1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2022 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include "habanalabs.h" 9 10 #include <linux/slab.h> 11 12 /** 13 * struct hl_eqe_work - This structure is used to schedule work of EQ 14 * entry and cpucp_reset event 15 * 16 * @eq_work: workqueue object to run when EQ entry is received 17 * @hdev: pointer to device structure 18 * @eq_entry: copy of the EQ entry 19 */ 20 struct hl_eqe_work { 21 struct work_struct eq_work; 22 struct hl_device *hdev; 23 struct hl_eq_entry eq_entry; 24 }; 25 26 /** 27 * hl_cq_inc_ptr - increment ci or pi of cq 28 * 29 * @ptr: the current ci or pi value of the completion queue 30 * 31 * Increment ptr by 1. If it reaches the number of completion queue 32 * entries, set it to 0 33 */ 34 inline u32 hl_cq_inc_ptr(u32 ptr) 35 { 36 ptr++; 37 if (unlikely(ptr == HL_CQ_LENGTH)) 38 ptr = 0; 39 return ptr; 40 } 41 42 /** 43 * hl_eq_inc_ptr - increment ci of eq 44 * 45 * @ptr: the current ci value of the event queue 46 * 47 * Increment ptr by 1. If it reaches the number of event queue 48 * entries, set it to 0 49 */ 50 static inline u32 hl_eq_inc_ptr(u32 ptr) 51 { 52 ptr++; 53 if (unlikely(ptr == HL_EQ_LENGTH)) 54 ptr = 0; 55 return ptr; 56 } 57 58 static void irq_handle_eqe(struct work_struct *work) 59 { 60 struct hl_eqe_work *eqe_work = container_of(work, struct hl_eqe_work, 61 eq_work); 62 struct hl_device *hdev = eqe_work->hdev; 63 64 hdev->asic_funcs->handle_eqe(hdev, &eqe_work->eq_entry); 65 66 kfree(eqe_work); 67 } 68 69 /** 70 * job_finish - queue job finish work 71 * 72 * @hdev: pointer to device structure 73 * @cs_seq: command submission sequence 74 * @cq: completion queue 75 * 76 */ 77 static void job_finish(struct hl_device *hdev, u32 cs_seq, struct hl_cq *cq) 78 { 79 struct hl_hw_queue *queue; 80 struct hl_cs_job *job; 81 82 queue = &hdev->kernel_queues[cq->hw_queue_id]; 83 job = queue->shadow_queue[hl_pi_2_offset(cs_seq)]; 84 queue_work(hdev->cq_wq[cq->cq_idx], &job->finish_work); 85 86 atomic_inc(&queue->ci); 87 } 88 89 /** 90 * cs_finish - queue all cs jobs finish work 91 * 92 * @hdev: pointer to device structure 93 * @cs_seq: command submission sequence 94 * 95 */ 96 static void cs_finish(struct hl_device *hdev, u16 cs_seq) 97 { 98 struct asic_fixed_properties *prop = &hdev->asic_prop; 99 struct hl_hw_queue *queue; 100 struct hl_cs *cs; 101 struct hl_cs_job *job; 102 103 cs = hdev->shadow_cs_queue[cs_seq & (prop->max_pending_cs - 1)]; 104 if (!cs) { 105 dev_warn(hdev->dev, 106 "No pointer to CS in shadow array at index %d\n", 107 cs_seq); 108 return; 109 } 110 111 list_for_each_entry(job, &cs->job_list, cs_node) { 112 queue = &hdev->kernel_queues[job->hw_queue_id]; 113 atomic_inc(&queue->ci); 114 } 115 116 queue_work(hdev->cs_cmplt_wq, &cs->finish_work); 117 } 118 119 /** 120 * hl_irq_handler_cq - irq handler for completion queue 121 * 122 * @irq: irq number 123 * @arg: pointer to completion queue structure 124 * 125 */ 126 irqreturn_t hl_irq_handler_cq(int irq, void *arg) 127 { 128 struct hl_cq *cq = arg; 129 struct hl_device *hdev = cq->hdev; 130 bool shadow_index_valid, entry_ready; 131 u16 shadow_index; 132 struct hl_cq_entry *cq_entry, *cq_base; 133 134 if (hdev->disabled) { 135 dev_dbg(hdev->dev, 136 "Device disabled but received IRQ %d for CQ %d\n", 137 irq, cq->hw_queue_id); 138 return IRQ_HANDLED; 139 } 140 141 cq_base = cq->kernel_address; 142 143 while (1) { 144 cq_entry = (struct hl_cq_entry *) &cq_base[cq->ci]; 145 146 entry_ready = !!FIELD_GET(CQ_ENTRY_READY_MASK, 147 le32_to_cpu(cq_entry->data)); 148 if (!entry_ready) 149 break; 150 151 /* Make sure we read CQ entry contents after we've 152 * checked the ownership bit. 153 */ 154 dma_rmb(); 155 156 shadow_index_valid = 157 !!FIELD_GET(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 158 le32_to_cpu(cq_entry->data)); 159 160 shadow_index = FIELD_GET(CQ_ENTRY_SHADOW_INDEX_MASK, 161 le32_to_cpu(cq_entry->data)); 162 163 /* 164 * CQ interrupt handler has 2 modes of