xref: /openbmc/linux/drivers/accel/habanalabs/common/hw_queue.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include "habanalabs.h"
9 
10 #include <linux/slab.h>
11 
12 /*
13  * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14  *
15  * @ptr: the current pi/ci value
16  * @val: the amount to add
17  *
18  * Add val to ptr. It can go until twice the queue length.
19  */
20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22 	ptr += val;
23 	ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24 	return ptr;
25 }
26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28 	return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30 
31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33 	int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34 
35 	if (delta >= 0)
36 		return (queue_len - delta);
37 	else
38 		return (abs(delta) - queue_len);
39 }
40 
41 void hl_hw_queue_update_ci(struct hl_cs *cs)
42 {
43 	struct hl_device *hdev = cs->ctx->hdev;
44 	struct hl_hw_queue *q;
45 	int i;
46 
47 	if (hdev->disabled)
48 		return;
49 
50 	q = &hdev->kernel_queues[0];
51 
52 	/* There are no internal queues if H/W queues are being used */
53 	if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
54 		return;
55 
56 	/* We must increment CI for every queue that will never get a
57 	 * completion, there are 2 scenarios this can happen:
58 	 * 1. All queues of a non completion CS will never get a completion.
59 	 * 2. Internal queues never gets completion.
60 	 */
61 	for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
62 		if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
63 			atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
64 	}
65 }
66 
67 /*
68  * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
69  *                                H/W queue.
70  * @hdev: pointer to habanalabs device structure
71  * @q: pointer to habanalabs queue structure
72  * @ctl: BD's control word
73  * @len: BD's length
74  * @ptr: BD's pointer
75  *
76  * This function assumes there is enough space on the queue to submit a new
77  * BD to it. It initializes the next BD and calls the device specific
78  * function to set the pi (and doorbell)
79  *
80  * This function must be called when the scheduler mutex is taken
81  *
82  */
83 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
84 		u32 ctl, u32 len, u64 ptr)
85 {
86 	struct hl_bd *bd;
87 
88 	bd = q->kernel_address;
89 	bd += hl_pi_2_offset(q->pi);
90 	bd->ctl = cpu_to_le32(ctl);
91 	bd->len = cpu_to_le32(len);
92 	bd->ptr = cpu_to_le64(ptr);
93 
94 	q->pi = hl_queue_inc_ptr(q->pi);
95 	hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
96 }
97 
98 /*
99  * ext_queue_sanity_checks - perform some sanity checks on external queue
100  *
101  * @hdev              : pointer to hl_device structure
102  * @q                 :	pointer to hl_hw_queue structure
103  * @num_of_entries    : how many entries to check for space
104  * @reserve_cq_entry  :	whether to reserve an entry in the cq
105  *
106  * H/W queues spinlock should be taken before calling this function
107  *
108  * Perform the following:
109  * - Make sure we have enough space in the h/w queue
110  * - Make sure we have enough space in the completion queue
111  * - Reserve space in the completion queue (needs to be reversed if there
112  *   is a failure down the road before the actual submission of work). Only
113  *   do this action if reserve_cq_entry is true
114  *
115  */
116 static int ext_queue_sanity_checks(struct hl_device *hdev,
117 				struct hl_hw_queue *q, int num_of_entries,
118 				bool reserve_cq_entry)
119 {
120 	atomic_t *free_slots =
121 			&hdev->completion_queue[q->cq_id].free_slots_cnt;
122 	int free_slots_cnt;
123 
124 	/* Check we have enough space in the queue */
125 	free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
126 
127 	if (free_slots_cnt < num_of_entries) {
128 		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
129 			q->hw_queue_id, num_of_entries);
130 		return -EAGAIN;
131 	}
132 
133 	if (reserve_cq_entry) {
134 		/*
135 		 * Check we have enough space in the completion queue
136 		 * Add -1 to counter (decrement) unless counter was already 0
137 		 * In that case, CQ is full so we can't submit a new CB because
138 		 * we won't get ack on its completion
139 		 * atomic_add_unless will return 0 if counter was already 0
140 		 */
141 		if (atomic_add_negative(num_of_entries * -1, free_slots)) {
142 			dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
143 				num_of_entries, q->hw_queue_id);
144 			atomic_add(num_of_entries, free_slots);
145 			return -EAGAIN;
146 		}
147 	}
148 
149 	return 0;
150 }
151 
152 /*
153  * int_queue_sanity_checks - perform some sanity checks on internal queue
154  *
155  * @hdev              : pointer to hl_device structure
156  * @q                 :	pointer to hl_hw_queue structure
157  * @num_of_entries    : how many entries to check for space
158  *
159  * H/W queues spinlock should be taken before calling this function
160  *
161  * Perform the following:
162  * - Make sure we have enough space in the h/w queue
163  *
164  */
165 static int int_queue_sanity_checks(struct hl_device *hdev,
166 					struct hl_hw_queue *q,
167 					int num_of_entries)
168 {
169 	int free_slots_cnt;
170 
171 	if (num_of_entries > q->int_queue_len) {
172 		dev_err(hdev->dev,
173 			"Cannot populate queue %u with %u jobs\n",
174 			q->hw_queue_id, num_of_entries);
175 		return -ENOMEM;
176 	}
177 
178 	/* Check we have enough space in the queue */
179 	free_slots_cnt = queue_free_slots(q, q->int_queue_len);
180 
181 	if (free_slots_cnt < num_of_entries) {
182 		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
183 			q->hw_queue_id, num_of_entries);
184 		return -EAGAIN;
185 	}
186 
187 	return 0;
188 }
189 
190 /*
191  * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
192  * @hdev: Pointer to hl_device structure.
