1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2022 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include <uapi/drm/habanalabs_accel.h> 9 #include "habanalabs.h" 10 #include "../include/hw_ip/mmu/mmu_general.h" 11 12 #include <linux/uaccess.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pci-p2pdma.h> 16 17 MODULE_IMPORT_NS(DMA_BUF); 18 19 #define HL_MMU_DEBUG 0 20 21 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */ 22 #define DRAM_POOL_PAGE_SIZE SZ_8M 23 24 #define MEM_HANDLE_INVALID ULONG_MAX 25 26 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, 27 struct hl_mem_in *args, u64 *handle); 28 29 static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size) 30 { 31 struct asic_fixed_properties *prop = &hdev->asic_prop; 32 u64 psize; 33 34 /* 35 * for ASIC that supports setting the allocation page size by user we will address 36 * user's choice only if it is not 0 (as 0 means taking the default page size) 37 */ 38 if (prop->supports_user_set_page_size && args->alloc.page_size) { 39 psize = args->alloc.page_size; 40 41 if (!is_power_of_2(psize)) { 42 dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize); 43 return -EINVAL; 44 } 45 } else { 46 psize = prop->device_mem_alloc_default_page_size; 47 } 48 49 *page_size = psize; 50 51 return 0; 52 } 53 54 /* 55 * The va ranges in context object contain a list with the available chunks of 56 * device virtual memory. 57 * There is one range for host allocations and one for DRAM allocations. 58 * 59 * On initialization each range contains one chunk of all of its available 60 * virtual range which is a half of the total device virtual range. 61 * 62 * On each mapping of physical pages, a suitable virtual range chunk (with a 63 * minimum size) is selected from the list. If the chunk size equals the 64 * requested size, the chunk is returned. Otherwise, the chunk is split into 65 * two chunks - one to return as result and a remainder to stay in the list. 66 * 67 * On each Unmapping of a virtual address, the relevant virtual chunk is 68 * returned to the list. The chunk is added to the list and if its edges match 69 * the edges of the adjacent chunks (means a contiguous chunk can be created), 70 * the chunks are merged. 71 * 72 * On finish, the list is checked to have only one chunk of all the relevant 73 * virtual range (which is a half of the device total virtual range). 74 * If not (means not all mappings were unmapped), a warning is printed. 75 */ 76 77 /* 78 * alloc_device_memory() - allocate device memory. 79 * @ctx: pointer to the context structure. 80 * @args: host parameters containing the requested size. 81 * @ret_handle: result handle. 82 * 83 * This function does the following: 84 * - Allocate the requested size rounded up to 'dram_page_size' pages. 85 * - Return unique handle for later map/unmap/free. 86 */ 87 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args, 88 u32 *ret_handle) 89 { 90 struct hl_device *hdev = ctx->hdev; 91 struct hl_vm *vm = &hdev->vm; 92 struct hl_vm_phys_pg_pack *phys_pg_pack; 93 u64 paddr = 0, total_size, num_pgs, i; 94 u32 num_curr_pgs, page_size; 95 bool contiguous; 96 int handle, rc; 97 98 num_curr_pgs = 0; 99 100 rc = set_alloc_page_size(hdev, args, &page_size); 101 if (rc) 102 return rc; 103 104 num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size); 105 total_size = num_pgs * page_size; 106 107 if (!total_size) { 108 dev_err(hdev->dev, "Cannot allocate 0 bytes\n"); 109 return -EINVAL; 110 } 111 112 contiguous = args->flags & HL_MEM_CONTIGUOUS; 113 114 if (contiguous) { 115 if (is_power_of_2(page_size)) 116 paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool, 117 total_size, NULL, page_size); 118 else 119 paddr = gen_pool_alloc(vm->dram_pg_pool, total_size); 120 if (!paddr) { 121 dev_err(hdev->dev, 122 "Cannot allocate %llu contiguous pages with total size of %llu\n", 123 num_pgs, total_size); 124 return -ENOMEM; 125 } 126 } 127 128 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); 129 if (!phys_pg_pack) { 130 rc = -ENOMEM; 131 goto pages_pack_err; 132 } 133 134 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK; 135 phys_pg_pack->asid = ctx->asid; 136 phys_pg_pack->npages = num_pgs; 137 phys_pg_pack->page_size = page_size; 138 phys_pg_pack->total_size = total_size; 139 phys_pg_pack->flags = args->flags; 140 phys_pg_pack->contiguous = contiguous; 141 142 phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL); 143 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { 144 rc = -ENOMEM; 145 goto pages_arr_err; 146 } 147 148 if (phys_pg_pack->contiguous) { 149 for (i = 0 ; i < num_pgs ; i++) 150 phys_pg_pack->pages[i] = paddr + i * page_size; 151 } else { 152 for (i = 0 ; i < num_pgs ; i++) { 153 if (is_power_of_2(page_size)) 154 phys_pg_pack->pages[i] = 155 (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool, 156 page_size, NULL, 157 page_size); 158 else 159 phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool, 160 page_size); 161 162 if (!phys_pg_pack->pages[i]) { 163 dev_err(hdev->dev, 164 "Cannot allocate device memory (out of memory)\n"); 165 rc = -ENOMEM; 166 goto page_err; 167 } 168 169 num_curr_pgs++; 170 } 171 } 172 173 spin_lock(&vm->idr_lock); 174 handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0, 175 GFP_ATOMIC); 176 spin_unlock(&vm->idr_lock); 177 178 if (handle < 0) { 179 dev_err(hdev->dev, "Failed to get handle for page\n"); 180 rc = -EFAULT; 181 goto idr_err; 182 } 183 184 for (i = 0 ; i < num_pgs ; i++) 185 kref_get(&vm->dram_pg_pool_refcount); 186 187 phys_pg_pack->handle = handle; 188 189 atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem); 190 atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem); 191 192 *ret_handle = handle; 193 194 return 0; 195 196 idr_err: 197 page_err: 198 if (!phys_pg_pack->contiguous) 199 for (i = 0 ; i < num_curr_pgs ; i++) 200 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i], 201 page_size); 202 203 kvfree(phys_pg_pack->pages); 204 pages_arr_err: 205 kfree(phys_pg_pack); 206 pages_pack_err: 207 if (contiguous) 208 gen_pool_free(vm->dram_pg_pool, paddr, total_size); 209 210 return rc; 211 } 212 213 /** 214 * dma_map_host_va() - DMA mapping of the given host virtual address. 215 * @hdev: habanalabs device structure. 216 * @addr: the host virtual address of the memory area. 217 * @size: the size of the memory area. 218 * @p_userptr: pointer to result userptr structure. 219 * 220 * This function does the following: 221 * - Allocate userptr structure. 222 * - Pin the given host memory using the userptr structure. 223 * - Perform DMA mapping to have the DMA addresses of the pages. 224 */ 225 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size, 226 struct hl_userptr **p_userptr) 227 { 228 struct hl_userptr *userptr; 229 int rc; 230 231 userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); 232 if (!userptr) { 233 rc = -ENOMEM; 234 goto userptr_err; 235 } 236 237 rc = hl_pin_host_memory(hdev, addr, size, userptr); 238 if (rc) 239 goto pin_err; 240 241 userptr->dma_mapped = true; 242 userptr->dir = DMA_BIDIRECTIONAL; 243 userptr->vm_type = VM_TYPE_USERPTR; 244 245 *p_userptr = userptr; 246 247 rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL); 248 if (rc) { 249 dev_err(hdev->dev, "failed to map sgt with DMA region\n"); 250 goto dma_map_err; 251 } 252 253 return 0; 254 255 dma_map_err: 256 hl_unpin_host_memory(hdev, userptr); 257 pin_err: 258 kfree(userptr); 259 userptr_err: 260 261 return rc; 262 } 263 264 /** 265 * dma_unmap_host_va() - DMA unmapping of the given host virtual address. 266 * @hdev: habanalabs device structure. 267 * @userptr: userptr to free. 268 * 269 * This function does the following: 270 * - Unpins the physical pages. 271 * - Frees the userptr structure. 272 */ 273 static void dma_unmap_host_va(struct hl_device *hdev, 274 struct hl_userptr *userptr) 275 { 276 hl_unpin_host_memory(hdev, userptr); 277 kfree(userptr); 278 } 279 280 /** 281 * dram_pg_pool_do_release() - free DRAM pages pool 282 * @ref: pointer to reference object. 283 * 284 * This function does the following: 285 * - Frees the idr structure of physical pages handles. 286 * - Frees the generic pool of DRAM physical pages. 287 */ 288 static void dram_pg_pool_do_release(struct kref *ref) 289 { 290 struct hl_vm *vm = container_of(ref, struct hl_vm, 291 dram_pg_pool_refcount); 292 293 /* 294 * free the idr here as only here we know for sure that there are no 295 * allocated physical pages and hence there are no handles in use 296 */ 297 idr_destroy(&vm->phys_pg_pack_handles); 298 gen_pool_destroy(vm->dram_pg_pool); 299 } 300 301 /** 302 * free_phys_pg_pack() - free physical page pack. 303 * @hdev: habanalabs device structure. 304 * @phys_pg_pack: physical page pack to free. 305 * 306 * This function does the following: 307 * - For DRAM memory only 308 * - iterate over the pack, free each physical block structure by 309 * returning it to the general pool. 310 * - Free the hl_vm_phys_pg_pack structure. 311 */ 312 static void free_phys_pg_pack(struct hl_device *hdev, 313 struct hl_vm_phys_pg_pack *phys_pg_pack) 314 { 315 struct hl_vm *vm = &hdev->vm; 316 u64 i; 317 318 if (phys_pg_pack->created_from_userptr) 319 goto end; 320 321 if (phys_pg_pack->contiguous) { 322 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0], 323 phys_pg_pack->total_size); 324 325 for (i = 0; i < phys_pg_pack->npages ; i++) 326 kref_put(&vm->dram_pg_pool_refcount, 327 dram_pg_pool_do_release); 328 } else { 329 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 330 gen_pool_free(vm->dram_pg_pool, 331 phys_pg_pack->pages[i], 332 phys_pg_pack->page_size); 333 kref_put(&vm->dram_pg_pool_refcount, 334 dram_pg_pool_do_release); 335 } 336 } 337 338 end: 339 kvfree(phys_pg_pack->pages); 340 kfree(phys_pg_pack); 341 342 return; 343 } 344 345 /** 346 * free_device_memory() - free device memory. 347 * @ctx: pointer to the context structure. 348 * @args: host parameters containing the requested size. 349 * 350 * This function does the following: 351 * - Free the device memory related to the given handle. 352 */ 353 static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args) 354 { 355 struct hl_device *hdev = ctx->hdev; 356 struct hl_vm *vm = &hdev->vm; 357 struct hl_vm_phys_pg_pack *phys_pg_pack; 358 u32 handle = args->free.handle; 359 360 spin_lock(&vm->idr_lock); 361 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); 362 if (!phys_pg_pack) { 363 spin_unlock(&vm->idr_lock); 364 dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle); 365 return -EINVAL; 366 } 367 368 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) { 369 spin_unlock(&vm->idr_lock); 370 dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle); 371 return -EINVAL; 372 } 373 374 /* must remove from idr before the freeing of the physical pages as the refcount of the pool 375 * is also the trigger of the idr destroy 376 */ 377 idr_remove(&vm->phys_pg_pack_handles, handle); 378 spin_unlock(&vm->idr_lock); 379 380 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem); 381 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem); 382 383 free_phys_pg_pack(hdev, phys_pg_pack); 384 385 return 0; 386 } 387 388 /** 389 * clear_va_list_locked() - free virtual addresses list. 390 * @hdev: habanalabs device structure. 