operation: 165 * 1. Interrupt per CS completion: (Single CQ for all queues) 166 * CQ entry represents a completed CS 167 * 168 * 2. Interrupt per CS job completion in queue: (CQ per queue) 169 * CQ entry represents a completed job in a certain queue 170 */ 171 if (shadow_index_valid && !hdev->disabled) { 172 if (hdev->asic_prop.completion_mode == 173 HL_COMPLETION_MODE_CS) 174 cs_finish(hdev, shadow_index); 175 else 176 job_finish(hdev, shadow_index, cq); 177 } 178 179 /* Clear CQ entry ready bit */ 180 cq_entry->data = cpu_to_le32(le32_to_cpu(cq_entry->data) & 181 ~CQ_ENTRY_READY_MASK); 182 183 cq->ci = hl_cq_inc_ptr(cq->ci); 184 185 /* Increment free slots */ 186 atomic_inc(&cq->free_slots_cnt); 187 } 188 189 return IRQ_HANDLED; 190 } 191 192 /* 193 * hl_ts_free_objects - handler of the free objects workqueue. 194 * This function should put refcount to objects that the registration node 195 * took refcount to them. 196 * @work: workqueue object pointer 197 */ 198 static void hl_ts_free_objects(struct work_struct *work) 199 { 200 struct timestamp_reg_work_obj *job = 201 container_of(work, struct timestamp_reg_work_obj, free_obj); 202 struct timestamp_reg_free_node *free_obj, *temp_free_obj; 203 struct list_head *free_list_head = job->free_obj_head; 204 struct hl_device *hdev = job->hdev; 205 206 list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) { 207 dev_dbg(hdev->dev, "About to put refcount to buf (%p) cq_cb(%p)\n", 208 free_obj->buf, 209 free_obj->cq_cb); 210 211 hl_mmap_mem_buf_put(free_obj->buf); 212 hl_cb_put(free_obj->cq_cb); 213 kfree(free_obj); 214 } 215 216 kfree(free_list_head); 217 kfree(job); 218 } 219 220 /* 221 * This function called with spin_lock of wait_list_lock taken 222 * This function will set timestamp and delete the registration node from the 223 * wait_list_lock. 224 * and since we're protected with spin_lock here, so we cannot just put the refcount 225 * for the objects here, since the release function may be called and it's also a long 226 * logic (which might sleep also) that cannot be handled in irq context. 227 * so here we'll be filling a list with nodes of "put" jobs and then will send this 228 * list to a dedicated workqueue to do the actual put. 229 */ 230 static int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend, 231 struct list_head **free_list, ktime_t now) 232 { 233 struct timestamp_reg_free_node *free_node; 234 u64 timestamp; 235 236 if (!(*free_list)) { 237 /* Alloc/Init the timestamp registration free objects list */ 238 *free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC); 239 if (!(*free_list)) 240 return -ENOMEM; 241 242 INIT_LIST_HEAD(*free_list); 243 } 244 245 free_node = kmalloc(sizeof(*free_node), GFP_ATOMIC); 246 if (!free_node) 247 return -ENOMEM; 248 249 timestamp = ktime_to_ns(now); 250 251 *pend->ts_reg_info.timestamp_kernel_addr = timestamp; 252 253 dev_dbg(hdev->dev, "Timestamp is set to ts cb address (%p), ts: 0x%llx\n", 254 pend->ts_reg_info.timestamp_kernel_addr, 255 *(u64 *)pend->ts_reg_info.timestamp_kernel_addr); 256 257 list_del(&pend->wait_list_node); 258 259 /* Mark kernel CB node as free */ 260 pend->ts_reg_info.in_use = 0; 261 262 /* Putting the refcount for ts_buff and cq_cb objects will be handled 263 * in workqueue context, just add job to free_list. 264 */ 265 free_node->buf = pend->ts_reg_info.buf; 266 free_node->cq_cb = pend->ts_reg_info.cq_cb; 267 list_add(&free_node->free_objects_node, *free_list); 268 269 return 0; 270 } 271 272 static void handle_user_interrupt(struct hl_device *hdev, struct hl_user_interrupt *intr) 273 { 274 struct hl_user_pending_interrupt *pend, *temp_pend; 275 struct list_head *ts_reg_free_list_head = NULL; 276 struct timestamp_reg_work_obj *job; 277 bool reg_node_handle_fail = false; 278 ktime_t now = ktime_get(); 279 int rc; 280 281 /* For registration nodes: 282 * As part of handling the registration nodes, we should put refcount to 283 * some objects. the problem is that we cannot do that under spinlock 284 * or in irq handler context at all (since release functions are long and 285 * might sleep), so we will need to handle that part in workqueue context. 