193  * @q: Pointer to hl_hw_queue structure.
194  * @num_of_entries: How many entries to check for space.
195  *
196  * Notice: We do not reserve queue entries so this function mustn't be called
197  *         more than once per CS for the same queue
198  *
199  */
200 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
201 					int num_of_entries)
202 {
203 	int free_slots_cnt;
204 
205 	/* Check we have enough space in the queue */
206 	free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
207 
208 	if (free_slots_cnt < num_of_entries) {
209 		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
210 			q->hw_queue_id, num_of_entries);
211 		return -EAGAIN;
212 	}
213 
214 	return 0;
215 }
216 
217 /*
218  * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
219  *
220  * @hdev: pointer to hl_device structure
221  * @hw_queue_id: Queue's type
222  * @cb_size: size of CB
223  * @cb_ptr: pointer to CB location
224  *
225  * This function sends a single CB, that must NOT generate a completion entry.
226  * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
227  */
228 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
229 				u32 cb_size, u64 cb_ptr)
230 {
231 	struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
232 	int rc = 0;
233 
234 	hdev->asic_funcs->hw_queues_lock(hdev);
235 
236 	if (hdev->disabled) {
237 		rc = -EPERM;
238 		goto out;
239 	}
240 
241 	/*
242 	 * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
243 	 * type only on init phase, when the queues are empty and being tested,
244 	 * so there is no need for sanity checks.
245 	 */
246 	if (q->queue_type != QUEUE_TYPE_HW) {
247 		rc = ext_queue_sanity_checks(hdev, q, 1, false);
248 		if (rc)
249 			goto out;
250 	}
251 
252 	hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
253 
254 out:
255 	hdev->asic_funcs->hw_queues_unlock(hdev);
256 
257 	return rc;
258 }
259 
260 /*
261  * ext_queue_schedule_job - submit a JOB to an external queue
262  *
263  * @job: pointer to the job that needs to be submitted to the queue
264  *
265  * This function must be called when the scheduler mutex is taken
266  *
267  */
268 static void ext_queue_schedule_job(struct hl_cs_job *job)
269 {
270 	struct hl_device *hdev = job->cs->ctx->hdev;
271 	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
272 	struct hl_cq_entry cq_pkt;
273 	struct hl_cq *cq;
274 	u64 cq_addr;
275 	struct hl_cb *cb;
276 	u32 ctl;
277 	u32 len;
278 	u64 ptr;
279 
280 	/*
281 	 * Update the JOB ID inside the BD CTL so the device would know what
282 	 * to write in the completion queue
283 	 */
284 	ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
285 
286 	cb = job->patched_cb;
287 	len = job->job_cb_size;
288 	ptr = cb->bus_address;
289 
290 	/* Skip completion flow in case this is a non completion CS */
291 	if (!cs_needs_completion(job->cs))
292 		goto submit_bd;
293 
294 	cq_pkt.data = cpu_to_le32(
295 			((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
296 				& CQ_ENTRY_SHADOW_INDEX_MASK) |
297 			FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
298 			FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
299 
300 	/*
301 	 * No need to protect pi_offset because scheduling to the
302 	 * H/W queues is done under the scheduler mutex
303 	 *
304 	 * No need to check if CQ is full because it was already
305 	 * checked in ext_queue_sanity_checks
306 	 */
307 	cq = &hdev->completion_queue[q->cq_id];
308 	cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
309 
310 	hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
311 						job->user_cb_size,
312 						cq_addr,
313 						le32_to_cpu(cq_pkt.data),
314 						q->msi_vec,
315 						job->contains_dma_pkt);
316 
317 	q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
318 
319 	cq->pi = hl_cq_inc_ptr(cq->pi);
320 
321 submit_bd:
322 	hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
323 }
324 
325 /*
326  * int_queue_schedule_job - submit a JOB to an internal queue
327  *
328  * @job: pointer to the job that needs to be submitted to the queue
329  *
330  * This function must be called when the scheduler mutex is taken
