1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * Copyright 2016-2022 HabanaLabs, Ltd. 4 * All Rights Reserved. 5 * 6 */ 7 8 #ifndef HABANALABSP_H_ 9 #define HABANALABSP_H_ 10 11 #include "../include/common/cpucp_if.h" 12 #include "../include/common/qman_if.h" 13 #include "../include/hw_ip/mmu/mmu_general.h" 14 #include <uapi/drm/habanalabs_accel.h> 15 16 #include <linux/cdev.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqreturn.h> 19 #include <linux/dma-direction.h> 20 #include <linux/scatterlist.h> 21 #include <linux/hashtable.h> 22 #include <linux/debugfs.h> 23 #include <linux/rwsem.h> 24 #include <linux/eventfd.h> 25 #include <linux/bitfield.h> 26 #include <linux/genalloc.h> 27 #include <linux/sched/signal.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/coresight.h> 30 #include <linux/dma-buf.h> 31 32 #include "security.h" 33 34 #define HL_NAME "habanalabs" 35 36 struct hl_device; 37 struct hl_fpriv; 38 39 /* Use upper bits of mmap offset to store habana driver specific information. 40 * bits[63:59] - Encode mmap type 41 * bits[45:0] - mmap offset value 42 * 43 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 44 * defines are w.r.t to PAGE_SIZE 45 */ 46 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) 47 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) 48 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) 49 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) 50 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) 51 52 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) 53 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) 54 55 #define HL_PENDING_RESET_PER_SEC 10 56 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ 57 #define HL_PENDING_RESET_LONG_SEC 60 58 /* 59 * In device fini, wait 10 minutes for user processes to be terminated after we kill them. 60 * This is needed to prevent situation of clearing resources while user processes are still alive. 61 */ 62 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600 63 64 #define HL_HARD_RESET_MAX_TIMEOUT 120 65 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) 66 67 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ 68 69 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ 70 71 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ 72 73 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ 74 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ 75 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ 76 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ 77 78 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ 79 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ 80 81 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ 82 83 #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */ 84 85 #define HL_INVALID_QUEUE UINT_MAX 86 87 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF 88 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE 89 90 #define HL_STATE_DUMP_HIST_LEN 5 91 92 /* Default value for device reset trigger , an invalid value */ 93 #define HL_RESET_TRIGGER_DEFAULT 0xFF 94 95 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 96 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 97 98 /* Memory */ 99 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 100 101 /* MMU */ 102 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 103 104 /** 105 * enum hl_mmu_page_table_location - mmu page table location 106 * @MMU_DR_PGT: page-table is located on device DRAM. 107 * @MMU_HR_PGT: page-table is located on host memory. 108 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. 109 */ 110 enum hl_mmu_page_table_location { 111 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ 112 MMU_HR_PGT, /* host resident MMU PGT */ 113 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ 114 }; 115 116 /** 117 * enum hl_mmu_enablement - what mmu modules to enable 118 * @MMU_EN_NONE: mmu disabled. 119 * @MMU_EN_ALL: enable all. 120 * @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled. 121 */ 122 enum hl_mmu_enablement { 123 MMU_EN_NONE = 0, 124 MMU_EN_ALL = 1, 125 MMU_EN_PMMU_ONLY = 3, /* N/A for Goya/Gaudi */ 126 }; 127 128 /* 129 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream 130 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream 131 */ 132 #define HL_RSVD_SOBS 2 133 #define HL_RSVD_MONS 1 134 135 /* 136 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream 137 */ 138 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 139 140 #define HL_MAX_SOB_VAL (1 << 15) 141 142 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) 143 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) 144 145 #define HL_PCI_NUM_BARS 6 146 147 /* Completion queue entry relates to completed job */ 148 #define HL_COMPLETION_MODE_JOB 0 149 /* Completion queue entry relates to completed command submission */ 150 #define HL_COMPLETION_MODE_CS 1 151 152 #define HL_MAX_DCORES 8 153 154 /* DMA alloc/free wrappers */ 155 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ 156 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) 157 158 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ 159 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) 160 161 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ 162 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) 163 164 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ 165 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) 166 167 /* 168 * Reset Flags 169 * 170 * - HL_DRV_RESET_HARD 171 * If set do hard reset to all engines. If not set reset just 172 * compute/DMA engines. 173 * 174 * - HL_DRV_RESET_FROM_RESET_THR 175 * Set if the caller is the hard-reset thread 176 * 177 * - HL_DRV_RESET_HEARTBEAT 178 * Set if reset is due to heartbeat 179 * 180 * - HL_DRV_RESET_TDR 181 * Set if reset is due to TDR 182 * 183 * - HL_DRV_RESET_DEV_RELEASE 184 * Set if reset is due to device release 185 * 186 * - HL_DRV_RESET_BYPASS_REQ_TO_FW 187 * F/W will perform the reset. No need to ask it to reset the device. This is relevant 188 * only when running with secured f/w 189 * 190 * - HL_DRV_RESET_FW_FATAL_ERR 191 * Set if reset is due to a fatal error from FW 192 * 193 * - HL_DRV_RESET_DELAY 194 * Set if a delay should be added before the reset 195 * 196 * - HL_DRV_RESET_FROM_WD_THR 197 * Set if the caller is the device release watchdog thread 198 */ 199 200 #define HL_DRV_RESET_HARD (1 << 0) 201 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) 202 #define HL_DRV_RESET_HEARTBEAT (1 << 2) 203 #define HL_DRV_RESET_TDR (1 << 3) 204 #define HL_DRV_RESET_DEV_RELEASE (1 << 4) 205 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) 206 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) 207 #define HL_DRV_RESET_DELAY (1 << 7) 208 #define HL_DRV_RESET_FROM_WD_THR (1 << 8) 209 210 /* 211 * Security 212 */ 213 214 #define HL_PB_SHARED 1 215 #define HL_PB_NA 0 216 #define HL_PB_SINGLE_INSTANCE 1 217 #define HL_BLOCK_SIZE 0x1000 218 #define HL_BLOCK_GLBL_ERR_MASK 0xF40 219 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 220 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 221 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 222 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) 223 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) 224 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) 225 226 enum hl_protection_levels { 227 SECURED_LVL, 228 PRIVILEGED_LVL, 229 NON_SECURED_LVL 230 }; 231 232 /** 233 * struct iterate_module_ctx - HW module iterator 234 * @fn: function to apply to each HW module instance 235 * @data: optional internal data to the function iterator 236 * @rc: return code for optional use of iterator/iterator-caller 237 */ 238 struct iterate_module_ctx { 239 /* 240 * callback for the HW module iterator 241 * @hdev: pointer to the habanalabs device structure 242 * @block: block (ASIC specific definition can be dcore/hdcore) 243 * @inst: HW module instance within the block 244 * @offset: current HW module instance offset from the 1-st HW module instance 245 * in the 1-st block 246 * @ctx: the iterator context. 