286 * To avoid handling kmalloc failure which compels us rolling back actions 287 * and move nodes hanged on the free list back to the interrupt wait list 288 * we always alloc the job of the WQ at the beginning. 289 */ 290 job = kmalloc(sizeof(*job), GFP_ATOMIC); 291 if (!job) 292 return; 293 294 spin_lock(&intr->wait_list_lock); 295 list_for_each_entry_safe(pend, temp_pend, &intr->wait_list_head, wait_list_node) { 296 if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) || 297 !pend->cq_kernel_addr) { 298 if (pend->ts_reg_info.buf) { 299 if (!reg_node_handle_fail) { 300 rc = handle_registration_node(hdev, pend, 301 &ts_reg_free_list_head, now); 302 if (rc) 303 reg_node_handle_fail = true; 304 } 305 } else { 306 /* Handle wait target value node */ 307 pend->fence.timestamp = now; 308 complete_all(&pend->fence.completion); 309 } 310 } 311 } 312 spin_unlock(&intr->wait_list_lock); 313 314 if (ts_reg_free_list_head) { 315 INIT_WORK(&job->free_obj, hl_ts_free_objects); 316 job->free_obj_head = ts_reg_free_list_head; 317 job->hdev = hdev; 318 queue_work(hdev->ts_free_obj_wq, &job->free_obj); 319 } else { 320 kfree(job); 321 } 322 } 323 324 /** 325 * hl_irq_handler_user_interrupt - irq handler for user interrupts 326 * 327 * @irq: irq number 328 * @arg: pointer to user interrupt structure 329 * 330 */ 331 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg) 332 { 333 struct hl_user_interrupt *user_int = arg; 334 struct hl_device *hdev = user_int->hdev; 335 336 if (user_int->is_decoder) 337 handle_user_interrupt(hdev, &hdev->common_decoder_interrupt); 338 else 339 handle_user_interrupt(hdev, &hdev->common_user_cq_interrupt); 340 341 /* Handle user cq or decoder interrupts registered on this specific irq */ 342 handle_user_interrupt(hdev, user_int); 343 344 return IRQ_HANDLED; 345 } 346 347 /** 348 * hl_irq_handler_default - default irq handler 349 * 350 * @irq: irq number 351 * @arg: pointer to user interrupt structure 352 * 353 */ 354 irqreturn_t hl_irq_handler_default(int irq, void *arg) 355 { 356 struct hl_user_interrupt *user_interrupt = arg; 357 struct hl_device *hdev = user_interrupt->hdev; 358 u32 interrupt_id = user_interrupt->interrupt_id; 359 360 dev_err(hdev->dev, "got invalid user interrupt %u", interrupt_id); 361 362 return IRQ_HANDLED; 363 } 364 365 /** 366 * hl_irq_handler_eq - irq handler for event queue 367 * 368 * @irq: irq number 369 * @arg: pointer to event queue structure 370 * 371 */ 372 irqreturn_t hl_irq_handler_eq(int irq, void *arg) 373 { 374 struct hl_eq *eq = arg; 375 struct hl_device *hdev = eq->hdev; 376 struct hl_eq_entry *eq_entry; 377 struct hl_eq_entry *eq_base; 378 struct hl_eqe_work *handle_eqe_work; 379 bool entry_ready; 380 u32 cur_eqe; 381 u16 cur_eqe_index; 382 383 eq_base = eq->kernel_address; 384 385 while (1) { 386 cur_eqe = le32_to_cpu(eq_base[eq->ci].hdr.ctl); 387 entry_ready = !!FIELD_GET(EQ_CTL_READY_MASK, cur_eqe); 388 389 if (!entry_ready) 390 break; 391 392 cur_eqe_index = FIELD_GET(EQ_CTL_INDEX_MASK, cur_eqe); 393 if ((hdev->event_queue.check_eqe_index) && 394 (((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK) 395 != cur_eqe_index)) { 396 dev_dbg(hdev->dev, 397 "EQE 0x%x in queue is ready but index does not match %d!=%d", 398 eq_base[eq->ci].hdr.ctl, 399 ((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK), 400 cur_eqe_index); 401 break; 402 } 403 404 eq->prev_eqe_index++; 405 406 eq_entry = &eq_base[eq->ci]; 407 408 /* 409 * Make sure we read EQ entry contents after we've 410 * checked the ownership bit. 411 */ 412 dma_rmb(); 413 414 if (hdev->disabled && !hdev->reset_info.in_compute_reset) { 415 dev_warn(hdev->dev, "Device disabled but received an EQ event\n"); 416 goto skip_irq; 417 } 418 419 handle_eqe_work = kmalloc(sizeof(*handle_eqe_work), GFP_ATOMIC); 420 if (handle_eqe_work) { 421 