1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 #include "../include/hw_ip/mmu/mmu_general.h"
11 
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pci-p2pdma.h>
16 
17 MODULE_IMPORT_NS(DMA_BUF);
18 
19 #define HL_MMU_DEBUG	0
20 
21 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
22 #define DRAM_POOL_PAGE_SIZE	SZ_8M
23 
24 #define MEM_HANDLE_INVALID	ULONG_MAX
25 
26 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
27 			struct hl_mem_in *args, u64 *handle);
28 
29 static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
30 {
31 	struct asic_fixed_properties *prop = &hdev->asic_prop;
32 	u64 psize;
33 
34 	/*
35 	 * for ASIC that supports setting the allocation page size by user we will address
36 	 * user's choice only if it is not 0 (as 0 means taking the default page size)
37 	 */
38 	if (prop->supports_user_set_page_size && args->alloc.page_size) {
39 		psize = args->alloc.page_size;
40 
41 		if (!is_power_of_2(psize)) {
42 			dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
43 			return -EINVAL;
44 		}
45 	} else {
46 		psize = prop->device_mem_alloc_default_page_size;
47 	}
48 
49 	*page_size = psize;
50 
51 	return 0;
52 }
53 
54 /*
55  * The va ranges in context object contain a list with the available chunks of
56  * device virtual memory.
57  * There is one range for host allocations and one for DRAM allocations.
58  *
59  * On initialization each range contains one chunk of all of its available
60  * virtual range which is a half of the total device virtual range.
61  *
62  * On each mapping of physical pages, a suitable virtual range chunk (with a
63  * minimum size) is selected from the list. If the chunk size equals the
64  * requested size, the chunk is returned. Otherwise, the chunk is split into
65  * two chunks - one to return as result and a remainder to stay in the list.
66  *
67  * On each Unmapping of a virtual address, the relevant virtual chunk is
68  * returned to the list. The chunk is added to the list and if its edges match
69  * the edges of the adjacent chunks (means a contiguous chunk can be created),
70  * the chunks are merged.
71  *
72  * On finish, the list is checked to have only one chunk of all the relevant
73  * virtual range (which is a half of the device total virtual range).
74  * If not (means not all mappings were unmapped), a warning is printed.
75  */
76 
77 /*
78  * alloc_device_memory() - allocate device memory.
79  * @ctx: pointer to the context structure.
80  * @args: host parameters containing the requested size.
81  * @ret_handle: result handle.
82  *
83  * This function does the following:
84  * - Allocate the requested size rounded up to 'dram_page_size' pages.
85  * - Return unique handle for later map/unmap/free.
86  */
87 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
88 				u32 *ret_handle)
89 {
90 	struct hl_device *hdev = ctx->hdev;
91 	struct hl_vm *vm = &hdev->vm;
92 	struct hl_vm_phys_pg_pack *phys_pg_pack;
93 	u64 paddr = 0, total_size, num_pgs, i;
94 	u32 num_curr_pgs, page_size;
95 	bool contiguous;
96 	int handle, rc;
97 
98 	num_curr_pgs = 0;
99 
100 	rc = set_alloc_page_size(hdev, args, &page_size);
101 	if (rc)
102 		return rc;
103 
104 	num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
105 	total_size = num_pgs * page_size;
106 
107 	if (!total_size) {
108 		dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
109 		return -EINVAL;
110 	}
111 
112 	contiguous = args->flags & HL_MEM_CONTIGUOUS;
113 
114 	if (contiguous) {
115 		if (is_power_of_2(page_size))
116 			paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
117 								     total_size, NULL, page_size);
118 		else
119 			paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
120 		if (!paddr) {
121 			dev_err(hdev->dev,
122 				"Cannot allocate %llu contiguous pages with total size of %llu\n",
123 				num_pgs, total_size);
124 			return -ENOMEM;
125 		}
126 	}
127 
128 	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
129 	if (!phys_pg_pack) {
130 		rc = -ENOMEM;
131 		goto pages_pack_err;
132 	}
133 
134 	phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
135 	phys_pg_pack->asid = ctx->asid;
136 	phys_pg_pack->npages = num_pgs;
137 	phys_pg_pack->page_size = page_size;
138 	phys_pg_pack->total_size = total_size;
139 	phys_pg_pack->flags = args->flags;
140 	phys_pg_pack->contiguous = contiguous;
141 
142 	phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
143 	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
144 		rc = -ENOMEM;
145 		goto pages_arr_err;
146 	}
147 
148 	if (phys_pg_pack->contiguous) {
149 		for (i = 0 ; i < num_pgs ; i++)
150 			phys_pg_pack->pages[i] = paddr + i * page_size;
151 	} else {
152 		for (i = 0 ; i < num_pgs ; i++) {
153 			if (is_power_of_2(page_size))
154 				phys_pg_pack->pages[i] =
155 					(uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
156 									    page_size, NULL,
157 									    page_size);
158 			else
159 				phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
160 									page_size);
161 
162 			if (!phys_pg_pack->pages[i]) {
163 				dev_err(hdev->dev,
164 					"Cannot allocate device memory (out of memory)\n");
165 				rc = -ENOMEM;
166 				goto page_err;
167 			}
168 
169 			num_curr_pgs++;
170 		}
171 	}
172 
173 	spin_lock(&vm->idr_lock);
174 	handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
175 				GFP_ATOMIC);
176 	spin_unlock(&vm->idr_lock);
177 
178 	if (handle < 0) {
179 		dev_err(hdev->dev, "Failed to get handle for page\n");
180 		rc = -EFAULT;
181 		goto idr_err;
182 	}
183 
184 	for (i = 0 ; i < num_pgs ; i++)
185 		kref_get(&vm->dram_pg_pool_refcount);
186 
187 	phys_pg_pack->handle = handle;
188 
189 	atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
190 	atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
191 
192 	*ret_handle = handle;
193 
194 	return 0;
195 
196 idr_err:
197 page_err:
198 	if (!phys_pg_pack->contiguous)
199 		for (i = 0 ; i < num_curr_pgs ; i++)
200 			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
201 					page_size);
202 
203 	kvfree(phys_pg_pack->pages);
204 pages_arr_err:
205 	kfree(phys_pg_pack);
206 pages_pack_err:
207 	if (contiguous)
208 		gen_pool_free(vm->dram_pg_pool, paddr, total_size);
209 
210 	return rc;
211 }
212 
213 /**
214  * dma_map_host_va() - DMA mapping of the given host virtual address.
215  * @hdev: habanalabs device structure.
216  * @addr: the host virtual address of the memory area.
217  * @size: the size of the memory area.
218  * @p_userptr: pointer to result userptr structure.
219  *
220  * This function does the following:
221  * - Allocate userptr structure.
222  * - Pin the given host memory using the userptr structure.
223  * - Perform DMA mapping to have the DMA addresses of the pages.
224  */
225 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
226 				struct hl_userptr **p_userptr)
227 {
228 	struct hl_userptr *userptr;
229 	int rc;
230 
231 	userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
232 	if (!userptr) {
233 		rc = -ENOMEM;
234 		goto userptr_err;
235 	}
236 
237 	rc = hl_pin_host_memory(hdev, addr, size, userptr);
238 	if (rc)
239 		goto pin_err;
240 
241 	userptr->dma_mapped = true;
242 	userptr->dir = DMA_BIDIRECTIONAL;
243 	userptr->vm_type = VM_TYPE_USERPTR;
244 
245 	*p_userptr = userptr;
246 
247 	rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
248 	if (rc) {
249 		dev_err(hdev->dev, "failed to map sgt with DMA region\n");
250 		goto dma_map_err;
251 	}
252 
253 	return 0;
254 
255 dma_map_err:
256 	hl_unpin_host_memory(hdev, userptr);
257 pin_err:
258 	kfree(userptr);
259 userptr_err:
260 
261 	return rc;
262 }
263 
264 /**
265  * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
266  * @hdev: habanalabs device structure.
267  * @userptr: userptr to free.
268  *
269  * This function does the following:
270  * - Unpins the physical pages.
271  * - Frees the userptr structure.
272  */
273 static void dma_unmap_host_va(struct hl_device *hdev,
274 				struct hl_userptr *userptr)
275 {
276 	hl_unpin_host_memory(hdev, userptr);
277 	kfree(userptr);
278 }
279 
280 /**
281  * dram_pg_pool_do_release() - free DRAM pages pool
282  * @ref: pointer to reference object.
283  *
284  * This function does the following:
285  * - Frees the idr structure of physical pages handles.
286  * - Frees the generic pool of DRAM physical pages.
287  */
288 static void dram_pg_pool_do_release(struct kref *ref)
289 {
290 	struct hl_vm *vm = container_of(ref, struct hl_vm,
291 			dram_pg_pool_refcount);
292 
293 	/*
294 	 * free the idr here as only here we know for sure that there are no
295 	 * allocated physical pages and hence there are no handles in use
296 	 */
297 	idr_destroy(&vm->phys_pg_pack_handles);
298 	gen_pool_destroy(vm->dram_pg_pool);
299 }
300 
301 /**
302  * free_phys_pg_pack() - free physical page pack.
303  * @hdev: habanalabs device structure.
304  * @phys_pg_pack: physical page pack to free.
305  *
306  * This function does the following:
307  * - For DRAM memory only
308  *   - iterate over the pack, free each physical block structure by
309  *     returning it to the general pool.
310  * - Free the hl_vm_phys_pg_pack structure.
311  */
312 static void free_phys_pg_pack(struct hl_device *hdev,
313 				struct hl_vm_phys_pg_pack *phys_pg_pack)
314 {
315 	struct hl_vm *vm = &hdev->vm;
316 	u64 i;
317 
318 	if (phys_pg_pack->created_from_userptr)
319 		goto end;
320 
321 	if (phys_pg_pack->contiguous) {
322 		gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
323 			phys_pg_pack->total_size);
324 
325 		for (i = 0; i < phys_pg_pack->npages ; i++)
326 			kref_put(&vm->dram_pg_pool_refcount,
327 				dram_pg_pool_do_release);
328 	} else {
329 		for (i = 0 ; i < phys_pg_pack->npages ; i++) {
330 			gen_pool_free(vm->dram_pg_pool,
331 				phys_pg_pack->pages[i],
332 				phys_pg_pack->page_size);
333 			kref_put(&vm->dram_pg_pool_refcount,
334 				dram_pg_pool_do_release);
335 		}
336 	}
337 
338 end:
339 	kvfree(phys_pg_pack->pages);
340 	kfree(phys_pg_pack);
341 
342 	return;
343 }
344 
345 /**
346  * free_device_memory() - free device memory.
347  * @ctx: pointer to the context structure.
348  * @args: host parameters containing the requested size.
349  *
350  * This function does the following:
351  * - Free the device memory related to the given handle.
352  */
353 static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
354 {
355 	struct hl_device *hdev = ctx->hdev;
356 	struct hl_vm *vm = &hdev->vm;
357 	struct hl_vm_phys_pg_pack *phys_pg_pack;
358 	u32 handle = args->free.handle;
359 
360 	spin_lock(&vm->idr_lock);
361 	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
362 	if (!phys_pg_pack) {
363 		spin_unlock(&vm->idr_lock);
364 		dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
365 		return -EINVAL;
366 	}
367 
368 	if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
369 		spin_unlock(&vm->idr_lock);
370 		dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
371 		return -EINVAL;
372 	}
373 
374 	/* must remove from idr before the freeing of the physical pages as the refcount of the pool
375 	 * is also the trigger of the idr destroy
376 	 */
377 	idr_remove(&vm->phys_pg_pack_handles, handle);
378 	spin_unlock(&vm->idr_lock);
379 
380 	atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
381 	atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
382 
383 	free_phys_pg_pack(hdev, phys_pg_pack);
384 
385 	return 0;
386 }
387 
388 /**
389  * clear_va_list_locked() - free virtual addresses list.
390  * @hdev: habanalabs device structure.
391  * @va_list: list of virtual addresses to free.
392  *
393  * This function does the following:
394  * - Iterate over the list and free each virtual addresses block.
395  *
396  * This function should be called only when va_list lock is taken.
397  */
398 static void clear_va_list_locked(struct hl_device *hdev,
399 		struct list_head *va_list)
400 {
401 	struct hl_vm_va_block *va_block, *tmp;
402 
403 	list_for_each_entry_safe(va_block, tmp, va_list, node) {
404 		list_del(&va_block->node);
405 		kfree(va_block);
406 	}
407 }
408 
409 /**
410  * print_va_list_locked() - print virtual addresses list.
411  * @hdev: habanalabs device structure.
412  * @va_list: list of virtual addresses to print.
413  *
414  * This function does the following:
415  * - Iterate over the list and print each virtual addresses block.