247 */ 248 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, 249 struct iterate_module_ctx *ctx); 250 void *data; 251 int rc; 252 }; 253 254 struct hl_block_glbl_sec { 255 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; 256 }; 257 258 #define HL_MAX_SOBS_PER_MONITOR 8 259 260 /** 261 * struct hl_gen_wait_properties - properties for generating a wait CB 262 * @data: command buffer 263 * @q_idx: queue id is used to extract fence register address 264 * @size: offset in command buffer 265 * @sob_base: SOB base to use in this wait CB 266 * @sob_val: SOB value to wait for 267 * @mon_id: monitor to use in this wait CB 268 * @sob_mask: each bit represents a SOB offset from sob_base to be used 269 */ 270 struct hl_gen_wait_properties { 271 void *data; 272 u32 q_idx; 273 u32 size; 274 u16 sob_base; 275 u16 sob_val; 276 u16 mon_id; 277 u8 sob_mask; 278 }; 279 280 /** 281 * struct pgt_info - MMU hop page info. 282 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and 283 * actual pgts for host resident MMU). 284 * @phys_addr: physical address of the pgt. 285 * @virt_addr: host virtual address of the pgt (see above device/host resident). 286 * @shadow_addr: shadow hop in the host for device resident MMU. 287 * @ctx: pointer to the owner ctx. 288 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically 289 * allocated HOPs (all HOPs but HOP0) 290 * 291 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow 292 * pgts will be stored on host memory) or on host memory (in which case no shadow is required). 293 * 294 * When a new level (hop) is needed during mapping this structure will be used to describe 295 * the newly allocated hop as well as to track number of PTEs in it. 296 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is 297 * freed with its pgt_info structure. 298 */ 299 struct pgt_info { 300 struct hlist_node node; 301 u64 phys_addr; 302 u64 virt_addr; 303 u64 shadow_addr; 304 struct hl_ctx *ctx; 305 int num_of_ptes; 306 }; 307 308 /** 309 * enum hl_pci_match_mode - pci match mode per region 310 * @PCI_ADDRESS_MATCH_MODE: address match mode 311 * @PCI_BAR_MATCH_MODE: bar match mode 312 */ 313 enum hl_pci_match_mode { 314 PCI_ADDRESS_MATCH_MODE, 315 PCI_BAR_MATCH_MODE 316 }; 317 318 /** 319 * enum hl_fw_component - F/W components to read version through registers. 320 * @FW_COMP_BOOT_FIT: boot fit. 321 * @FW_COMP_PREBOOT: preboot. 322 * @FW_COMP_LINUX: linux. 323 */ 324 enum hl_fw_component { 325 FW_COMP_BOOT_FIT, 326 FW_COMP_PREBOOT, 327 FW_COMP_LINUX, 328 }; 329 330 /** 331 * enum hl_fw_types - F/W types present in the system 332 * @FW_TYPE_NONE: no FW component indication 333 * @FW_TYPE_LINUX: Linux image for device CPU 334 * @FW_TYPE_BOOT_CPU: Boot image for device CPU 335 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system 336 * (preboot, ppboot etc...) 337 * @FW_TYPE_ALL_TYPES: Mask for all types 338 */ 339 enum hl_fw_types { 340 FW_TYPE_NONE = 0x0, 341 FW_TYPE_LINUX = 0x1, 342 FW_TYPE_BOOT_CPU = 0x2, 343 FW_TYPE_PREBOOT_CPU = 0x4, 344 FW_TYPE_ALL_TYPES = 345 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) 346 }; 347 348 /** 349 * enum hl_queue_type - Supported QUEUE types. 350 * @QUEUE_TYPE_NA: queue is not available. 351 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the 352 * host. 353 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's 354 * memories and/or operates the compute engines. 355 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. 356 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion 357 * notifications are sent by H/W. 358 */ 359 enum hl_queue_type { 360 QUEUE_TYPE_NA, 361 QUEUE_TYPE_EXT, 362 QUEUE_TYPE_INT, 363 QUEUE_TYPE_CPU, 364 QUEUE_TYPE_HW 365 }; 366 367 enum hl_cs_type { 368 CS_TYPE_DEFAULT, 369 CS_TYPE_SIGNAL, 370 CS_TYPE_WAIT, 371 CS_TYPE_COLLECTIVE_WAIT, 372 CS_RESERVE_SIGNALS, 373 CS_UNRESERVE_SIGNALS, 374 CS_TYPE_ENGINE_CORE, 375 CS_TYPE_ENGINES, 376 CS_TYPE_FLUSH_PCI_HBW_WRITES, 377 }; 378 379 /* 380 * struct hl_inbound_pci_region - inbound region descriptor 381 * @mode: pci match mode for this region 382 * @addr: region target address 383 * @size: region size in bytes 384 * @offset_in_bar: offset within bar (address match mode) 385 * @bar: bar id 386 */ 387 struct hl_inbound_pci_region { 388 enum hl_pci_match_mode mode; 389 u64 addr; 390 u64 size; 391 u64 offset_in_bar; 392 u8 bar; 393 }; 394 395 /* 396 * struct hl_outbound_pci_region - outbound region descriptor 397 * @addr: region target address 398 * @size: region size in bytes 399 */ 400 struct hl_outbound_pci_region { 401 u64 addr; 402 u64 size; 403 }; 404 405 /* 406 * enum queue_cb_alloc_flags - Indicates queue support for CBs that 407 * allocated by Kernel or by User 408 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel 409 * @CB_ALLOC_USER: support only CBs that allocated by User 410 */ 411 enum queue_cb_alloc_flags { 412 CB_ALLOC_KERNEL = 0x1, 413 CB_ALLOC_USER = 0x2 414 }; 415 416 /* 417 * struct hl_hw_sob - H/W SOB info. 418 * @hdev: habanalabs device structure. 419 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. 420 * @sob_id: id of this SOB. 421 * @sob_addr: the sob offset from the base address. 422 * @q_idx: the H/W queue that uses this SOB. 423 * @need_reset: reset indication set when switching to the other sob. 424 */ 425 struct hl_hw_sob { 426 struct hl_device *hdev; 427 struct kref kref; 428 u32 sob_id; 429 u32 sob_addr; 430 u32 q_idx; 431 bool need_reset; 432 }; 433 434 enum hl_collective_mode { 435 HL_COLLECTIVE_NOT_SUPPORTED = 0x0, 436 HL_COLLECTIVE_MASTER = 0x1, 437 HL_COLLECTIVE_SLAVE = 0x2 438 }; 439 440 /** 441 * struct hw_queue_properties - queue information. 442 * @type: queue type. 443 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB 444 * that allocated by the Kernel driver and therefore, 445 * a CB handle can be provided for jobs on this queue. 446 * Otherwise, a CB address must be provided. 447 * @collective_mode: collective mode of current queue 448 * @driver_only: true if only the driver is allowed to send a job to this queue, 449 * false otherwise. 450 * @binned: True if the queue is binned out and should not be used 451 * @supports_sync_stream: True if queue supports sync stream 452 */ 453 struct hw_queue_properties { 454 enum hl_queue_type type; 455 enum queue_cb_alloc_flags cb_alloc_flags; 456 enum hl_collective_mode collective_mode; 457 u8 driver_only; 458 u8 binned; 459 u8 supports_sync_stream; 460 }; 461 462 /** 463 * enum vm_type - virtual memory mapping request information. 464 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. 465 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. 466 */ 467 enum vm_type { 468 VM_TYPE_USERPTR = 0x1, 469 VM_TYPE_PHYS_PACK = 0x2 470 }; 471 472 /** 473 * enum mmu_op_flags - mmu operation relevant information. 474 * @MMU_OP_USERPTR: operation on user memory (host resident). 475 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). 476 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. 477 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. 478 */ 479 enum mmu_op_flags { 480 MMU_OP_USERPTR = 0x1, 481 MMU_OP_PHYS_PACK = 0x2, 482 MMU_OP_CLEAR_MEMCACHE = 0x4, 483 MMU_OP_SKIP_LOW_CACHE_INV = 0x8, 484 }; 485 486 487 /** 488 * enum hl_device_hw_state - H/W device state. use this to understand whether 489 * to do reset before hw_init or not 490 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset 491 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute 492 * hw_init 493 */ 494 enum hl_device_hw_state { 495 HL_DEVICE_HW_STATE_CLEAN = 0, 496 HL_DEVICE_HW_STATE_DIRTY 497 }; 498 499 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 500 501 /** 502 * struct hl_mmu_properties - ASIC specific MMU address translation properties. 503 * @start_addr: virtual start address of the memory region. 504 * @end_addr: virtual end address of the memory region. 505 * @hop_shifts: array holds HOPs shifts. 506 * @hop_masks: array holds HOPs masks. 507 * @last_mask: mask to get the bit indicating this is the last hop. 508 * @pgt_size: size for page tables. 509 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs 510 * supporting multiple page size). 511 * @page_size: default page size used to allocate memory. 512 * @num_hops: The amount of hops supported by the translation table. 513 * @hop_table_size: HOP table size. 514 * @hop0_tables_total_size: total size for all HOP0 tables. 