331  *
332  */
333 static void int_queue_schedule_job(struct hl_cs_job *job)
334 {
335 	struct hl_device *hdev = job->cs->ctx->hdev;
336 	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
337 	struct hl_bd bd;
338 	__le64 *pi;
339 
340 	bd.ctl = 0;
341 	bd.len = cpu_to_le32(job->job_cb_size);
342 
343 	if (job->is_kernel_allocated_cb)
344 		/* bus_address is actually a mmu mapped address
345 		 * allocated from an internal pool
346 		 */
347 		bd.ptr = cpu_to_le64(job->user_cb->bus_address);
348 	else
349 		bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
350 
351 	pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
352 
353 	q->pi++;
354 	q->pi &= ((q->int_queue_len << 1) - 1);
355 
356 	hdev->asic_funcs->pqe_write(hdev, pi, &bd);
357 
358 	hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
359 }
360 
361 /*
362  * hw_queue_schedule_job - submit a JOB to a H/W queue
363  *
364  * @job: pointer to the job that needs to be submitted to the queue
365  *
366  * This function must be called when the scheduler mutex is taken
367  *
368  */
369 static void hw_queue_schedule_job(struct hl_cs_job *job)
370 {
371 	struct hl_device *hdev = job->cs->ctx->hdev;
372 	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
373 	u64 ptr;
374 	u32 offset, ctl, len;
375 
376 	/*
377 	 * Upon PQE completion, COMP_DATA is used as the write data to the
378 	 * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
379 	 * write address offset in the SM block (QMAN LBW message).
380 	 * The write address offset is calculated as "COMP_OFFSET << 2".
381 	 */
382 	offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
383 	ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
384 		((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
385 
386 	len = job->job_cb_size;
387 
388 	/*
389 	 * A patched CB is created only if a user CB was allocated by driver and
390 	 * MMU is disabled. If MMU is enabled, the user CB should be used
391 	 * instead. If the user CB wasn't allocated by driver, assume that it
392 	 * holds an address.
393 	 */
394 	if (job->patched_cb)
395 		ptr = job->patched_cb->bus_address;
396 	else if (job->is_kernel_allocated_cb)
397 		ptr = job->user_cb->bus_address;
398 	else
399 		ptr = (u64) (uintptr_t) job->user_cb;
400 
401 	hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
402 }
403 
404 static int init_signal_cs(struct hl_device *hdev,
405 		struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
406 {
407 	struct hl_sync_stream_properties *prop;
408 	struct hl_hw_sob *hw_sob;
409 	u32 q_idx;
410 	int rc = 0;
411 
412 	q_idx = job->hw_queue_id;
413 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
414 	hw_sob = &prop->hw_sob[prop->curr_sob_offset];
415 
416 	cs_cmpl->hw_sob = hw_sob;
417 	cs_cmpl->sob_val = prop->next_sob_val;
418 
419 	dev_dbg(hdev->dev,
420 		"generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n",
421 		cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx,
422 		cs_cmpl->cs_seq);
423 
424 	/* we set an EB since we must make sure all oeprations are done
425 	 * when sending the signal
426 	 */
427 	hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
428 				cs_cmpl->hw_sob->sob_id, 0, true);
429 
430 	rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1,
431 								false);
432 
433 	job->cs->sob_addr_offset = hw_sob->sob_addr;
434 	job->cs->initial_sob_count = prop->next_sob_val - 1;
435 
436 	return rc;
437 }
438 
439 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
440 			struct hl_cs *cs, struct hl_cs_job *job,
441 			struct hl_cs_compl *cs_cmpl)
442 {
443 	struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
444 	u32 offset = 0;
445 
446 	cs_cmpl->hw_sob = handle->hw_sob;
447 
448 	/* Note that encaps_sig_wait_offset was validated earlier in the flow
449 	 * for offset value which exceeds the max reserved signal count.
450 	 * always decrement 1 of the offset since when the user
451 	 * set offset 1 for example he mean to wait only for the first
452 	 * signal only, which will be pre_sob_val, and if he set offset 2
453 	 * then the value required is (pre_sob_val + 1) and so on...