416  *
417  * This function should be called only when va_list lock is taken.
418  */
419 static void print_va_list_locked(struct hl_device *hdev,
420 		struct list_head *va_list)
421 {
422 #if HL_MMU_DEBUG
423 	struct hl_vm_va_block *va_block;
424 
425 	dev_dbg(hdev->dev, "print va list:\n");
426 
427 	list_for_each_entry(va_block, va_list, node)
428 		dev_dbg(hdev->dev,
429 			"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
430 			va_block->start, va_block->end, va_block->size);
431 #endif
432 }
433 
434 /**
435  * merge_va_blocks_locked() - merge a virtual block if possible.
436  * @hdev: pointer to the habanalabs device structure.
437  * @va_list: pointer to the virtual addresses block list.
438  * @va_block: virtual block to merge with adjacent blocks.
439  *
440  * This function does the following:
441  * - Merge the given blocks with the adjacent blocks if their virtual ranges
442  *   create a contiguous virtual range.
443  *
444  * This Function should be called only when va_list lock is taken.
445  */
446 static void merge_va_blocks_locked(struct hl_device *hdev,
447 		struct list_head *va_list, struct hl_vm_va_block *va_block)
448 {
449 	struct hl_vm_va_block *prev, *next;
450 
451 	prev = list_prev_entry(va_block, node);
452 	if (&prev->node != va_list && prev->end + 1 == va_block->start) {
453 		prev->end = va_block->end;
454 		prev->size = prev->end - prev->start + 1;
455 		list_del(&va_block->node);
456 		kfree(va_block);
457 		va_block = prev;
458 	}
459 
460 	next = list_next_entry(va_block, node);
461 	if (&next->node != va_list && va_block->end + 1 == next->start) {
462 		next->start = va_block->start;
463 		next->size = next->end - next->start + 1;
464 		list_del(&va_block->node);
465 		kfree(va_block);
466 	}
467 }
468 
469 /**
470  * add_va_block_locked() - add a virtual block to the virtual addresses list.
471  * @hdev: pointer to the habanalabs device structure.
472  * @va_list: pointer to the virtual addresses block list.
473  * @start: start virtual address.
474  * @end: end virtual address.
475  *
476  * This function does the following:
477  * - Add the given block to the virtual blocks list and merge with other blocks
478  *   if a contiguous virtual block can be created.
479  *
480  * This Function should be called only when va_list lock is taken.
481  */
482 static int add_va_block_locked(struct hl_device *hdev,
483 		struct list_head *va_list, u64 start, u64 end)
484 {
485 	struct hl_vm_va_block *va_block, *res = NULL;
486 	u64 size = end - start + 1;
487 
488 	print_va_list_locked(hdev, va_list);
489 
490 	list_for_each_entry(va_block, va_list, node) {
491 		/* TODO: remove upon matureness */
492 		if (hl_mem_area_crosses_range(start, size, va_block->start,
493 				va_block->end)) {
494 			dev_err(hdev->dev,
495 				"block crossing ranges at start 0x%llx, end 0x%llx\n",
496 				va_block->start, va_block->end);
497 			return -EINVAL;
498 		}
499 
500 		if (va_block->end < start)
501 			res = va_block;
502 	}
503 
504 	va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
505 	if (!va_block)
506 		return -ENOMEM;
507 
508 	va_block->start = start;
509 	va_block->end = end;
510 	va_block->size = size;
511 
512 	if (!res)
513 		list_add(&va_block->node, va_list);
514 	else
515 		list_add(&va_block->node, &res->node);
516 
517 	merge_va_blocks_locked(hdev, va_list, va_block);
518 
519 	print_va_list_locked(hdev, va_list);
520 
521 	return 0;
522 }
523 
524 /**
525  * add_va_block() - wrapper for add_va_block_locked.
526  * @hdev: pointer to the habanalabs device structure.
527  * @va_range: pointer to the virtual addresses range object.
528  * @start: start virtual address.
529  * @end: end virtual address.
530  *
531  * This function does the following:
532  * - Takes the list lock and calls add_va_block_locked.
533  */
534 static inline int add_va_block(struct hl_device *hdev,
535 		struct hl_va_range *va_range, u64 start, u64 end)
536 {
537 	int rc;
538 
539 	mutex_lock(&va_range->lock);
540 	rc = add_va_block_locked(hdev, &va_range->list, start, end);
541 	mutex_unlock(&va_range->lock);
542 
543 	return rc;
544 }
545 
546 /**
547  * is_hint_crossing_range() - check if hint address crossing specified reserved.
548  * @range_type: virtual space range type.
549  * @start_addr: start virtual address.
550  * @size: block size.
551  * @prop: asic properties structure to retrieve reserved ranges from.
552  */
553 static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
554 		u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
555 	bool range_cross;
556 
557 	if (range_type == HL_VA_RANGE_TYPE_DRAM)
558 		range_cross =
559 			hl_mem_area_crosses_range(start_addr, size,
560 			prop->hints_dram_reserved_va_range.start_addr,
561 			prop->hints_dram_reserved_va_range.end_addr);
562 	else if (range_type == HL_VA_RANGE_TYPE_HOST)
563 		range_cross =
564 			hl_mem_area_crosses_range(start_addr,	size,
565 			prop->hints_host_reserved_va_range.start_addr,
566 			prop->hints_host_reserved_va_range.end_addr);
567 	else
568 		range_cross =
569 			hl_mem_area_crosses_range(start_addr, size,
570 			prop->hints_host_hpage_reserved_va_range.start_addr,
571 			prop->hints_host_hpage_reserved_va_range.end_addr);
572 
573 	return range_cross;
574 }
575 
576 /**
577  * get_va_block() - get a virtual block for the given size and alignment.
578  *
579  * @hdev: pointer to the habanalabs device structure.
580  * @va_range: pointer to the virtual addresses range.
581  * @size: requested block size.
582  * @hint_addr: hint for requested address by the user.
583  * @va_block_align: required alignment of the virtual block start address.
584  * @range_type: va range type (host, dram)
585  * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
586  *
587  * This function does the following:
588  * - Iterate on the virtual block list to find a suitable virtual block for the
589  *   given size, hint address and alignment.
590  * - Reserve the requested block and update the list.
591  * - Return the start address of the virtual block.
592  */
593 static u64 get_va_block(struct hl_device *hdev,
594 				struct hl_va_range *va_range,
595 				u64 size, u64 hint_addr, u32 va_block_align,
596 				enum hl_va_range_type range_type,
597 				u32 flags)
598 {
599 	struct hl_vm_va_block *va_block, *new_va_block = NULL;
600 	struct asic_fixed_properties *prop = &hdev->asic_prop;
601 	u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
602 		align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
603 		dram_hint_mask = prop->dram_hints_align_mask;
604 	bool add_prev = false;
605 	bool is_align_pow_2  = is_power_of_2(va_range->page_size);
606 	bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
607 	bool force_hint = flags & HL_MEM_FORCE_HINT;
608 	int rc;
609 
610 	if (is_align_pow_2)
611 		align_mask = ~((u64)va_block_align - 1);
612 	else
613 		/*
614 		 * with non-power-of-2 range we work only with page granularity
615 		 * and the start address is page aligned,
616 		 * so no need for alignment checking.
617 		 */
618 		size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
619 							va_range->page_size;
620 
621 	tmp_hint_addr = hint_addr & ~dram_hint_mask;
622 
623 	/* Check if we need to ignore hint address */
624 	if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
625 			(!is_align_pow_2 && is_hint_dram_addr &&
626 			do_div(tmp_hint_addr, va_range->page_size))) {
627 
628 		if (force_hint) {
629 			/* Hint must be respected, so here we just fail */
630 			dev_err(hdev->dev,
631 				"Hint address 0x%llx is not page aligned - cannot be respected\n",
632 				hint_addr);
633 			return 0;
634 		}
635 
636 		dev_dbg(hdev->dev,
637 			"Hint address 0x%llx will be ignored because it is not aligned\n",
638 			hint_addr);
639 		hint_addr = 0;
640 	}
641 
642 	mutex_lock(&va_range->lock);
643 
644 	print_va_list_locked(hdev, &va_range->list);
645 
646 	list_for_each_entry(va_block, &va_range->list, node) {
647 		/* Calc the first possible aligned addr */
648 		valid_start = va_block->start;
649 
650 		if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
651 			valid_start &= align_mask;
652 			valid_start += va_block_align;
653 			if (valid_start > va_block->end)
654 				continue;
655 		}
656 
657 		valid_size = va_block->end - valid_start + 1;
658 		if (valid_size < size)
659 			continue;
660 
661 		/*
662 		 * In case hint address is 0, and hints_range_reservation
663 		 * property enabled, then avoid allocating va blocks from the
664 		 * range reserved for hint addresses
665 		 */
666 		if (prop->hints_range_reservation && !hint_addr)
667 			if (is_hint_crossing_range(range_type, valid_start,
668 					size, prop))
669 				continue;
670 
671 		/* Pick the minimal length block which has the required size */
672 		if (!new_va_block || (valid_size < reserved_valid_size)) {
673 			new_va_block = va_block;
674 			reserved_valid_start = valid_start;
675 			reserved_valid_size = valid_size;
676 		}
677 
678 		if (hint_addr && hint_addr >= valid_start &&
679 					(hint_addr + size) <= va_block->end) {
680 			new_va_block = va_block;
681 			reserved_valid_start = hint_addr;
682 			reserved_valid_size = valid_size;
683 			break;
684 		}
685 	}
686 
687 	if (!new_va_block) {
688 		dev_err(hdev->dev, "no available va block for size %llu\n",
689 								size);
690 		goto out;
691 	}
692 
693 	if (force_hint && reserved_valid_start != hint_addr) {
694 		/* Hint address must be respected. If we are here - this means
695 		 * we could not respect it.
696 		 */
697 		dev_err(hdev->dev,
698 			"Hint address 0x%llx could not be respected\n",
699 			hint_addr);
700 		reserved_valid_start = 0;
701 		goto out;
702 	}
703 
704 	/*
705 	 * Check if there is some leftover range due to reserving the new
706 	 * va block, then return it to the main virtual addresses list.
707 	 */
708 	if (reserved_valid_start > new_va_block->start) {
709 		prev_start = new_va_block->start;
710 		prev_end = reserved_valid_start - 1;
711 
712 		new_va_block->start = reserved_valid_start;
713 		new_va_block->size = reserved_valid_size;
714 
715 		add_prev = true;
716 	}
717 
718 	if (new_va_block->size > size) {
719 		new_va_block->start += size;
720 		new_va_block->size = new_va_block->end - new_va_block->start + 1;
721 	} else {
722 		list_del(&new_va_block->node);
723 		kfree(new_va_block);
724 	}
725 
726 	if (add_prev) {
727 		rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end);
728 		if (rc) {
729 			reserved_valid_start = 0;
730 			goto out;
731 		}
732 	}
733 
734 	print_va_list_locked(hdev, &va_range->list);
735 out:
736 	mutex_unlock(&va_range->lock);
737 
738 	return reserved_valid_start;
739 }
740 
741 /*
742  * hl_reserve_va_block() - reserve a virtual block of a given size.
743  * @hdev: pointer to the habanalabs device structure.
744  * @ctx: current context
745  * @type: virtual addresses range type.
746  * @size: requested block size.
747  * @alignment: required alignment in bytes of the virtual block start address,
748  *             0 means no alignment.
749  *
750  * This function does the following:
751  * - Iterate on the virtual block list to find a suitable virtual block for the
752  *   given size and alignment.
753  * - Reserve the requested block and update the list.
754  * - Return the start address of the virtual block.
755  */
756 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
757 		enum hl_va_range_type type, u64 size, u32 alignment)
758 {
759 	return get_va_block(hdev, ctx->va_range[type], size, 0,
760 			max(alignment, ctx->va_range[type]->page_size),
761 			type, 0);
762 }
763 
764 /**
765  * hl_get_va_range_type() - get va_range type for the given address and size.
766  * @ctx: context to fetch va_range from.
767  * @address: the start address of the area we want to validate.
768  * @size: the size in bytes of the area we want to validate.
769  * @type: returned va_range type.
770  *
771  * Return: true if the area is inside a valid range, false otherwise.
772  */
773 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
774 			enum hl_va_range_type *type)
775 {
776 	int i;
777 
778 	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
779 		if (hl_mem_area_inside_range(address, size,
780 				ctx->va_range[i]->start_addr,
781 				ctx->va_range[i]->end_addr)) {
782 			*type = i;
783 			return 0;
784 		}
785 	}
786 
787 	return -EINVAL;
788 }
789 
790 /**
791  * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
792  * @hdev: pointer to the habanalabs device structure
793  * @ctx: pointer to the context structure.