515 * @host_resident: Should the MMU page table reside in host memory or in the 516 * device DRAM. 517 */ 518 struct hl_mmu_properties { 519 u64 start_addr; 520 u64 end_addr; 521 u64 hop_shifts[MMU_HOP_MAX]; 522 u64 hop_masks[MMU_HOP_MAX]; 523 u64 last_mask; 524 u64 pgt_size; 525 u64 supported_pages_mask; 526 u32 page_size; 527 u32 num_hops; 528 u32 hop_table_size; 529 u32 hop0_tables_total_size; 530 u8 host_resident; 531 }; 532 533 /** 534 * struct hl_hints_range - hint addresses reserved va range. 535 * @start_addr: start address of the va range. 536 * @end_addr: end address of the va range. 537 */ 538 struct hl_hints_range { 539 u64 start_addr; 540 u64 end_addr; 541 }; 542 543 /** 544 * struct asic_fixed_properties - ASIC specific immutable properties. 545 * @hw_queues_props: H/W queues properties. 546 * @special_blocks: points to an array containing special blocks info. 547 * @skip_special_blocks_cfg: special blocks skip configs. 548 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. 549 * available sensors. 550 * @uboot_ver: F/W U-boot version. 551 * @preboot_ver: F/W Preboot version. 552 * @dmmu: DRAM MMU address translation properties. 553 * @pmmu: PCI (host) MMU address translation properties. 554 * @pmmu_huge: PCI (host) MMU address translation properties for memory 555 * allocated with huge pages. 556 * @hints_dram_reserved_va_range: dram hint addresses reserved range. 557 * @hints_host_reserved_va_range: host hint addresses reserved range. 558 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved 559 * range. 560 * @sram_base_address: SRAM physical start address. 561 * @sram_end_address: SRAM physical end address. 562 * @sram_user_base_address - SRAM physical start address for user access. 563 * @dram_base_address: DRAM physical start address. 564 * @dram_end_address: DRAM physical end address. 565 * @dram_user_base_address: DRAM physical start address for user access. 566 * @dram_size: DRAM total size. 567 * @dram_pci_bar_size: size of PCI bar towards DRAM. 568 * @max_power_default: max power of the device after reset. 569 * @dc_power_default: power consumed by the device in mode idle. 570 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page 571 * fault. 572 * @pcie_dbi_base_address: Base address of the PCIE_DBI block. 573 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. 574 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. 575 * @mmu_dram_default_page_addr: DRAM default page physical address. 576 * @tpc_enabled_mask: which TPCs are enabled. 577 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. 578 * @dram_enabled_mask: which DRAMs are enabled. 579 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. 580 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used 581 * for hints validity check. 582 * @cfg_base_address: config space base address. 583 * @mmu_cache_mng_addr: address of the MMU cache. 584 * @mmu_cache_mng_size: size of the MMU cache. 585 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses 586 * to enable the device to access them. 587 * @host_base_address: host physical start address for host DMA from device 588 * @host_end_address: host physical end address for host DMA from device 589 * @max_freq_value: current max clk frequency. 590 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use 591 * in order to raise events toward FW. 592 * @clk_pll_index: clock PLL index that specify which PLL determines the clock 593 * we display to the user 594 * @mmu_pgt_size: MMU page tables total size. 595 * @mmu_pte_size: PTE size in MMU page tables. 596 * @mmu_hop_table_size: MMU hop table size. 597 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. 598 * @dram_page_size: page size for MMU DRAM allocation. 599 * @cfg_size: configuration space size on SRAM. 600 * @sram_size: total size of SRAM. 601 * @max_asid: maximum number of open contexts (ASIDs). 602 * @num_of_events: number of possible internal H/W IRQs. 603 * @psoc_pci_pll_nr: PCI PLL NR value. 604 * @psoc_pci_pll_nf: PCI PLL NF value. 605 * @psoc_pci_pll_od: PCI PLL OD value. 606 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. 607 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. 608 * @high_pll: high PLL frequency used by the device. 609 * @cb_pool_cb_cnt: number of CBs in the CB pool. 610 * @cb_pool_cb_size: size of each CB in the CB pool. 611 * @decoder_enabled_mask: which decoders are enabled. 612 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned. 613 * @rotator_enabled_mask: which rotators are enabled. 614 * @edma_enabled_mask: which EDMAs are enabled. 615 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means 616 * binned (at most one binned DMA). 617 * @max_pending_cs: maximum of concurrent pending command submissions 618 * @max_queues: maximum amount of queues in the system 619 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu 620 * capabilities reported by FW, bit description 621 * can be found in CPU_BOOT_DEV_STS0 622 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu 623 * capabilities reported by FW, bit description 624 * can be found in CPU_BOOT_DEV_STS1 625 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security 626 * status reported by FW, bit description can be 627 * found in CPU_BOOT_DEV_STS0 628 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security 629 * status reported by FW, bit description can be 630 * found in CPU_BOOT_DEV_STS1 631 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security 632 * status reported by FW, bit description can be 633 * found in CPU_BOOT_DEV_STS0 634 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security 635 * status reported by FW, bit description can be 636 * found in CPU_BOOT_DEV_STS1 637 * @max_dec: maximum number of decoders 638 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) 639 * 1- enabled, 0- isolated. 640 * @faulty_dram_cluster_map: mask of faulty DRAM cluster. 641 * 1- faulty cluster, 0- good cluster. 642 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) 643 * 1- enabled, 0- isolated. 644 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for 645 * which the property supports_user_set_page_size is true 646 * (i.e. the DRAM supports multiple page sizes), otherwise 647 * it will shall be equal to dram_page_size. 648 * @num_engine_cores: number of engine cpu cores. 649 * @max_num_of_engines: maximum number of all engines in the ASIC. 650 * @num_of_special_blocks: special_blocks array size. 651 * @glbl_err_cause_num: global err cause number. 652 * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is 653 * not supported. 654 * @collective_first_sob: first sync object available for collective use 655 * @collective_first_mon: first monitor available for collective use 656 * @sync_stream_first_sob: first sync object available for sync stream use 657 * @sync_stream_first_mon: first monitor available for sync stream use 658 * @first_available_user_sob: first sob available for the user 659 * @first_available_user_mon: first monitor available for the user 660 * @first_available_user_interrupt: first available interrupt reserved for the user 661 * @first_available_cq: first available CQ for the user. 662 * @user_interrupt_count: number of user interrupts. 663 * @user_dec_intr_count: number of decoder interrupts exposed to user. 664 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host. 665 * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset. 666 * @cache_line_size: device cache line size. 667 * @server_type: Server type that the ASIC is currently installed in. 668 * The value is according to enum hl_server_type in uapi file. 669 * @completion_queues_count: number of completion queues. 670 * @completion_mode: 0 - job based completion, 1 - cs based completion 671 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works 672 * in Master/Slave mode 673 * @fw_security_enabled: true if security measures are enabled in firmware, 674 * false otherwise 675 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from 676 * BOOT_DEV_STS0 677 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from 678 * BOOT_DEV_STS1 679 * @dram_supports_virtual_memory: is there an MMU towards the DRAM 680 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow 681 * @num_functional_hbms: number of functional HBMs in each DCORE. 682 * @hints_range_reservation: device support hint addresses range reservation. 683 * @iatu_done_by_fw: true if iATU configuration is being done by FW. 684 * @dynamic_fw_load: is dynamic FW load is supported. 