454 	 * if user set wait offset to 0, then treat it as legacy wait cs,
455 	 * wait for the next signal.
456 	 */
457 	if (job->encaps_sig_wait_offset)
458 		offset = job->encaps_sig_wait_offset - 1;
459 
460 	cs_cmpl->sob_val = handle->pre_sob_val + offset;
461 }
462 
463 static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
464 		struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
465 {
466 	struct hl_gen_wait_properties wait_prop;
467 	struct hl_sync_stream_properties *prop;
468 	struct hl_cs_compl *signal_cs_cmpl;
469 	u32 q_idx;
470 
471 	q_idx = job->hw_queue_id;
472 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
473 
474 	signal_cs_cmpl = container_of(cs->signal_fence,
475 					struct hl_cs_compl,
476 					base_fence);
477 
478 	if (cs->encaps_signals) {
479 		/* use the encaps signal handle stored earlier in the flow
480 		 * and set the SOB information from the encaps
481 		 * signals handle
482 		 */
483 		hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl);
484 
485 		dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n",
486 				cs->encaps_sig_hdl->q_idx,
487 				cs->encaps_sig_hdl->cs_seq,
488 				cs_cmpl->sob_val,
489 				job->encaps_sig_wait_offset);
490 	} else {
491 		/* Copy the SOB id and value of the signal CS */
492 		cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
493 		cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
494 	}
495 
496 	/* check again if the signal cs already completed.
497 	 * if yes then don't send any wait cs since the hw_sob
498 	 * could be in reset already. if signal is not completed
499 	 * then get refcount to hw_sob to prevent resetting the sob
500 	 * while wait cs is not submitted.
501 	 * note that this check is protected by two locks,
502 	 * hw queue lock and completion object lock,
503 	 * and the same completion object lock also protects
504 	 * the hw_sob reset handler function.
505 	 * The hw_queue lock prevent out of sync of hw_sob
506 	 * refcount value, changed by signal/wait flows.
507 	 */
508 	spin_lock(&signal_cs_cmpl->lock);
509 
510 	if (completion_done(&cs->signal_fence->completion)) {
511 		spin_unlock(&signal_cs_cmpl->lock);
512 		return -EINVAL;
513 	}
514 
515 	kref_get(&cs_cmpl->hw_sob->kref);
516 
517 	spin_unlock(&signal_cs_cmpl->lock);
518 
519 	dev_dbg(hdev->dev,
520 		"generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n",
521 		cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
522 		prop->base_mon_id, q_idx, cs->sequence);
523 
524 	wait_prop.data = (void *) job->patched_cb;
525 	wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
526 	wait_prop.sob_mask = 0x1;
527 	wait_prop.sob_val = cs_cmpl->sob_val;
528 	wait_prop.mon_id = prop->base_mon_id;
529 	wait_prop.q_idx = q_idx;
530 	wait_prop.size = 0;
531 
532 	hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
533 
534 	mb();
535 	hl_fence_put(cs->signal_fence);
536 	cs->signal_fence = NULL;
537 
538 	return 0;
539 }
540 
541 /*
542  * init_signal_wait_cs - initialize a signal/wait CS
543  * @cs: pointer to the signal/wait CS
544  *
545  * H/W queues spinlock should be taken before calling this function
546  */
547 static int init_signal_wait_cs(struct hl_cs *cs)
548 {
549 	struct hl_ctx *ctx = cs->ctx;
550 	struct hl_device *hdev = ctx->hdev;
551 	struct hl_cs_job *job;
552 	struct hl_cs_compl *cs_cmpl =
553 			container_of(cs->fence, struct hl_cs_compl, base_fence);
554 	int rc = 0;
555 
556 	/* There is only one job in a signal/wait CS */
557 	job = list_first_entry(&cs->job_list, struct hl_cs_job,
558 				cs_node);
559 
560 	if (cs->type & CS_TYPE_SIGNAL)
561 		rc = init_signal_cs(hdev, job, cs_cmpl);
562 	else if (cs->type & CS_TYPE_WAIT)
563 		rc = init_wait_cs(hdev, cs, job, cs_cmpl);
564 
565 	return rc;
566 }
567 
568 static int encaps_sig_first_staged_cs_handler
569 			(struct hl_device *hdev, struct hl_cs *cs)
570 {
571 	struct hl_cs_compl *cs_cmpl =
572 			container_of(cs->fence,
573 					struct hl_cs_compl, base_fence);
574 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
575 	struct hl_encaps_signals_mgr *mgr;
576 	int rc = 0;
577 
578 	mgr = &cs->ctx->sig_mgr;
579 
580 	spin_lock(&mgr->lock);
581 	encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id);
582 	if (encaps_sig_hdl) {
583 		/*
584 		 * Set handler CS sequence,
585 		 * the CS which contains the encapsulated signals.