794  * @start_addr: start virtual address.
795  * @size: number of bytes to unreserve.
796  *
797  * This function does the following:
798  * - Takes the list lock and calls add_va_block_locked.
799  */
800 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
801 		u64 start_addr, u64 size)
802 {
803 	enum hl_va_range_type type;
804 	int rc;
805 
806 	rc = hl_get_va_range_type(ctx, start_addr, size, &type);
807 	if (rc) {
808 		dev_err(hdev->dev,
809 			"cannot find va_range for va %#llx size %llu",
810 			start_addr, size);
811 		return rc;
812 	}
813 
814 	rc = add_va_block(hdev, ctx->va_range[type], start_addr,
815 						start_addr + size - 1);
816 	if (rc)
817 		dev_warn(hdev->dev,
818 			"add va block failed for vaddr: 0x%llx\n", start_addr);
819 
820 	return rc;
821 }
822 
823 /**
824  * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
825  *                                    memory
826  * @ctx: pointer to the context structure.
827  * @userptr: userptr to initialize from.
828  * @pphys_pg_pack: result pointer.
829  * @force_regular_page: tell the function to ignore huge page optimization,
830  *                      even if possible. Needed for cases where the device VA
831  *                      is allocated before we know the composition of the
832  *                      physical pages
833  *
834  * This function does the following:
835  * - Pin the physical pages related to the given virtual block.
836  * - Create a physical page pack from the physical pages related to the given
837  *   virtual block.
838  */
839 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
840 				struct hl_userptr *userptr,
841 				struct hl_vm_phys_pg_pack **pphys_pg_pack,
842 				bool force_regular_page)
843 {
844 	u32 npages, page_size = PAGE_SIZE,
845 		huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
846 	u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
847 	struct hl_vm_phys_pg_pack *phys_pg_pack;
848 	bool first = true, is_huge_page_opt;
849 	u64 page_mask, total_npages;
850 	struct scatterlist *sg;
851 	dma_addr_t dma_addr;
852 	int rc, i, j;
853 
854 	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
855 	if (!phys_pg_pack)
856 		return -ENOMEM;
857 
858 	phys_pg_pack->vm_type = userptr->vm_type;
859 	phys_pg_pack->created_from_userptr = true;
860 	phys_pg_pack->asid = ctx->asid;
861 	atomic_set(&phys_pg_pack->mapping_cnt, 1);
862 
863 	is_huge_page_opt = (force_regular_page ? false : true);
864 
865 	/* Only if all dma_addrs are aligned to 2MB and their
866 	 * sizes is at least 2MB, we can use huge page mapping.
867 	 * We limit the 2MB optimization to this condition,
868 	 * since later on we acquire the related VA range as one
869 	 * consecutive block.
870 	 */
871 	total_npages = 0;
872 	for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
873 		npages = hl_get_sg_info(sg, &dma_addr);
874 
875 		total_npages += npages;
876 
877 		if ((npages % pgs_in_huge_page) ||
878 					(dma_addr & (huge_page_size - 1)))
879 			is_huge_page_opt = false;
880 	}
881 
882 	if (is_huge_page_opt) {
883 		page_size = huge_page_size;
884 		do_div(total_npages, pgs_in_huge_page);
885 	}
886 
887 	page_mask = ~(((u64) page_size) - 1);
888 
889 	phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
890 						GFP_KERNEL);
891 	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
892 		rc = -ENOMEM;
893 		goto page_pack_arr_mem_err;
894 	}
895 
896 	phys_pg_pack->npages = total_npages;
897 	phys_pg_pack->page_size = page_size;
898 	phys_pg_pack->total_size = total_npages * page_size;
899 
900 	j = 0;
901 	for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
902 		npages = hl_get_sg_info(sg, &dma_addr);
903 
904 		/* align down to physical page size and save the offset */
905 		if (first) {
906 			first = false;
907 			phys_pg_pack->offset = dma_addr & (page_size - 1);
908 			dma_addr &= page_mask;
909 		}
910 
911 		while (npages) {
912 			phys_pg_pack->pages[j++] = dma_addr;
913 			dma_addr += page_size;
914 
915 			if (is_huge_page_opt)
916 				npages -= pgs_in_huge_page;
917 			else
918 				npages--;
919 		}
920 	}
921 
922 	*pphys_pg_pack = phys_pg_pack;
923 
924 	return 0;
925 
926 page_pack_arr_mem_err:
927 	kfree(phys_pg_pack);
928 
929 	return rc;
930 }
931 
932 /**
933  * map_phys_pg_pack() - maps the physical page pack..
934  * @ctx: pointer to the context structure.
935  * @vaddr: start address of the virtual area to map from.
936  * @phys_pg_pack: the pack of physical pages to map to.
937  *
938  * This function does the following:
939  * - Maps each chunk of virtual memory to matching physical chunk.
940  * - Stores number of successful mappings in the given argument.
941  * - Returns 0 on success, error code otherwise.
942  */
943 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
944 				struct hl_vm_phys_pg_pack *phys_pg_pack)
945 {
946 	struct hl_device *hdev = ctx->hdev;
947 	u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
948 	u32 page_size = phys_pg_pack->page_size;
949 	int rc = 0;
950 	bool is_host_addr;
951 
952 	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
953 		paddr = phys_pg_pack->pages[i];
954 
955 		rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
956 				(i + 1) == phys_pg_pack->npages);
957 		if (rc) {
958 			dev_err(hdev->dev,
959 				"map failed for handle %u, npages: %llu, mapped: %llu",
960 				phys_pg_pack->handle, phys_pg_pack->npages,
961 				mapped_pg_cnt);
962 			goto err;
963 		}
964 
965 		mapped_pg_cnt++;
966 		next_vaddr += page_size;
967 	}
968 
969 	return 0;
970 
971 err:
972 	is_host_addr = !hl_is_dram_va(hdev, vaddr);
973 
974 	next_vaddr = vaddr;
975 	for (i = 0 ; i < mapped_pg_cnt ; i++) {
976 		if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
977 					(i + 1) == mapped_pg_cnt))
978 			dev_warn_ratelimited(hdev->dev,
979 				"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
980 					phys_pg_pack->handle, next_vaddr,
981 					phys_pg_pack->pages[i], page_size);
982 
983 		next_vaddr += page_size;
984 
985 		/*
986 		 * unmapping on Palladium can be really long, so avoid a CPU
987 		 * soft lockup bug by sleeping a little between unmapping pages
988 		 *
989 		 * In addition, on host num of pages could be huge,
990 		 * because page size could be 4KB, so when unmapping host
991 		 * pages sleep every 32K pages to avoid soft lockup
992 		 */
993 		if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
994 			usleep_range(50, 200);
995 	}
996 
997 	return rc;
998 }
999 
1000 /**
1001  * unmap_phys_pg_pack() - unmaps the physical page pack.
1002  * @ctx: pointer to the context structure.
1003  * @vaddr: start address of the virtual area to unmap.
1004  * @phys_pg_pack: the pack of physical pages to unmap.
1005  */
1006 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
1007 				struct hl_vm_phys_pg_pack *phys_pg_pack)
1008 {
1009 	struct hl_device *hdev = ctx->hdev;
1010 	u64 next_vaddr, i;
1011 	bool is_host_addr;
1012 	u32 page_size;
1013 
1014 	is_host_addr = !hl_is_dram_va(hdev, vaddr);
1015 	page_size = phys_pg_pack->page_size;
1016 	next_vaddr = vaddr;
1017 
1018 	for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1019 		if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
1020 				       (i + 1) == phys_pg_pack->npages))
1021 			dev_warn_ratelimited(hdev->dev,
1022 			"unmap failed for vaddr: 0x%llx\n", next_vaddr);
1023 
1024 		/*
1025 		 * unmapping on Palladium can be really long, so avoid a CPU
1026 		 * soft lockup bug by sleeping a little between unmapping pages
1027 		 *
1028 		 * In addition, on host num of pages could be huge,
1029 		 * because page size could be 4KB, so when unmapping host
1030 		 * pages sleep every 32K pages to avoid soft lockup
1031 		 */
1032 		if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1033 			usleep_range(50, 200);
1034 	}
1035 }
1036 
1037 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
1038 					u64 *paddr)
1039 {
1040 	struct hl_device *hdev = ctx->hdev;
1041 	struct hl_vm *vm = &hdev->vm;
1042 	struct hl_vm_phys_pg_pack *phys_pg_pack;
1043 	u32 handle;
1044 
1045 	handle = lower_32_bits(args->map_device.handle);
1046 	spin_lock(&vm->idr_lock);
1047 	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1048 	if (!phys_pg_pack) {
1049 		spin_unlock(&vm->idr_lock);
1050 		dev_err(hdev->dev, "no match for handle %u\n", handle);
1051 		return -EINVAL;
1052 	}
1053 
1054 	*paddr = phys_pg_pack->pages[0];
1055 
1056 	spin_unlock(&vm->idr_lock);
1057 
1058 	return 0;
1059 }
1060 
1061 /**
1062  * map_device_va() - map the given memory.
1063  * @ctx: pointer to the context structure.
1064  * @args: host parameters with handle/host virtual address.
1065  * @device_addr: pointer to result device virtual address.
1066  *
1067  * This function does the following:
1068  * - If given a physical device memory handle, map to a device virtual block
1069  *   and return the start address of this block.
1070  * - If given a host virtual address and size, find the related physical pages,
1071  *   map a device virtual block to this pages and return the start address of
1072  *   this block.