685 * @gic_interrupts_enable: true if FW is not blocking GIC controller, 686 * false otherwise. 687 * @use_get_power_for_reset_history: To support backward compatibility for Goya 688 * and Gaudi 689 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. 690 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is 691 * initiated by user or TDR. This is only true 692 * in inference ASICs, as there is no real-world 693 * use-case of doing soft-reset in training (due 694 * to the fact that training runs on multiple 695 * devices) 696 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. 697 * @set_max_power_on_device_init: true if need to set max power in F/W on device init. 698 * @supports_user_set_page_size: true if user can set the allocation page size. 699 * @dma_mask: the dma mask to be set for this device 700 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. 701 * @supports_engine_modes: true if changing engines/engine_cores modes is supported. 702 */ 703 struct asic_fixed_properties { 704 struct hw_queue_properties *hw_queues_props; 705 struct hl_special_block_info *special_blocks; 706 struct hl_skip_blocks_cfg skip_special_blocks_cfg; 707 struct cpucp_info cpucp_info; 708 char uboot_ver[VERSION_MAX_LEN]; 709 char preboot_ver[VERSION_MAX_LEN]; 710 struct hl_mmu_properties dmmu; 711 struct hl_mmu_properties pmmu; 712 struct hl_mmu_properties pmmu_huge; 713 struct hl_hints_range hints_dram_reserved_va_range; 714 struct hl_hints_range hints_host_reserved_va_range; 715 struct hl_hints_range hints_host_hpage_reserved_va_range; 716 u64 sram_base_address; 717 u64 sram_end_address; 718 u64 sram_user_base_address; 719 u64 dram_base_address; 720 u64 dram_end_address; 721 u64 dram_user_base_address; 722 u64 dram_size; 723 u64 dram_pci_bar_size; 724 u64 max_power_default; 725 u64 dc_power_default; 726 u64 dram_size_for_default_page_mapping; 727 u64 pcie_dbi_base_address; 728 u64 pcie_aux_dbi_reg_addr; 729 u64 mmu_pgt_addr; 730 u64 mmu_dram_default_page_addr; 731 u64 tpc_enabled_mask; 732 u64 tpc_binning_mask; 733 u64 dram_enabled_mask; 734 u64 dram_binning_mask; 735 u64 dram_hints_align_mask; 736 u64 cfg_base_address; 737 u64 mmu_cache_mng_addr; 738 u64 mmu_cache_mng_size; 739 u64 device_dma_offset_for_host_access; 740 u64 host_base_address; 741 u64 host_end_address; 742 u64 max_freq_value; 743 u64 engine_core_interrupt_reg_addr; 744 u32 clk_pll_index; 745 u32 mmu_pgt_size; 746 u32 mmu_pte_size; 747 u32 mmu_hop_table_size; 748 u32 mmu_hop0_tables_total_size; 749 u32 dram_page_size; 750 u32 cfg_size; 751 u32 sram_size; 752 u32 max_asid; 753 u32 num_of_events; 754 u32 psoc_pci_pll_nr; 755 u32 psoc_pci_pll_nf; 756 u32 psoc_pci_pll_od; 757 u32 psoc_pci_pll_div_factor; 758 u32 psoc_timestamp_frequency; 759 u32 high_pll; 760 u32 cb_pool_cb_cnt; 761 u32 cb_pool_cb_size; 762 u32 decoder_enabled_mask; 763 u32 decoder_binning_mask; 764 u32 rotator_enabled_mask; 765 u32 edma_enabled_mask; 766 u32 edma_binning_mask; 767 u32 max_pending_cs; 768 u32 max_queues; 769 u32 fw_preboot_cpu_boot_dev_sts0; 770 u32 fw_preboot_cpu_boot_dev_sts1; 771 u32 fw_bootfit_cpu_boot_dev_sts0; 772 u32 fw_bootfit_cpu_boot_dev_sts1; 773 u32 fw_app_cpu_boot_dev_sts0; 774 u32 fw_app_cpu_boot_dev_sts1; 775 u32 max_dec; 776 u32 hmmu_hif_enabled_mask; 777 u32 faulty_dram_cluster_map; 778 u32 xbar_edge_enabled_mask; 779 u32 device_mem_alloc_default_page_size; 780 u32 num_engine_cores; 781 u32 max_num_of_engines; 782 u32 num_of_special_blocks; 783 u32 glbl_err_cause_num; 784 u32 hbw_flush_reg; 785 u16 collective_first_sob; 786 u16 collective_first_mon; 787 u16 sync_stream_first_sob; 788 u16 sync_stream_first_mon; 789 u16 first_available_user_sob[HL_MAX_DCORES]; 790 u16 first_available_user_mon[HL_MAX_DCORES]; 791 u16 first_available_user_interrupt; 792 u16 first_available_cq[HL_MAX_DCORES]; 793 u16 user_interrupt_count; 794 u16 user_dec_intr_count; 795 u16 tpc_interrupt_id; 796 u16 eq_interrupt_id; 797 u16 cache_line_size; 798 u16 server_type; 799 u8 completion_queues_count; 800 u8 completion_mode; 801 u8 mme_master_slave_mode; 802 u8 fw_security_enabled; 803 u8 fw_cpu_boot_dev_sts0_valid; 804 u8 fw_cpu_boot_dev_sts1_valid; 805 u8 dram_supports_virtual_memory; 806 u8 hard_reset_done_by_fw; 807 u8 num_functional_hbms; 808 u8 hints_range_reservation; 809 u8 iatu_done_by_fw; 810 u8 dynamic_fw_load; 811 u8 gic_interrupts_enable; 812 u8 use_get_power_for_reset_history; 813 u8 supports_compute_reset; 814 u8 allow_inference_soft_reset; 815 u8 configurable_stop_on_err; 816 u8 set_max_power_on_device_init; 817 u8 supports_user_set_page_size; 818 u8 dma_mask; 819 u8 supports_advanced_cpucp_rc; 820 u8 supports_engine_modes; 821 }; 822 823 /** 824 * struct hl_fence - software synchronization primitive 825 * @completion: fence is implemented using completion 826 * @refcount: refcount for this fence 827 * @cs_sequence: sequence of the corresponding command submission 828 * @stream_master_qid_map: streams masters QID bitmap to represent all streams 829 * masters QIDs that multi cs is waiting on 830 * @error: mark this fence with error 831 * @timestamp: timestamp upon completion 832 * @mcs_handling_done: indicates that corresponding command submission has 833 * finished msc handling, this does not mean it was part 834 * of the mcs 835 */ 836 struct hl_fence { 837 struct completion completion; 838 struct kref refcount; 839 u64 cs_sequence; 840 u32 stream_master_qid_map; 841 int error; 842 ktime_t timestamp; 843 u8 mcs_handling_done; 844 }; 845 846 /** 847 * struct hl_cs_compl - command submission completion object. 848 * @base_fence: hl fence object. 849 * @lock: spinlock to protect fence. 850 * @hdev: habanalabs device structure. 851 * @hw_sob: the H/W SOB used in this signal/wait CS. 852 * @encaps_sig_hdl: encaps signals handler. 853 * @cs_seq: command submission sequence number. 854 * @type: type of the CS - signal/wait. 855 * @sob_val: the SOB value that is used in this signal/wait CS. 856 * @sob_group: the SOB group that is used in this collective wait CS. 857 * @encaps_signals: indication whether it's a completion object of cs with 858 * encaps signals or not. 859 */ 860 struct hl_cs_compl { 861 struct hl_fence base_fence; 862 spinlock_t lock; 863 struct hl_device *hdev; 864 struct hl_hw_sob *hw_sob; 865 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 866 u64 cs_seq; 867 enum hl_cs_type type; 868 u16 sob_val; 869 u16 sob_group; 870 bool encaps_signals; 871 }; 872 873 /* 874 * Command Buffers 875 */ 876 877 /** 878 * struct hl_ts_buff - describes a timestamp buffer. 879 * @kernel_buff_address: Holds the internal buffer's kernel virtual address. 880 * @user_buff_address: Holds the user buffer's kernel virtual address. 881 * @kernel_buff_size: Holds the internal kernel buffer size. 882 */ 883 struct hl_ts_buff { 884 void *kernel_buff_address; 885 void *user_buff_address; 886 u32 kernel_buff_size; 887 }; 888 889 struct hl_mmap_mem_buf; 890 891 /** 892 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. 893 * @dev: back pointer to the owning device 894 * @lock: protects handles 895 * @handles: an idr holding all active handles to the memory buffers in the system. 896 */ 897 struct hl_mem_mgr { 898 struct device *dev; 899 spinlock_t lock; 900 struct idr handles; 901 }; 902 903 /** 904 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior 905 * @topic: string identifier used for logging 906 * @mem_id: memory type identifier, embedded in the handle and used to identify 907 * the memory type by handle. 908 * @alloc: callback executed on buffer allocation, shall allocate the memory, 909 * set it under buffer private, and set mappable size. 910 * @mmap: callback executed on mmap, must map the buffer to vma 911 * @release: callback executed on release, must free the resources used by the buffer 912 */ 913 struct hl_mmap_mem_buf_behavior { 914 const char *topic; 915 u64 mem_id; 916 917 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); 918 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); 919 void (*release)(struct hl_mmap_mem_buf *buf); 920 }; 921 922 /** 923 * struct hl_mmap_mem_buf - describes a single unified memory buffer 924 * @behavior: buffer behavior 925 * @mmg: back pointer to the unified memory manager 926 * @refcount: reference counter for buffer users 927 * @private: pointer to buffer behavior private data 928 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now 929 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, 930 * may change at runtime. 