586 		 */
587 		encaps_sig_hdl->cs_seq = cs->sequence;
588 		/* store the handle and set encaps signal indication,
589 		 * to be used later in cs_do_release to put the last
590 		 * reference to encaps signals handlers.
591 		 */
592 		cs_cmpl->encaps_signals = true;
593 		cs_cmpl->encaps_sig_hdl = encaps_sig_hdl;
594 
595 		/* set hw_sob pointer in completion object
596 		 * since it's used in cs_do_release flow to put
597 		 * refcount to sob
598 		 */
599 		cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob;
600 		cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val +
601 						encaps_sig_hdl->count;
602 
603 		dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n",
604 				cs->sequence, encaps_sig_hdl->id,
605 				encaps_sig_hdl->count,
606 				encaps_sig_hdl->q_idx,
607 				cs_cmpl->hw_sob->sob_id,
608 				cs_cmpl->sob_val);
609 
610 	} else {
611 		dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n",
612 				cs->encaps_sig_hdl_id);
613 		rc = -EINVAL;
614 	}
615 
616 	spin_unlock(&mgr->lock);
617 
618 	return rc;
619 }
620 
621 /*
622  * hl_hw_queue_schedule_cs - schedule a command submission
623  * @cs: pointer to the CS
624  */
625 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
626 {
627 	enum hl_device_status status;
628 	struct hl_cs_counters_atomic *cntr;
629 	struct hl_ctx *ctx = cs->ctx;
630 	struct hl_device *hdev = ctx->hdev;
631 	struct hl_cs_job *job, *tmp;
632 	struct hl_hw_queue *q;
633 	int rc = 0, i, cq_cnt;
634 	bool first_entry;
635 	u32 max_queues;
636 
637 	cntr = &hdev->aggregated_cs_counters;
638 
639 	hdev->asic_funcs->hw_queues_lock(hdev);
640 
641 	if (!hl_device_operational(hdev, &status)) {
642 		atomic64_inc(&cntr->device_in_reset_drop_cnt);
643 		atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
644 		dev_err(hdev->dev,
645 			"device is %s, CS rejected!\n", hdev->status[status]);
646 		rc = -EPERM;
647 		goto out;
648 	}
649 
650 	max_queues = hdev->asic_prop.max_queues;
651 
652 	q = &hdev->kernel_queues[0];
653 	for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
654 		if (cs->jobs_in_queue_cnt[i]) {
655 			switch (q->queue_type) {
656 			case QUEUE_TYPE_EXT:
657 				rc = ext_queue_sanity_checks(hdev, q,
658 						cs->jobs_in_queue_cnt[i],
659 						cs_needs_completion(cs) ?
660 								true : false);
661 				break;
662 			case QUEUE_TYPE_INT:
663 				rc = int_queue_sanity_checks(hdev, q,
664 						cs->jobs_in_queue_cnt[i]);
665 				break;
666 			case QUEUE_TYPE_HW:
667 				rc = hw_queue_sanity_checks(hdev, q,
668 						cs->jobs_in_queue_cnt[i]);
669 				break;
670 			default:
671 				dev_err(hdev->dev, "Queue type %d is invalid\n",
672 					q->queue_type);
673 				rc = -EINVAL;
674 				break;
675 			}
676 
677 			if (rc) {
678 				atomic64_inc(
679 					&ctx->cs_counters.queue_full_drop_cnt);
680 				atomic64_inc(&cntr->queue_full_drop_cnt);
681 				goto unroll_cq_resv;
682 			}
683 
684 			if (q->queue_type == QUEUE_TYPE_EXT)
685 				cq_cnt++;
686 		}
687 	}
688 
689 	if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
690 		rc = init_signal_wait_cs(cs);
691 		if (rc)
692 			goto unroll_cq_resv;
693 	} else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) {
694 		rc = hdev->asic_funcs->collective_wait_init_cs(cs);
695 		if (rc)
696 			goto unroll_cq_resv;
697 	}
698 
699 	rc = hdev->asic_funcs->pre_schedule_cs(cs);
700 	if (rc) {
701 		dev_err(hdev->dev,
702 			"Failed in pre-submission operations of CS %d.%llu\n",
703 			ctx->asid, cs->sequence);
704 		goto unroll_cq_resv;
705 	}
706 
707 	hdev->shadow_cs_queue[cs->sequence &
708 				(hdev->asic_prop.max_pending_cs - 1)] = cs;
709 
710 	if (cs->encaps_signals && cs->staged_first) {
711 		rc = encaps_sig_first_staged_cs_handler(hdev, cs);
712 		if (rc)
713 			goto unroll_cq_resv;
714 	}
715 
716 	spin_lock(&hdev->cs_mirror_lock);
717 
718 	/* Verify staged CS exists and add to the staged list */
719 	if (cs->staged_cs && !cs->staged_first) {
720 		struct hl_cs *staged_cs;
721 
722 		staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
723 		if (!staged_cs) {
724 			dev_err(hdev->dev,
725 				"Cannot find staged submission sequence %llu",
726 				cs->staged_sequence);
727 			rc = -EINVAL;
728 			goto unlock_cs_mirror;
729 		}
730 
731 		if (is_staged_cs_last_exists(hdev, staged_cs)) {
732 			dev_err(hdev->dev,
733 				"Staged submission sequence %llu already submitted",
734 				cs->staged_sequence);
735 			rc = -EINVAL;
736 			goto unlock_cs_mirror;
737 		}
738 
739 		list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
740 
741 		/* update stream map of the first CS */