1073  */
1074 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
1075 {
1076 	struct hl_vm_phys_pg_pack *phys_pg_pack;
1077 	enum hl_va_range_type va_range_type = 0;
1078 	struct hl_device *hdev = ctx->hdev;
1079 	struct hl_userptr *userptr = NULL;
1080 	u32 handle = 0, va_block_align;
1081 	struct hl_vm_hash_node *hnode;
1082 	struct hl_vm *vm = &hdev->vm;
1083 	struct hl_va_range *va_range;
1084 	bool is_userptr, do_prefetch;
1085 	u64 ret_vaddr, hint_addr;
1086 	enum vm_type *vm_type;
1087 	int rc;
1088 
1089 	/* set map flags */
1090 	is_userptr = args->flags & HL_MEM_USERPTR;
1091 	do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
1092 
1093 	/* Assume failure */
1094 	*device_addr = 0;
1095 
1096 	if (is_userptr) {
1097 		u64 addr = args->map_host.host_virt_addr,
1098 			size = args->map_host.mem_size;
1099 		u32 page_size = hdev->asic_prop.pmmu.page_size,
1100 			huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1101 
1102 		rc = dma_map_host_va(hdev, addr, size, &userptr);
1103 		if (rc)
1104 			return rc;
1105 
1106 		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1107 				&phys_pg_pack, false);
1108 		if (rc) {
1109 			dev_err(hdev->dev,
1110 				"unable to init page pack for vaddr 0x%llx\n",
1111 				addr);
1112 			goto init_page_pack_err;
1113 		}
1114 
1115 		vm_type = (enum vm_type *) userptr;
1116 		hint_addr = args->map_host.hint_addr;
1117 		handle = phys_pg_pack->handle;
1118 
1119 		/* get required alignment */
1120 		if (phys_pg_pack->page_size == page_size) {
1121 			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1122 			va_range_type = HL_VA_RANGE_TYPE_HOST;
1123 			/*
1124 			 * huge page alignment may be needed in case of regular
1125 			 * page mapping, depending on the host VA alignment
1126 			 */
1127 			if (addr & (huge_page_size - 1))
1128 				va_block_align = page_size;
1129 			else
1130 				va_block_align = huge_page_size;
1131 		} else {
1132 			/*
1133 			 * huge page alignment is needed in case of huge page
1134 			 * mapping
1135 			 */
1136 			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1137 			va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1138 			va_block_align = huge_page_size;
1139 		}
1140 	} else {
1141 		handle = lower_32_bits(args->map_device.handle);
1142 
1143 		spin_lock(&vm->idr_lock);
1144 		phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1145 		if (!phys_pg_pack) {
1146 			spin_unlock(&vm->idr_lock);
1147 			dev_err(hdev->dev,
1148 				"no match for handle %u\n", handle);
1149 			return -EINVAL;
1150 		}
1151 
1152 		/* increment now to avoid freeing device memory while mapping */
1153 		atomic_inc(&phys_pg_pack->mapping_cnt);
1154 
1155 		spin_unlock(&vm->idr_lock);
1156 
1157 		vm_type = (enum vm_type *) phys_pg_pack;
1158 
1159 		hint_addr = args->map_device.hint_addr;
1160 
1161 		/* DRAM VA alignment is the same as the MMU page size */
1162 		va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1163 		va_range_type = HL_VA_RANGE_TYPE_DRAM;
1164 		va_block_align = hdev->asic_prop.dmmu.page_size;
1165 	}
1166 
1167 	/*
1168 	 * relevant for mapping device physical memory only, as host memory is
1169 	 * implicitly shared
1170 	 */
1171 	if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1172 			phys_pg_pack->asid != ctx->asid) {
1173 		dev_err(hdev->dev,
1174 			"Failed to map memory, handle %u is not shared\n",
1175 			handle);
1176 		rc = -EPERM;
1177 		goto shared_err;
1178 	}
1179 
1180 	hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1181 	if (!hnode) {
1182 		rc = -ENOMEM;
1183 		goto hnode_err;
1184 	}
1185 
1186 	if (hint_addr && phys_pg_pack->offset) {
1187 		if (args->flags & HL_MEM_FORCE_HINT) {
1188 			/* Fail if hint must be respected but it can't be */
1189 			dev_err(hdev->dev,
1190 				"Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1191 				hint_addr, phys_pg_pack->offset);
1192 			rc = -EINVAL;
1193 			goto va_block_err;
1194 		}
1195 		dev_dbg(hdev->dev,
1196 			"Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1197 			hint_addr, phys_pg_pack->offset);
1198 	}
1199 
1200 	ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1201 					hint_addr, va_block_align,
1202 					va_range_type, args->flags);
1203 	if (!ret_vaddr) {
1204 		dev_err(hdev->dev, "no available va block for handle %u\n",
1205 				handle);
1206 		rc = -ENOMEM;
1207 		goto va_block_err;
1208 	}
1209 
1210 	mutex_lock(&hdev->mmu_lock);
1211 
1212 	rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1213 	if (rc) {
1214 		dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle);
1215 		mutex_unlock(&hdev->mmu_lock);
1216 		goto map_err;
1217 	}
1218 
1219 	rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
1220 				ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1221 	mutex_unlock(&hdev->mmu_lock);
1222 	if (rc)
1223 		goto map_err;
1224 
1225 	/*
1226 	 * prefetch is done upon user's request. it is performed in WQ as and so can
1227 	 * be outside the MMU lock. the operation itself is already protected by the mmu lock
1228 	 */
1229 	if (do_prefetch) {
1230 		rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
1231 							phys_pg_pack->total_size);
1232 		if (rc)
1233 			goto map_err;
1234 	}
1235 
1236 	ret_vaddr += phys_pg_pack->offset;
1237 
1238 	hnode->ptr = vm_type;
1239 	hnode->vaddr = ret_vaddr;
1240 	hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle;
1241 
1242 	mutex_lock(&ctx->mem_hash_lock);
1243 	hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1244 	mutex_unlock(&ctx->mem_hash_lock);
1245 
1246 	*device_addr = ret_vaddr;
1247 
1248 	if (is_userptr)
1249 		free_phys_pg_pack(hdev, phys_pg_pack);
1250 
1251 	return rc;
1252 
1253 map_err:
1254 	if (add_va_block(hdev, va_range, ret_vaddr,
1255 				ret_vaddr + phys_pg_pack->total_size - 1))
1256 		dev_warn(hdev->dev,
1257 			"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1258 				handle, ret_vaddr);
1259 
1260 va_block_err:
1261 	kfree(hnode);
1262 hnode_err:
1263 shared_err:
1264 	atomic_dec(&phys_pg_pack->mapping_cnt);
1265 	if (is_userptr)
1266 		free_phys_pg_pack(hdev, phys_pg_pack);
1267 init_page_pack_err:
1268 	if (is_userptr)
1269 		dma_unmap_host_va(hdev, userptr);
1270 
1271 	return rc;
1272 }
1273 
1274 /* Should be called while the context's mem_hash_lock is taken */
1275 static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr)
1276 {
1277 	struct hl_vm_hash_node *hnode;
1278 
1279 	hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr)
1280 		if (vaddr == hnode->vaddr)
1281 			return hnode;
1282 
1283 	return NULL;
1284 }
1285 
1286 /**
1287  * unmap_device_va() - unmap the given device virtual address.
1288  * @ctx: pointer to the context structure.
1289  * @args: host parameters with device virtual address to unmap.
1290  * @ctx_free: true if in context free flow, false otherwise.
1291  *
1292  * This function does the following:
1293  * - unmap the physical pages related to the given virtual address.
1294  * - return the device virtual block to the virtual block list.
1295  */
1296 static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1297 				bool ctx_free)
1298 {
1299 	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1300 	u64 vaddr = args->unmap.device_virt_addr;
1301 	struct asic_fixed_properties *prop;
1302 	struct hl_device *hdev = ctx->hdev;
1303 	struct hl_userptr *userptr = NULL;
1304 	struct hl_vm_hash_node *hnode;
1305 	struct hl_va_range *va_range;
1306 	enum vm_type *vm_type;
1307 	bool is_userptr;
1308 	int rc = 0;
1309 
1310 	prop = &hdev->asic_prop;
1311 
1312 	/* protect from double entrance */
1313 	mutex_lock(&ctx->mem_hash_lock);
1314 	hnode = get_vm_hash_node_locked(ctx, vaddr);
1315 	if (!hnode) {
1316 		mutex_unlock(&ctx->mem_hash_lock);
1317 		dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr);
1318 		return -EINVAL;
1319 	}
1320 
1321 	if (hnode->export_cnt) {
1322 		mutex_unlock(&ctx->mem_hash_lock);
1323 		dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr);
1324 		return -EINVAL;
1325 	}
1326 
1327 	hash_del(&hnode->node);
1328 	mutex_unlock(&ctx->mem_hash_lock);
1329 
1330 	vm_type = hnode->ptr;
1331 
1332 	if (*vm_type == VM_TYPE_USERPTR) {
1333 		is_userptr = true;
1334 		userptr = hnode->ptr;
1335 
1336 		rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1337 							false);
1338 		if (rc) {
1339 			dev_err(hdev->dev,
1340 				"unable to init page pack for vaddr 0x%llx\n",
1341 				vaddr);
1342 			goto vm_type_err;
1343 		}
1344 
1345 		if (phys_pg_pack->page_size ==
1346 					hdev->asic_prop.pmmu.page_size)
1347 			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1348 		else
1349 			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1350 	} else if (*vm_type == VM_TYPE_PHYS_PACK) {
1351 		is_userptr = false;
1352 		va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1353 		phys_pg_pack = hnode->ptr;
1354 	} else {
1355 		dev_warn(hdev->dev,
1356 			"unmap failed, unknown vm desc for vaddr 0x%llx\n",
1357 				vaddr);
1358 		rc = -EFAULT;
1359 		goto vm_type_err;
1360 	}
1361 
1362 	if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1363 		dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1364 		rc = -EINVAL;
1365 		goto mapping_cnt_err;
1366 	}
1367 
1368 	if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1369 		vaddr = prop->dram_base_address +
1370 			DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1371 						phys_pg_pack->page_size) *
1372 							phys_pg_pack->page_size;
1373 	else
1374 		vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1375 
1376 	mutex_lock(&hdev->mmu_lock);
1377 
1378 	unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1379 
1380 	/*
1381 	 * During context free this function is called in a loop to clean all
1382 	 * the context mappings. Hence the cache invalidation can be called once
1383 	 * at the loop end rather than for each iteration
1384 	 */
1385 	if (!ctx_free)
1386 		rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
1387 							phys_pg_pack->total_size);
1388 
1389 	mutex_unlock(&hdev->mmu_lock);
1390 
1391 	/*
1392 	 * If the context is closing we don't need to check for the MMU cache
1393 	 * invalidation return code and update the VA free list as in this flow
1394 	 * we invalidate the MMU cache outside of this unmap function and the VA
1395 	 * free list will be freed anyway.
1396 	 */
1397 	if (!ctx_free) {
1398 		int tmp_rc;
1399 
1400 		tmp_rc = add_va_block(hdev, va_range, vaddr,
1401 					vaddr + phys_pg_pack->total_size - 1);
1402 		if (tmp_rc) {
1403 			dev_warn(hdev->dev,
1404 					"add va block failed for vaddr: 0x%llx\n",
1405 					vaddr);
1406 			if (!rc)
1407 				rc = tmp_rc;
1408 		}
1409 	}
1410 
1411 	atomic_dec(&phys_pg_pack->mapping_cnt);
1412 	kfree(hnode);
1413 
1414 	if (is_userptr) {
1415 		free_phys_pg_pack(hdev, phys_pg_pack);
1416 		dma_unmap_host_va(hdev, userptr);
1417 	}
1418 
1419 	return rc;
1420 
1421 mapping_cnt_err:
1422 	if (is_userptr)
1423 		free_phys_pg_pack(hdev, phys_pg_pack);
1424 vm_type_err:
1425 	mutex_lock(&ctx->mem_hash_lock);
1426 	hash_add(ctx->mem_hash, &hnode->node, vaddr);
1427 	mutex_unlock(&ctx->mem_hash_lock);
1428 
1429 	return rc;
1430 }
1431 
1432 static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
1433 {
1434 	u32 block_id;
1435 	int rc;
1436 
1437 	*handle = 0;
1438 	if (size)
1439 		*size = 0;
1440 
1441 	rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1442 	if (rc)
1443 		return rc;
1444 
1445 	*handle = block_id | HL_MMAP_TYPE_BLOCK;
1446 	*handle <<= PAGE_SHIFT;
1447 
1448 	return 0;
1449 }
1450 
1451 static void hw_block_vm_close(struct vm_area_struct *vma)
1452 {
1453 	struct hl_vm_hw_block_list_node *lnode =
1454 		(struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1455 	struct hl_ctx *ctx = lnode->ctx;
1456 	long new_mmap_size;
1457 
1458 	new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
1459 	if (new_mmap_size > 0) {
1460 		lnode->mapped_size = new_mmap_size;
1461 		return;
1462 	}
1463 
1464 	mutex_lock(&ctx->hw_block_list_lock);
1465 	list_del(&lnode->node);
1466 	mutex_unlock(&ctx->hw_block_list_lock);
1467 	hl_ctx_put(ctx);
1468 	kfree(lnode);
1469 	vma->vm_private_data = NULL;
1470 }
1471 
1472 static const struct vm_operations_struct hw_block_vm_ops = {
1473 	.close = hw_block_vm_close
1474 };
1475 
1476 /**
1477  * hl_hw_block_mmap() - mmap a hw block to user.