931 * @mappable_size: the original mappable size of the buffer, does not change after 932 * the allocation. 933 * @handle: the buffer id in mmg handles store 934 */ 935 struct hl_mmap_mem_buf { 936 struct hl_mmap_mem_buf_behavior *behavior; 937 struct hl_mem_mgr *mmg; 938 struct kref refcount; 939 void *private; 940 atomic_t mmap; 941 u64 real_mapped_size; 942 u64 mappable_size; 943 u64 handle; 944 }; 945 946 /** 947 * struct hl_cb - describes a Command Buffer. 948 * @hdev: pointer to device this CB belongs to. 949 * @ctx: pointer to the CB owner's context. 950 * @buf: back pointer to the parent mappable memory buffer 951 * @debugfs_list: node in debugfs list of command buffers. 952 * @pool_list: node in pool list of command buffers. 953 * @kernel_address: Holds the CB's kernel virtual address. 954 * @virtual_addr: Holds the CB's virtual address. 955 * @bus_address: Holds the CB's DMA address. 956 * @size: holds the CB's size. 957 * @roundup_size: holds the cb size after roundup to page size. 958 * @cs_cnt: holds number of CS that this CB participates in. 959 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed. 960 * @is_pool: true if CB was acquired from the pool, false otherwise. 961 * @is_internal: internally allocated 962 * @is_mmu_mapped: true if the CB is mapped to the device's MMU. 963 */ 964 struct hl_cb { 965 struct hl_device *hdev; 966 struct hl_ctx *ctx; 967 struct hl_mmap_mem_buf *buf; 968 struct list_head debugfs_list; 969 struct list_head pool_list; 970 void *kernel_address; 971 u64 virtual_addr; 972 dma_addr_t bus_address; 973 u32 size; 974 u32 roundup_size; 975 atomic_t cs_cnt; 976 atomic_t is_handle_destroyed; 977 u8 is_pool; 978 u8 is_internal; 979 u8 is_mmu_mapped; 980 }; 981 982 983 /* 984 * QUEUES 985 */ 986 987 struct hl_cs_job; 988 989 /* Queue length of external and HW queues */ 990 #define HL_QUEUE_LENGTH 4096 991 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) 992 993 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) 994 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" 995 #endif 996 997 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ 998 #define HL_CQ_LENGTH HL_QUEUE_LENGTH 999 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) 1000 1001 /* Must be power of 2 */ 1002 #define HL_EQ_LENGTH 64 1003 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) 1004 1005 /* Host <-> CPU-CP shared memory size */ 1006 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M 1007 1008 /** 1009 * struct hl_sync_stream_properties - 1010 * describes a H/W queue sync stream properties 1011 * @hw_sob: array of the used H/W SOBs by this H/W queue. 1012 * @next_sob_val: the next value to use for the currently used SOB. 1013 * @base_sob_id: the base SOB id of the SOBs used by this queue. 1014 * @base_mon_id: the base MON id of the MONs used by this queue. 1015 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue 1016 * in order to sync with all slave queues. 1017 * @collective_slave_mon_id: the MON id used by this slave queue in order to 1018 * sync with its master queue. 1019 * @collective_sob_id: current SOB id used by this collective slave queue 1020 * to signal its collective master queue upon completion. 1021 * @curr_sob_offset: the id offset to the currently used SOB from the 1022 * HL_RSVD_SOBS that are being used by this queue. 1023 */ 1024 struct hl_sync_stream_properties { 1025 struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; 1026 u16 next_sob_val; 1027 u16 base_sob_id; 1028 u16 base_mon_id; 1029 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; 1030 u16 collective_slave_mon_id; 1031 u16 collective_sob_id; 1032 u8 curr_sob_offset; 1033 }; 1034 1035 /** 1036 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals 1037 * handlers manager 1038 * @lock: protects handles. 1039 * @handles: an idr to hold all encapsulated signals handles. 1040 */ 1041 struct hl_encaps_signals_mgr { 1042 spinlock_t lock; 1043 struct idr handles; 1044 }; 1045 1046 /** 1047 * struct hl_hw_queue - describes a H/W transport queue. 1048 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. 1049 * @sync_stream_prop: sync stream queue properties 1050 * @queue_type: type of queue. 1051 * @collective_mode: collective mode of current queue 1052 * @kernel_address: holds the queue's kernel virtual address. 1053 * @bus_address: holds the queue's DMA address. 1054 * @pi: holds the queue's pi value. 1055 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). 1056 * @hw_queue_id: the id of the H/W queue. 1057 * @cq_id: the id for the corresponding CQ for this H/W queue. 1058 * @msi_vec: the IRQ number of the H/W queue. 1059 * @int_queue_len: length of internal queue (number of entries). 1060 * @valid: is the queue valid (we have array of 32 queues, not all of them 1061 * exist). 1062 * @supports_sync_stream: True if queue supports sync stream 1063 */ 1064 struct hl_hw_queue { 1065 struct hl_cs_job **shadow_queue; 1066 struct hl_sync_stream_properties sync_stream_prop; 1067 enum hl_queue_type queue_type; 1068 enum hl_collective_mode collective_mode; 1069 void *kernel_address; 1070 dma_addr_t bus_address; 1071 u32 pi; 1072 atomic_t ci; 1073 u32 hw_queue_id; 1074 u32 cq_id; 1075 u32 msi_vec; 1076 u16 int_queue_len; 1077 u8 valid; 1078 u8 supports_sync_stream; 1079 }; 1080 1081 /** 1082 * struct hl_cq - describes a completion queue 1083 * @hdev: pointer to the device structure 1084 * @kernel_address: holds the queue's kernel virtual address 1085 * @bus_address: holds the queue's DMA address 1086 * @cq_idx: completion queue index in array 1087 * @hw_queue_id: the id of the matching H/W queue 1088 * @ci: ci inside the queue 1089 * @pi: pi inside the queue 1090 * @free_slots_cnt: counter of free slots in queue 1091 */ 1092 struct hl_cq { 1093 struct hl_device *hdev; 1094 void *kernel_address; 1095 dma_addr_t bus_address; 1096 u32 cq_idx; 1097 u32 hw_queue_id; 1098 u32 ci; 1099 u32 pi; 1100 atomic_t free_slots_cnt; 1101 }; 1102 1103 enum hl_user_interrupt_type { 1104 HL_USR_INTERRUPT_CQ = 0, 1105 HL_USR_INTERRUPT_DECODER, 1106 HL_USR_INTERRUPT_TPC, 1107 HL_USR_INTERRUPT_UNEXPECTED 1108 }; 1109 1110 /** 1111 * struct hl_user_interrupt - holds user interrupt information 1112 * @hdev: pointer to the device structure 1113 * @type: user interrupt type 1114 * @wait_list_head: head to the list of user threads pending on this interrupt 1115 * @wait_list_lock: protects wait_list_head 1116 * @timestamp: last timestamp taken upon interrupt 1117 * @interrupt_id: msix interrupt id 1118 */ 1119 struct hl_user_interrupt { 1120 struct hl_device *hdev; 1121 enum hl_user_interrupt_type type; 1122 struct list_head wait_list_head; 1123 spinlock_t wait_list_lock; 1124 ktime_t timestamp; 1125 u32 interrupt_id; 1126 }; 1127 1128 /** 1129 * struct timestamp_reg_free_node - holds the timestamp registration free objects node 1130 * @free_objects_node: node in the list free_obj_jobs 1131 * @cq_cb: pointer to cq command buffer to be freed 1132 * @buf: pointer to timestamp buffer to be freed 1133 */ 1134 struct timestamp_reg_free_node { 1135 struct list_head free_objects_node; 1136 struct hl_cb *cq_cb; 1137 struct hl_mmap_mem_buf *buf; 1138 }; 1139 1140 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job 1141 * the job will be to pass over the free_obj_jobs list and put refcount to objects 1142 * in each node of the list 1143 * @free_obj: workqueue object to free timestamp registration node objects 1144 * @hdev: pointer to the device structure 1145 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) 1146 */ 1147 struct timestamp_reg_work_obj { 1148 struct work_struct free_obj; 1149 struct hl_device *hdev; 1150 struct list_head *free_obj_head; 1151 }; 1152 1153 /* struct timestamp_reg_info - holds the timestamp registration related data. 1154 * @buf: pointer to the timestamp buffer which include both user/kernel buffers. 1155 * relevant only when doing timestamps records registration. 1156 * @cq_cb: pointer to CQ counter CB. 1157 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp 1158 * relevant only when doing timestamps records 1159 * registration. 