391 * @va_list: list of virtual addresses to free. 392 * 393 * This function does the following: 394 * - Iterate over the list and free each virtual addresses block. 395 * 396 * This function should be called only when va_list lock is taken. 397 */ 398 static void clear_va_list_locked(struct hl_device *hdev, 399 struct list_head *va_list) 400 { 401 struct hl_vm_va_block *va_block, *tmp; 402 403 list_for_each_entry_safe(va_block, tmp, va_list, node) { 404 list_del(&va_block->node); 405 kfree(va_block); 406 } 407 } 408 409 /** 410 * print_va_list_locked() - print virtual addresses list. 411 * @hdev: habanalabs device structure. 412 * @va_list: list of virtual addresses to print. 413 * 414 * This function does the following: 415 * - Iterate over the list and print each virtual addresses block. 416 * 417 * This function should be called only when va_list lock is taken. 418 */ 419 static void print_va_list_locked(struct hl_device *hdev, 420 struct list_head *va_list) 421 { 422 #if HL_MMU_DEBUG 423 struct hl_vm_va_block *va_block; 424 425 dev_dbg(hdev->dev, "print va list:\n"); 426 427 list_for_each_entry(va_block, va_list, node) 428 dev_dbg(hdev->dev, 429 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n", 430 va_block->start, va_block->end, va_block->size); 431 #endif 432 } 433 434 /** 435 * merge_va_blocks_locked() - merge a virtual block if possible. 436 * @hdev: pointer to the habanalabs device structure. 437 * @va_list: pointer to the virtual addresses block list. 438 * @va_block: virtual block to merge with adjacent blocks. 439 * 440 * This function does the following: 441 * - Merge the given blocks with the adjacent blocks if their virtual ranges 442 * create a contiguous virtual range. 443 * 444 * This Function should be called only when va_list lock is taken. 445 */ 446 static void merge_va_blocks_locked(struct hl_device *hdev, 447 struct list_head *va_list, struct hl_vm_va_block *va_block) 448 { 449 struct hl_vm_va_block *prev, *next; 450 451 prev = list_prev_entry(va_block, node); 452 if (&prev->node != va_list && prev->end + 1 == va_block->start) { 453 prev->end = va_block->end; 454 prev->size = prev->end - prev->start + 1; 455 list_del(&va_block->node); 456 kfree(va_block); 457 va_block = prev; 458 } 459 460 next = list_next_entry(va_block, node); 461 if (&next->node != va_list && va_block->end + 1 == next->start) { 462 next->start = va_block->start; 463 next->size = next->end - next->start + 1; 464 list_del(&va_block->node); 465 kfree(va_block); 466 } 467 } 468 469 /** 470 * add_va_block_locked() - add a virtual block to the virtual addresses list. 471 * @hdev: pointer to the habanalabs device structure. 472 * @va_list: pointer to the virtual addresses block list. 473 * @start: start virtual address. 474 * @end: end virtual address. 475 * 476 * This function does the following: 477 * - Add the given block to the virtual blocks list and merge with other blocks 478 * if a contiguous virtual block can be created. 479 * 480 * This Function should be called only when va_list lock is taken. 481 */ 482 static int add_va_block_locked(struct hl_device *hdev, 483 struct list_head *va_list, u64 start, u64 end) 484 { 485 struct hl_vm_va_block *va_block, *res = NULL; 486 u64 size = end - start + 1; 487 488 print_va_list_locked(hdev, va_list); 489 490 list_for_each_entry(va_block, va_list, node) { 491 /* TODO: remove upon matureness */ 492 if (hl_mem_area_crosses_range(start, size, va_block->start, 493 va_block->end)) { 494 dev_err(hdev->dev, 495 "block crossing ranges at start 0x%llx, end 0x%llx\n", 496 va_block->start, va_block->end); 497 return -EINVAL; 498 } 499 500 if (va_block->end < start) 501 res = va_block; 502 } 503 504 va_block = kmalloc(sizeof(*va_block), GFP_KERNEL); 505 if (!va_block) 506 return -ENOMEM; 507 508 va_block->start = start; 509 va_block->end = end; 510 va_block->size = size; 511 512 if (!res) 513 list_add(&va_block->node, va_list); 514 else 515 list_add(&va_block->node, &res->node); 516 517 merge_va_blocks_locked(hdev, va_list, va_block); 518 519 print_va_list_locked(hdev, va_list); 520 521 return 0; 522 } 523 524 /** 525 * add_va_block() - wrapper for add_va_block_locked. 526 * @hdev: pointer to the habanalabs device structure. 527 * @va_range: pointer to the virtual addresses range object. 528 * @start: start virtual address. 529 * @end: end virtual address. 530 * 531 * This function does the following: 532 * - Takes the list lock and calls add_va_block_locked. 533 */ 534 static inline int add_va_block(struct hl_device *hdev, 535 struct hl_va_range *va_range, u64 start, u64 end) 536 { 537 int rc; 538 539 mutex_lock(&va_range->lock); 540 rc = add_va_block_locked(hdev, &va_range->list, start, end); 541 mutex_unlock(&va_range->lock); 542 543 return rc; 544 } 545 546 /** 547 * is_hint_crossing_range() - check if hint address crossing specified reserved. 548 * @range_type: virtual space range type. 549 * @start_addr: start virtual address. 550 * @size: block size. 551 * @prop: asic properties structure to retrieve reserved ranges from. 552 */ 553 static inline bool is_hint_crossing_range(enum hl_va_range_type range_type, 554 u64 start_addr, u32 size, struct asic_fixed_properties *prop) { 555 bool range_cross; 556 557 if (range_type == HL_VA_RANGE_TYPE_DRAM) 558 range_cross = 559 hl_mem_area_crosses_range(start_addr, size, 560 prop->hints_dram_reserved_va_range.start_addr, 561 prop->hints_dram_reserved_va_range.end_addr); 562 else if (range_type == HL_VA_RANGE_TYPE_HOST) 563 range_cross = 564 hl_mem_area_crosses_range(start_addr, size, 565 prop->hints_host_reserved_va_range.start_addr, 566 prop->hints_host_reserved_va_range.end_addr); 567 else 568 range_cross = 569 hl_mem_area_crosses_range(start_addr, size, 570 prop->hints_host_hpage_reserved_va_range.start_addr, 571 prop->hints_host_hpage_reserved_va_range.end_addr); 572 573 return range_cross; 574 } 575 576 /** 577 * get_va_block() - get a virtual block for the given size and alignment. 578 * 579 * @hdev: pointer to the habanalabs device structure. 580 * @va_range: pointer to the virtual addresses range. 581 * @size: requested block size. 582 * @hint_addr: hint for requested address by the user. 583 * @va_block_align: required alignment of the virtual block start address. 584 * @range_type: va range type (host, dram) 585 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT 586 * 587 * This function does the following: 588 * - Iterate on the virtual block list to find a suitable virtual block for the 589 * given size, hint address and alignment. 590 * - Reserve the requested block and update the list. 591 * - Return the start address of the virtual block. 592 */ 593 static u64 get_va_block(struct hl_device *hdev, 594 struct hl_va_range *va_range, 595 u64 size, u64 hint_addr, u32 va_block_align, 596 enum hl_va_range_type range_type, 597 u32 flags) 598 { 599 struct hl_vm_va_block *va_block, *new_va_block = NULL; 600 struct asic_fixed_properties *prop = &hdev->asic_prop; 601 u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end, 602 align_mask, reserved_valid_start = 0, reserved_valid_size = 0, 603 dram_hint_mask = prop->dram_hints_align_mask; 604 bool add_prev = false; 605 bool is_align_pow_2 = is_power_of_2(va_range->page_size); 606 bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr); 607 bool force_hint = flags & HL_MEM_FORCE_HINT; 608 609 if (is_align_pow_2) 610 align_mask = ~((u64)va_block_align - 1); 611 else 612 /* 613 * with non-power-of-2 range we work only with page granularity 614 * and the start address is page aligned, 615 * so no need for alignment checking. 616 */ 617 size = DIV_ROUND_UP_ULL(size, va_range->page_size) * 618 va_range->page_size; 619 620 tmp_hint_addr = hint_addr & ~dram_hint_mask; 621 622 /* Check if we need to ignore hint address */ 623 if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) || 624 (!is_align_pow_2 && is_hint_dram_addr && 625 do_div(tmp_hint_addr, va_range->page_size))) { 626 627 if (force_hint) { 628 /* Hint must be respected, so here we just fail */ 629 dev_err(hdev->dev, 630 "Hint address 0x%llx is not page aligned - cannot be respected\n", 631 hint_addr); 632 return 0; 633 } 634 635 dev_dbg(hdev->dev, 636 "Hint address 0x%llx will be ignored because it is not aligned\n", 637 hint_addr); 638 hint_addr = 0; 639 } 640 641 mutex_lock(&va_range->lock); 642 643 print_va_list_locked(hdev, &va_range->list); 644 645 list_for_each_entry(va_block, &va_range->list, node) { 646 /* Calc the first possible aligned addr */ 647 valid_start = va_block->start; 648 649 if (is_align_pow_2 && (valid_start & (va_block_align - 1))) { 650 valid_start &= align_mask; 651 valid_start += va_block_align; 652 if (valid_start > va_block->end) 653 continue; 654 } 655 656 valid_size = va_block->end - valid_start + 1; 657 if (valid_size < size) 658 continue; 659 660 /* 661 * In case hint address is 0, and hints_range_reservation 662 * property enabled, then avoid allocating va blocks from the 663 * range reserved for hint addresses 664 */ 665 if (prop->hints_range_reservation && !hint_addr) 666 if (is_hint_crossing_range(range_type, valid_start, 667 size, prop)) 668 continue; 669 670 /* Pick the minimal length block which has the required size */ 671 if (!new_va_block || (valid_size < reserved_valid_size)) { 672 new_va_block = va_block; 673 reserved_valid_start = valid_start; 674 reserved_valid_size = valid_size; 675 } 676 677 if (hint_addr && hint_addr >= valid_start && 678 (hint_addr + size) <= va_block->end) { 679 new_va_block = va_block; 680 reserved_valid_start = hint_addr; 681 reserved_valid_size = valid_size; 682 break; 683 } 684 } 685 686 if (!new_va_block) { 687 dev_err(hdev->dev, "no available va block for size %llu\n", 688 size); 689 goto out; 690 } 691 692 if (force_hint && reserved_valid_start != hint_addr) { 693 /* Hint address must be respected. If we are here - this means 694 * we could not respect it. 695 */ 696 dev_err(hdev->dev, 697 "Hint address 0x%llx could not be respected\n", 698 hint_addr); 699 reserved_valid_start = 0; 700 goto out; 701 } 702 703 /* 704 * Check if there is some leftover range due to reserving the new 705 * va block, then return it to the main virtual addresses list. 706 */ 707 if (reserved_valid_start > new_va_block->start) { 708 prev_start = new_va_block->start; 709 prev_end = reserved_valid_start - 1; 710 711 new_va_block->start = reserved_valid_start; 712 new_va_block->size = reserved_valid_size; 713 714 add_prev = true; 715 } 716 717 if (new_va_block->size > size) { 718 new_va_block->start += size; 719 new_va_block->size = new_va_block->end - new_va_block->start + 1; 720 } else { 721 list_del(&new_va_block->node); 722 kfree(new_va_block); 723 } 724 725 if (add_prev) 726 add_va_block_locked(hdev, &va_range->list, prev_start, 727 prev_end); 728 729 print_va_list_locked(hdev, &va_range->list); 730 out: 731 mutex_unlock(&va_range->lock); 732 733 return reserved_valid_start; 734 } 735 736 /* 737 * hl_reserve_va_block() - reserve a virtual block of a given size. 738 * @hdev: pointer to the habanalabs device structure. 739 * @ctx: current context 740 * @type: virtual addresses range type. 741 * @size: requested block size. 742 * @alignment: required alignment in bytes of the virtual block start address, 743 * 0 means no alignment. 744 * 745 * This function does the following: 746 * - Iterate on the virtual block list to find a suitable virtual block for the 747 * given size and alignment. 