1478  * @hpriv: pointer to the private data of the fd
1479  * @vma: pointer to vm_area_struct of the process
1480  *
1481  * Driver increments context reference for every HW block mapped in order
1482  * to prevent user from closing FD without unmapping first
1483  */
1484 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1485 {
1486 	struct hl_vm_hw_block_list_node *lnode;
1487 	struct hl_device *hdev = hpriv->hdev;
1488 	struct hl_ctx *ctx = hpriv->ctx;
1489 	u32 block_id, block_size;
1490 	int rc;
1491 
1492 	/* We use the page offset to hold the block id and thus we need to clear
1493 	 * it before doing the mmap itself
1494 	 */
1495 	block_id = vma->vm_pgoff;
1496 	vma->vm_pgoff = 0;
1497 
1498 	/* Driver only allows mapping of a complete HW block */
1499 	block_size = vma->vm_end - vma->vm_start;
1500 
1501 	if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1502 		dev_err(hdev->dev,
1503 			"user pointer is invalid - 0x%lx\n",
1504 			vma->vm_start);
1505 
1506 		return -EINVAL;
1507 	}
1508 
1509 	lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1510 	if (!lnode)
1511 		return -ENOMEM;
1512 
1513 	rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1514 	if (rc) {
1515 		kfree(lnode);
1516 		return rc;
1517 	}
1518 
1519 	hl_ctx_get(ctx);
1520 
1521 	lnode->ctx = ctx;
1522 	lnode->vaddr = vma->vm_start;
1523 	lnode->block_size = block_size;
1524 	lnode->mapped_size = lnode->block_size;
1525 	lnode->id = block_id;
1526 
1527 	vma->vm_private_data = lnode;
1528 	vma->vm_ops = &hw_block_vm_ops;
1529 
1530 	mutex_lock(&ctx->hw_block_list_lock);
1531 	list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1532 	mutex_unlock(&ctx->hw_block_list_lock);
1533 
1534 	vma->vm_pgoff = block_id;
1535 
1536 	return 0;
1537 }
1538 
1539 static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
1540 			struct device *dev, enum dma_data_direction dir)
1541 {
1542 	dma_addr_t addr;
1543 	int rc;
1544 
1545 	addr = dma_map_resource(dev, bar_address, chunk_size, dir,
1546 				DMA_ATTR_SKIP_CPU_SYNC);
1547 	rc = dma_mapping_error(dev, addr);
1548 	if (rc)
1549 		return rc;
1550 
1551 	sg_set_page(sg, NULL, chunk_size, 0);
1552 	sg_dma_address(sg) = addr;
1553 	sg_dma_len(sg) = chunk_size;
1554 
1555 	return 0;
1556 }
1557 
1558 static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
1559 						u64 page_size, u64 exported_size,
1560 						struct device *dev, enum dma_data_direction dir)
1561 {
1562 	u64 chunk_size, bar_address, dma_max_seg_size, cur_size_to_export, cur_npages;
1563 	struct asic_fixed_properties *prop;
1564 	int rc, i, j, nents, cur_page;
1565 	struct scatterlist *sg;
1566 	struct sg_table *sgt;
1567 
1568 	prop = &hdev->asic_prop;
1569 
1570 	dma_max_seg_size = dma_get_max_seg_size(dev);
1571 
1572 	/* We would like to align the max segment size to PAGE_SIZE, so the
1573 	 * SGL will contain aligned addresses that can be easily mapped to
1574 	 * an MMU
1575 	 */
1576 	dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE);
1577 	if (dma_max_seg_size < PAGE_SIZE) {
1578 		dev_err_ratelimited(hdev->dev,
1579 				"dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
1580 				dma_max_seg_size);
1581 		return ERR_PTR(-EINVAL);
1582 	}
1583 
1584 	sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
1585 	if (!sgt)
1586 		return ERR_PTR(-ENOMEM);
1587 
1588 	/* remove export size restrictions in case not explicitly defined */
1589 	cur_size_to_export = exported_size ? exported_size : (npages * page_size);
1590 
1591 	/* If the size of each page is larger than the dma max segment size,
1592 	 * then we can't combine pages and the number of entries in the SGL
1593 	 * will just be the
1594 	 * <number of pages> * <chunks of max segment size in each page>
1595 	 */
1596 	if (page_size > dma_max_seg_size) {
1597 		/* we should limit number of pages according to the exported size */
1598 		cur_npages = DIV_ROUND_UP_SECTOR_T(cur_size_to_export, page_size);
1599 		nents = cur_npages * DIV_ROUND_UP_SECTOR_T(page_size, dma_max_seg_size);
1600 	} else {
1601 		cur_npages = npages;
1602 
1603 		/* Get number of non-contiguous chunks */
1604 		for (i = 1, nents = 1, chunk_size = page_size ; i < cur_npages ; i++) {
1605 			if (pages[i - 1] + page_size != pages[i] ||
1606 					chunk_size + page_size > dma_max_seg_size) {
1607 				nents++;
1608 				chunk_size = page_size;
1609 				continue;
1610 			}
1611 
1612 			chunk_size += page_size;
1613 		}
1614 	}
1615 
1616 	rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
1617 	if (rc)
1618 		goto error_free;
1619 
1620 	cur_page = 0;
1621 
1622 	if (page_size > dma_max_seg_size) {
1623 		u64 size_left, cur_device_address = 0;
1624 
1625 		size_left = page_size;
1626 
1627 		/* Need to split each page into the number of chunks of
1628 		 * dma_max_seg_size
1629 		 */
1630 		for_each_sgtable_dma_sg(sgt, sg, i) {
1631 			if (size_left == page_size)
1632 				cur_device_address =
1633 					pages[cur_page] - prop->dram_base_address;
1634 			else
1635 				cur_device_address += dma_max_seg_size;
1636 
1637 			/* make sure not to export over exported size */
1638 			chunk_size = min3(size_left, dma_max_seg_size, cur_size_to_export);
1639 
1640 			bar_address = hdev->dram_pci_bar_start + cur_device_address;
1641 
1642 			rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1643 			if (rc)
1644 				goto error_unmap;
1645 
1646 			cur_size_to_export -= chunk_size;
1647 
1648 			if (size_left > dma_max_seg_size) {
1649 				size_left -= dma_max_seg_size;
1650 			} else {
1651 				cur_page++;
1652 				size_left = page_size;
1653 			}
1654 		}
1655 	} else {
1656 		/* Merge pages and put them into the scatterlist */
1657 		for_each_sgtable_dma_sg(sgt, sg, i) {
1658 			chunk_size = page_size;
1659 			for (j = cur_page + 1 ; j < cur_npages ; j++) {
1660 				if (pages[j - 1] + page_size != pages[j] ||
1661 						chunk_size + page_size > dma_max_seg_size)
1662 					break;
1663 
1664 				chunk_size += page_size;
1665 			}
1666 
1667 			bar_address = hdev->dram_pci_bar_start +
1668 					(pages[cur_page] - prop->dram_base_address);
1669 
1670 			/* make sure not to export over exported size */
1671 			chunk_size = min(chunk_size, cur_size_to_export);
1672 			rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1673 			if (rc)
1674 				goto error_unmap;
1675 
1676 			cur_size_to_export -= chunk_size;
1677 			cur_page = j;
1678 		}
1679 	}
1680 
1681 	/* Because we are not going to include a CPU list we want to have some
1682 	 * chance that other users will detect this by setting the orig_nents
1683 	 * to 0 and using only nents (length of DMA list) when going over the
1684 	 * sgl
1685 	 */
1686 	sgt->orig_nents = 0;
1687 
1688 	return sgt;
1689 
1690 error_unmap:
1691 	for_each_sgtable_dma_sg(sgt, sg, i) {
1692 		if (!sg_dma_len(sg))
1693 			continue;
1694 
1695 		dma_unmap_resource(dev, sg_dma_address(sg),
1696 					sg_dma_len(sg), dir,
1697 					DMA_ATTR_SKIP_CPU_SYNC);
1698 	}
1699 
1700 	sg_free_table(sgt);
1701 
1702 error_free:
1703 	kfree(sgt);
1704 	return ERR_PTR(rc);
1705 }
1706 
1707 static int hl_dmabuf_attach(struct dma_buf *dmabuf,
1708 				struct dma_buf_attachment *attachment)
1709 {
1710 	struct hl_dmabuf_priv *hl_dmabuf;
1711 	struct hl_device *hdev;
1712 	int rc;
1713 
1714 	hl_dmabuf = dmabuf->priv;
1715 	hdev = hl_dmabuf->ctx->hdev;
1716 
1717 	rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true);
1718 
1719 	if (rc < 0)
1720 		attachment->peer2peer = false;
1721 	return 0;
1722 }
1723 
1724 static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
1725 					enum dma_data_direction dir)
1726 {
1727 	struct dma_buf *dma_buf = attachment->dmabuf;
1728 	struct hl_vm_phys_pg_pack *phys_pg_pack;
1729 	struct hl_dmabuf_priv *hl_dmabuf;
1730 	struct hl_device *hdev;
1731 	struct sg_table *sgt;
1732 
1733 	hl_dmabuf = dma_buf->priv;
1734 	hdev = hl_dmabuf->ctx->hdev;
1735 	phys_pg_pack = hl_dmabuf->phys_pg_pack;
1736 
1737 	if (!attachment->peer2peer) {
1738 		dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
1739 		return ERR_PTR(-EPERM);
1740 	}
1741 
1742 	if (phys_pg_pack)
1743 		sgt = alloc_sgt_from_device_pages(hdev,
1744 						phys_pg_pack->pages,
1745 						phys_pg_pack->npages,
1746 						phys_pg_pack->page_size,
1747 						phys_pg_pack->exported_size,
1748 						attachment->dev,
1749 						dir);
1750 	else
1751 		sgt = alloc_sgt_from_device_pages(hdev,
1752 						&hl_dmabuf->device_address,
1753 						1,
1754 						hl_dmabuf->dmabuf->size,
1755 						0,
1756 						attachment->dev,
1757 						dir);
1758 
1759 	if (IS_ERR(sgt))
1760 		dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
1761 
1762 	return sgt;
1763 }
1764 
1765 static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
1766 				  struct sg_table *sgt,
1767 				  enum dma_data_direction dir)
1768 {
1769 	struct scatterlist *sg;
1770 	int i;
1771 
1772 	/* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
1773 	 * only in the 'device' domain (after all, it maps a PCI bar address which points to the
1774 	 * device memory).
1775 	 *
1776 	 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
1777 	 * a sync of the memory to the CPU's cache, as it never resided inside that cache.
1778 	 */
1779 	for_each_sgtable_dma_sg(sgt, sg, i)
1780 		dma_unmap_resource(attachment->dev, sg_dma_address(sg),
1781 					sg_dma_len(sg), dir,
1782 					DMA_ATTR_SKIP_CPU_SYNC);
1783 
1784 	/* Need to restore orig_nents because sg_free_table use that field */
1785 	sgt->orig_nents = sgt->nents;
1786 	sg_free_table(sgt);
1787 	kfree(sgt);
1788 }
1789 
1790 static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr)
1791 {
1792 	struct hl_device *hdev = ctx->hdev;
1793 	struct hl_vm_hash_node *hnode;
1794 
1795 	/* get the memory handle */
1796 	mutex_lock(&ctx->mem_hash_lock);
1797 	hnode = get_vm_hash_node_locked(ctx, addr);
1798 	if (!hnode) {
1799 		mutex_unlock(&ctx->mem_hash_lock);
1800 		dev_dbg(hdev->dev, "map address %#llx not found\n", addr);
1801 		return ERR_PTR(-EINVAL);
1802 	}
1803 
1804 	if (upper_32_bits(hnode->handle)) {
1805 		mutex_unlock(&ctx->mem_hash_lock);
1806 		dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n",
1807 				hnode->handle, addr);
1808 		return ERR_PTR(-EINVAL);
1809 	}
1810 
1811 	/*
1812 	 * node found, increase export count so this memory cannot be unmapped
1813 	 * and the hash node cannot be deleted.
1814 	 */
1815 	hnode->export_cnt++;
1816 	mutex_unlock(&ctx->mem_hash_lock);
1817 
1818 	return hnode;
1819 }
1820 
1821 static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode)
1822 {
1823 	mutex_lock(&ctx->mem_hash_lock);
1824 	hnode->export_cnt--;
1825 	mutex_unlock(&ctx->mem_hash_lock);
1826 }
1827 
1828 static void hl_release_dmabuf(struct dma_buf *dmabuf)
1829 {
1830 	struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
1831 	struct hl_ctx *ctx;
1832 
1833 	if (!hl_dmabuf)
1834 		return;
1835 
1836 	ctx = hl_dmabuf->ctx;
1837 
1838 	if (hl_dmabuf->memhash_hnode)
1839 		memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode);
1840 
1841 	atomic_dec(&ctx->hdev->dmabuf_export_cnt);
1842 	hl_ctx_put(ctx);
1843 
1844 	/* Paired with get_file() in export_dmabuf() */
1845 	fput(ctx->hpriv->filp);
1846 
1847 	kfree(hl_dmabuf);
1848 }
1849 
1850 static const struct dma_buf_ops habanalabs_dmabuf_ops = {
1851 	.attach = hl_dmabuf_attach,
1852 	.map_dma_buf = hl_map_dmabuf,
1853 	.unmap_dma_buf = hl_unmap_dmabuf,
1854 	.release = hl_release_dmabuf,
1855 };
1856 
1857 static int export_dmabuf(struct hl_ctx *ctx,
1858 				struct hl_dmabuf_priv *hl_dmabuf,
1859 				u64 total_size, int flags, int *dmabuf_fd)
1860 {
1861 	DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
1862 	struct hl_device *hdev = ctx->hdev;
1863 	int rc, fd;
1864 
1865 	exp_info.ops = &habanalabs_dmabuf_ops;
1866 	exp_info.size = total_size;
1867 	exp_info.flags = flags;
1868 	exp_info.priv = hl_dmabuf;
1869 
1870 	hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
1871 	if (IS_ERR(hl_dmabuf->dmabuf)) {
1872 		dev_err(hdev->dev, "failed to export dma-buf\n");
1873 		return PTR_ERR(hl_dmabuf->dmabuf);
1874 	}
1875 
1876 	fd = dma_buf_fd(hl_dmabuf->dmabuf, flags);
1877 	if (fd < 0) {
1878 		dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd);
1879 		rc = fd;
1880 		goto err_dma_buf_put;
1881 	}
1882 
1883 	hl_dmabuf->ctx = ctx;
1884 	hl_ctx_get(hl_dmabuf->ctx);
1885 	atomic_inc(&ctx->hdev->dmabuf_export_cnt);
1886 
1887 	/* Get compute device file to enforce release order, such that all exported dma-buf will be
1888 	 * released first and only then the compute device.
1889 	 * Paired with fput() in hl_release_dmabuf().