1160 * @in_use: indicates if the node already in use. relevant only when doing 1161 * timestamps records registration, since in this case the driver 1162 * will have it's own buffer which serve as a records pool instead of 1163 * allocating records dynamically. 1164 */ 1165 struct timestamp_reg_info { 1166 struct hl_mmap_mem_buf *buf; 1167 struct hl_cb *cq_cb; 1168 u64 *timestamp_kernel_addr; 1169 u8 in_use; 1170 }; 1171 1172 /** 1173 * struct hl_user_pending_interrupt - holds a context to a user thread 1174 * pending on an interrupt 1175 * @ts_reg_info: holds the timestamps registration nodes info 1176 * @wait_list_node: node in the list of user threads pending on an interrupt 1177 * @fence: hl fence object for interrupt completion 1178 * @cq_target_value: CQ target value 1179 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt 1180 * handler for target value comparison 1181 */ 1182 struct hl_user_pending_interrupt { 1183 struct timestamp_reg_info ts_reg_info; 1184 struct list_head wait_list_node; 1185 struct hl_fence fence; 1186 u64 cq_target_value; 1187 u64 *cq_kernel_addr; 1188 }; 1189 1190 /** 1191 * struct hl_eq - describes the event queue (single one per device) 1192 * @hdev: pointer to the device structure 1193 * @kernel_address: holds the queue's kernel virtual address 1194 * @bus_address: holds the queue's DMA address 1195 * @ci: ci inside the queue 1196 * @prev_eqe_index: the index of the previous event queue entry. The index of 1197 * the current entry's index must be +1 of the previous one. 1198 * @check_eqe_index: do we need to check the index of the current entry vs. the 1199 * previous one. This is for backward compatibility with older 1200 * firmwares 1201 */ 1202 struct hl_eq { 1203 struct hl_device *hdev; 1204 void *kernel_address; 1205 dma_addr_t bus_address; 1206 u32 ci; 1207 u32 prev_eqe_index; 1208 bool check_eqe_index; 1209 }; 1210 1211 /** 1212 * struct hl_dec - describes a decoder sw instance. 1213 * @hdev: pointer to the device structure. 1214 * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt. 1215 * @core_id: ID of the decoder. 1216 * @base_addr: base address of the decoder. 1217 */ 1218 struct hl_dec { 1219 struct hl_device *hdev; 1220 struct work_struct abnrm_intr_work; 1221 u32 core_id; 1222 u32 base_addr; 1223 }; 1224 1225 /** 1226 * enum hl_asic_type - supported ASIC types. 1227 * @ASIC_INVALID: Invalid ASIC type. 1228 * @ASIC_GOYA: Goya device (HL-1000). 1229 * @ASIC_GAUDI: Gaudi device (HL-2000). 1230 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). 1231 * @ASIC_GAUDI2: Gaudi2 device. 1232 * @ASIC_GAUDI2B: Gaudi2B device. 1233 */ 1234 enum hl_asic_type { 1235 ASIC_INVALID, 1236 ASIC_GOYA, 1237 ASIC_GAUDI, 1238 ASIC_GAUDI_SEC, 1239 ASIC_GAUDI2, 1240 ASIC_GAUDI2B, 1241 }; 1242 1243 struct hl_cs_parser; 1244 1245 /** 1246 * enum hl_pm_mng_profile - power management profile. 1247 * @PM_AUTO: internal clock is set by the Linux driver. 1248 * @PM_MANUAL: internal clock is set by the user. 1249 * @PM_LAST: last power management type. 1250 */ 1251 enum hl_pm_mng_profile { 1252 PM_AUTO = 1, 1253 PM_MANUAL, 1254 PM_LAST 1255 }; 1256 1257 /** 1258 * enum hl_pll_frequency - PLL frequency. 1259 * @PLL_HIGH: high frequency. 1260 * @PLL_LOW: low frequency. 1261 * @PLL_LAST: last frequency values that were configured by the user. 1262 */ 1263 enum hl_pll_frequency { 1264 PLL_HIGH = 1, 1265 PLL_LOW, 1266 PLL_LAST 1267 }; 1268 1269 #define PLL_REF_CLK 50 1270 1271 enum div_select_defs { 1272 DIV_SEL_REF_CLK = 0, 1273 DIV_SEL_PLL_CLK = 1, 1274 DIV_SEL_DIVIDED_REF = 2, 1275 DIV_SEL_DIVIDED_PLL = 3, 1276 }; 1277 1278 enum debugfs_access_type { 1279 DEBUGFS_READ8, 1280 DEBUGFS_WRITE8, 1281 DEBUGFS_READ32, 1282 DEBUGFS_WRITE32, 1283 DEBUGFS_READ64, 1284 DEBUGFS_WRITE64, 1285 }; 1286 1287 enum pci_region { 1288 PCI_REGION_CFG, 1289 PCI_REGION_SRAM, 1290 PCI_REGION_DRAM, 1291 PCI_REGION_SP_SRAM, 1292 PCI_REGION_NUMBER, 1293 }; 1294 1295 /** 1296 * struct pci_mem_region - describe memory region in a PCI bar 1297 * @region_base: region base address 1298 * @region_size: region size 1299 * @bar_size: size of the BAR 1300 * @offset_in_bar: region offset into the bar 1301 * @bar_id: bar ID of the region 1302 * @used: if used 1, otherwise 0 1303 */ 1304 struct pci_mem_region { 1305 u64 region_base; 1306 u64 region_size; 1307 u64 bar_size; 1308 u64 offset_in_bar; 1309 u8 bar_id; 1310 u8 used; 1311 }; 1312 1313 /** 1314 * struct static_fw_load_mgr - static FW load manager 1315 * @preboot_version_max_off: max offset to preboot version 1316 * @boot_fit_version_max_off: max offset to boot fit version 1317 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages 1318 * @cpu_cmd_status_to_host_reg: register address for CPU command status response 1319 * @cpu_boot_status_reg: boot status register 1320 * @cpu_boot_dev_status0_reg: boot device status register 0 1321 * @cpu_boot_dev_status1_reg: boot device status register 1 1322 * @boot_err0_reg: boot error register 0 1323 * @boot_err1_reg: boot error register 1 1324 * @preboot_version_offset_reg: SRAM offset to preboot version register 1325 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register 1326 * @sram_offset_mask: mask for getting offset into the SRAM 1327 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg 1328 */ 1329 struct static_fw_load_mgr { 1330 u64 preboot_version_max_off; 1331 u64 boot_fit_version_max_off; 1332 u32 kmd_msg_to_cpu_reg; 1333 u32 cpu_cmd_status_to_host_reg; 1334 u32 cpu_boot_status_reg; 1335 u32 cpu_boot_dev_status0_reg; 1336 u32 cpu_boot_dev_status1_reg; 1337 u32 boot_err0_reg; 1338 u32 boot_err1_reg; 1339 u32 preboot_version_offset_reg; 1340 u32 boot_fit_version_offset_reg; 1341 u32 sram_offset_mask; 1342 u32 cpu_reset_wait_msec; 1343 }; 1344 1345 /** 1346 * struct fw_response - FW response to LKD command 1347 * @ram_offset: descriptor offset into the RAM 1348 * @ram_type: RAM type containing the descriptor (SRAM/DRAM) 1349 * @status: command status 1350 */ 1351 struct fw_response { 1352 u32 ram_offset; 1353 u8 ram_type; 1354 u8 status; 1355 }; 1356 1357 /** 1358 * struct dynamic_fw_load_mgr - dynamic FW load manager 1359 * @response: FW to LKD response 1360 * @comm_desc: the communication descriptor with FW 1361 * @image_region: region to copy the FW image to 1362 * @fw_image_size: size of FW image to load 1363 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond 1364 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used 1365 */ 1366 struct dynamic_fw_load_mgr { 1367 struct fw_response response; 1368 struct lkd_fw_comms_desc comm_desc; 1369 struct pci_mem_region *image_region; 1370 size_t fw_image_size; 1371 u32 wait_for_bl_timeout; 1372 bool fw_desc_valid; 1373 }; 1374 1375 /** 1376 * struct pre_fw_load_props - needed properties for pre-FW load 1377 * @cpu_boot_status_reg: cpu_boot_status register address 1378 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address 1379 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address 1380 * @boot_err0_reg: boot_err0 register address 1381 * @boot_err1_reg: boot_err1 register address 1382 * @wait_for_preboot_timeout: timeout to poll for preboot ready 1383 */ 1384 struct pre_fw_load_props { 1385 u32 cpu_boot_status_reg; 1386 u32 sts_boot_dev_sts0_reg; 1387 u32 sts_boot_dev_sts1_reg; 1388 u32 boot_err0_reg; 1389 u32 boot_err1_reg; 1390 u32 wait_for_preboot_timeout; 1391 }; 1392 1393 /** 1394 * struct fw_image_props - properties of FW image 1395 * @image_name: name of the image 1396 * @src_off: offset in src FW to copy from 1397 * @copy_size: amount of bytes to copy (0 to copy the whole binary) 1398 */ 1399 struct fw_image_props { 1400 char *image_name; 1401 u32 src_off; 1402 u32 copy_size; 1403 }; 1404 1405 /** 1406 * struct fw_load_mgr - manager FW loading process 1407 * @dynamic_loader: specific structure for dynamic load 1408 * @static_loader: specific structure for static load 1409 * @pre_fw_load_props: parameter for pre FW load 1410 * @boot_fit_img: boot fit image properties 1411 * @linux_img: linux image properties 1412 * @cpu_timeout: CPU response timeout in usec 1413 * @boot_fit_timeout: Boot fit load timeout in usec 1414 * @skip_bmc: should BMC be skipped 1415 * @sram_bar_id: SRAM bar ID 1416 * @dram_bar_id: DRAM bar ID 1417 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded 1418 * component. values are set according to enum hl_fw_types. 