memhash_node_export_get(ctx, addr); 2035 if (IS_ERR(hnode)) { 2036 rc = PTR_ERR(hnode); 2037 goto err_free_dmabuf_wrapper; 2038 } 2039 phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode); 2040 if (IS_ERR(phys_pg_pack)) { 2041 rc = PTR_ERR(phys_pg_pack); 2042 goto dec_memhash_export_cnt; 2043 } 2044 rc = validate_export_params(hdev, export_addr, size, offset, phys_pg_pack); 2045 if (rc) 2046 goto dec_memhash_export_cnt; 2047 2048 phys_pg_pack->exported_size = size; 2049 hl_dmabuf->phys_pg_pack = phys_pg_pack; 2050 hl_dmabuf->memhash_hnode = hnode; 2051 } else { 2052 rc = validate_export_params_no_mmu(hdev, export_addr, size); 2053 if (rc) 2054 goto err_free_dmabuf_wrapper; 2055 } 2056 2057 hl_dmabuf->device_address = export_addr; 2058 2059 rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd); 2060 if (rc) 2061 goto dec_memhash_export_cnt; 2062 2063 return 0; 2064 2065 dec_memhash_export_cnt: 2066 if (prop->dram_supports_virtual_memory) 2067 memhash_node_export_put(ctx, hnode); 2068 err_free_dmabuf_wrapper: 2069 kfree(hl_dmabuf); 2070 return rc; 2071 } 2072 2073 static void ts_buff_release(struct hl_mmap_mem_buf *buf) 2074 { 2075 struct hl_ts_buff *ts_buff = buf->private; 2076 2077 vfree(ts_buff->kernel_buff_address); 2078 vfree(ts_buff->user_buff_address); 2079 kfree(ts_buff); 2080 } 2081 2082 static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args) 2083 { 2084 struct hl_ts_buff *ts_buff = buf->private; 2085 2086 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE); 2087 return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0); 2088 } 2089 2090 static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args) 2091 { 2092 struct hl_ts_buff *ts_buff = NULL; 2093 u32 num_elements; 2094 size_t size; 2095 void *p; 2096 2097 num_elements = *(u32 *)args; 2098 2099 ts_buff = kzalloc(sizeof(*ts_buff), gfp); 2100 if (!ts_buff) 2101 return -ENOMEM; 2102 2103 /* Allocate the user buffer */ 2104 size = num_elements * sizeof(u64); 2105 p = vmalloc_user(size); 2106 if (!p) 2107 goto free_mem; 2108 2109 ts_buff->user_buff_address = p; 2110 buf->mappable_size = size; 2111 2112 /* Allocate the internal kernel buffer */ 2113 size = num_elements * sizeof(struct hl_user_pending_interrupt); 2114 p = vzalloc(size); 2115 if (!p) 2116 goto free_user_buff; 2117 2118 ts_buff->kernel_buff_address = p; 2119 ts_buff->kernel_buff_size = size; 2120 2121 buf->private = ts_buff; 2122 2123 return 0; 2124 2125 free_user_buff: 2126 vfree(ts_buff->user_buff_address); 2127 free_mem: 2128 kfree(ts_buff); 2129 return -ENOMEM; 2130 } 2131 2132 static struct hl_mmap_mem_buf_behavior hl_ts_behavior = { 2133 .topic = "TS", 2134 .mem_id = HL_MMAP_TYPE_TS_BUFF, 2135 .mmap = hl_ts_mmap, 2136 .alloc = hl_ts_alloc_buf, 2137 .release = ts_buff_release, 2138 }; 2139 2140 /** 2141 * allocate_timestamps_buffers() - allocate timestamps buffers 2142 * This function will allocate ts buffer that will later on be mapped to the user 2143 * in order to be able to read the timestamp. 2144 * in addition it'll allocate an extra buffer for registration management. 2145 * since we cannot fail during registration for out-of-memory situation, so 2146 * we'll prepare a pool which will be used as user interrupt nodes and instead 2147 * of dynamically allocating nodes while registration we'll pick the node from 2148 * this pool. in addition it'll add node to the mapping hash which will be used 2149 * to map user ts buffer to the internal kernel ts buffer. 