748 * - Reserve the requested block and update the list. 749 * - Return the start address of the virtual block. 750 */ 751 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 752 enum hl_va_range_type type, u64 size, u32 alignment) 753 { 754 return get_va_block(hdev, ctx->va_range[type], size, 0, 755 max(alignment, ctx->va_range[type]->page_size), 756 type, 0); 757 } 758 759 /** 760 * hl_get_va_range_type() - get va_range type for the given address and size. 761 * @ctx: context to fetch va_range from. 762 * @address: the start address of the area we want to validate. 763 * @size: the size in bytes of the area we want to validate. 764 * @type: returned va_range type. 765 * 766 * Return: true if the area is inside a valid range, false otherwise. 767 */ 768 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size, 769 enum hl_va_range_type *type) 770 { 771 int i; 772 773 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) { 774 if (hl_mem_area_inside_range(address, size, 775 ctx->va_range[i]->start_addr, 776 ctx->va_range[i]->end_addr)) { 777 *type = i; 778 return 0; 779 } 780 } 781 782 return -EINVAL; 783 } 784 785 /** 786 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block. 787 * @hdev: pointer to the habanalabs device structure 788 * @ctx: pointer to the context structure. 789 * @start_addr: start virtual address. 790 * @size: number of bytes to unreserve. 791 * 792 * This function does the following: 793 * - Takes the list lock and calls add_va_block_locked. 794 */ 795 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 796 u64 start_addr, u64 size) 797 { 798 enum hl_va_range_type type; 799 int rc; 800 801 rc = hl_get_va_range_type(ctx, start_addr, size, &type); 802 if (rc) { 803 dev_err(hdev->dev, 804 "cannot find va_range for va %#llx size %llu", 805 start_addr, size); 806 return rc; 807 } 808 809 rc = add_va_block(hdev, ctx->va_range[type], start_addr, 810 start_addr + size - 1); 811 if (rc) 812 dev_warn(hdev->dev, 813 "add va block failed for vaddr: 0x%llx\n", start_addr); 814 815 return rc; 816 } 817 818 /** 819 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host 820 * memory 821 * @ctx: pointer to the context structure. 822 * @userptr: userptr to initialize from. 823 * @pphys_pg_pack: result pointer. 824 * @force_regular_page: tell the function to ignore huge page optimization, 825 * even if possible. Needed for cases where the device VA 826 * is allocated before we know the composition of the 827 * physical pages 828 * 829 * This function does the following: 830 * - Pin the physical pages related to the given virtual block. 831 * - Create a physical page pack from the physical pages related to the given 832 * virtual block. 833 */ 834 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx, 835 struct hl_userptr *userptr, 836 struct hl_vm_phys_pg_pack **pphys_pg_pack, 837 bool force_regular_page) 838 { 839 u32 npages, page_size = PAGE_SIZE, 840 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size; 841 u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size); 842 struct hl_vm_phys_pg_pack *phys_pg_pack; 843 bool first = true, is_huge_page_opt; 844 u64 page_mask, total_npages; 845 struct scatterlist *sg; 846 dma_addr_t dma_addr; 847 int rc, i, j; 848 849 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); 850 if (!phys_pg_pack) 851 return -ENOMEM; 852 853 phys_pg_pack->vm_type = userptr->vm_type; 854 phys_pg_pack->created_from_userptr = true; 855 phys_pg_pack->asid = ctx->asid; 856 atomic_set(&phys_pg_pack->mapping_cnt, 1); 857 858 is_huge_page_opt = (force_regular_page ? false : true); 859 860 /* Only if all dma_addrs are aligned to 2MB and their 861 * sizes is at least 2MB, we can use huge page mapping. 862 * We limit the 2MB optimization to this condition, 863 * since later on we acquire the related VA range as one 864 * consecutive block. 865 */ 866 total_npages = 0; 867 for_each_sgtable_dma_sg(userptr->sgt, sg, i) { 868 npages = hl_get_sg_info(sg, &dma_addr); 869 870 total_npages += npages; 871 872 if ((npages % pgs_in_huge_page) || 873 (dma_addr & (huge_page_size - 1))) 874 is_huge_page_opt = false; 875 } 876 877 if (is_huge_page_opt) { 878 page_size = huge_page_size; 879 do_div(total_npages, pgs_in_huge_page); 880 } 881 882 page_mask = ~(((u64) page_size) - 1); 883 884 phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64), 885 GFP_KERNEL); 886 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { 887 rc = -ENOMEM; 888 goto page_pack_arr_mem_err; 889 } 890 891 phys_pg_pack->npages = total_npages; 892 phys_pg_pack->page_size = page_size; 893 phys_pg_pack->total_size = total_npages * page_size; 894 895 j = 0; 896 for_each_sgtable_dma_sg(userptr->sgt, sg, i) { 897 npages = hl_get_sg_info(sg, &dma_addr); 898 899 /* align down to physical page size and save the offset */ 900 if (first) { 901 first = false; 902 phys_pg_pack->offset = dma_addr & (page_size - 1); 903 dma_addr &= page_mask; 904 } 905 906 while (npages) { 907 phys_pg_pack->pages[j++] = dma_addr; 908 dma_addr += page_size; 909 910 if (is_huge_page_opt) 911 npages -= pgs_in_huge_page; 912 else 913 npages--; 914 } 915 } 916 917 *pphys_pg_pack = phys_pg_pack; 918 919 return 0; 920 921 page_pack_arr_mem_err: 922 kfree(phys_pg_pack); 923 924 return rc; 925 } 926 927 /** 928 * map_phys_pg_pack() - maps the physical page pack.. 929 * @ctx: pointer to the context structure. 930 * @vaddr: start address of the virtual area to map from. 931 * @phys_pg_pack: the pack of physical pages to map to. 932 * 933 * This function does the following: 934 * - Maps each chunk of virtual memory to matching physical chunk. 935 * - Stores number of successful mappings in the given argument. 936 * - Returns 0 on success, error code otherwise. 937 */ 938 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, 939 struct hl_vm_phys_pg_pack *phys_pg_pack) 940 { 941 struct hl_device *hdev = ctx->hdev; 942 u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i; 943 u32 page_size = phys_pg_pack->page_size; 944 int rc = 0; 945 bool is_host_addr; 946 947 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 948 paddr = phys_pg_pack->pages[i]; 949 950 rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size, 951 (i + 1) == phys_pg_pack->npages); 952 if (rc) { 953 dev_err(hdev->dev, 954 "map failed for handle %u, npages: %llu, mapped: %llu", 955 phys_pg_pack->handle, phys_pg_pack->npages, 956 mapped_pg_cnt); 957 goto err; 958 } 959 960 mapped_pg_cnt++; 961 next_vaddr += page_size; 962 } 963 964 return 0; 965 966 err: 967 is_host_addr = !hl_is_dram_va(hdev, vaddr); 968 969 next_vaddr = vaddr; 970 for (i = 0 ; i < mapped_pg_cnt ; i++) { 971 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, 972 (i + 1) == mapped_pg_cnt)) 973 dev_warn_ratelimited(hdev->dev, 974 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n", 975 phys_pg_pack->handle, next_vaddr, 976 phys_pg_pack->pages[i], page_size); 977 978 next_vaddr += page_size; 979 980 /* 981 * unmapping on Palladium can be really long, so avoid a CPU 982 * soft lockup bug by sleeping a little between unmapping pages 983 * 984 * In addition, on host num of pages could be huge, 985 * because page size could be 4KB, so when unmapping host 986 * pages sleep every 32K pages to avoid soft lockup 987 */ 988 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) 989 usleep_range(50, 200); 990 } 991 992 return rc; 993 } 994 995 /** 996 * unmap_phys_pg_pack() - unmaps the physical page pack. 997 * @ctx: pointer to the context structure. 998 * @vaddr: start address of the virtual area to unmap. 999 * @phys_pg_pack: the pack of physical pages to unmap. 1000 */ 1001 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, 1002 struct hl_vm_phys_pg_pack *phys_pg_pack) 1003 { 1004 struct hl_device *hdev = ctx->hdev; 1005 u64 next_vaddr, i; 1006 bool is_host_addr; 1007 u32 page_size; 1008 1009 is_host_addr = !hl_is_dram_va(hdev, vaddr); 1010 page_size = phys_pg_pack->page_size; 1011 next_vaddr = vaddr; 1012 1013 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) { 1014 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, 1015 (i + 1) == phys_pg_pack->npages)) 1016 dev_warn_ratelimited(hdev->dev, 1017 "unmap failed for vaddr: 0x%llx\n", next_vaddr); 1018 1019 /* 1020 * unmapping on Palladium can be really long, so avoid a CPU 1021 * soft lockup bug by sleeping a little between unmapping pages 1022 * 1023 * In addition, on host num of pages could be huge, 1024 * because page size could be 4KB, so when unmapping host 1025 * pages sleep every 32K pages to avoid soft lockup 1026 */ 1027 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) 1028 usleep_range(50, 200); 1029 } 1030 } 1031 1032 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args, 1033 u64 *paddr) 1034 { 1035 struct hl_device *hdev = ctx->hdev; 1036 struct hl_vm *vm = &hdev->vm; 1037 struct hl_vm_phys_pg_pack *phys_pg_pack; 1038 u32 handle; 1039 1040 handle = lower_32_bits(args->map_device.handle); 1041 spin_lock(&vm->idr_lock); 1042 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); 1043 if (!phys_pg_pack) { 1044 spin_unlock(&vm->idr_lock); 1045 dev_err(hdev->dev, "no match for handle %u\n", handle); 1046 return -EINVAL; 1047 } 1048 1049 *paddr = phys_pg_pack->pages[0]; 1050 1051 spin_unlock(&vm->idr_lock); 1052 1053 return 0; 1054 } 1055 1056 /** 1057 * map_device_va() - map the given memory. 1058 * @ctx: pointer to the context structure. 1059 * @args: host parameters with handle/host virtual address. 1060 * @device_addr: pointer to result device virtual address. 1061 * 1062 * This function does the following: 1063 * - If given a physical device memory handle, map to a device virtual block 1064 * and return the start address of this block. 1065 * - If given a host virtual address and size, find the related physical pages, 1066 * map a device virtual block to this pages and return the start address of 1067 * this block. 