1419 */ 1420 struct fw_load_mgr { 1421 union { 1422 struct dynamic_fw_load_mgr dynamic_loader; 1423 struct static_fw_load_mgr static_loader; 1424 }; 1425 struct pre_fw_load_props pre_fw_load; 1426 struct fw_image_props boot_fit_img; 1427 struct fw_image_props linux_img; 1428 u32 cpu_timeout; 1429 u32 boot_fit_timeout; 1430 u8 skip_bmc; 1431 u8 sram_bar_id; 1432 u8 dram_bar_id; 1433 u8 fw_comp_loaded; 1434 }; 1435 1436 struct hl_cs; 1437 1438 /** 1439 * struct engines_data - asic engines data 1440 * @buf: buffer for engines data in ascii 1441 * @actual_size: actual size of data that was written by the driver to the allocated buffer 1442 * @allocated_buf_size: total size of allocated buffer 1443 */ 1444 struct engines_data { 1445 char *buf; 1446 int actual_size; 1447 u32 allocated_buf_size; 1448 }; 1449 1450 /** 1451 * struct hl_asic_funcs - ASIC specific functions that are can be called from 1452 * common code. 1453 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. 1454 * @early_fini: tears down what was done in early_init. 1455 * @late_init: sets up late driver/hw state (post hw_init) - Optional. 1456 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. 1457 * @sw_init: sets up driver state, does not configure H/W. 1458 * @sw_fini: tears down driver state, does not configure H/W. 1459 * @hw_init: sets up the H/W state. 1460 * @hw_fini: tears down the H/W state. 1461 * @halt_engines: halt engines, needed for reset sequence. This also disables 1462 * interrupts from the device. Should be called before 1463 * hw_fini and before CS rollback. 1464 * @suspend: handles IP specific H/W or SW changes for suspend. 1465 * @resume: handles IP specific H/W or SW changes for resume. 1466 * @mmap: maps a memory. 1467 * @ring_doorbell: increment PI on a given QMAN. 1468 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific 1469 * function because the PQs are located in different memory areas 1470 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of 1471 * writing the PQE must match the destination memory area 1472 * properties. 1473 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling 1474 * dma_alloc_coherent(). This is ASIC function because 1475 * its implementation is not trivial when the driver 1476 * is loaded in simulation mode (not upstreamed). 1477 * @asic_dma_free_coherent: Free coherent DMA memory by calling 1478 * dma_free_coherent(). This is ASIC function because 1479 * its implementation is not trivial when the driver 1480 * is loaded in simulation mode (not upstreamed). 1481 * @scrub_device_mem: Scrub the entire SRAM and DRAM. 1482 * @scrub_device_dram: Scrub the dram memory of the device. 1483 * @get_int_queue_base: get the internal queue base address. 1484 * @test_queues: run simple test on all queues for sanity check. 1485 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. 1486 * size of allocation is HL_DMA_POOL_BLK_SIZE. 1487 * @asic_dma_pool_free: free small DMA allocation from pool. 1488 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. 1489 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. 1490 * @asic_dma_unmap_single: unmap a single DMA buffer 1491 * @asic_dma_map_single: map a single buffer to a DMA 1492 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table. 1493 * @cs_parser: parse Command Submission. 1494 * @asic_dma_map_sgtable: DMA map scatter-gather table. 1495 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. 1496 * @update_eq_ci: update event queue CI. 1497 * @context_switch: called upon ASID context switch. 1498 * @restore_phase_topology: clear all SOBs amd MONs. 1499 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's 1500 * internal memory via DMA engine. 1501 * @add_device_attr: add ASIC specific device attributes. 1502 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. 1503 * @get_events_stat: retrieve event queue entries histogram. 1504 * @read_pte: read MMU page table entry from DRAM. 1505 * @write_pte: write MMU page table entry to DRAM. 1506 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft 1507 * (L1 only) or hard (L0 & L1) flush. 1508 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. 1509 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. 1510 * @send_heartbeat: send is-alive packet to CPU-CP and verify response. 1511 * @debug_coresight: perform certain actions on Coresight for debugging. 1512 * @is_device_idle: return true if device is idle, false otherwise. 1513 * @compute_reset_late_init: perform certain actions needed after a compute reset 1514 * @hw_queues_lock: acquire H/W queues lock. 1515 * @hw_queues_unlock: release H/W queues lock. 1516 * @get_pci_id: retrieve PCI ID. 1517 * @get_eeprom_data: retrieve EEPROM data from F/W. 1518 * @get_monitor_dump: retrieve monitor registers dump from F/W. 1519 * @send_cpu_message: send message to F/W. If the message is timedout, the 1520 * driver will eventually reset the device. The timeout can 1521 * be determined by the calling function or it can be 0 and 1522 * then the timeout is the default timeout for the specific 1523 * ASIC 1524 * @get_hw_state: retrieve the H/W state 1525 * @pci_bars_map: Map PCI BARs. 1526 * @init_iatu: Initialize the iATU unit inside the PCI controller. 1527 * @rreg: Read a register. Needed for simulator support. 1528 * @wreg: Write a register. Needed for simulator support. 1529 * @halt_coresight: stop the ETF and ETR traces. 1530 * @ctx_init: context dependent initialization. 1531 * @ctx_fini: context dependent cleanup. 1532 * @pre_schedule_cs: Perform pre-CS-scheduling operations. 1533 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. 1534 * @load_firmware_to_device: load the firmware to the device's memory 1535 * @load_boot_fit_to_device: load boot fit to device's memory 1536 * @get_signal_cb_size: Get signal CB size. 1537 * @get_wait_cb_size: Get wait CB size. 1538 * @gen_signal_cb: Generate a signal CB. 1539 * @gen_wait_cb: Generate a wait CB. 1540 * @reset_sob: Reset a SOB. 1541 * @reset_sob_group: Reset SOB group 1542 * @get_device_time: Get the device time. 1543 * @pb_print_security_errors: print security errors according block and cause 1544 * @collective_wait_init_cs: Generate collective master/slave packets 1545 * and place them in the relevant cs jobs 1546 * @collective_wait_create_jobs: allocate collective wait cs jobs 1547 * @get_dec_base_addr: get the base address of a given decoder. 1548 * @scramble_addr: Routine to scramble the address prior of mapping it 1549 * in the MMU. 1550 * @descramble_addr: Routine to de-scramble the address prior of 1551 * showing it to users. 1552 * @ack_protection_bits_errors: ack and dump all security violations 1553 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. 1554 * also returns the size of the block if caller supplies 1555 * a valid pointer for it 1556 * @hw_block_mmap: mmap a HW block with a given id. 1557 * @enable_events_from_fw: send interrupt to firmware to notify them the 1558 * driver is ready to receive asynchronous events. This 1559 * function should be called during the first init and 1560 * after every hard-reset of the device 1561 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. 1562 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event 1563 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to 1564 * generic f/w compatible PLL Indexes 1565 * @init_firmware_preload_params: initialize pre FW-load parameters. 1566 * @init_firmware_loader: initialize data for FW loader. 1567 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling 1568 * @state_dump_init: initialize constants required for state dump 1569 * @get_sob_addr: get SOB base address offset. 1570 * @set_pci_memory_regions: setting properties of PCI memory regions 1571 * @get_stream_master_qid_arr: get pointer to stream masters QID array 1572 * @check_if_razwi_happened: check if there was a razwi due to RR violation. 1573 * @access_dev_mem: access device memory 1574 * @set_dram_bar_base: set the base of the DRAM BAR 1575 * @set_engine_cores: set a config command to engine cores 1576 * @set_engines: set a config command to user engines 1577 * @send_device_activity: indication to FW about device availability 1578 * @set_dram_properties: set DRAM related properties. 1579 * @set_binning_masks: set binning/enable masks for all relevant components. 