2150 * @hpriv: pointer to the private data of the fd 2151 * @args: ioctl input 2152 * @handle: user timestamp buffer handle as an output 2153 */ 2154 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle) 2155 { 2156 struct hl_mem_mgr *mmg = &hpriv->mem_mgr; 2157 struct hl_mmap_mem_buf *buf; 2158 2159 if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) { 2160 dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n", 2161 args->num_of_elements, TS_MAX_ELEMENTS_NUM); 2162 return -EINVAL; 2163 } 2164 2165 buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements); 2166 if (!buf) 2167 return -ENOMEM; 2168 2169 *handle = buf->handle; 2170 2171 return 0; 2172 } 2173 2174 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data) 2175 { 2176 enum hl_device_status status; 2177 union hl_mem_args *args = data; 2178 struct hl_device *hdev = hpriv->hdev; 2179 struct hl_ctx *ctx = hpriv->ctx; 2180 u64 block_handle, device_addr = 0; 2181 u32 handle = 0, block_size; 2182 int rc, dmabuf_fd = -EBADF; 2183 2184 if (!hl_device_operational(hdev, &status)) { 2185 dev_dbg_ratelimited(hdev->dev, 2186 "Device is %s. Can't execute MEMORY IOCTL\n", 2187 hdev->status[status]); 2188 return -EBUSY; 2189 } 2190 2191 switch (args->in.op) { 2192 case HL_MEM_OP_ALLOC: 2193 if (args->in.alloc.mem_size == 0) { 2194 dev_err(hdev->dev, 2195 "alloc size must be larger than 0\n"); 2196 rc = -EINVAL; 2197 goto out; 2198 } 2199 2200 /* If DRAM does not support virtual memory the driver won't 2201 * handle the allocation/freeing of that memory. However, for 2202 * system administration/monitoring purposes, the driver will 2203 * keep track of the amount of DRAM memory that is allocated 2204 * and freed by the user. Because this code totally relies on 2205 * the user's input, the driver can't ensure the validity 2206 * of this accounting. 2207 */ 2208 if (!hdev->asic_prop.dram_supports_virtual_memory) { 2209 atomic64_add(args->in.alloc.mem_size, 2210 &ctx->dram_phys_mem); 2211 atomic64_add(args->in.alloc.mem_size, 2212 &hdev->dram_used_mem); 2213 2214 dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); 2215 rc = 0; 2216 2217 memset(args, 0, sizeof(*args)); 2218 args->out.handle = 0; 2219 goto out; 2220 } 2221 2222 rc = alloc_device_memory(ctx, &args->in, &handle); 2223 2224 memset(args, 0, sizeof(*args)); 2225 args->out.handle = (__u64) handle; 2226 break; 2227 2228 case HL_MEM_OP_FREE: 2229 /* If DRAM does not support virtual memory the driver won't 2230 * handle the allocation/freeing of that memory. However, for 2231 * system administration/monitoring purposes, the driver will 2232 * keep track of the amount of DRAM memory that is allocated 2233 * and freed by the user. Because this code totally relies on 2234 * the user's input, the driver can't ensure the validity 2235 * of this accounting. 2236 */ 2237 if (!hdev->asic_prop.dram_supports_virtual_memory) { 2238 atomic64_sub(args->in.alloc.mem_size, 2239 &ctx->dram_phys_mem); 2240 atomic64_sub(args->in.alloc.mem_size, 2241 &hdev->dram_used_mem); 2242 2243 dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); 2244 rc = 0; 2245 2246 goto out; 2247 } 2248 2249 rc = free_device_memory(ctx, &args->in); 2250 break; 2251 2252 case HL_MEM_OP_MAP: 2253 rc = map_device_va(ctx, &args->in, &device_addr); 2254 2255 memset(args, 0, sizeof(*args)); 2256 args->out.device_virt_addr = device_addr; 2257 break; 2258 2259 case HL_MEM_OP_UNMAP: 2260 rc = unmap_device_va(ctx, &args->in, false); 2261 break; 2262 2263 case HL_MEM_OP_MAP_BLOCK: 2264 rc = map_block(hdev, args->in.map_block.block_addr, 2265 &block_handle, &block_size); 2266 args->out.block_handle = block_handle; 2267 args->out.block_size = block_size; 2268 break; 2269 2270 case HL_MEM_OP_EXPORT_DMABUF_FD: 2271 rc = export_dmabuf_from_addr(ctx, 2272 args->in.export_dmabuf_fd.addr, 2273 args->in.export_dmabuf_fd.mem_size, 2274 args->in.export_dmabuf_fd.offset, 2275 args->in.flags, 2276 &dmabuf_fd); 2277 memset(args, 0, sizeof(*args)); 2278 args->out.fd = dmabuf_fd; 2279 break; 2280 2281 case HL_MEM_OP_TS_ALLOC: 2282 rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle); 2283 break; 2284 default: 2285 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); 2286 rc = -EINVAL; 2287 break; 2288 } 2289 2290 out: 2291 return rc; 2292 } 2293 2294 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size, 