1068 */ 1069 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr) 1070 { 1071 struct hl_vm_phys_pg_pack *phys_pg_pack; 1072 enum hl_va_range_type va_range_type = 0; 1073 struct hl_device *hdev = ctx->hdev; 1074 struct hl_userptr *userptr = NULL; 1075 u32 handle = 0, va_block_align; 1076 struct hl_vm_hash_node *hnode; 1077 struct hl_vm *vm = &hdev->vm; 1078 struct hl_va_range *va_range; 1079 bool is_userptr, do_prefetch; 1080 u64 ret_vaddr, hint_addr; 1081 enum vm_type *vm_type; 1082 int rc; 1083 1084 /* set map flags */ 1085 is_userptr = args->flags & HL_MEM_USERPTR; 1086 do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH); 1087 1088 /* Assume failure */ 1089 *device_addr = 0; 1090 1091 if (is_userptr) { 1092 u64 addr = args->map_host.host_virt_addr, 1093 size = args->map_host.mem_size; 1094 u32 page_size = hdev->asic_prop.pmmu.page_size, 1095 huge_page_size = hdev->asic_prop.pmmu_huge.page_size; 1096 1097 rc = dma_map_host_va(hdev, addr, size, &userptr); 1098 if (rc) 1099 return rc; 1100 1101 rc = init_phys_pg_pack_from_userptr(ctx, userptr, 1102 &phys_pg_pack, false); 1103 if (rc) { 1104 dev_err(hdev->dev, 1105 "unable to init page pack for vaddr 0x%llx\n", 1106 addr); 1107 goto init_page_pack_err; 1108 } 1109 1110 vm_type = (enum vm_type *) userptr; 1111 hint_addr = args->map_host.hint_addr; 1112 handle = phys_pg_pack->handle; 1113 1114 /* get required alignment */ 1115 if (phys_pg_pack->page_size == page_size) { 1116 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 1117 va_range_type = HL_VA_RANGE_TYPE_HOST; 1118 /* 1119 * huge page alignment may be needed in case of regular 1120 * page mapping, depending on the host VA alignment 1121 */ 1122 if (addr & (huge_page_size - 1)) 1123 va_block_align = page_size; 1124 else 1125 va_block_align = huge_page_size; 1126 } else { 1127 /* 1128 * huge page alignment is needed in case of huge page 1129 * mapping 1130 */ 1131 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; 1132 va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE; 1133 va_block_align = huge_page_size; 1134 } 1135 } else { 1136 handle = lower_32_bits(args->map_device.handle); 1137 1138 spin_lock(&vm->idr_lock); 1139 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); 1140 if (!phys_pg_pack) { 1141 spin_unlock(&vm->idr_lock); 1142 dev_err(hdev->dev, 1143 "no match for handle %u\n", handle); 1144 return -EINVAL; 1145 } 1146 1147 /* increment now to avoid freeing device memory while mapping */ 1148 atomic_inc(&phys_pg_pack->mapping_cnt); 1149 1150 spin_unlock(&vm->idr_lock); 1151 1152 vm_type = (enum vm_type *) phys_pg_pack; 1153 1154 hint_addr = args->map_device.hint_addr; 1155 1156 /* DRAM VA alignment is the same as the MMU page size */ 1157 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; 1158 va_range_type = HL_VA_RANGE_TYPE_DRAM; 1159 va_block_align = hdev->asic_prop.dmmu.page_size; 1160 } 1161 1162 /* 1163 * relevant for mapping device physical memory only, as host memory is 1164 * implicitly shared 1165 */ 1166 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) && 1167 phys_pg_pack->asid != ctx->asid) { 1168 dev_err(hdev->dev, 1169 "Failed to map memory, handle %u is not shared\n", 1170 handle); 1171 rc = -EPERM; 1172 goto shared_err; 1173 } 1174 1175 hnode = kzalloc(sizeof(*hnode), GFP_KERNEL); 1176 if (!hnode) { 1177 rc = -ENOMEM; 1178 goto hnode_err; 1179 } 1180 1181 if (hint_addr && phys_pg_pack->offset) { 1182 if (args->flags & HL_MEM_FORCE_HINT) { 1183 /* Fail if hint must be respected but it can't be */ 1184 dev_err(hdev->dev, 1185 "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n", 1186 hint_addr, phys_pg_pack->offset); 1187 rc = -EINVAL; 1188 goto va_block_err; 1189 } 1190 dev_dbg(hdev->dev, 1191 "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n", 1192 hint_addr, phys_pg_pack->offset); 1193 } 1194 1195 ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size, 1196 hint_addr, va_block_align, 1197 va_range_type, args->flags); 1198 if (!ret_vaddr) { 1199 dev_err(hdev->dev, "no available va block for handle %u\n", 1200 handle); 1201 rc = -ENOMEM; 1202 goto va_block_err; 1203 } 1204 1205 mutex_lock(&hdev->mmu_lock); 1206 1207 rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack); 1208 if (rc) { 1209 dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle); 1210 mutex_unlock(&hdev->mmu_lock); 1211 goto map_err; 1212 } 1213 1214 rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV, 1215 ctx->asid, ret_vaddr, phys_pg_pack->total_size); 1216 mutex_unlock(&hdev->mmu_lock); 1217 if (rc) 1218 goto map_err; 1219 1220 /* 1221 * prefetch is done upon user's request. it is performed in WQ as and so can 1222 * be outside the MMU lock. the operation itself is already protected by the mmu lock 1223 */ 1224 if (do_prefetch) { 1225 rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr, 1226 phys_pg_pack->total_size); 1227 if (rc) 1228 goto map_err; 1229 } 1230 1231 ret_vaddr += phys_pg_pack->offset; 1232 1233 hnode->ptr = vm_type; 1234 hnode->vaddr = ret_vaddr; 1235 hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle; 1236 1237 mutex_lock(&ctx->mem_hash_lock); 1238 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr); 1239 mutex_unlock(&ctx->mem_hash_lock); 1240 1241 *device_addr = ret_vaddr; 1242 1243 if (is_userptr) 1244 free_phys_pg_pack(hdev, phys_pg_pack); 1245 1246 return rc; 1247 1248 map_err: 1249 if (add_va_block(hdev, va_range, ret_vaddr, 1250 ret_vaddr + phys_pg_pack->total_size - 1)) 1251 dev_warn(hdev->dev, 1252 "release va block failed for handle 0x%x, vaddr: 0x%llx\n", 1253 handle, ret_vaddr); 1254 1255 va_block_err: 1256 kfree(hnode); 1257 hnode_err: 1258 shared_err: 1259 atomic_dec(&phys_pg_pack->mapping_cnt); 1260 if (is_userptr) 1261 free_phys_pg_pack(hdev, phys_pg_pack); 1262 init_page_pack_err: 1263 if (is_userptr) 1264 dma_unmap_host_va(hdev, userptr); 1265 1266 return rc; 1267 } 1268 1269 /* Should be called while the context's mem_hash_lock is taken */ 1270 static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr) 1271 { 1272 struct hl_vm_hash_node *hnode; 1273 1274 hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr) 1275 if (vaddr == hnode->vaddr) 1276 return hnode; 1277 1278 return NULL; 1279 } 1280 1281 /** 1282 * unmap_device_va() - unmap the given device virtual address. 1283 * @ctx: pointer to the context structure. 1284 * @args: host parameters with device virtual address to unmap. 1285 * @ctx_free: true if in context free flow, false otherwise. 1286 * 1287 * This function does the following: 1288 * - unmap the physical pages related to the given virtual address. 1289 * - return the device virtual block to the virtual block list. 1290 */ 1291 static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, 1292 bool ctx_free) 1293 { 1294 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 1295 u64 vaddr = args->unmap.device_virt_addr; 1296 struct asic_fixed_properties *prop; 1297 struct hl_device *hdev = ctx->hdev; 1298 struct hl_userptr *userptr = NULL; 1299 struct hl_vm_hash_node *hnode; 1300 struct hl_va_range *va_range; 1301 enum vm_type *vm_type; 1302 bool is_userptr; 1303 int rc = 0; 1304 1305 prop = &hdev->asic_prop; 1306 1307 /* protect from double entrance */ 1308 mutex_lock(&ctx->mem_hash_lock); 1309 hnode = get_vm_hash_node_locked(ctx, vaddr); 1310 if (!hnode) { 1311 mutex_unlock(&ctx->mem_hash_lock); 1312 dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr); 1313 return -EINVAL; 1314 } 1315 1316 if (hnode->export_cnt) { 1317 mutex_unlock(&ctx->mem_hash_lock); 1318 dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr); 1319 return -EINVAL; 1320 } 1321 1322 hash_del(&hnode->node); 1323 mutex_unlock(&ctx->mem_hash_lock); 1324 1325 vm_type = hnode->ptr; 1326 1327 if (*vm_type == VM_TYPE_USERPTR) { 1328 is_userptr = true; 1329 userptr = hnode->ptr; 1330 1331 rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack, 1332 false); 1333 if (rc) { 1334 dev_err(hdev->dev, 1335 "unable to init page pack for vaddr 0x%llx\n", 1336 vaddr); 1337 goto vm_type_err; 1338 } 1339 1340 if (phys_pg_pack->page_size == 1341 hdev->asic_prop.pmmu.page_size) 1342 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 1343 else 1344 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; 1345 } else if (*vm_type == VM_TYPE_PHYS_PACK) { 1346 is_userptr = false; 1347 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; 1348 phys_pg_pack = hnode->ptr; 1349 } else { 1350 dev_warn(hdev->dev, 1351 "unmap failed, unknown vm desc for vaddr 0x%llx\n", 1352 vaddr); 1353 rc = -EFAULT; 1354 goto vm_type_err; 1355 } 1356 1357 if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) { 1358 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr); 1359 rc = -EINVAL; 1360 goto mapping_cnt_err; 1361 } 1362 1363 if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size)) 1364 vaddr = prop->dram_base_address + 1365 DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address, 1366 phys_pg_pack->page_size) * 1367 phys_pg_pack->page_size; 1368 else 1369 vaddr &= ~(((u64) phys_pg_pack->page_size) - 1); 1370 1371 mutex_lock(&hdev->mmu_lock); 1372 1373 unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack); 1374 1375 /* 1376 * During context free this function is called in a loop to clean all 1377 * the context mappings. Hence the cache invalidation can be called once 1378 * at the loop end rather than for each iteration 1379 */ 1380 if (!ctx_free) 1381 rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr, 1382 phys_pg_pack->total_size); 1383 1384 mutex_unlock(&hdev->mmu_lock); 1385 1386 /* 1387 * If the context is closing we don't need to check for the MMU cache 1388 * invalidation return code and update the VA free list as in this flow 1389 * we invalidate the MMU cache outside of this unmap function and the VA 1390 * free list will be freed anyway. 1391 */ 1392 if (!ctx_free) { 1393 int tmp_rc; 1394 1395 tmp_rc = add_va_block(hdev, va_range, vaddr, 1396 vaddr + phys_pg_pack->total_size - 1); 1397 if (tmp_rc) { 1398 dev_warn(hdev->dev, 1399 "add va block failed for vaddr: 0x%llx\n", 1400 vaddr); 1401 if (!rc) 1402 rc = tmp_rc; 1403 } 1404 } 1405 1406 atomic_dec(&phys_pg_pack->mapping_cnt); 1407 kfree(hnode); 1408 1409 if (is_userptr) { 1410 free_phys_pg_pack(hdev, phys_pg_pack); 1411 dma_unmap_host_va(hdev, userptr); 1412 } 1413 1414 return rc; 1415 1416 mapping_cnt_err: 1417 if (is_userptr) 1418 free_phys_pg_pack(hdev, phys_pg_pack); 1419 vm_type_err: 1420 mutex_lock(&ctx->mem_hash_lock); 1421 hash_add(ctx->mem_hash, &hnode->node, vaddr); 1422 mutex_unlock(&ctx->mem_hash_lock); 1423 1424 return rc; 1425 } 1426 1427 static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size) 1428 { 1429 u32 block_id; 1430 int rc; 1431 1432 *handle = 0; 1433 if (size) 1434 *size = 0; 1435 1436 rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id); 1437 if (rc) 1438 return rc; 1439 1440 *handle = block_id | HL_MMAP_TYPE_BLOCK; 1441 *handle <<= PAGE_SHIFT; 1442 1443 return 0; 1444 } 1445 1446 static void hw_block_vm_close(struct vm_area_struct *vma) 1447 { 1448 struct hl_vm_hw_block_list_node *lnode = 1449 (struct hl_vm_hw_block_list_node *) vma->vm_private_data; 1450 struct hl_ctx *ctx = lnode->ctx; 1451 long new_mmap_size; 1452 1453 new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start); 1454 if (new_mmap_size > 0) { 1455 lnode->mapped_size = new_mmap_size; 1456 return; 1457 } 1458 1459 mutex_lock(&ctx->hw_block_list_lock); 1460 list_del(&lnode->node); 1461 mutex_unlock(&ctx->hw_block_list_lock); 1462 hl_ctx_put(ctx); 1463 kfree(lnode); 1464 vma->vm_private_data = NULL; 1465 } 1466 1467 static const struct vm_operations_struct hw_block_vm_ops = { 1468 .close = hw_block_vm_close 1469 }; 1470 1471 /** 1472 * hl_hw_block_mmap() - mmap a hw block to user. 1473 * @hpriv: pointer to the private data of the fd 1474 * @vma: pointer to vm_area_struct of the process 1475 * 1476 * Driver increments context reference for every HW block mapped in order 1477 * to prevent user from closing FD without unmapping first 1478 */ 1479 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) 1480 { 1481 struct hl_vm_hw_block_list_node *lnode; 1482 struct hl_device *hdev = hpriv->hdev; 1483 struct hl_ctx *ctx = hpriv->ctx; 1484 u32 block_id, block_size; 1485 int rc; 1486 1487 /* We use the page offset to hold the block id and thus we need to clear 1488 * it before doing the mmap itself 1489 */ 1490 block_id = vma->vm_pgoff; 1491 vma->vm_pgoff = 0; 1492 1493 /* Driver only allows mapping of a complete HW block */ 1494 block_size = vma->vm_end - vma->vm_start; 1495 1496 if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) { 1497 dev_err(hdev->dev, 1498 "user pointer is invalid - 0x%lx\n", 1499 vma->vm_start); 1500 1501 return -EINVAL; 1502 } 1503 1504 lnode = kzalloc(sizeof(*lnode), GFP_KERNEL); 1505 if (!lnode) 1506 return -ENOMEM; 1507 1508 rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size); 1509 if (rc) { 1510 kfree(lnode); 1511 return rc; 1512 } 1513 1514 hl_ctx_get(ctx); 1515 1516 lnode->ctx = ctx; 1517 lnode->vaddr = vma->vm_start; 1518 lnode->block_size = block_size; 1519 lnode->mapped_size = lnode->block_size; 1520 lnode->id = block_id; 1521 1522 vma->vm_private_data = lnode; 1523 vma->vm_ops = &hw_block_vm_ops; 1524 1525 mutex_lock(&ctx->hw_block_list_lock); 1526 list_add_tail(&lnode->node, &ctx->hw_block_mem_list); 1527 mutex_unlock(&ctx->hw_block_list_lock); 1528 1529 vma->vm_pgoff = block_id; 1530 1531 return 0; 1532 } 1533 1534 static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size, 1535 struct device *dev, enum dma_data_direction dir) 1536 { 1537 dma_addr_t addr; 1538 int rc; 1539 1540 addr = dma_map_resource(dev, bar_address, chunk_size, dir, 1541 DMA_ATTR_SKIP_CPU_SYNC); 1542 rc = dma_mapping_error(dev, addr); 1543 if (rc) 1544 return rc; 1545 1546 sg_set_page(sg, NULL, chunk_size, 0); 1547 sg_dma_address(sg) = addr; 1548 sg_dma_len(sg) = chunk_size; 1549 1550 return 0; 1551 } 1552 1553 static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages, 1554 u64 page_size, u64 exported_size, 1555 struct device *dev, enum dma_data_direction dir) 1556 { 1557 u64 chunk_size, bar_address, dma_max_seg_size, cur_size_to_export, cur_npages; 1558 struct asic_fixed_properties *prop; 1559 int rc, i, j, nents, cur_page; 1560 struct scatterlist *sg; 1561 struct sg_table *sgt; 1562 1563 prop = &hdev->asic_prop; 1564 1565 dma_max_seg_size = dma_get_max_seg_size(dev); 1566 1567 /* We would like to align the max segment size to PAGE_SIZE, so the 1568 * SGL will contain aligned addresses that can be easily mapped to 1569 * an MMU 1570 */ 1571 dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE); 1572 if (dma_max_seg_size < PAGE_SIZE) { 1573 dev_err_ratelimited(hdev->dev, 1574 "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n", 1575 dma_max_seg_size); 1576 return ERR_PTR(-EINVAL); 1577 } 1578 1579 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); 1580 if (!sgt) 1581 return ERR_PTR(-ENOMEM); 1582 1583 /* remove export size restrictions in case not explicitly defined */ 1584 cur_size_to_export = exported_size ? exported_size : (npages * page_size); 1585 1586 /* If the size of each page is larger than the dma max segment size, 1587 * then we can't combine pages and the number of entries in the SGL 1588 * will just be the 1589 * <number of pages> * <chunks of max segment size in each page> 1590 */ 1591 if (page_size > dma_max_seg_size) { 1592 /* we should limit number of pages according to the exported size */ 1593 cur_npages = DIV_ROUND_UP_SECTOR_T(cur_size_to_export, page_size); 1594 nents = cur_npages * DIV_ROUND_UP_SECTOR_T(page_size, dma_max_seg_size); 1595 } else { 1596 cur_npages = npages; 1597 1598 /* Get number of non-contiguous chunks */ 1599 for (i = 1, nents = 1, chunk_size = page_size ; i < cur_npages ; i++) { 1600 if (pages[i - 1] + page_size != pages[i] || 1601 chunk_size + page_size > dma_max_seg_size) { 1602 nents++; 1603 chunk_size = page_size; 1604 continue; 1605 } 1606 1607 chunk_size += page_size; 1608 } 1609 } 1610 1611 rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO); 1612 if (rc) 1613 goto error_free; 1614 1615 cur_page = 0; 1616 1617 if (page_size > dma_max_seg_size) { 1618 u64 size_left, cur_device_address = 0; 1619 1620 size_left = page_size; 1621 1622 /* Need to split each page into the number of chunks of 1623 * dma_max_seg_size 1624 */ 1625 for_each_sgtable_dma_sg(sgt, sg, i) { 1626 if (size_left == page_size) 1627 cur_device_address = 1628 pages[cur_page] - prop->dram_base_address; 1629 else 1630 cur_device_address += dma_max_seg_size; 1631 1632 /* make sure not to export over exported size */ 1633 chunk_size = min3(size_left, dma_max_seg_size, cur_size_to_export); 1634 1635 bar_address = hdev->dram_pci_bar_start + cur_device_address; 1636 1637 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir); 1638 if (rc) 1639 goto error_unmap; 1640 1641 cur_size_to_export -= chunk_size; 1642 1643 if (size_left > dma_max_seg_size) { 1644 size_left -= dma_max_seg_size; 1645 } else { 1646 cur_page++; 1647 size_left = page_size; 1648 } 1649 } 1650 } else { 1651 /* Merge pages and put them into the scatterlist */ 1652 for_each_sgtable_dma_sg(sgt, sg, i) { 1653 chunk_size = page_size; 1654 for (j = cur_page + 1 ; j < cur_npages ; j++) { 1655 if (pages[j - 1] + page_size != pages[j] || 1656 chunk_size + page_size > dma_max_seg_size) 1657 break; 1658 1659 chunk_size += page_size; 1660 } 1661 1662 bar_address = hdev->dram_pci_bar_start + 1663 (pages[cur_page] - prop->dram_base_address); 1664 1665 /* make sure not to export over exported size */ 1666 chunk_size = min(chunk_size, cur_size_to_export); 1667 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir); 1668 if (rc) 1669 goto error_unmap; 1670 1671 cur_size_to_export -= chunk_size; 1672 cur_page = j; 1673 } 1674 } 1675 1676 /* Because we are not going to include a CPU list we want to have some 1677 * chance that other users will detect this by setting the orig_nents 1678 * to 0 and using only nents (length of DMA list) when going over the 1679 * sgl 1680 */ 1681 sgt->orig_nents = 0; 1682 1683 return sgt; 1684 1685 error_unmap: 1686 for_each_sgtable_dma_sg(sgt, sg, i) { 1687 if (!sg_dma_len(sg)) 1688 continue; 1689 1690 dma_unmap_resource(dev, sg_dma_address(sg), 1691 sg_dma_len(sg), dir, 1692 DMA_ATTR_SKIP_CPU_SYNC); 1693 } 1694 1695 sg_free_table(sgt); 1696 1697 error_free: 1698 kfree(sgt); 1699 return ERR_PTR(rc); 1700 } 1701 1702 static int hl_dmabuf_attach(struct dma_buf *dmabuf, 1703 struct dma_buf_attachment *attachment) 1704 { 1705 struct hl_dmabuf_priv *hl_dmabuf; 1706 struct hl_device *hdev; 1707 int rc; 1708 1709 hl_dmabuf = dmabuf->priv; 1710 hdev = hl_dmabuf->ctx->hdev; 1711 1712 rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true); 1713 1714 if (rc < 0) 1715 attachment->peer2peer = false; 1716 return 0; 1717 } 1718 1719 static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment, 1720 enum dma_data_direction dir) 1721 { 1722 struct dma_buf *dma_buf = attachment->dmabuf; 1723 struct hl_vm_phys_pg_pack *phys_pg_pack; 1724 struct hl_dmabuf_priv *hl_dmabuf; 1725 struct hl_device *hdev; 1726 struct sg_table *sgt; 1727 1728 hl_dmabuf = dma_buf->priv; 1729 hdev = hl_dmabuf->ctx->hdev; 1730 phys_pg_pack = hl_dmabuf->phys_pg_pack; 1731 1732 if (!attachment->peer2peer) { 1733 dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n"); 1734 return ERR_PTR(-EPERM); 1735 } 1736 1737 if (phys_pg_pack) 1738 sgt = alloc_sgt_from_device_pages(hdev, 1739 phys_pg_pack->pages, 1740 phys_pg_pack->npages, 1741 phys_pg_pack->page_size, 1742 phys_pg_pack->exported_size, 1743 attachment->dev, 1744 dir); 1745 else 1746 sgt = alloc_sgt_from_device_pages(hdev, 1747 &hl_dmabuf->device_address, 1748 1, 1749 hl_dmabuf->dmabuf->size, 1750 0, 1751 attachment->dev, 1752 dir); 1753 1754 if (IS_ERR(sgt)) 1755 dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt)); 1756 1757 return sgt; 1758 } 1759 1760 static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment, 1761 struct sg_table *sgt, 1762 enum dma_data_direction dir) 1763 { 1764 struct scatterlist *sg; 1765 int i; 1766 1767 /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives 1768 * only in the 'device' domain (after all, it maps a PCI bar address which points to the 1769 * device memory). 1770 * 1771 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform 1772 * a sync of the memory to the CPU's cache, as it never resided inside that cache. 1773 */ 1774 for_each_sgtable_dma_sg(sgt, sg, i) 1775 dma_unmap_resource(attachment->dev, sg_dma_address(sg), 1776 sg_dma_len(sg), dir, 1777 DMA_ATTR_SKIP_CPU_SYNC); 1778 1779 /* Need to restore orig_nents because sg_free_table use that field */ 1780 sgt->orig_nents = sgt->nents; 1781 sg_free_table(sgt); 1782 kfree(sgt); 1783 } 1784 1785 static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr) 1786 { 1787 struct hl_device *hdev = ctx->hdev; 1788 struct hl_vm_hash_node *hnode; 1789 1790 /* get the memory handle */ 1791 mutex_lock(&ctx->mem_hash_lock); 1792 hnode = get_vm_hash_node_locked(ctx, addr); 1793 if (!hnode) { 1794 mutex_unlock(&ctx->mem_hash_lock); 1795 dev_dbg(hdev->dev, "map address %#llx not found\n", addr); 1796 return ERR_PTR(-EINVAL); 1797 } 1798 1799 if (upper_32_bits(hnode->handle)) { 1800 mutex_unlock(&ctx->mem_hash_lock); 1801 dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n", 1802 hnode->handle, addr); 1803 return ERR_PTR(-EINVAL); 1804 } 1805 1806 /* 1807 * node found, increase export count so this memory cannot be unmapped 1808 * and the hash node cannot be deleted. 1809 */ 1810 hnode->export_cnt++; 1811 mutex_unlock(&ctx->mem_hash_lock); 1812 1813 return hnode; 1814 } 1815 1816 static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode) 1817 { 1818 mutex_lock(&ctx->mem_hash_lock); 1819 hnode->export_cnt--; 1820 mutex_unlock(&ctx->mem_hash_lock); 1821 } 1822 1823 static void hl_release_dmabuf(struct dma_buf *dmabuf) 1824 { 1825 struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv; 1826 struct hl_ctx *ctx; 1827 1828 if (!hl_dmabuf) 1829 return; 1830 1831 ctx = hl_dmabuf->ctx; 1832 1833 if (hl_dmabuf->memhash_hnode) 1834 memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode); 1835 1836 atomic_dec(&ctx->hdev->dmabuf_export_cnt); 1837 hl_ctx_put(ctx); 1838 1839 /* Paired with get_file() in export_dmabuf() */ 1840 fput(ctx->hpriv->filp); 1841 1842 kfree(hl_dmabuf); 1843 } 1844 1845 static const struct dma_buf_ops habanalabs_dmabuf_ops = { 1846 .attach = hl_dmabuf_attach, 1847 .map_dma_buf = hl_map_dmabuf, 1848 .unmap_dma_buf = hl_unmap_dmabuf, 1849 .release = hl_release_dmabuf, 1850 }; 1851 1852 static int export_dmabuf(struct hl_ctx *ctx, 1853 struct hl_dmabuf_priv *hl_dmabuf, 1854 u64 total_size, int flags, int *dmabuf_fd) 1855 { 1856 DEFINE_DMA_BUF_EXPORT_INFO(exp_info); 1857 struct hl_device *hdev = ctx->hdev; 1858 int rc, fd; 1859 1860 exp_info.ops = &habanalabs_dmabuf_ops; 1861 exp_info.size = total_size; 1862 exp_info.flags = flags; 1863 exp_info.priv = hl_dmabuf; 1864 1865 hl_dmabuf->dmabuf = dma_buf_export(&exp_info); 1866 if (IS_ERR(hl_dmabuf->dmabuf)) { 1867 dev_err(hdev->dev, "failed to export dma-buf\n"); 1868 return PTR_ERR(hl_dmabuf->dmabuf); 1869 } 1870 1871 fd = dma_buf_fd(hl_dmabuf->dmabuf, flags); 1872 if (fd < 0) { 1873 dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd); 1874 rc = fd; 1875 goto err_dma_buf_put; 1876 } 1877 1878 hl_dmabuf->ctx = ctx; 1879 hl_ctx_get(hl_dmabuf->ctx); 1880 atomic_inc(&ctx->hdev->dmabuf_export_cnt); 1881 1882 /* Get compute device file to enforce release order, such that all exported dma-buf will be 1883 * released first and only then the compute device. 1884 * Paired with fput() in hl_release_dmabuf(). 