742 		if (hdev->supports_wait_for_multi_cs)
743 			staged_cs->fence->stream_master_qid_map |=
744 					cs->fence->stream_master_qid_map;
745 	}
746 
747 	list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
748 
749 	/* Queue TDR if the CS is the first entry and if timeout is wanted */
750 	first_entry = list_first_entry(&hdev->cs_mirror_list,
751 					struct hl_cs, mirror_node) == cs;
752 	if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
753 				first_entry && cs_needs_timeout(cs)) {
754 		cs->tdr_active = true;
755 		schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
756 
757 	}
758 
759 	spin_unlock(&hdev->cs_mirror_lock);
760 
761 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
762 		switch (job->queue_type) {
763 		case QUEUE_TYPE_EXT:
764 			ext_queue_schedule_job(job);
765 			break;
766 		case QUEUE_TYPE_INT:
767 			int_queue_schedule_job(job);
768 			break;
769 		case QUEUE_TYPE_HW:
770 			hw_queue_schedule_job(job);
771 			break;
772 		default:
773 			break;
774 		}
775 
776 	cs->submitted = true;
777 
778 	goto out;
779 
780 unlock_cs_mirror:
781 	spin_unlock(&hdev->cs_mirror_lock);
782 unroll_cq_resv:
783 	q = &hdev->kernel_queues[0];
784 	for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
785 		if ((q->queue_type == QUEUE_TYPE_EXT) &&
786 						(cs->jobs_in_queue_cnt[i])) {
787 			atomic_t *free_slots =
788 				&hdev->completion_queue[i].free_slots_cnt;
789 			atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
790 			cq_cnt--;
791 		}
792 	}
793 
794 out:
795 	hdev->asic_funcs->hw_queues_unlock(hdev);
796 
797 	return rc;
798 }
799 
800 /*
801  * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
802  *
803  * @hdev: pointer to hl_device structure
804  * @hw_queue_id: which queue to increment its ci
805  */
806 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
807 {
808 	struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
809 
810 	atomic_inc(&q->ci);
811 }
812 
813 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
814 					bool is_cpu_queue)
815 {
816 	void *p;
817 	int rc;
818 
819 	if (is_cpu_queue)
820 		p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address);
821 	else
822 		p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
823 						GFP_KERNEL | __GFP_ZERO);
824 	if (!p)
825 		return -ENOMEM;
826 
827 	q->kernel_address = p;
828 
829 	q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH, sizeof(struct hl_cs_job *), GFP_KERNEL);
830 	if (!q->shadow_queue) {
831 		dev_err(hdev->dev,
832 			"Failed to allocate shadow queue for H/W queue %d\n",
833 			q->hw_queue_id);
834 		rc = -ENOMEM;
835 		goto free_queue;
836 	}
837 
838 	/* Make sure read/write pointers are initialized to start of queue */
839 	atomic_set(&q->ci, 0);
840 	q->pi = 0;
841 
842 	return 0;
843 
844 free_queue:
845 	if (is_cpu_queue)
846 		hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
847 	else
848 		hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
849 						q->bus_address);
850 
851 	return rc;
852 }
853 
854 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
855 {
856 	void *p;
857 
858 	p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
859 					&q->bus_address, &q->int_queue_len);
860 	if (!p) {
861 		dev_err(hdev->dev,
862 			"Failed to get base address for internal queue %d\n",
863 			q->hw_queue_id);
864 		return -EFAULT;
865 	}
866 
867 	q->kernel_address = p;
868 	q->pi = 0;
869 	atomic_set(&q->ci, 0);
870 
871 	return 0;
872 }
873 
874 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
875 {
876 	return ext_and_cpu_queue_init(hdev, q, true);
877 }
878 
879 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
880 {
881 	return ext_and_cpu_queue_init(hdev, q, false);
882 }
883 
884 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
885 {
886 	void *p;
887 
888 	p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
889 					GFP_KERNEL | __GFP_ZERO);
890 	if (!p)
891 		return -ENOMEM;
892 
893 	q->kernel_address = p;
894 
895 	/* Make sure read/write pointers are initialized to start of queue */
896 	atomic_set(&q->ci, 0);
897 	q->pi = 0;
898 
899 	return 0;
900 }
901 
902 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
903 {
904 	struct hl_sync_stream_properties *sync_stream_prop;
905 	struct asic_fixed_properties *prop = &hdev->asic_prop;
906 	struct hl_hw_sob *hw_sob;
907 	int sob, reserved_mon_idx, queue_idx;
908 
909 	sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
910 
911 	/* We use 'collective_mon_idx' as a running index in order to reserve
912 	 * monitors for collective master/slave queues.