2295 u32 npages, u64 start, u32 offset, 2296 struct hl_userptr *userptr) 2297 { 2298 int rc; 2299 2300 if (!access_ok((void __user *) (uintptr_t) addr, size)) { 2301 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr); 2302 return -EFAULT; 2303 } 2304 2305 userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL); 2306 if (!userptr->pages) 2307 return -ENOMEM; 2308 2309 rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM, 2310 userptr->pages); 2311 2312 if (rc != npages) { 2313 dev_err(hdev->dev, 2314 "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n", 2315 rc, addr, size, npages); 2316 if (rc < 0) 2317 goto destroy_pages; 2318 npages = rc; 2319 rc = -EFAULT; 2320 goto put_pages; 2321 } 2322 userptr->npages = npages; 2323 2324 rc = sg_alloc_table_from_pages(userptr->sgt, 2325 userptr->pages, 2326 npages, offset, size, GFP_KERNEL); 2327 if (rc < 0) { 2328 dev_err(hdev->dev, "failed to create SG table from pages\n"); 2329 goto put_pages; 2330 } 2331 2332 return 0; 2333 2334 put_pages: 2335 unpin_user_pages(userptr->pages, npages); 2336 destroy_pages: 2337 kvfree(userptr->pages); 2338 return rc; 2339 } 2340 2341 /** 2342 * hl_pin_host_memory() - pins a chunk of host memory. 2343 * @hdev: pointer to the habanalabs device structure. 2344 * @addr: the host virtual address of the memory area. 2345 * @size: the size of the memory area. 2346 * @userptr: pointer to hl_userptr structure. 2347 * 2348 * This function does the following: 2349 * - Pins the physical pages. 2350 * - Create an SG list from those pages. 2351 */ 2352 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 2353 struct hl_userptr *userptr) 2354 { 2355 u64 start, end; 2356 u32 npages, offset; 2357 int rc; 2358 2359 if (!size) { 2360 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size); 2361 return -EINVAL; 2362 } 2363 2364 /* 2365 * If the combination of the address and size requested for this memory 2366 * region causes an integer overflow, return error. 2367 */ 2368 if (((addr + size) < addr) || 2369 PAGE_ALIGN(addr + size) < (addr + size)) { 2370 dev_err(hdev->dev, 2371 "user pointer 0x%llx + %llu causes integer overflow\n", 2372 addr, size); 2373 return -EINVAL; 2374 } 2375 2376 userptr->pid = current->pid; 2377 userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL); 2378 if (!userptr->sgt) 2379 return -ENOMEM; 2380 2381 start = addr & PAGE_MASK; 2382 offset = addr & ~PAGE_MASK; 2383 end = PAGE_ALIGN(addr + size); 2384 npages = (end - start) >> PAGE_SHIFT; 2385 2386 userptr->size = size; 2387 userptr->addr = addr; 2388 userptr->dma_mapped = false; 2389 INIT_LIST_HEAD(&userptr->job_node); 2390 2391 rc = get_user_memory(hdev, addr, size, npages, start, offset, 2392 userptr); 2393 if (rc) { 2394 dev_err(hdev->dev, 2395 "failed to get user memory for address 0x%llx\n", 2396 addr); 2397 goto free_sgt; 2398 } 2399 2400 hl_debugfs_add_userptr(hdev, userptr); 2401 2402 return 0; 2403 2404 free_sgt: 2405 kfree(userptr->sgt); 2406 return rc; 2407 } 2408 2409 /* 2410 * hl_unpin_host_memory - unpins a chunk of host memory. 2411 * @hdev: pointer to the habanalabs device structure 2412 * @userptr: pointer to hl_userptr structure 2413 * 2414 * This function does the following: 2415 * - Unpins the physical pages related to the host memory 2416 * - Free the SG list 2417 */ 2418 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr) 2419 { 2420 hl_debugfs_remove_userptr(hdev, userptr); 2421 2422 if (userptr->dma_mapped) 2423 hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir); 2424 2425 unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true); 2426 kvfree(userptr->pages); 2427 2428 list_del(&userptr->job_node); 2429 2430 sg_free_table(userptr->sgt); 2431 kfree(userptr->sgt); 2432 } 2433 2434 /** 2435 * hl_userptr_delete_list() - clear userptr list. 2436 * @hdev: pointer to the habanalabs device structure. 2437 * @userptr_list: pointer to the list to clear. 