1885 */ 1886 get_file(ctx->hpriv->filp); 1887 1888 *dmabuf_fd = fd; 1889 1890 return 0; 1891 1892 err_dma_buf_put: 1893 hl_dmabuf->dmabuf->priv = NULL; 1894 dma_buf_put(hl_dmabuf->dmabuf); 1895 return rc; 1896 } 1897 1898 static int validate_export_params_common(struct hl_device *hdev, u64 device_addr, u64 size) 1899 { 1900 if (!IS_ALIGNED(device_addr, PAGE_SIZE)) { 1901 dev_dbg(hdev->dev, 1902 "exported device memory address 0x%llx should be aligned to 0x%lx\n", 1903 device_addr, PAGE_SIZE); 1904 return -EINVAL; 1905 } 1906 1907 if (size < PAGE_SIZE) { 1908 dev_dbg(hdev->dev, 1909 "exported device memory size %llu should be equal to or greater than %lu\n", 1910 size, PAGE_SIZE); 1911 return -EINVAL; 1912 } 1913 1914 return 0; 1915 } 1916 1917 static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size) 1918 { 1919 struct asic_fixed_properties *prop = &hdev->asic_prop; 1920 u64 bar_address; 1921 int rc; 1922 1923 rc = validate_export_params_common(hdev, device_addr, size); 1924 if (rc) 1925 return rc; 1926 1927 if (device_addr < prop->dram_user_base_address || 1928 (device_addr + size) > prop->dram_end_address || 1929 (device_addr + size) < device_addr) { 1930 dev_dbg(hdev->dev, 1931 "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n", 1932 device_addr, size); 1933 return -EINVAL; 1934 } 1935 1936 bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address); 1937 1938 if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) || 1939 (bar_address + size) < bar_address) { 1940 dev_dbg(hdev->dev, 1941 "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n", 1942 device_addr, size); 1943 return -EINVAL; 1944 } 1945 1946 return 0; 1947 } 1948 1949 static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset, 1950 struct hl_vm_phys_pg_pack *phys_pg_pack) 1951 { 1952 struct asic_fixed_properties *prop = &hdev->asic_prop; 1953 u64 bar_address; 1954 int i, rc; 1955 1956 rc = validate_export_params_common(hdev, device_addr, size); 1957 if (rc) 1958 return rc; 1959 1960 if ((offset + size) > phys_pg_pack->total_size) { 1961 dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n", 1962 offset, size, phys_pg_pack->total_size); 1963 return -EINVAL; 1964 } 1965 1966 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 1967 1968 bar_address = hdev->dram_pci_bar_start + 1969 (phys_pg_pack->pages[i] - prop->dram_base_address); 1970 1971 if ((bar_address + phys_pg_pack->page_size) > 1972 (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) || 1973 (bar_address + phys_pg_pack->page_size) < bar_address) { 1974 dev_dbg(hdev->dev, 1975 "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n", 1976 phys_pg_pack->pages[i], 1977 phys_pg_pack->page_size); 1978 1979 return -EINVAL; 1980 } 1981 } 1982 1983 return 0; 1984 } 1985 1986 static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev, 1987 struct hl_vm_hash_node *hnode) 1988 { 1989 struct hl_vm_phys_pg_pack *phys_pg_pack; 1990 struct hl_vm *vm = &hdev->vm; 1991 1992 spin_lock(&vm->idr_lock); 1993 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle); 1994 if (!phys_pg_pack) { 1995 spin_unlock(&vm->idr_lock); 1996 dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle); 1997 return ERR_PTR(-EINVAL); 1998 } 1999 2000 spin_unlock(&vm->idr_lock); 2001 2002 if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) { 2003 dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle); 2004 return ERR_PTR(-EINVAL); 2005 } 2006 2007 return phys_pg_pack; 2008 } 2009 2010 /** 2011 * export_dmabuf_from_addr() - export a dma-buf object for the given memory 2012 * address and size. 2013 * @ctx: pointer to the context structure. 2014 * @addr: device address. 2015 * @size: size of device memory to export. 2016 * @offset: the offset into the buffer from which to start exporting 2017 * @flags: DMA-BUF file/FD flags. 2018 * @dmabuf_fd: pointer to result FD that represents the dma-buf object. 2019 * 2020 * Create and export a dma-buf object for an existing memory allocation inside 2021 * the device memory, and return a FD which is associated with the dma-buf 2022 * object. 2023 * 2024 * Return: 0 on success, non-zero for failure. 2025 */ 2026 static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset, 2027 int flags, int *dmabuf_fd) 2028 { 2029 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 2030 struct hl_vm_hash_node *hnode = NULL; 2031 struct asic_fixed_properties *prop; 2032 struct hl_dmabuf_priv *hl_dmabuf; 2033 struct hl_device *hdev; 2034 u64 export_addr; 2035 int rc; 2036 2037 hdev = ctx->hdev; 2038 prop = &hdev->asic_prop; 2039 2040 /* offset must be 0 in devices without virtual memory support */ 2041 if (!prop->dram_supports_virtual_memory && offset) { 2042 dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n"); 2043 return -EINVAL; 2044 } 2045 2046 export_addr = addr + offset; 2047 2048 hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL); 2049 if (!hl_dmabuf) 2050 return -ENOMEM; 2051 2052 if (prop->dram_supports_virtual_memory) { 2053 hnode = memhash_node_export_get(ctx, addr); 2054 if (IS_ERR(hnode)) { 2055 rc = PTR_ERR(hnode); 2056 goto err_free_dmabuf_wrapper; 2057 } 2058 phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode); 2059 if (IS_ERR(phys_pg_pack)) { 2060 rc = PTR_ERR(phys_pg_pack); 2061 goto dec_memhash_export_cnt; 2062 } 2063 rc = validate_export_params(hdev, export_addr, size, offset, phys_pg_pack); 2064 if (rc) 2065 goto dec_memhash_export_cnt; 2066 2067 phys_pg_pack->exported_size = size; 2068 hl_dmabuf->phys_pg_pack = phys_pg_pack; 2069 hl_dmabuf->memhash_hnode = hnode; 2070 } else { 2071 rc = validate_export_params_no_mmu(hdev, export_addr, size); 2072 if (rc) 2073 goto err_free_dmabuf_wrapper; 2074 } 2075 2076 hl_dmabuf->device_address = export_addr; 2077 2078 rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd); 2079 if (rc) 2080 goto dec_memhash_export_cnt; 2081 2082 return 0; 2083 2084 dec_memhash_export_cnt: 2085 if (prop->dram_supports_virtual_memory) 2086 memhash_node_export_put(ctx, hnode); 2087 err_free_dmabuf_wrapper: 2088 kfree(hl_dmabuf); 2089 return rc; 2090 } 2091 2092 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args) 2093 { 2094 struct hl_device *hdev = hpriv->hdev; 2095 u64 block_handle, device_addr = 0; 2096 struct hl_ctx *ctx = hpriv->ctx; 2097 u32 handle = 0, block_size; 2098 int rc; 2099 2100 switch (args->in.op) { 2101 case HL_MEM_OP_ALLOC: 2102 if (args->in.alloc.mem_size == 0) { 2103 dev_err(hdev->dev, "alloc size must be larger than 0\n"); 2104 rc = -EINVAL; 2105 goto out; 2106 } 2107 2108 /* Force contiguous as there are no real MMU 2109 * translations to overcome physical memory gaps 2110 */ 2111 args->in.flags |= HL_MEM_CONTIGUOUS; 2112 rc = alloc_device_memory(ctx, &args->in, &handle); 2113 2114 memset(args, 0, sizeof(*args)); 2115 args->out.handle = (__u64) handle; 2116 break; 2117 2118 case HL_MEM_OP_FREE: 2119 rc = free_device_memory(ctx, &args->in); 2120 break; 2121 2122 case HL_MEM_OP_MAP: 2123 if (args->in.flags & HL_MEM_USERPTR) { 2124 dev_err(hdev->dev, "Failed to map host memory when MMU is disabled\n"); 2125 rc = -EPERM; 2126 } else { 2127 rc = get_paddr_from_handle(ctx, &args->in, &device_addr); 2128 memset(args, 0, sizeof(*args)); 2129 args->out.device_virt_addr = device_addr; 2130 } 2131 2132 break; 2133 2134 case HL_MEM_OP_UNMAP: 2135 rc = 0; 2136 break; 2137 2138 case HL_MEM_OP_MAP_BLOCK: 2139 rc = map_block(hdev, args->in.map_block.block_addr, &block_handle, &block_size); 2140 args->out.block_handle = block_handle; 2141 args->out.block_size = block_size; 2142 break; 2143 2144 case HL_MEM_OP_EXPORT_DMABUF_FD: 2145 dev_err(hdev->dev, "Failed to export dma-buf object when MMU is disabled\n"); 2146 rc = -EPERM; 2147 break; 2148 2149 case HL_MEM_OP_TS_ALLOC: 2150 rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle); 2151 break; 2152 default: 2153 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); 2154 rc = -EINVAL; 2155 break; 2156 } 2157 2158 out: 2159 return rc; 2160 } 2161 2162 static void ts_buff_release(struct hl_mmap_mem_buf *buf) 2163 { 2164 struct hl_ts_buff *ts_buff = buf->private; 2165 2166 vfree(ts_buff->kernel_buff_address); 2167 vfree(ts_buff->user_buff_address); 2168 kfree(ts_buff); 2169 } 2170 2171 static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args) 2172 { 2173 struct hl_ts_buff *ts_buff = buf->private; 2174 2175 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE); 2176 return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0); 2177 } 2178 2179 static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args) 2180 { 2181 struct hl_ts_buff *ts_buff = NULL; 2182 u32 num_elements; 2183 size_t size; 2184 void *p; 2185 2186 num_elements = *(u32 *)args; 2187 2188 ts_buff = kzalloc(sizeof(*ts_buff), gfp); 2189 if (!ts_buff) 2190 return -ENOMEM; 2191 2192 /* Allocate the user buffer */ 2193 size = num_elements * sizeof(u64); 2194 p = vmalloc_user(size); 2195 if (!p) 2196 goto free_mem; 2197 2198 ts_buff->user_buff_address = p; 2199 buf->mappable_size = size; 2200 2201 /* Allocate the internal kernel buffer */ 2202 size = num_elements * sizeof(struct hl_user_pending_interrupt); 2203 p = vzalloc(size); 2204 if (!p) 2205 goto free_user_buff; 2206 2207 ts_buff->kernel_buff_address = p; 2208 ts_buff->kernel_buff_size = size; 2209 2210 buf->private = ts_buff; 2211 2212 return 0; 2213 2214 free_user_buff: 2215 vfree(ts_buff->user_buff_address); 2216 free_mem: 2217 kfree(ts_buff); 2218 return -ENOMEM; 2219 } 2220 2221 static struct hl_mmap_mem_buf_behavior hl_ts_behavior = { 2222 .topic = "TS", 2223 .mem_id = HL_MMAP_TYPE_TS_BUFF, 2224 .mmap = hl_ts_mmap, 2225 .alloc = hl_ts_alloc_buf, 2226 .release = ts_buff_release, 2227 }; 2228 2229 /** 2230 * allocate_timestamps_buffers() - allocate timestamps buffers 2231 * This function will allocate ts buffer that will later on be mapped to the user 2232 * in order to be able to read the timestamp. 2233 * in addition it'll allocate an extra buffer for registration management. 2234 * since we cannot fail during registration for out-of-memory situation, so 2235 * we'll prepare a pool which will be used as user interrupt nodes and instead 2236 * of dynamically allocating nodes while registration we'll pick the node from 2237 * this pool. in addition it'll add node to the mapping hash which will be used 2238 * to map user ts buffer to the internal kernel ts buffer. 2239 * @hpriv: pointer to the private data of the fd 2240 * @args: ioctl input 2241 * @handle: user timestamp buffer handle as an output 2242 */ 2243 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle) 2244 { 2245 struct hl_mem_mgr *mmg = &hpriv->mem_mgr; 2246 struct hl_mmap_mem_buf *buf; 2247 2248 if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) { 2249 dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n", 2250 args->num_of_elements, TS_MAX_ELEMENTS_NUM); 2251 return -EINVAL; 2252 } 2253 2254 buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements); 2255 if (!buf) 2256 return -ENOMEM; 2257 2258 *handle = buf->handle; 2259 2260 return 0; 2261 } 2262 2263 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data) 2264 { 2265 enum hl_device_status status; 2266 union hl_mem_args *args = data; 2267 struct hl_device *hdev = hpriv->hdev; 2268 struct hl_ctx *ctx = hpriv->ctx; 2269 u64 block_handle, device_addr = 0; 2270 u32 handle = 0, block_size; 2271 int rc, dmabuf_fd = -EBADF; 2272 2273 if (!hl_device_operational(hdev, &status)) { 2274 dev_dbg_ratelimited(hdev->dev, 2275 "Device is %s. Can't execute MEMORY IOCTL\n", 2276 hdev->status[status]); 2277 return -EBUSY; 2278 } 2279 2280 if (!hdev->mmu_enable) 2281 return mem_ioctl_no_mmu(hpriv, args); 2282 2283 switch (args->in.op) { 2284 case HL_MEM_OP_ALLOC: 2285 if (args->in.alloc.mem_size == 0) { 2286 dev_err(hdev->dev, 2287 "alloc size must be larger than 0\n"); 2288 rc = -EINVAL; 2289 goto out; 2290 } 2291 2292 /* If DRAM does not support virtual memory the driver won't 2293 * handle the allocation/freeing of that memory. However, for 2294 * system administration/monitoring purposes, the driver will 2295 * keep track of the amount of DRAM memory that is allocated 2296 * and freed by the user. Because this code totally relies on 2297 * the user's input, the driver can't ensure the validity 2298 * of this accounting. 