1890 	 */
1891 	get_file(ctx->hpriv->filp);
1892 
1893 	*dmabuf_fd = fd;
1894 
1895 	return 0;
1896 
1897 err_dma_buf_put:
1898 	hl_dmabuf->dmabuf->priv = NULL;
1899 	dma_buf_put(hl_dmabuf->dmabuf);
1900 	return rc;
1901 }
1902 
1903 static int validate_export_params_common(struct hl_device *hdev, u64 device_addr, u64 size)
1904 {
1905 	if (!IS_ALIGNED(device_addr, PAGE_SIZE)) {
1906 		dev_dbg(hdev->dev,
1907 			"exported device memory address 0x%llx should be aligned to 0x%lx\n",
1908 			device_addr, PAGE_SIZE);
1909 		return -EINVAL;
1910 	}
1911 
1912 	if (size < PAGE_SIZE) {
1913 		dev_dbg(hdev->dev,
1914 			"exported device memory size %llu should be equal to or greater than %lu\n",
1915 			size, PAGE_SIZE);
1916 		return -EINVAL;
1917 	}
1918 
1919 	return 0;
1920 }
1921 
1922 static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size)
1923 {
1924 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1925 	u64 bar_address;
1926 	int rc;
1927 
1928 	rc = validate_export_params_common(hdev, device_addr, size);
1929 	if (rc)
1930 		return rc;
1931 
1932 	if (device_addr < prop->dram_user_base_address ||
1933 				(device_addr + size) > prop->dram_end_address ||
1934 				(device_addr + size) < device_addr) {
1935 		dev_dbg(hdev->dev,
1936 			"DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
1937 			device_addr, size);
1938 		return -EINVAL;
1939 	}
1940 
1941 	bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address);
1942 
1943 	if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1944 			(bar_address + size) < bar_address) {
1945 		dev_dbg(hdev->dev,
1946 			"DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
1947 			device_addr, size);
1948 		return -EINVAL;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset,
1955 					struct hl_vm_phys_pg_pack *phys_pg_pack)
1956 {
1957 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1958 	u64 bar_address;
1959 	int i, rc;
1960 
1961 	rc = validate_export_params_common(hdev, device_addr, size);
1962 	if (rc)
1963 		return rc;
1964 
1965 	if ((offset + size) > phys_pg_pack->total_size) {
1966 		dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n",
1967 				offset, size, phys_pg_pack->total_size);
1968 		return -EINVAL;
1969 	}
1970 
1971 	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
1972 
1973 		bar_address = hdev->dram_pci_bar_start +
1974 					(phys_pg_pack->pages[i] - prop->dram_base_address);
1975 
1976 		if ((bar_address + phys_pg_pack->page_size) >
1977 				(hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1978 				(bar_address + phys_pg_pack->page_size) < bar_address) {
1979 			dev_dbg(hdev->dev,
1980 				"DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
1981 					phys_pg_pack->pages[i],
1982 					phys_pg_pack->page_size);
1983 
1984 			return -EINVAL;
1985 		}
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev,
1992 							struct hl_vm_hash_node *hnode)
1993 {
1994 	struct hl_vm_phys_pg_pack *phys_pg_pack;
1995 	struct hl_vm *vm = &hdev->vm;
1996 
1997 	spin_lock(&vm->idr_lock);
1998 	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle);
1999 	if (!phys_pg_pack) {
2000 		spin_unlock(&vm->idr_lock);
2001 		dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle);
2002 		return ERR_PTR(-EINVAL);
2003 	}
2004 
2005 	spin_unlock(&vm->idr_lock);
2006 
2007 	if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
2008 		dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle);
2009 		return ERR_PTR(-EINVAL);
2010 	}
2011 
2012 	return phys_pg_pack;
2013 }
2014 
2015 /**
2016  * export_dmabuf_from_addr() - export a dma-buf object for the given memory
2017  *                             address and size.
2018  * @ctx: pointer to the context structure.
2019  * @addr: device address.
2020  * @size: size of device memory to export.
2021  * @offset: the offset into the buffer from which to start exporting
2022  * @flags: DMA-BUF file/FD flags.
2023  * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
2024  *
2025  * Create and export a dma-buf object for an existing memory allocation inside
2026  * the device memory, and return a FD which is associated with the dma-buf
2027  * object.
2028  *
2029  * Return: 0 on success, non-zero for failure.
2030  */
2031 static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset,
2032 					int flags, int *dmabuf_fd)
2033 {
2034 	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2035 	struct hl_vm_hash_node *hnode = NULL;
2036 	struct asic_fixed_properties *prop;
2037 	struct hl_dmabuf_priv *hl_dmabuf;
2038 	struct hl_device *hdev;
2039 	u64 export_addr;
2040 	int rc;
2041 
2042 	hdev = ctx->hdev;
2043 	prop = &hdev->asic_prop;
2044 
2045 	/* offset must be 0 in devices without virtual memory support */
2046 	if (!prop->dram_supports_virtual_memory && offset) {
2047 		dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n");
2048 		return -EINVAL;
2049 	}
2050 
2051 	export_addr = addr + offset;
2052 
2053 	hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
2054 	if (!hl_dmabuf)
2055 		return -ENOMEM;
2056 
2057 	if (prop->dram_supports_virtual_memory) {
2058 		hnode = memhash_node_export_get(ctx, addr);
2059 		if (IS_ERR(hnode)) {
2060 			rc = PTR_ERR(hnode);
2061 			goto err_free_dmabuf_wrapper;
2062 		}
2063 		phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode);
2064 		if (IS_ERR(phys_pg_pack)) {
2065 			rc = PTR_ERR(phys_pg_pack);
2066 			goto dec_memhash_export_cnt;
2067 		}
2068 		rc = validate_export_params(hdev, export_addr, size, offset, phys_pg_pack);
2069 		if (rc)
2070 			goto dec_memhash_export_cnt;
2071 
2072 		phys_pg_pack->exported_size = size;
2073 		hl_dmabuf->phys_pg_pack = phys_pg_pack;
2074 		hl_dmabuf->memhash_hnode = hnode;
2075 	} else {
2076 		rc = validate_export_params_no_mmu(hdev, export_addr, size);
2077 		if (rc)
2078 			goto err_free_dmabuf_wrapper;
2079 	}
2080 
2081 	hl_dmabuf->device_address = export_addr;
2082 
2083 	rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd);
2084 	if (rc)
2085 		goto dec_memhash_export_cnt;
2086 
2087 	return 0;
2088 
2089 dec_memhash_export_cnt:
2090 	if (prop->dram_supports_virtual_memory)
2091 		memhash_node_export_put(ctx, hnode);
2092 err_free_dmabuf_wrapper:
2093 	kfree(hl_dmabuf);
2094 	return rc;
2095 }
2096 
2097 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
2098 {
2099 	struct hl_device *hdev = hpriv->hdev;
2100 	u64 block_handle, device_addr = 0;
2101 	struct hl_ctx *ctx = hpriv->ctx;
2102 	u32 handle = 0, block_size;
2103 	int rc;
2104 
2105 	switch (args->in.op) {
2106 	case HL_MEM_OP_ALLOC:
2107 		if (args->in.alloc.mem_size == 0) {
2108 			dev_err(hdev->dev, "alloc size must be larger than 0\n");
2109 			rc = -EINVAL;
2110 			goto out;
2111 		}
2112 
2113 		/* Force contiguous as there are no real MMU
2114 		 * translations to overcome physical memory gaps
2115 		 */
2116 		args->in.flags |= HL_MEM_CONTIGUOUS;
2117 		rc = alloc_device_memory(ctx, &args->in, &handle);
2118 
2119 		memset(args, 0, sizeof(*args));
2120 		args->out.handle = (__u64) handle;
2121 		break;
2122 
2123 	case HL_MEM_OP_FREE:
2124 		rc = free_device_memory(ctx, &args->in);
2125 		break;
2126 
2127 	case HL_MEM_OP_MAP:
2128 		if (args->in.flags & HL_MEM_USERPTR) {
2129 			dev_err(hdev->dev, "Failed to map host memory when MMU is disabled\n");
2130 			rc = -EPERM;
2131 		} else {
2132 			rc = get_paddr_from_handle(ctx, &args->in, &device_addr);
2133 			memset(args, 0, sizeof(*args));
2134 			args->out.device_virt_addr = device_addr;
2135 		}
2136 
2137 		break;
2138 
2139 	case HL_MEM_OP_UNMAP:
2140 		rc = 0;
2141 		break;
2142 
2143 	case HL_MEM_OP_MAP_BLOCK:
2144 		rc = map_block(hdev, args->in.map_block.block_addr, &block_handle, &block_size);
2145 		args->out.block_handle = block_handle;
2146 		args->out.block_size = block_size;
2147 		break;
2148 
2149 	case HL_MEM_OP_EXPORT_DMABUF_FD:
2150 		dev_err(hdev->dev, "Failed to export dma-buf object when MMU is disabled\n");
2151 		rc = -EPERM;
2152 		break;
2153 
2154 	case HL_MEM_OP_TS_ALLOC:
2155 		rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2156 		break;
2157 	default:
2158 		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2159 		rc = -EINVAL;
2160 		break;
2161 	}
2162 
2163 out:
2164 	return rc;
2165 }
2166 
2167 static void ts_buff_release(struct hl_mmap_mem_buf *buf)
2168 {
2169 	struct hl_ts_buff *ts_buff = buf->private;
2170 
2171 	vfree(ts_buff->kernel_buff_address);
2172 	vfree(ts_buff->user_buff_address);
2173 	kfree(ts_buff);
2174 }
2175 
2176 static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
2177 {
2178 	struct hl_ts_buff *ts_buff = buf->private;
2179 
2180 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
2181 	return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
2182 }
2183 
2184 static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
2185 {
2186 	struct hl_ts_buff *ts_buff = NULL;
2187 	u32 num_elements;
2188 	size_t size;
2189 	void *p;
2190 
2191 	num_elements = *(u32 *)args;
2192 
2193 	ts_buff = kzalloc(sizeof(*ts_buff), gfp);
2194 	if (!ts_buff)
2195 		return -ENOMEM;
2196 
2197 	/* Allocate the user buffer */
2198 	size = num_elements * sizeof(u64);
2199 	p = vmalloc_user(size);
2200 	if (!p)
2201 		goto free_mem;
2202 
2203 	ts_buff->user_buff_address = p;
2204 	buf->mappable_size = size;
2205 
2206 	/* Allocate the internal kernel buffer */
2207 	size = num_elements * sizeof(struct hl_user_pending_interrupt);
2208 	p = vzalloc(size);
2209 	if (!p)
2210 		goto free_user_buff;
2211 
2212 	ts_buff->kernel_buff_address = p;
2213 	ts_buff->kernel_buff_size = size;
2214 
2215 	buf->private = ts_buff;
2216 
2217 	return 0;
2218 
2219 free_user_buff:
2220 	vfree(ts_buff->user_buff_address);
2221 free_mem:
2222 	kfree(ts_buff);
2223 	return -ENOMEM;
2224 }
2225 
2226 static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
2227 	.topic = "TS",
2228 	.mem_id = HL_MMAP_TYPE_TS_BUFF,
2229 	.mmap = hl_ts_mmap,
2230 	.alloc = hl_ts_alloc_buf,
2231 	.release = ts_buff_release,
2232 };
2233 
2234 /**
2235  * allocate_timestamps_buffers() - allocate timestamps buffers
2236  * This function will allocate ts buffer that will later on be mapped to the user
2237  * in order to be able to read the timestamp.
2238  * in addition it'll allocate an extra buffer for registration management.
2239  * since we cannot fail during registration for out-of-memory situation, so
2240  * we'll prepare a pool which will be used as user interrupt nodes and instead
2241  * of dynamically allocating nodes while registration we'll pick the node from
2242  * this pool. in addition it'll add node to the mapping hash which will be used
2243  * to map user ts buffer to the internal kernel ts buffer.