2438 * 2439 * This function does the following: 2440 * - Iterates over the list and unpins the host memory and frees the userptr 2441 * structure. 2442 */ 2443 void hl_userptr_delete_list(struct hl_device *hdev, 2444 struct list_head *userptr_list) 2445 { 2446 struct hl_userptr *userptr, *tmp; 2447 2448 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) { 2449 hl_unpin_host_memory(hdev, userptr); 2450 kfree(userptr); 2451 } 2452 2453 INIT_LIST_HEAD(userptr_list); 2454 } 2455 2456 /** 2457 * hl_userptr_is_pinned() - returns whether the given userptr is pinned. 2458 * @hdev: pointer to the habanalabs device structure. 2459 * @addr: user address to check. 2460 * @size: user block size to check. 2461 * @userptr_list: pointer to the list to clear. 2462 * @userptr: pointer to userptr to check. 2463 * 2464 * This function does the following: 2465 * - Iterates over the list and checks if the given userptr is in it, means is 2466 * pinned. If so, returns true, otherwise returns false. 2467 */ 2468 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, 2469 u32 size, struct list_head *userptr_list, 2470 struct hl_userptr **userptr) 2471 { 2472 list_for_each_entry((*userptr), userptr_list, job_node) { 2473 if ((addr == (*userptr)->addr) && (size == (*userptr)->size)) 2474 return true; 2475 } 2476 2477 return false; 2478 } 2479 2480 /** 2481 * va_range_init() - initialize virtual addresses range. 2482 * @hdev: pointer to the habanalabs device structure. 2483 * @va_ranges: pointer to va_ranges array. 2484 * @range_type: virtual address range type. 2485 * @start: range start address, inclusive. 2486 * @end: range end address, inclusive. 2487 * @page_size: page size for this va_range. 2488 * 2489 * This function does the following: 2490 * - Initializes the virtual addresses list of the given range with the given 2491 * addresses. 2492 */ 2493 static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges, 2494 enum hl_va_range_type range_type, u64 start, 2495 u64 end, u32 page_size) 2496 { 2497 struct hl_va_range *va_range = va_ranges[range_type]; 2498 int rc; 2499 2500 INIT_LIST_HEAD(&va_range->list); 2501 2502 /* 2503 * PAGE_SIZE alignment 2504 * it is the caller's responsibility to align the addresses if the 2505 * page size is not a power of 2 2506 */ 2507 2508 if (is_power_of_2(page_size)) { 2509 start = round_up(start, page_size); 2510 2511 /* 2512 * The end of the range is inclusive, hence we need to align it 2513 * to the end of the last full page in the range. For example if 2514 * end = 0x3ff5 with page size 0x1000, we need to align it to 2515 * 0x2fff. The remaining 0xff5 bytes do not form a full page. 2516 */ 2517 end = round_down(end + 1, page_size) - 1; 2518 } 2519 2520 if (start >= end) { 2521 dev_err(hdev->dev, "too small vm range for va list\n"); 2522 return -EFAULT; 2523 } 2524 2525 rc = add_va_block(hdev, va_range, start, end); 2526 2527 if (rc) { 2528 dev_err(hdev->dev, "Failed to init host va list\n"); 2529 return rc; 2530 } 2531 2532 va_range->start_addr = start; 2533 va_range->end_addr = end; 2534 va_range->page_size = page_size; 2535 2536 return 0; 2537 } 2538 2539 /** 2540 * va_range_fini() - clear a virtual addresses range. 2541 * @hdev: pointer to the habanalabs structure. 2542 * @va_range: pointer to virtual addresses range. 2543 * 2544 * This function does the following: 2545 * - Frees the virtual addresses block list and its lock. 2546 */ 2547 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range) 2548 { 2549 mutex_lock(&va_range->lock); 2550 clear_va_list_locked(hdev, &va_range->list); 2551 mutex_unlock(&va_range->lock); 2552 2553 mutex_destroy(&va_range->lock); 2554 kfree(va_range); 2555 } 2556 2557 /** 2558 * vm_ctx_init_with_ranges() - initialize virtual memory for context. 2559 * @ctx: pointer to the habanalabs context structure. 2560 * @host_range_start: host virtual addresses range start. 