2299 */ 2300 if (!hdev->asic_prop.dram_supports_virtual_memory) { 2301 atomic64_add(args->in.alloc.mem_size, 2302 &ctx->dram_phys_mem); 2303 atomic64_add(args->in.alloc.mem_size, 2304 &hdev->dram_used_mem); 2305 2306 dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); 2307 rc = 0; 2308 2309 memset(args, 0, sizeof(*args)); 2310 args->out.handle = 0; 2311 goto out; 2312 } 2313 2314 rc = alloc_device_memory(ctx, &args->in, &handle); 2315 2316 memset(args, 0, sizeof(*args)); 2317 args->out.handle = (__u64) handle; 2318 break; 2319 2320 case HL_MEM_OP_FREE: 2321 /* If DRAM does not support virtual memory the driver won't 2322 * handle the allocation/freeing of that memory. However, for 2323 * system administration/monitoring purposes, the driver will 2324 * keep track of the amount of DRAM memory that is allocated 2325 * and freed by the user. Because this code totally relies on 2326 * the user's input, the driver can't ensure the validity 2327 * of this accounting. 2328 */ 2329 if (!hdev->asic_prop.dram_supports_virtual_memory) { 2330 atomic64_sub(args->in.alloc.mem_size, 2331 &ctx->dram_phys_mem); 2332 atomic64_sub(args->in.alloc.mem_size, 2333 &hdev->dram_used_mem); 2334 2335 dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); 2336 rc = 0; 2337 2338 goto out; 2339 } 2340 2341 rc = free_device_memory(ctx, &args->in); 2342 break; 2343 2344 case HL_MEM_OP_MAP: 2345 rc = map_device_va(ctx, &args->in, &device_addr); 2346 2347 memset(args, 0, sizeof(*args)); 2348 args->out.device_virt_addr = device_addr; 2349 break; 2350 2351 case HL_MEM_OP_UNMAP: 2352 rc = unmap_device_va(ctx, &args->in, false); 2353 break; 2354 2355 case HL_MEM_OP_MAP_BLOCK: 2356 rc = map_block(hdev, args->in.map_block.block_addr, 2357 &block_handle, &block_size); 2358 args->out.block_handle = block_handle; 2359 args->out.block_size = block_size; 2360 break; 2361 2362 case HL_MEM_OP_EXPORT_DMABUF_FD: 2363 rc = export_dmabuf_from_addr(ctx, 2364 args->in.export_dmabuf_fd.addr, 2365 args->in.export_dmabuf_fd.mem_size, 2366 args->in.export_dmabuf_fd.offset, 2367 args->in.flags, 2368 &dmabuf_fd); 2369 memset(args, 0, sizeof(*args)); 2370 args->out.fd = dmabuf_fd; 2371 break; 2372 2373 case HL_MEM_OP_TS_ALLOC: 2374 rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle); 2375 break; 2376 default: 2377 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); 2378 rc = -EINVAL; 2379 break; 2380 } 2381 2382 out: 2383 return rc; 2384 } 2385 2386 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size, 2387 u32 npages, u64 start, u32 offset, 2388 struct hl_userptr *userptr) 2389 { 2390 int rc; 2391 2392 if (!access_ok((void __user *) (uintptr_t) addr, size)) { 2393 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr); 2394 return -EFAULT; 2395 } 2396 2397 userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL); 2398 if (!userptr->pages) 2399 return -ENOMEM; 2400 2401 rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM, 2402 userptr->pages); 2403 2404 if (rc != npages) { 2405 dev_err(hdev->dev, 2406 "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n", 2407 rc, addr, size, npages); 2408 if (rc < 0) 2409 goto destroy_pages; 2410 npages = rc; 2411 rc = -EFAULT; 2412 goto put_pages; 2413 } 2414 userptr->npages = npages; 2415 2416 rc = sg_alloc_table_from_pages(userptr->sgt, 2417 userptr->pages, 2418 npages, offset, size, GFP_KERNEL); 2419 if (rc < 0) { 2420 dev_err(hdev->dev, "failed to create SG table from pages\n"); 2421 goto put_pages; 2422 } 2423 2424 return 0; 2425 2426 put_pages: 2427 unpin_user_pages(userptr->pages, npages); 2428 destroy_pages: 2429 kvfree(userptr->pages); 2430 return rc; 2431 } 2432 2433 /** 2434 * hl_pin_host_memory() - pins a chunk of host memory. 2435 * @hdev: pointer to the habanalabs device structure. 2436 * @addr: the host virtual address of the memory area. 2437 * @size: the size of the memory area. 2438 * @userptr: pointer to hl_userptr structure. 2439 * 2440 * This function does the following: 2441 * - Pins the physical pages. 2442 * - Create an SG list from those pages. 2443 */ 2444 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 2445 struct hl_userptr *userptr) 2446 { 2447 u64 start, end; 2448 u32 npages, offset; 2449 int rc; 2450 2451 if (!size) { 2452 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size); 2453 return -EINVAL; 2454 } 2455 2456 /* 2457 * If the combination of the address and size requested for this memory 2458 * region causes an integer overflow, return error. 2459 */ 2460 if (((addr + size) < addr) || 2461 PAGE_ALIGN(addr + size) < (addr + size)) { 2462 dev_err(hdev->dev, 2463 "user pointer 0x%llx + %llu causes integer overflow\n", 2464 addr, size); 2465 return -EINVAL; 2466 } 2467 2468 userptr->pid = current->pid; 2469 userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL); 2470 if (!userptr->sgt) 2471 return -ENOMEM; 2472 2473 start = addr & PAGE_MASK; 2474 offset = addr & ~PAGE_MASK; 2475 end = PAGE_ALIGN(addr + size); 2476 npages = (end - start) >> PAGE_SHIFT; 2477 2478 userptr->size = size; 2479 userptr->addr = addr; 2480 userptr->dma_mapped = false; 2481 INIT_LIST_HEAD(&userptr->job_node); 2482 2483 rc = get_user_memory(hdev, addr, size, npages, start, offset, 2484 userptr); 2485 if (rc) { 2486 dev_err(hdev->dev, 2487 "failed to get user memory for address 0x%llx\n", 2488 addr); 2489 goto free_sgt; 2490 } 2491 2492 hl_debugfs_add_userptr(hdev, userptr); 2493 2494 return 0; 2495 2496 free_sgt: 2497 kfree(userptr->sgt); 2498 return rc; 2499 } 2500 2501 /* 2502 * hl_unpin_host_memory - unpins a chunk of host memory. 2503 * @hdev: pointer to the habanalabs device structure 2504 * @userptr: pointer to hl_userptr structure 2505 * 2506 * This function does the following: 2507 * - Unpins the physical pages related to the host memory 2508 * - Free the SG list 2509 */ 2510 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr) 2511 { 2512 hl_debugfs_remove_userptr(hdev, userptr); 2513 2514 if (userptr->dma_mapped) 2515 hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir); 2516 2517 unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true); 2518 kvfree(userptr->pages); 2519 2520 list_del(&userptr->job_node); 2521 2522 sg_free_table(userptr->sgt); 2523 kfree(userptr->sgt); 2524 } 2525 2526 /** 2527 * hl_userptr_delete_list() - clear userptr list. 2528 * @hdev: pointer to the habanalabs device structure. 2529 * @userptr_list: pointer to the list to clear. 2530 * 2531 * This function does the following: 2532 * - Iterates over the list and unpins the host memory and frees the userptr 2533 * structure. 2534 */ 2535 void hl_userptr_delete_list(struct hl_device *hdev, 2536 struct list_head *userptr_list) 2537 { 2538 struct hl_userptr *userptr, *tmp; 2539 2540 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) { 2541 hl_unpin_host_memory(hdev, userptr); 2542 kfree(userptr); 2543 } 2544 2545 INIT_LIST_HEAD(userptr_list); 2546 } 2547 2548 /** 2549 * hl_userptr_is_pinned() - returns whether the given userptr is pinned. 2550 * @hdev: pointer to the habanalabs device structure. 2551 * @addr: user address to check. 2552 * @size: user block size to check. 2553 * @userptr_list: pointer to the list to clear. 2554 * @userptr: pointer to userptr to check. 2555 * 2556 * This function does the following: 2557 * - Iterates over the list and checks if the given userptr is in it, means is 2558 * pinned. If so, returns true, otherwise returns false. 2559 */ 2560 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, 2561 u32 size, struct list_head *userptr_list, 2562 struct hl_userptr **userptr) 2563 { 2564 list_for_each_entry((*userptr), userptr_list, job_node) { 2565 if ((addr == (*userptr)->addr) && (size == (*userptr)->size)) 2566 return true; 2567 } 2568 2569 return false; 2570 } 2571 2572 /** 2573 * va_range_init() - initialize virtual addresses range. 2574 * @hdev: pointer to the habanalabs device structure. 2575 * @va_ranges: pointer to va_ranges array. 2576 * @range_type: virtual address range type. 2577 * @start: range start address, inclusive. 2578 * @end: range end address, inclusive. 2579 * @page_size: page size for this va_range. 2580 * 2581 * This function does the following: 2582 * - Initializes the virtual addresses list of the given range with the given 2583 * addresses. 2584 */ 2585 static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges, 2586 enum hl_va_range_type range_type, u64 start, 2587 u64 end, u32 page_size) 2588 { 2589 struct hl_va_range *va_range = va_ranges[range_type]; 2590 int rc; 2591 2592 INIT_LIST_HEAD(&va_range->list); 2593 2594 /* 2595 * PAGE_SIZE alignment 2596 * it is the caller's responsibility to align the addresses if the 2597 * page size is not a power of 2 2598 */ 2599 2600 if (is_power_of_2(page_size)) { 2601 start = round_up(start, page_size); 2602 2603 /* 2604 * The end of the range is inclusive, hence we need to align it 2605 * to the end of the last full page in the range. For example if 2606 * end = 0x3ff5 with page size 0x1000, we need to align it to 2607 * 0x2fff. The remaining 0xff5 bytes do not form a full page. 2608 */ 2609 end = round_down(end + 1, page_size) - 1; 2610 } 2611 2612 if (start >= end) { 2613 dev_err(hdev->dev, "too small vm range for va list\n"); 2614 return -EFAULT; 2615 } 2616 2617 rc = add_va_block(hdev, va_range, start, end); 2618 2619 if (rc) { 2620 dev_err(hdev->dev, "Failed to init host va list\n"); 2621 return rc; 2622 } 2623 2624 va_range->start_addr = start; 2625 va_range->end_addr = end; 2626 va_range->page_size = page_size; 2627 2628 return 0; 2629 } 2630 2631 /** 2632 * va_range_fini() - clear a virtual addresses range. 2633 * @hdev: pointer to the habanalabs structure. 2634 * @va_range: pointer to virtual addresses range. 2635 * 2636 * This function does the following: 2637 * - Frees the virtual addresses block list and its lock. 2638 */ 2639 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range) 2640 { 2641 mutex_lock(&va_range->lock); 2642 clear_va_list_locked(hdev, &va_range->list); 2643 mutex_unlock(&va_range->lock); 2644 2645 mutex_destroy(&va_range->lock); 2646 kfree(va_range); 2647 } 2648 2649 /** 2650 * vm_ctx_init_with_ranges() - initialize virtual memory for context. 2651 * @ctx: pointer to the habanalabs context structure. 2652 * @host_range_start: host virtual addresses range start. 2653 * @host_range_end: host virtual addresses range end. 2654 * @host_page_size: host page size. 2655 * @host_huge_range_start: host virtual addresses range start for memory 2656 * allocated with huge pages. 2657 * @host_huge_range_end: host virtual addresses range end for memory allocated 2658 * with huge pages. 2659 * @host_huge_page_size: host huge page size. 2660 * @dram_range_start: dram virtual addresses range start. 