913 	 * collective master queue gets 2 reserved monitors
914 	 * collective slave queue gets 1 reserved monitor
915 	 */
916 	if (hdev->kernel_queues[q_idx].collective_mode ==
917 			HL_COLLECTIVE_MASTER) {
918 		reserved_mon_idx = hdev->collective_mon_idx;
919 
920 		/* reserve the first monitor for collective master queue */
921 		sync_stream_prop->collective_mstr_mon_id[0] =
922 			prop->collective_first_mon + reserved_mon_idx;
923 
924 		/* reserve the second monitor for collective master queue */
925 		sync_stream_prop->collective_mstr_mon_id[1] =
926 			prop->collective_first_mon + reserved_mon_idx + 1;
927 
928 		hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
929 	} else if (hdev->kernel_queues[q_idx].collective_mode ==
930 			HL_COLLECTIVE_SLAVE) {
931 		reserved_mon_idx = hdev->collective_mon_idx++;
932 
933 		/* reserve a monitor for collective slave queue */
934 		sync_stream_prop->collective_slave_mon_id =
935 			prop->collective_first_mon + reserved_mon_idx;
936 	}
937 
938 	if (!hdev->kernel_queues[q_idx].supports_sync_stream)
939 		return;
940 
941 	queue_idx = hdev->sync_stream_queue_idx++;
942 
943 	sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
944 			(queue_idx * HL_RSVD_SOBS);
945 	sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
946 			(queue_idx * HL_RSVD_MONS);
947 	sync_stream_prop->next_sob_val = 1;
948 	sync_stream_prop->curr_sob_offset = 0;
949 
950 	for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
951 		hw_sob = &sync_stream_prop->hw_sob[sob];
952 		hw_sob->hdev = hdev;
953 		hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
954 		hw_sob->sob_addr =
955 			hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
956 		hw_sob->q_idx = q_idx;
957 		kref_init(&hw_sob->kref);
958 	}
959 }
960 
961 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
962 {
963 	struct hl_sync_stream_properties *prop =
964 			&hdev->kernel_queues[q_idx].sync_stream_prop;
965 
966 	/*
967 	 * In case we got here due to a stuck CS, the refcnt might be bigger
968 	 * than 1 and therefore we reset it.