2561 * @host_range_end: host virtual addresses range end. 2562 * @host_page_size: host page size. 2563 * @host_huge_range_start: host virtual addresses range start for memory 2564 * allocated with huge pages. 2565 * @host_huge_range_end: host virtual addresses range end for memory allocated 2566 * with huge pages. 2567 * @host_huge_page_size: host huge page size. 2568 * @dram_range_start: dram virtual addresses range start. 2569 * @dram_range_end: dram virtual addresses range end. 2570 * @dram_page_size: dram page size. 2571 * 2572 * This function initializes the following: 2573 * - MMU for context. 2574 * - Virtual address to area descriptor hashtable. 2575 * - Virtual block list of available virtual memory. 2576 */ 2577 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx, 2578 u64 host_range_start, 2579 u64 host_range_end, 2580 u32 host_page_size, 2581 u64 host_huge_range_start, 2582 u64 host_huge_range_end, 2583 u32 host_huge_page_size, 2584 u64 dram_range_start, 2585 u64 dram_range_end, 2586 u32 dram_page_size) 2587 { 2588 struct hl_device *hdev = ctx->hdev; 2589 int i, rc; 2590 2591 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) { 2592 ctx->va_range[i] = 2593 kzalloc(sizeof(struct hl_va_range), GFP_KERNEL); 2594 if (!ctx->va_range[i]) { 2595 rc = -ENOMEM; 2596 goto free_va_range; 2597 } 2598 } 2599 2600 rc = hl_mmu_ctx_init(ctx); 2601 if (rc) { 2602 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid); 2603 goto free_va_range; 2604 } 2605 2606 mutex_init(&ctx->mem_hash_lock); 2607 hash_init(ctx->mem_hash); 2608 2609 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2610 2611 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST, 2612 host_range_start, host_range_end, host_page_size); 2613 if (rc) { 2614 dev_err(hdev->dev, "failed to init host vm range\n"); 2615 goto mmu_ctx_fini; 2616 } 2617 2618 if (hdev->pmmu_huge_range) { 2619 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2620 2621 rc = va_range_init(hdev, 2622 ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE, 2623 host_huge_range_start, host_huge_range_end, 2624 host_huge_page_size); 2625 if (rc) { 2626 dev_err(hdev->dev, 2627 "failed to init host huge vm range\n"); 2628 goto clear_host_va_range; 2629 } 2630 } else { 2631 kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); 2632 ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] = 2633 ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 2634 } 2635 2636 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); 2637 2638 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM, 2639 dram_range_start, dram_range_end, dram_page_size); 2640 if (rc) { 2641 dev_err(hdev->dev, "failed to init dram vm range\n"); 2642 goto clear_host_huge_va_range; 2643 } 2644 2645 hl_debugfs_add_ctx_mem_hash(hdev, ctx); 2646 2647 return 0; 2648 2649 clear_host_huge_va_range: 2650 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); 2651 2652 if (hdev->pmmu_huge_range) { 2653 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2654 clear_va_list_locked(hdev, 2655 &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list); 2656 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2657 } 2658 clear_host_va_range: 2659 if (hdev->pmmu_huge_range) 2660 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2661 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2662 clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list); 2663 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2664 mmu_ctx_fini: 2665 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2666 mutex_destroy(&ctx->mem_hash_lock); 2667 hl_mmu_ctx_fini(ctx); 2668 free_va_range: 2669 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) 2670 kfree(ctx->va_range[i]); 2671 2672 return rc; 2673 } 2674 2675 int hl_vm_ctx_init(struct hl_ctx *ctx) 2676 { 2677 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; 2678 u64 host_range_start, host_range_end, host_huge_range_start, 2679 host_huge_range_end, dram_range_start, dram_range_end; 2680 u32 host_page_size, host_huge_page_size, dram_page_size; 2681 2682 atomic64_set(&ctx->dram_phys_mem, 0); 2683 2684 /* 2685 * In case of DRAM mapping, the returned address is the physical 2686 * address of the memory related to the given handle. 