2244  * @hpriv: pointer to the private data of the fd
2245  * @args: ioctl input
2246  * @handle: user timestamp buffer handle as an output
2247  */
2248 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
2249 {
2250 	struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
2251 	struct hl_mmap_mem_buf *buf;
2252 
2253 	if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
2254 		dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
2255 				args->num_of_elements, TS_MAX_ELEMENTS_NUM);
2256 		return -EINVAL;
2257 	}
2258 
2259 	buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
2260 	if (!buf)
2261 		return -ENOMEM;
2262 
2263 	*handle = buf->handle;
2264 
2265 	return 0;
2266 }
2267 
2268 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
2269 {
2270 	enum hl_device_status status;
2271 	union hl_mem_args *args = data;
2272 	struct hl_device *hdev = hpriv->hdev;
2273 	struct hl_ctx *ctx = hpriv->ctx;
2274 	u64 block_handle, device_addr = 0;
2275 	u32 handle = 0, block_size;
2276 	int rc, dmabuf_fd = -EBADF;
2277 
2278 	if (!hl_device_operational(hdev, &status)) {
2279 		dev_dbg_ratelimited(hdev->dev,
2280 			"Device is %s. Can't execute MEMORY IOCTL\n",
2281 			hdev->status[status]);
2282 		return -EBUSY;
2283 	}
2284 
2285 	if (!hdev->mmu_enable)
2286 		return mem_ioctl_no_mmu(hpriv, args);
2287 
2288 	switch (args->in.op) {
2289 	case HL_MEM_OP_ALLOC:
2290 		if (args->in.alloc.mem_size == 0) {
2291 			dev_err(hdev->dev,
2292 				"alloc size must be larger than 0\n");
2293 			rc = -EINVAL;
2294 			goto out;
2295 		}
2296 
2297 		/* If DRAM does not support virtual memory the driver won't
2298 		 * handle the allocation/freeing of that memory. However, for
2299 		 * system administration/monitoring purposes, the driver will
2300 		 * keep track of the amount of DRAM memory that is allocated
2301 		 * and freed by the user. Because this code totally relies on
2302 		 * the user's input, the driver can't ensure the validity
2303 		 * of this accounting.
2304 		 */
2305 		if (!hdev->asic_prop.dram_supports_virtual_memory) {
2306 			atomic64_add(args->in.alloc.mem_size,
2307 					&ctx->dram_phys_mem);
2308 			atomic64_add(args->in.alloc.mem_size,
2309 					&hdev->dram_used_mem);
2310 
2311 			dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2312 			rc = 0;
2313 
2314 			memset(args, 0, sizeof(*args));
2315 			args->out.handle = 0;
2316 			goto out;
2317 		}
2318 
2319 		rc = alloc_device_memory(ctx, &args->in, &handle);
2320 
2321 		memset(args, 0, sizeof(*args));
2322 		args->out.handle = (__u64) handle;
2323 		break;
2324 
2325 	case HL_MEM_OP_FREE:
2326 		/* If DRAM does not support virtual memory the driver won't
2327 		 * handle the allocation/freeing of that memory. However, for
2328 		 * system administration/monitoring purposes, the driver will
2329 		 * keep track of the amount of DRAM memory that is allocated
2330 		 * and freed by the user. Because this code totally relies on
2331 		 * the user's input, the driver can't ensure the validity
2332 		 * of this accounting.
2333 		 */
2334 		if (!hdev->asic_prop.dram_supports_virtual_memory) {
2335 			atomic64_sub(args->in.alloc.mem_size,
2336 					&ctx->dram_phys_mem);
2337 			atomic64_sub(args->in.alloc.mem_size,
2338 					&hdev->dram_used_mem);
2339 
2340 			dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2341 			rc = 0;
2342 
2343 			goto out;
2344 		}
2345 
2346 		rc = free_device_memory(ctx, &args->in);
2347 		break;
2348 
2349 	case HL_MEM_OP_MAP:
2350 		rc = map_device_va(ctx, &args->in, &device_addr);
2351 
2352 		memset(args, 0, sizeof(*args));
2353 		args->out.device_virt_addr = device_addr;
2354 		break;
2355 
2356 	case HL_MEM_OP_UNMAP:
2357 		rc = unmap_device_va(ctx, &args->in, false);
2358 		break;
2359 
2360 	case HL_MEM_OP_MAP_BLOCK:
2361 		rc = map_block(hdev, args->in.map_block.block_addr,
2362 				&block_handle, &block_size);
2363 		args->out.block_handle = block_handle;
2364 		args->out.block_size = block_size;
2365 		break;
2366 
2367 	case HL_MEM_OP_EXPORT_DMABUF_FD:
2368 		rc = export_dmabuf_from_addr(ctx,
2369 				args->in.export_dmabuf_fd.addr,
2370 				args->in.export_dmabuf_fd.mem_size,
2371 				args->in.export_dmabuf_fd.offset,
2372 				args->in.flags,
2373 				&dmabuf_fd);
2374 		memset(args, 0, sizeof(*args));
2375 		args->out.fd = dmabuf_fd;
2376 		break;
2377 
2378 	case HL_MEM_OP_TS_ALLOC:
2379 		rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2380 		break;
2381 	default:
2382 		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2383 		rc = -EINVAL;
2384 		break;
2385 	}
2386 
2387 out:
2388 	return rc;
2389 }
2390 
2391 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
2392 				u32 npages, u64 start, u32 offset,
2393 				struct hl_userptr *userptr)
2394 {
2395 	int rc;
2396 
2397 	if (!access_ok((void __user *) (uintptr_t) addr, size)) {
2398 		dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
2399 		return -EFAULT;
2400 	}
2401 
2402 	userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
2403 	if (!userptr->pages)
2404 		return -ENOMEM;
2405 
2406 	rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM,
2407 				 userptr->pages);
2408 
2409 	if (rc != npages) {
2410 		dev_err(hdev->dev,
2411 			"Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
2412 			rc, addr, size, npages);
2413 		if (rc < 0)
2414 			goto destroy_pages;
2415 		npages = rc;
2416 		rc = -EFAULT;
2417 		goto put_pages;
2418 	}
2419 	userptr->npages = npages;
2420 
2421 	rc = sg_alloc_table_from_pages(userptr->sgt,
2422 				       userptr->pages,
2423 				       npages, offset, size, GFP_KERNEL);
2424 	if (rc < 0) {
2425 		dev_err(hdev->dev, "failed to create SG table from pages\n");
2426 		goto put_pages;
2427 	}
2428 
2429 	return 0;
2430 
2431 put_pages:
2432 	unpin_user_pages(userptr->pages, npages);
2433 destroy_pages:
2434 	kvfree(userptr->pages);
2435 	return rc;
2436 }
2437 
2438 /**
2439  * hl_pin_host_memory() - pins a chunk of host memory.
2440  * @hdev: pointer to the habanalabs device structure.
2441  * @addr: the host virtual address of the memory area.
2442  * @size: the size of the memory area.
2443  * @userptr: pointer to hl_userptr structure.
2444  *
2445  * This function does the following:
2446  * - Pins the physical pages.
2447  * - Create an SG list from those pages.
2448  */
2449 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2450 					struct hl_userptr *userptr)
2451 {
2452 	u64 start, end;
2453 	u32 npages, offset;
2454 	int rc;
2455 
2456 	if (!size) {
2457 		dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
2458 		return -EINVAL;
2459 	}
2460 
2461 	/*
2462 	 * If the combination of the address and size requested for this memory
2463 	 * region causes an integer overflow, return error.
2464 	 */
2465 	if (((addr + size) < addr) ||
2466 			PAGE_ALIGN(addr + size) < (addr + size)) {
2467 		dev_err(hdev->dev,
2468 			"user pointer 0x%llx + %llu causes integer overflow\n",
2469 			addr, size);
2470 		return -EINVAL;
2471 	}
2472 
2473 	userptr->pid = current->pid;
2474 	userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
2475 	if (!userptr->sgt)
2476 		return -ENOMEM;
2477 
2478 	start = addr & PAGE_MASK;
2479 	offset = addr & ~PAGE_MASK;
2480 	end = PAGE_ALIGN(addr + size);
2481 	npages = (end - start) >> PAGE_SHIFT;
2482 
2483 	userptr->size = size;
2484 	userptr->addr = addr;
2485 	userptr->dma_mapped = false;
2486 	INIT_LIST_HEAD(&userptr->job_node);
2487 
2488 	rc = get_user_memory(hdev, addr, size, npages, start, offset,
2489 				userptr);
2490 	if (rc) {
2491 		dev_err(hdev->dev,
2492 			"failed to get user memory for address 0x%llx\n",
2493 			addr);
2494 		goto free_sgt;
2495 	}
2496 
2497 	hl_debugfs_add_userptr(hdev, userptr);
2498 
2499 	return 0;
2500 
2501 free_sgt:
2502 	kfree(userptr->sgt);
2503 	return rc;
2504 }
2505 
2506 /*
2507  * hl_unpin_host_memory - unpins a chunk of host memory.
2508  * @hdev: pointer to the habanalabs device structure
2509  * @userptr: pointer to hl_userptr structure
2510  *
2511  * This function does the following:
2512  * - Unpins the physical pages related to the host memory
2513  * - Free the SG list
2514  */
2515 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
2516 {
2517 	hl_debugfs_remove_userptr(hdev, userptr);
2518 
2519 	if (userptr->dma_mapped)
2520 		hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
2521 
2522 	unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
2523 	kvfree(userptr->pages);
2524 
2525 	list_del(&userptr->job_node);
2526 
2527 	sg_free_table(userptr->sgt);
2528 	kfree(userptr->sgt);
2529 }
2530 
2531 /**
2532  * hl_userptr_delete_list() - clear userptr list.
2533  * @hdev: pointer to the habanalabs device structure.
2534  * @userptr_list: pointer to the list to clear.
2535  *
2536  * This function does the following:
2537  * - Iterates over the list and unpins the host memory and frees the userptr
2538  *   structure.
2539  */
2540 void hl_userptr_delete_list(struct hl_device *hdev,
2541 				struct list_head *userptr_list)
2542 {
2543 	struct hl_userptr *userptr, *tmp;
2544 
2545 	list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
2546 		hl_unpin_host_memory(hdev, userptr);
2547 		kfree(userptr);
2548 	}
2549 
2550 	INIT_LIST_HEAD(userptr_list);
2551 }
2552 
2553 /**
2554  * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
2555  * @hdev: pointer to the habanalabs device structure.
2556  * @addr: user address to check.
2557  * @size: user block size to check.
2558  * @userptr_list: pointer to the list to clear.
2559  * @userptr: pointer to userptr to check.
2560  *
2561  * This function does the following:
2562  * - Iterates over the list and checks if the given userptr is in it, means is
2563  *   pinned. If so, returns true, otherwise returns false.
2564  */
2565 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
2566 				u32 size, struct list_head *userptr_list,
2567 				struct hl_userptr **userptr)
2568 {
2569 	list_for_each_entry((*userptr), userptr_list, job_node) {
2570 		if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
2571 			return true;
2572 	}
2573 
2574 	return false;
2575 }
2576 
2577 /**
2578  * va_range_init() - initialize virtual addresses range.
2579  * @hdev: pointer to the habanalabs device structure.
2580  * @va_ranges: pointer to va_ranges array.
2581  * @range_type: virtual address range type.
2582  * @start: range start address, inclusive.
2583  * @end: range end address, inclusive.
2584  * @page_size: page size for this va_range.
2585  *
2586  * This function does the following:
2587  * - Initializes the virtual addresses list of the given range with the given
2588  *   addresses.
2589  */
2590 static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
2591 				enum hl_va_range_type range_type, u64 start,
2592 				u64 end, u32 page_size)
2593 {
2594 	struct hl_va_range *va_range = va_ranges[range_type];
2595 	int rc;
2596 
2597 	INIT_LIST_HEAD(&va_range->list);
2598 
2599 	/*
2600 	 * PAGE_SIZE alignment
2601 	 * it is the caller's responsibility to align the addresses if the
2602 	 * page size is not a power of 2
2603 	 */
2604 
2605 	if (is_power_of_2(page_size)) {
2606 		start = round_up(start, page_size);
2607 
2608 		/*
2609 		 * The end of the range is inclusive, hence we need to align it
2610 		 * to the end of the last full page in the range. For example if
2611 		 * end = 0x3ff5 with page size 0x1000, we need to align it to
2612 		 * 0x2fff. The remaining 0xff5 bytes do not form a full page.
2613 		 */
2614 		end = round_down(end + 1, page_size) - 1;
2615 	}
2616 
2617 	if (start >= end) {
2618 		dev_err(hdev->dev, "too small vm range for va list\n");
2619 		return -EFAULT;
2620 	}
2621 
2622 	rc = add_va_block(hdev, va_range, start, end);
2623 
2624 	if (rc) {
2625 		dev_err(hdev->dev, "Failed to init host va list\n");
2626 		return rc;
2627 	}
2628 
2629 	va_range->start_addr = start;
2630 	va_range->end_addr = end;
2631 	va_range->page_size = page_size;
2632 
2633 	return 0;
2634 }
2635 
2636 /**
2637  * va_range_fini() - clear a virtual addresses range.
2638  * @hdev: pointer to the habanalabs structure.
2639  * @va_range: pointer to virtual addresses range.
2640  *
2641  * This function does the following:
2642  * - Frees the virtual addresses block list and its lock.
2643  */
2644 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
2645 {
2646 	mutex_lock(&va_range->lock);
2647 	clear_va_list_locked(hdev, &va_range->list);
2648 	mutex_unlock(&va_range->lock);
2649 
2650 	mutex_destroy(&va_range->lock);
2651 	kfree(va_range);
2652 }
2653 
2654 /**
2655  * vm_ctx_init_with_ranges() - initialize virtual memory for context.