INIT_WORK(&handle_eqe_work->eq_work, irq_handle_eqe); 422 handle_eqe_work->hdev = hdev; 423 424 memcpy(&handle_eqe_work->eq_entry, eq_entry, 425 sizeof(*eq_entry)); 426 427 queue_work(hdev->eq_wq, &handle_eqe_work->eq_work); 428 } 429 skip_irq: 430 /* Clear EQ entry ready bit */ 431 eq_entry->hdr.ctl = 432 cpu_to_le32(le32_to_cpu(eq_entry->hdr.ctl) & 433 ~EQ_CTL_READY_MASK); 434 435 eq->ci = hl_eq_inc_ptr(eq->ci); 436 437 hdev->asic_funcs->update_eq_ci(hdev, eq->ci); 438 } 439 440 return IRQ_HANDLED; 441 } 442 443 /** 444 * hl_irq_handler_dec_abnrm - Decoder error interrupt handler 445 * @irq: IRQ number 446 * @arg: pointer to decoder structure. 447 */ 448 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg) 449 { 450 struct hl_dec *dec = arg; 451 452 schedule_work(&dec->completion_abnrm_work); 453 454 return IRQ_HANDLED; 455 } 456 457 /** 458 * hl_cq_init - main initialization function for an cq object 459 * 460 * @hdev: pointer to device structure 461 * @q: pointer to cq structure 462 * @hw_queue_id: The H/W queue ID this completion queue belongs to 463 * HL_INVALID_QUEUE if cq is not attached to any specific queue 464 * 465 * Allocate dma-able memory for the completion queue and initialize fields 466 * Returns 0 on success 467 */ 468 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id) 469 { 470 void *p; 471 472 p = hl_asic_dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES, &q->bus_address, 473 GFP_KERNEL | __GFP_ZERO); 474 if (!p) 475 return -ENOMEM; 476 477 q->hdev = hdev; 478 q->kernel_address = p; 479 q->hw_queue_id = hw_queue_id; 480 q->ci = 0; 481 q->pi = 0; 482 483 atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH); 484 485 return 0; 486 } 487 488 /** 489 * hl_cq_fini - destroy completion queue 490 * 491 * @hdev: pointer to device structure 492 * @q: pointer to cq structure 493 * 494 * Free the completion queue memory 495 */ 496 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q) 497 { 498 hl_asic_dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES, q->kernel_address, q->bus_address); 499 } 500 501 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q) 502 { 503 q->ci = 0; 504 q->pi = 0; 505 506 atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH); 507 508 /* 509 * It's not enough to just reset the PI/CI because the H/W may have 510 * written valid completion entries before it was halted and therefore 511 * we need to clean the actual queues so we won't process old entries 512 * when the device is operational again 513 */ 514 515 memset(q->kernel_address, 0, HL_CQ_SIZE_IN_BYTES); 516 } 517 518 /** 519 * hl_eq_init - main initialization function for an event queue object 520 * 521 * @hdev: pointer to device structure 522 * @q: pointer to eq structure 523 * 524 * Allocate dma-able memory for the event queue and initialize fields 525 * Returns 0 on success 526 */ 527 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q) 528 { 529 void *p; 530 531 p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_EQ_SIZE_IN_BYTES, &q->bus_address); 532 if (!p) 533 return -ENOMEM; 534 535 q->hdev = hdev; 536 q->kernel_address = p; 537 q->ci = 0; 538 q->prev_eqe_index = 0; 539 540 return 0; 541 } 542 543 /** 544 * hl_eq_fini - destroy event queue 545 * 546 * @hdev: pointer to device structure 547 * @q: pointer to eq structure 548 * 549 * Free the event queue memory 550 */ 551 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q) 552 { 553 flush_workqueue(hdev->eq_wq); 554 555 hl_cpu_accessible_dma_pool_free(hdev, HL_EQ_SIZE_IN_BYTES, q->kernel_address); 556 } 557 558 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q) 559 { 560 q->ci = 0; 561 q->prev_eqe_index = 0; 562 563 /* 564 * It's not enough to just reset the PI/CI because the H/W may have 565 * written valid completion entries before it was halted and therefore 566 * we need to clean the actual queues so we won't process old entries 567 * when the device is operational again 568 */ 569 570 memset(q->kernel_address, 0, HL_EQ_SIZE_IN_BYTES); 571 } 572