2687 */ 2688 if (ctx->hdev->mmu_disable) 2689 return 0; 2690 2691 dram_range_start = prop->dmmu.start_addr; 2692 dram_range_end = prop->dmmu.end_addr - 1; 2693 dram_page_size = prop->dram_page_size ? 2694 prop->dram_page_size : prop->dmmu.page_size; 2695 host_range_start = prop->pmmu.start_addr; 2696 host_range_end = prop->pmmu.end_addr - 1; 2697 host_page_size = prop->pmmu.page_size; 2698 host_huge_range_start = prop->pmmu_huge.start_addr; 2699 host_huge_range_end = prop->pmmu_huge.end_addr - 1; 2700 host_huge_page_size = prop->pmmu_huge.page_size; 2701 2702 return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end, 2703 host_page_size, host_huge_range_start, 2704 host_huge_range_end, host_huge_page_size, 2705 dram_range_start, dram_range_end, dram_page_size); 2706 } 2707 2708 /** 2709 * hl_vm_ctx_fini() - virtual memory teardown of context. 2710 * @ctx: pointer to the habanalabs context structure. 2711 * 2712 * This function perform teardown the following: 2713 * - Virtual block list of available virtual memory. 2714 * - Virtual address to area descriptor hashtable. 2715 * - MMU for context. 2716 * 2717 * In addition this function does the following: 2718 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The 2719 * hashtable should be empty as no valid mappings should exist at this 2720 * point. 2721 * - Frees any existing physical page list from the idr which relates to the 2722 * current context asid. 2723 * - This function checks the virtual block list for correctness. At this point 2724 * the list should contain one element which describes the whole virtual 2725 * memory range of the context. Otherwise, a warning is printed. 2726 */ 2727 void hl_vm_ctx_fini(struct hl_ctx *ctx) 2728 { 2729 struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node; 2730 struct hl_device *hdev = ctx->hdev; 2731 struct hl_vm_hash_node *hnode; 2732 struct hl_vm *vm = &hdev->vm; 2733 struct hlist_node *tmp_node; 2734 struct list_head free_list; 2735 struct hl_mem_in args; 2736 int i; 2737 2738 if (hdev->mmu_disable) 2739 return; 2740 2741 hl_debugfs_remove_ctx_mem_hash(hdev, ctx); 2742 2743 /* 2744 * Clearly something went wrong on hard reset so no point in printing 2745 * another side effect error 2746 */ 2747 if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash)) 2748 dev_dbg(hdev->dev, 2749 "user released device without removing its memory mappings\n"); 2750 2751 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) { 2752 dev_dbg(hdev->dev, 2753 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n", 2754 hnode->vaddr, ctx->asid); 2755 args.unmap.device_virt_addr = hnode->vaddr; 2756 unmap_device_va(ctx, &args, true); 2757 } 2758 2759 mutex_lock(&hdev->mmu_lock); 2760 2761 /* invalidate the cache once after the unmapping loop */ 2762 hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); 2763 hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK); 2764 2765 mutex_unlock(&hdev->mmu_lock); 2766 2767 INIT_LIST_HEAD(&free_list); 2768 2769 spin_lock(&vm->idr_lock); 2770 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i) 2771 if (phys_pg_list->asid == ctx->asid) { 2772 dev_dbg(hdev->dev, 2773 "page list 0x%px of asid %d is still alive\n", 2774 phys_pg_list, ctx->asid); 2775 2776 atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem); 2777 idr_remove(&vm->phys_pg_pack_handles, i); 2778 list_add(&phys_pg_list->node, &free_list); 2779 } 2780 spin_unlock(&vm->idr_lock); 2781 2782 list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node) 2783 free_phys_pg_pack(hdev, phys_pg_list); 