2656  * @ctx: pointer to the habanalabs context structure.
2657  * @host_range_start: host virtual addresses range start.
2658  * @host_range_end: host virtual addresses range end.
2659  * @host_page_size: host page size.
2660  * @host_huge_range_start: host virtual addresses range start for memory
2661  *                         allocated with huge pages.
2662  * @host_huge_range_end: host virtual addresses range end for memory allocated
2663  *                        with huge pages.
2664  * @host_huge_page_size: host huge page size.
2665  * @dram_range_start: dram virtual addresses range start.
2666  * @dram_range_end: dram virtual addresses range end.
2667  * @dram_page_size: dram page size.
2668  *
2669  * This function initializes the following:
2670  * - MMU for context.
2671  * - Virtual address to area descriptor hashtable.
2672  * - Virtual block list of available virtual memory.
2673  */
2674 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
2675 					u64 host_range_start,
2676 					u64 host_range_end,
2677 					u32 host_page_size,
2678 					u64 host_huge_range_start,
2679 					u64 host_huge_range_end,
2680 					u32 host_huge_page_size,
2681 					u64 dram_range_start,
2682 					u64 dram_range_end,
2683 					u32 dram_page_size)
2684 {
2685 	struct hl_device *hdev = ctx->hdev;
2686 	int i, rc;
2687 
2688 	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
2689 		ctx->va_range[i] =
2690 			kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
2691 		if (!ctx->va_range[i]) {
2692 			rc = -ENOMEM;
2693 			goto free_va_range;
2694 		}
2695 	}
2696 
2697 	rc = hl_mmu_ctx_init(ctx);
2698 	if (rc) {
2699 		dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
2700 		goto free_va_range;
2701 	}
2702 
2703 	mutex_init(&ctx->mem_hash_lock);
2704 	hash_init(ctx->mem_hash);
2705 
2706 	mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2707 
2708 	rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
2709 			host_range_start, host_range_end, host_page_size);
2710 	if (rc) {
2711 		dev_err(hdev->dev, "failed to init host vm range\n");
2712 		goto mmu_ctx_fini;
2713 	}
2714 
2715 	if (hdev->pmmu_huge_range) {
2716 		mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2717 
2718 		rc = va_range_init(hdev,
2719 			ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
2720 			host_huge_range_start, host_huge_range_end,
2721 			host_huge_page_size);
2722 		if (rc) {
2723 			dev_err(hdev->dev,
2724 				"failed to init host huge vm range\n");
2725 			goto clear_host_va_range;
2726 		}
2727 	} else {
2728 		kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2729 		ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
2730 				ctx->va_range[HL_VA_RANGE_TYPE_HOST];
2731 	}
2732 
2733 	mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2734 
2735 	rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
2736 			dram_range_start, dram_range_end, dram_page_size);
2737 	if (rc) {
2738 		dev_err(hdev->dev, "failed to init dram vm range\n");
2739 		goto clear_host_huge_va_range;
2740 	}
2741 
2742 	hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2743 
2744 	return 0;
2745 
2746 clear_host_huge_va_range:
2747 	mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2748 
2749 	if (hdev->pmmu_huge_range) {
2750 		mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2751 		clear_va_list_locked(hdev,
2752 			&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2753 		mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2754 	}
2755 clear_host_va_range:
2756 	if (hdev->pmmu_huge_range)
2757 		mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2758 	mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2759 	clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2760 	mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2761 mmu_ctx_fini:
2762 	mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2763 	mutex_destroy(&ctx->mem_hash_lock);
2764 	hl_mmu_ctx_fini(ctx);
2765 free_va_range:
2766 	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2767 		kfree(ctx->va_range[i]);
2768 
2769 	return rc;
2770 }
2771 
2772 int hl_vm_ctx_init(struct hl_ctx *ctx)
2773 {
2774 	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2775 	u64 host_range_start, host_range_end, host_huge_range_start,
2776 		host_huge_range_end, dram_range_start, dram_range_end;
2777 	u32 host_page_size, host_huge_page_size, dram_page_size;
2778 
2779 	atomic64_set(&ctx->dram_phys_mem, 0);
2780 
2781 	/*
2782 	 * - If MMU is enabled, init the ranges as usual.
2783 	 * - If MMU is disabled, in case of host mapping, the returned address
2784 	 *   is the given one.
2785 	 *   In case of DRAM mapping, the returned address is the physical
2786 	 *   address of the memory related to the given handle.
2787 	 */
2788 	if (!ctx->hdev->mmu_enable)
2789 		return 0;
2790 
2791 	dram_range_start = prop->dmmu.start_addr;
2792 	dram_range_end = prop->dmmu.end_addr - 1;
2793 	dram_page_size = prop->dram_page_size ?
2794 				prop->dram_page_size : prop->dmmu.page_size;
2795 	host_range_start = prop->pmmu.start_addr;
2796 	host_range_end = prop->pmmu.end_addr - 1;
2797 	host_page_size = prop->pmmu.page_size;
2798 	host_huge_range_start = prop->pmmu_huge.start_addr;
2799 	host_huge_range_end = prop->pmmu_huge.end_addr - 1;
2800 	host_huge_page_size = prop->pmmu_huge.page_size;
2801 
2802 	return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2803 			host_page_size, host_huge_range_start,
2804 			host_huge_range_end, host_huge_page_size,
2805 			dram_range_start, dram_range_end, dram_page_size);
2806 }
2807 
2808 /**
2809  * hl_vm_ctx_fini() - virtual memory teardown of context.
2810  * @ctx: pointer to the habanalabs context structure.
2811  *
2812  * This function perform teardown the following:
2813  * - Virtual block list of available virtual memory.
2814  * - Virtual address to area descriptor hashtable.
2815  * - MMU for context.
2816  *
2817  * In addition this function does the following:
2818  * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2819  *   hashtable should be empty as no valid mappings should exist at this
2820  *   point.
2821  * - Frees any existing physical page list from the idr which relates to the
2822  *   current context asid.
2823  * - This function checks the virtual block list for correctness. At this point
2824  *   the list should contain one element which describes the whole virtual
2825  *   memory range of the context. Otherwise, a warning is printed.
2826  */
2827 void hl_vm_ctx_fini(struct hl_ctx *ctx)
2828 {
2829 	struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
2830 	struct hl_device *hdev = ctx->hdev;
2831 	struct hl_vm_hash_node *hnode;
2832 	struct hl_vm *vm = &hdev->vm;
2833 	struct hlist_node *tmp_node;
2834 	struct list_head free_list;
2835 	struct hl_mem_in args;
2836 	int i;
2837 
2838 	if (!hdev->mmu_enable)
2839 		return;
2840 
2841 	hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2842 
2843 	/*
2844 	 * Clearly something went wrong on hard reset so no point in printing
2845 	 * another side effect error
2846 	 */
2847 	if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
2848 		dev_dbg(hdev->dev,
2849 			"user released device without removing its memory mappings\n");
2850 
2851 	hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2852 		dev_dbg(hdev->dev,
2853 			"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2854 			hnode->vaddr, ctx->asid);
2855 		args.unmap.device_virt_addr = hnode->vaddr;
2856 		unmap_device_va(ctx, &args, true);
2857 	}
2858 
2859 	mutex_lock(&hdev->mmu_lock);
2860 
2861 	/* invalidate the cache once after the unmapping loop */
2862 	hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
2863 	hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
2864 
2865 	mutex_unlock(&hdev->mmu_lock);
2866 
2867 	INIT_LIST_HEAD(&free_list);
2868 
2869 	spin_lock(&vm->idr_lock);
2870 	idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2871 		if (phys_pg_list->asid == ctx->asid) {
2872 			dev_dbg(hdev->dev,
2873 				"page list 0x%px of asid %d is still alive\n",
2874 				phys_pg_list, ctx->asid);
2875 
2876 			atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
2877 			idr_remove(&vm->phys_pg_pack_handles, i);
2878 			list_add(&phys_pg_list->node, &free_list);
2879 		}
2880 	spin_unlock(&vm->idr_lock);
2881 
2882 	list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
2883 		free_phys_pg_pack(hdev, phys_pg_list);
2884 
2885 	va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2886 	va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2887 
2888 	if (hdev->pmmu_huge_range)
2889 		va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2890 
2891 	mutex_destroy(&ctx->mem_hash_lock);
2892 	hl_mmu_ctx_fini(ctx);
2893 
2894 	/* In this case we need to clear the global accounting of DRAM usage
2895 	 * because the user notifies us on allocations. If the user is no more,
2896 	 * all DRAM is available
2897 	 */
2898 	if (ctx->asid != HL_KERNEL_ASID_ID &&
2899 			!hdev->asic_prop.dram_supports_virtual_memory)
2900 		atomic64_set(&hdev->dram_used_mem, 0);
2901 }
2902 
2903 /**
2904  * hl_vm_init() - initialize virtual memory module.
2905  * @hdev: pointer to the habanalabs device structure.
2906  *
2907  * This function initializes the following:
2908  * - MMU module.
2909  * - DRAM physical pages pool of 2MB.
2910  * - Idr for device memory allocation handles.
2911  */
2912 int hl_vm_init(struct hl_device *hdev)
2913 {
2914 	struct asic_fixed_properties *prop = &hdev->asic_prop;
2915 	struct hl_vm *vm = &hdev->vm;
2916 	int rc;
2917 
2918 	if (is_power_of_2(prop->dram_page_size))
2919 		vm->dram_pg_pool =
2920 			gen_pool_create(__ffs(prop->dram_page_size), -1);
2921 	else
2922 		vm->dram_pg_pool =
2923 			gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2924 
2925 	if (!vm->dram_pg_pool) {
2926 		dev_err(hdev->dev, "Failed to create dram page pool\n");
2927 		return -ENOMEM;
2928 	}
2929 
2930 	kref_init(&vm->dram_pg_pool_refcount);
2931 
2932 	rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2933 			prop->dram_end_address - prop->dram_user_base_address,
2934 			-1);
2935 
2936 	if (rc) {
2937 		dev_err(hdev->dev,
2938 			"Failed to add memory to dram page pool %d\n", rc);
2939 		goto pool_add_err;
2940 	}
2941 
2942 	spin_lock_init(&vm->idr_lock);
2943 	idr_init(&vm->phys_pg_pack_handles);
2944 
2945 	atomic64_set(&hdev->dram_used_mem, 0);
2946 
2947 	vm->init_done = true;
2948 
2949 	return 0;
2950 
2951 pool_add_err:
2952 	gen_pool_destroy(vm->dram_pg_pool);
2953 
2954 	return rc;
2955 }
2956 
2957 /**
2958  * hl_vm_fini() - virtual memory module teardown.
2959  * @hdev: pointer to the habanalabs device structure.
2960  *
2961  * This function perform teardown to the following:
2962  * - Idr for device memory allocation handles.
2963  * - DRAM physical pages pool of 2MB.
2964  * - MMU module.
2965  */
2966 void hl_vm_fini(struct hl_device *hdev)
2967 {
2968 	struct hl_vm *vm = &hdev->vm;
2969 
2970 	if (!vm->init_done)
2971 		return;
2972 
2973 	/*
2974 	 * At this point all the contexts should be freed and hence no DRAM
2975 	 * memory should be in use. Hence the DRAM pool should be freed here.
2976 	 */
2977 	if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2978 		dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2979 				__func__);
2980 
2981 	vm->init_done = false;
2982 }
2983 
2984 /**
2985  * hl_hw_block_mem_init() - HW block memory initialization.
2986  * @ctx: pointer to the habanalabs context structure.
2987  *
2988  * This function initializes the HW block virtual mapped addresses list and
2989  * it's lock.
2990  */
2991 void hl_hw_block_mem_init(struct hl_ctx *ctx)
2992 {
2993 	mutex_init(&ctx->hw_block_list_lock);
2994 	INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2995 }
2996 
2997 /**
2998  * hl_hw_block_mem_fini() - HW block memory teardown.
2999  * @ctx: pointer to the habanalabs context structure.
3000  *
3001  * This function clears the HW block virtual mapped addresses list and destroys
3002  * it's lock.
3003  */
3004 void hl_hw_block_mem_fini(struct hl_ctx *ctx)
3005 {
3006 	struct hl_vm_hw_block_list_node *lnode, *tmp;
3007 
3008 	if (!list_empty(&ctx->hw_block_mem_list))
3009 		dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
3010 
3011 	list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
3012 		list_del(&lnode->node);
3013 		kfree(lnode);
3014 	}
3015 
3016 	mutex_destroy(&ctx->hw_block_list_lock);
3017 }
3018