2661 * @dram_range_end: dram virtual addresses range end. 2662 * @dram_page_size: dram page size. 2663 * 2664 * This function initializes the following: 2665 * - MMU for context. 2666 * - Virtual address to area descriptor hashtable. 2667 * - Virtual block list of available virtual memory. 2668 */ 2669 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx, 2670 u64 host_range_start, 2671 u64 host_range_end, 2672 u32 host_page_size, 2673 u64 host_huge_range_start, 2674 u64 host_huge_range_end, 2675 u32 host_huge_page_size, 2676 u64 dram_range_start, 2677 u64 dram_range_end, 2678 u32 dram_page_size) 2679 { 2680 struct hl_device *hdev = ctx->hdev; 2681 int i, rc; 2682 2683 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) { 2684 ctx->va_range[i] = 2685 kzalloc(sizeof(struct hl_va_range), GFP_KERNEL); 2686 if (!ctx->va_range[i]) { 2687 rc = -ENOMEM; 2688 goto free_va_range; 2689 } 2690 } 2691 2692 rc = hl_mmu_ctx_init(ctx); 2693 if (rc) { 2694 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid); 2695 goto free_va_range; 2696 } 2697 2698 mutex_init(&ctx->mem_hash_lock); 2699 hash_init(ctx->mem_hash); 2700 2701 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2702 2703 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST, 2704 host_range_start, host_range_end, host_page_size); 2705 if (rc) { 2706 dev_err(hdev->dev, "failed to init host vm range\n"); 2707 goto mmu_ctx_fini; 2708 } 2709 2710 if (hdev->pmmu_huge_range) { 2711 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2712 2713 rc = va_range_init(hdev, 2714 ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE, 2715 host_huge_range_start, host_huge_range_end, 2716 host_huge_page_size); 2717 if (rc) { 2718 dev_err(hdev->dev, 2719 "failed to init host huge vm range\n"); 2720 goto clear_host_va_range; 2721 } 2722 } else { 2723 kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); 2724 ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] = 2725 ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 2726 } 2727 2728 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); 2729 2730 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM, 2731 dram_range_start, dram_range_end, dram_page_size); 2732 if (rc) { 2733 dev_err(hdev->dev, "failed to init dram vm range\n"); 2734 goto clear_host_huge_va_range; 2735 } 2736 2737 hl_debugfs_add_ctx_mem_hash(hdev, ctx); 2738 2739 return 0; 2740 2741 clear_host_huge_va_range: 2742 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); 2743 2744 if (hdev->pmmu_huge_range) { 2745 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2746 clear_va_list_locked(hdev, 2747 &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list); 2748 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2749 } 2750 clear_host_va_range: 2751 if (hdev->pmmu_huge_range) 2752 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2753 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2754 clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list); 2755 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2756 mmu_ctx_fini: 2757 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2758 mutex_destroy(&ctx->mem_hash_lock); 2759 hl_mmu_ctx_fini(ctx); 2760 free_va_range: 2761 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) 2762 kfree(ctx->va_range[i]); 2763 2764 return rc; 2765 } 2766 2767 int hl_vm_ctx_init(struct hl_ctx *ctx) 2768 { 2769 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; 2770 u64 host_range_start, host_range_end, host_huge_range_start, 2771 host_huge_range_end, dram_range_start, dram_range_end; 2772 u32 host_page_size, host_huge_page_size, dram_page_size; 2773 2774 atomic64_set(&ctx->dram_phys_mem, 0); 2775 2776 /* 2777 * - If MMU is enabled, init the ranges as usual. 2778 * - If MMU is disabled, in case of host mapping, the returned address 2779 * is the given one. 2780 * In case of DRAM mapping, the returned address is the physical 2781 * address of the memory related to the given handle. 2782 */ 2783 if (!ctx->hdev->mmu_enable) 2784 return 0; 2785 2786 dram_range_start = prop->dmmu.start_addr; 2787 dram_range_end = prop->dmmu.end_addr - 1; 2788 dram_page_size = prop->dram_page_size ? 2789 prop->dram_page_size : prop->dmmu.page_size; 2790 host_range_start = prop->pmmu.start_addr; 2791 host_range_end = prop->pmmu.end_addr - 1; 2792 host_page_size = prop->pmmu.page_size; 2793 host_huge_range_start = prop->pmmu_huge.start_addr; 2794 host_huge_range_end = prop->pmmu_huge.end_addr - 1; 2795 host_huge_page_size = prop->pmmu_huge.page_size; 2796 2797 return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end, 2798 host_page_size, host_huge_range_start, 2799 host_huge_range_end, host_huge_page_size, 2800 dram_range_start, dram_range_end, dram_page_size); 2801 } 2802 2803 /** 2804 * hl_vm_ctx_fini() - virtual memory teardown of context. 2805 * @ctx: pointer to the habanalabs context structure. 2806 * 2807 * This function perform teardown the following: 2808 * - Virtual block list of available virtual memory. 2809 * - Virtual address to area descriptor hashtable. 2810 * - MMU for context. 2811 * 2812 * In addition this function does the following: 2813 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The 2814 * hashtable should be empty as no valid mappings should exist at this 2815 * point. 2816 * - Frees any existing physical page list from the idr which relates to the 2817 * current context asid. 2818 * - This function checks the virtual block list for correctness. At this point 2819 * the list should contain one element which describes the whole virtual 2820 * memory range of the context. Otherwise, a warning is printed. 2821 */ 2822 void hl_vm_ctx_fini(struct hl_ctx *ctx) 2823 { 2824 struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node; 2825 struct hl_device *hdev = ctx->hdev; 2826 struct hl_vm_hash_node *hnode; 2827 struct hl_vm *vm = &hdev->vm; 2828 struct hlist_node *tmp_node; 2829 struct list_head free_list; 2830 struct hl_mem_in args; 2831 int i; 2832 2833 if (!hdev->mmu_enable) 2834 return; 2835 2836 hl_debugfs_remove_ctx_mem_hash(hdev, ctx); 2837 2838 /* 2839 * Clearly something went wrong on hard reset so no point in printing 2840 * another side effect error 2841 */ 2842 if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash)) 2843 dev_dbg(hdev->dev, 2844 "user released device without removing its memory mappings\n"); 2845 2846 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) { 2847 dev_dbg(hdev->dev, 2848 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n", 2849 hnode->vaddr, ctx->asid); 2850 args.unmap.device_virt_addr = hnode->vaddr; 2851 unmap_device_va(ctx, &args, true); 2852 } 2853 2854 mutex_lock(&hdev->mmu_lock); 2855 2856 /* invalidate the cache once after the unmapping loop */ 2857 hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); 2858 hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK); 2859 2860 mutex_unlock(&hdev->mmu_lock); 2861 2862 INIT_LIST_HEAD(&free_list); 2863 2864 spin_lock(&vm->idr_lock); 2865 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i) 2866 if (phys_pg_list->asid == ctx->asid) { 2867 dev_dbg(hdev->dev, 2868 "page list 0x%px of asid %d is still alive\n", 2869 phys_pg_list, ctx->asid); 2870 2871 atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem); 2872 idr_remove(&vm->phys_pg_pack_handles, i); 2873 list_add(&phys_pg_list->node, &free_list); 2874 } 2875 spin_unlock(&vm->idr_lock); 2876 2877 list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node) 2878 free_phys_pg_pack(hdev, phys_pg_list); 2879 2880 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]); 2881 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]); 2882 2883 if (hdev->pmmu_huge_range) 2884 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); 2885 2886 mutex_destroy(&ctx->mem_hash_lock); 2887 hl_mmu_ctx_fini(ctx); 2888 2889 /* In this case we need to clear the global accounting of DRAM usage 2890 * because the user notifies us on allocations. If the user is no more, 2891 * all DRAM is available 2892 */ 2893 if (ctx->asid != HL_KERNEL_ASID_ID && 2894 !hdev->asic_prop.dram_supports_virtual_memory) 2895 atomic64_set(&hdev->dram_used_mem, 0); 2896 } 2897 2898 /** 2899 * hl_vm_init() - initialize virtual memory module. 2900 * @hdev: pointer to the habanalabs device structure. 2901 * 2902 * This function initializes the following: 2903 * - MMU module. 2904 * - DRAM physical pages pool of 2MB. 2905 * - Idr for device memory allocation handles. 2906 */ 2907 int hl_vm_init(struct hl_device *hdev) 2908 { 2909 struct asic_fixed_properties *prop = &hdev->asic_prop; 2910 struct hl_vm *vm = &hdev->vm; 2911 int rc; 2912 2913 if (is_power_of_2(prop->dram_page_size)) 2914 vm->dram_pg_pool = 2915 gen_pool_create(__ffs(prop->dram_page_size), -1); 2916 else 2917 vm->dram_pg_pool = 2918 gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1); 2919 2920 if (!vm->dram_pg_pool) { 2921 dev_err(hdev->dev, "Failed to create dram page pool\n"); 2922 return -ENOMEM; 2923 } 2924 2925 kref_init(&vm->dram_pg_pool_refcount); 2926 2927 rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address, 2928 prop->dram_end_address - prop->dram_user_base_address, 2929 -1); 2930 2931 if (rc) { 2932 dev_err(hdev->dev, 2933 "Failed to add memory to dram page pool %d\n", rc); 2934 goto pool_add_err; 2935 } 2936 2937 spin_lock_init(&vm->idr_lock); 2938 idr_init(&vm->phys_pg_pack_handles); 2939 2940 atomic64_set(&hdev->dram_used_mem, 0); 2941 2942 vm->init_done = true; 2943 2944 return 0; 2945 2946 pool_add_err: 2947 gen_pool_destroy(vm->dram_pg_pool); 2948 2949 return rc; 2950 } 2951 2952 /** 2953 * hl_vm_fini() - virtual memory module teardown. 2954 * @hdev: pointer to the habanalabs device structure. 2955 * 2956 * This function perform teardown to the following: 2957 * - Idr for device memory allocation handles. 2958 * - DRAM physical pages pool of 2MB. 2959 * - MMU module. 2960 */ 2961 void hl_vm_fini(struct hl_device *hdev) 2962 { 2963 struct hl_vm *vm = &hdev->vm; 2964 2965 if (!vm->init_done) 2966 return; 2967 2968 /* 2969 * At this point all the contexts should be freed and hence no DRAM 2970 * memory should be in use. Hence the DRAM pool should be freed here. 2971 */ 2972 if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1) 2973 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n", 2974 __func__); 2975 2976 vm->init_done = false; 2977 } 2978 2979 /** 2980 * hl_hw_block_mem_init() - HW block memory initialization. 2981 * @ctx: pointer to the habanalabs context structure. 2982 * 2983 * This function initializes the HW block virtual mapped addresses list and 2984 * it's lock. 2985 */ 2986 void hl_hw_block_mem_init(struct hl_ctx *ctx) 2987 { 2988 mutex_init(&ctx->hw_block_list_lock); 2989 INIT_LIST_HEAD(&ctx->hw_block_mem_list); 2990 } 2991 2992 /** 2993 * hl_hw_block_mem_fini() - HW block memory teardown. 2994 * @ctx: pointer to the habanalabs context structure. 2995 * 2996 * This function clears the HW block virtual mapped addresses list and destroys 2997 * it's lock. 2998 */ 2999 void hl_hw_block_mem_fini(struct hl_ctx *ctx) 3000 { 3001 struct hl_vm_hw_block_list_node *lnode, *tmp; 3002 3003 if (!list_empty(&ctx->hw_block_mem_list)) 3004 dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n"); 3005 3006 list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) { 3007 list_del(&lnode->node); 3008 kfree(lnode); 3009 } 3010 3011 mutex_destroy(&ctx->hw_block_list_lock); 3012 } 3013