2784 2785 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]); 2786 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]); 2787 2788 if (hdev->pmmu_huge_range) 2789 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); 2790 2791 mutex_destroy(&ctx->mem_hash_lock); 2792 hl_mmu_ctx_fini(ctx); 2793 2794 /* In this case we need to clear the global accounting of DRAM usage 2795 * because the user notifies us on allocations. If the user is no more, 2796 * all DRAM is available 2797 */ 2798 if (ctx->asid != HL_KERNEL_ASID_ID && 2799 !hdev->asic_prop.dram_supports_virtual_memory) 2800 atomic64_set(&hdev->dram_used_mem, 0); 2801 } 2802 2803 /** 2804 * hl_vm_init() - initialize virtual memory module. 2805 * @hdev: pointer to the habanalabs device structure. 2806 * 2807 * This function initializes the following: 2808 * - MMU module. 2809 * - DRAM physical pages pool of 2MB. 2810 * - Idr for device memory allocation handles. 2811 */ 2812 int hl_vm_init(struct hl_device *hdev) 2813 { 2814 struct asic_fixed_properties *prop = &hdev->asic_prop; 2815 struct hl_vm *vm = &hdev->vm; 2816 int rc; 2817 2818 if (is_power_of_2(prop->dram_page_size)) 2819 vm->dram_pg_pool = 2820 gen_pool_create(__ffs(prop->dram_page_size), -1); 2821 else 2822 vm->dram_pg_pool = 2823 gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1); 2824 2825 if (!vm->dram_pg_pool) { 2826 dev_err(hdev->dev, "Failed to create dram page pool\n"); 2827 return -ENOMEM; 2828 } 2829 2830 kref_init(&vm->dram_pg_pool_refcount); 2831 2832 rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address, 2833 prop->dram_end_address - prop->dram_user_base_address, 2834 -1); 2835 2836 if (rc) { 2837 dev_err(hdev->dev, 2838 "Failed to add memory to dram page pool %d\n", rc); 2839 goto pool_add_err; 2840 } 2841 2842 spin_lock_init(&vm->idr_lock); 2843 idr_init(&vm->phys_pg_pack_handles); 2844 2845 atomic64_set(&hdev->dram_used_mem, 0); 2846 2847 vm->init_done = true; 2848 2849 return 0; 2850 2851 pool_add_err: 2852 gen_pool_destroy(vm->dram_pg_pool); 2853 2854 return rc; 2855 } 2856 2857 /** 2858 * hl_vm_fini() - virtual memory module teardown. 2859 * @hdev: pointer to the habanalabs device structure. 2860 * 2861 * This function perform teardown to the following: 2862 * - Idr for device memory allocation handles. 2863 * - DRAM physical pages pool of 2MB. 2864 * - MMU module. 2865 */ 2866 void hl_vm_fini(struct hl_device *hdev) 2867 { 2868 struct hl_vm *vm = &hdev->vm; 2869 2870 if (!vm->init_done) 2871 return; 2872 2873 /* 2874 * At this point all the contexts should be freed and hence no DRAM 2875 * memory should be in use. Hence the DRAM pool should be freed here. 2876 */ 2877 if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1) 2878 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n", 2879 __func__); 2880 2881 vm->init_done = false; 2882 } 2883 2884 /** 2885 * hl_hw_block_mem_init() - HW block memory initialization. 2886 * @ctx: pointer to the habanalabs context structure. 2887 * 2888 * This function initializes the HW block virtual mapped addresses list and 2889 * it's lock. 2890 */ 2891 void hl_hw_block_mem_init(struct hl_ctx *ctx) 2892 { 2893 mutex_init(&ctx->hw_block_list_lock); 2894 INIT_LIST_HEAD(&ctx->hw_block_mem_list); 2895 } 2896 2897 /** 2898 * hl_hw_block_mem_fini() - HW block memory teardown. 2899 * @ctx: pointer to the habanalabs context structure. 2900 * 2901 * This function clears the HW block virtual mapped addresses list and destroys 2902 * it's lock. 2903 */ 2904 void hl_hw_block_mem_fini(struct hl_ctx *ctx) 2905 { 2906 struct hl_vm_hw_block_list_node *lnode, *tmp; 2907 2908 if (!list_empty(&ctx->hw_block_mem_list)) 2909 dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n"); 2910 2911 list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) { 2912 list_del(&lnode->node); 2913 kfree(lnode); 2914 } 2915 2916 mutex_destroy(&ctx->hw_block_list_lock); 2917 } 2918