969 	 */
970 	kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
971 	prop->curr_sob_offset = 0;
972 	prop->next_sob_val = 1;
973 }
974 
975 /*
976  * queue_init - main initialization function for H/W queue object
977  *
978  * @hdev: pointer to hl_device device structure
979  * @q: pointer to hl_hw_queue queue structure
980  * @hw_queue_id: The id of the H/W queue
981  *
982  * Allocate dma-able memory for the queue and initialize fields
983  * Returns 0 on success
984  */
985 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
986 			u32 hw_queue_id)
987 {
988 	int rc;
989 
990 	q->hw_queue_id = hw_queue_id;
991 
992 	switch (q->queue_type) {
993 	case QUEUE_TYPE_EXT:
994 		rc = ext_queue_init(hdev, q);
995 		break;
996 	case QUEUE_TYPE_INT:
997 		rc = int_queue_init(hdev, q);
998 		break;
999 	case QUEUE_TYPE_CPU:
1000 		rc = cpu_queue_init(hdev, q);
1001 		break;
1002 	case QUEUE_TYPE_HW:
1003 		rc = hw_queue_init(hdev, q);
1004 		break;
1005 	case QUEUE_TYPE_NA:
1006 		q->valid = 0;
1007 		return 0;
1008 	default:
1009 		dev_crit(hdev->dev, "wrong queue type %d during init\n",
1010 			q->queue_type);
1011 		rc = -EINVAL;
1012 		break;
1013 	}
1014 
1015 	sync_stream_queue_init(hdev, q->hw_queue_id);
1016 
1017 	if (rc)
1018 		return rc;
1019 
1020 	q->valid = 1;
1021 
1022 	return 0;
1023 }
1024 
1025 /*
1026  * hw_queue_fini - destroy queue
1027  *
1028  * @hdev: pointer to hl_device device structure
1029  * @q: pointer to hl_hw_queue queue structure
1030  *
1031  * Free the queue memory
1032  */
1033 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
1034 {
1035 	if (!q->valid)
1036 		return;
1037 
1038 	/*
1039 	 * If we arrived here, there are no jobs waiting on this queue
1040 	 * so we can safely remove it.
1041 	 * This is because this function can only called when:
1042 	 * 1. Either a context is deleted, which only can occur if all its
1043 	 *    jobs were finished
1044 	 * 2. A context wasn't able to be created due to failure or timeout,
1045 	 *    which means there are no jobs on the queue yet
1046 	 *
1047 	 * The only exception are the queues of the kernel context, but
1048 	 * if they are being destroyed, it means that the entire module is
1049 	 * being removed. If the module is removed, it means there is no open
1050 	 * user context. It also means that if a job was submitted by
1051 	 * the kernel driver (e.g. context creation), the job itself was
1052 	 * released by the kernel driver when a timeout occurred on its
1053 	 * Completion. Thus, we don't need to release it again.
1054 	 */
1055 
1056 	if (q->queue_type == QUEUE_TYPE_INT)
1057 		return;
1058 
1059 	kfree(q->shadow_queue);
1060 
1061 	if (q->queue_type == QUEUE_TYPE_CPU)
1062 		hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
1063 	else
1064 		hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
1065 						q->bus_address);
1066 }
1067 
1068 int hl_hw_queues_create(struct hl_device *hdev)
1069 {
1070 	struct asic_fixed_properties *asic = &hdev->asic_prop;
1071 	struct hl_hw_queue *q;
1072 	int i, rc, q_ready_cnt;
1073 
1074 	hdev->kernel_queues = kcalloc(asic->max_queues,
1075 				sizeof(*hdev->kernel_queues), GFP_KERNEL);
1076 
1077 	if (!hdev->kernel_queues) {
1078 		dev_err(hdev->dev, "Not enough memory for H/W queues\n");
1079 		return -ENOMEM;
1080 	}
1081 
1082 	/* Initialize the H/W queues */
1083 	for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
1084 			i < asic->max_queues ; i++, q_ready_cnt++, q++) {
1085 
1086 		q->queue_type = asic->hw_queues_props[i].type;
1087 		q->supports_sync_stream =
1088 				asic->hw_queues_props[i].supports_sync_stream;
1089 		q->collective_mode = asic->hw_queues_props[i].collective_mode;
1090 		rc = queue_init(hdev, q, i);
1091 		if (rc) {
1092 			dev_err(hdev->dev,
1093 				"failed to initialize queue %d\n", i);
1094 			goto release_queues;
1095 		}
1096 	}
1097 
1098 	return 0;
1099 
1100 release_queues:
1101 	for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
1102 		queue_fini(hdev, q);
1103 
1104 	kfree(hdev->kernel_queues);
1105 
1106 	return rc;
1107 }
1108 
1109 void hl_hw_queues_destroy(struct hl_device *hdev)
1110 {
1111 	struct hl_hw_queue *q;
1112 	u32 max_queues = hdev->asic_prop.max_queues;
1113 	int i;
1114 
1115 	for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
1116 		queue_fini(hdev, q);
1117 
1118 	kfree(hdev->kernel_queues);
1119 }
1120 
1121 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
1122 {
1123 	struct hl_hw_queue *q;
1124 	u32 max_queues = hdev->asic_prop.max_queues;
1125 	int i;
1126 
1127 	for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
1128 		if ((!q->valid) ||
1129 			((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
1130 			continue;
1131 		q->pi = 0;
1132 		atomic_set(&q->ci, 0);
1133 
1134 		if (q->supports_sync_stream)
1135 			sync_stream_queue_reset(hdev, q->hw_queue_id);
1136 	}
1137 }
1138