1580 */ 1581 struct hl_asic_funcs { 1582 int (*early_init)(struct hl_device *hdev); 1583 int (*early_fini)(struct hl_device *hdev); 1584 int (*late_init)(struct hl_device *hdev); 1585 void (*late_fini)(struct hl_device *hdev); 1586 int (*sw_init)(struct hl_device *hdev); 1587 int (*sw_fini)(struct hl_device *hdev); 1588 int (*hw_init)(struct hl_device *hdev); 1589 int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1590 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1591 int (*suspend)(struct hl_device *hdev); 1592 int (*resume)(struct hl_device *hdev); 1593 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1594 void *cpu_addr, dma_addr_t dma_addr, size_t size); 1595 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); 1596 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, 1597 struct hl_bd *bd); 1598 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, 1599 dma_addr_t *dma_handle, gfp_t flag); 1600 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, 1601 void *cpu_addr, dma_addr_t dma_handle); 1602 int (*scrub_device_mem)(struct hl_device *hdev); 1603 int (*scrub_device_dram)(struct hl_device *hdev, u64 val); 1604 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, 1605 dma_addr_t *dma_handle, u16 *queue_len); 1606 int (*test_queues)(struct hl_device *hdev); 1607 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, 1608 gfp_t mem_flags, dma_addr_t *dma_handle); 1609 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, 1610 dma_addr_t dma_addr); 1611 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, 1612 size_t size, dma_addr_t *dma_handle); 1613 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, 1614 size_t size, void *vaddr); 1615 void (*asic_dma_unmap_single)(struct hl_device *hdev, 1616 dma_addr_t dma_addr, int len, 1617 enum dma_data_direction dir); 1618 dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev, 1619 void *addr, int len, 1620 enum dma_data_direction dir); 1621 void (*hl_dma_unmap_sgtable)(struct hl_device *hdev, 1622 struct sg_table *sgt, 1623 enum dma_data_direction dir); 1624 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); 1625 int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1626 enum dma_data_direction dir); 1627 void (*add_end_of_cb_packets)(struct hl_device *hdev, 1628 void *kernel_address, u32 len, 1629 u32 original_len, 1630 u64 cq_addr, u32 cq_val, u32 msix_num, 1631 bool eb); 1632 void (*update_eq_ci)(struct hl_device *hdev, u32 val); 1633 int (*context_switch)(struct hl_device *hdev, u32 asid); 1634 void (*restore_phase_topology)(struct hl_device *hdev); 1635 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, 1636 void *blob_addr); 1637 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, 1638 struct attribute_group *dev_vrm_attr_grp); 1639 void (*handle_eqe)(struct hl_device *hdev, 1640 struct hl_eq_entry *eq_entry); 1641 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, 1642 u32 *size); 1643 u64 (*read_pte)(struct hl_device *hdev, u64 addr); 1644 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); 1645 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, 1646 u32 flags); 1647 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, 1648 u32 flags, u32 asid, u64 va, u64 size); 1649 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 1650 int (*send_heartbeat)(struct hl_device *hdev); 1651 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); 1652 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, 1653 struct engines_data *e); 1654 int (*compute_reset_late_init)(struct hl_device *hdev); 1655 void (*hw_queues_lock)(struct hl_device *hdev); 1656 void (*hw_queues_unlock)(struct hl_device *hdev); 1657 u32 (*get_pci_id)(struct hl_device *hdev); 1658 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); 1659 int (*get_monitor_dump)(struct hl_device *hdev, void *data); 1660 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, 1661 u16 len, u32 timeout, u64 *result); 1662 int (*pci_bars_map)(struct hl_device *hdev); 1663 int (*init_iatu)(struct hl_device *hdev); 1664 u32 (*rreg)(struct hl_device *hdev, u32 reg); 1665 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); 1666 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); 1667 int (*ctx_init)(struct hl_ctx *ctx); 1668 void (*ctx_fini)(struct hl_ctx *ctx); 1669 int (*pre_schedule_cs)(struct hl_cs *cs); 1670 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); 1671 int (*load_firmware_to_device)(struct hl_device *hdev); 1672 int (*load_boot_fit_to_device)(struct hl_device *hdev); 1673 u32 (*get_signal_cb_size)(struct hl_device *hdev); 1674 u32 (*get_wait_cb_size)(struct hl_device *hdev); 1675 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, 1676 u32 size, bool eb); 1677 u32 (*gen_wait_cb)(struct hl_device *hdev, 1678 struct hl_gen_wait_properties *prop); 1679 void (*reset_sob)(struct hl_device *hdev, void *data); 1680 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); 1681 u64 (*get_device_time)(struct hl_device *hdev); 1682 void (*pb_print_security_errors)(struct hl_device *hdev, 1683 u32 block_addr, u32 cause, u32 offended_addr); 1684 int (*collective_wait_init_cs)(struct hl_cs *cs); 1685 int (*collective_wait_create_jobs)(struct hl_device *hdev, 1686 struct hl_ctx *ctx, struct hl_cs *cs, 1687 u32 wait_queue_id, u32 collective_engine_id, 1688 u32 encaps_signal_offset); 1689 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); 1690 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); 1691 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); 1692 void (*ack_protection_bits_errors)(struct hl_device *hdev); 1693 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, 1694 u32 *block_size, u32 *block_id); 1695 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1696 u32 block_id, u32 block_size); 1697 void (*enable_events_from_fw)(struct hl_device *hdev); 1698 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); 1699 void (*get_msi_info)(__le32 *table); 1700 int (*map_pll_idx_to_fw_idx)(u32 pll_idx); 1701 void (*init_firmware_preload_params)(struct hl_device *hdev); 1702 void (*init_firmware_loader)(struct hl_device *hdev); 1703 void (*init_cpu_scrambler_dram)(struct hl_device *hdev); 1704 void (*state_dump_init)(struct hl_device *hdev); 1705 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); 1706 void (*set_pci_memory_regions)(struct hl_device *hdev); 1707 u32* (*get_stream_master_qid_arr)(void); 1708 void (*check_if_razwi_happened)(struct hl_device *hdev); 1709 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 1710 u32 page_size, u32 *real_page_size, bool is_dram_addr); 1711 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, 1712 u64 addr, u64 *val, enum debugfs_access_type acc_type); 1713 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); 1714 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, 1715 u32 num_cores, u32 core_command); 1716 int (*set_engines)(struct hl_device *hdev, u32 *engine_ids, 1717 u32 num_engines, u32 engine_command); 1718 int (*send_device_activity)(struct hl_device *hdev, bool open); 1719 int (*set_dram_properties)(struct hl_device *hdev); 1720 int (*set_binning_masks)(struct hl_device *hdev); 1721 }; 1722 1723 1724 /* 1725 * CONTEXTS 1726 */ 1727 1728 #define HL_KERNEL_ASID_ID 0 1729 1730 /** 1731 * enum hl_va_range_type - virtual address range type. 1732 * @HL_VA_RANGE_TYPE_HOST: range type of host pages 1733 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages 1734 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages 1735 */ 1736 enum hl_va_range_type { 1737 HL_VA_RANGE_TYPE_HOST, 1738 HL_VA_RANGE_TYPE_HOST_HUGE, 1739 HL_VA_RANGE_TYPE_DRAM, 1740 HL_VA_RANGE_TYPE_MAX 1741 }; 1742 1743 /** 1744 * struct hl_va_range - virtual addresses range. 1745 * @lock: protects the virtual addresses list. 1746 * @list: list of virtual addresses blocks available for mappings. 1747 * @start_addr: range start address. 1748 * @end_addr: range end address. 1749 * @page_size: page size of this va range. 1750 */ 1751 struct hl_va_range { 1752 struct mutex lock; 1753 struct list_head list; 1754 u64 start_addr; 1755 u64 end_addr; 1756 u32 page_size; 1757 }; 1758 1759 /** 1760 * struct hl_cs_counters_atomic - command submission counters 1761 * @out_of_mem_drop_cnt: dropped due to memory allocation issue 1762 * @parsing_drop_cnt: dropped due to error in packet parsing 1763 * @queue_full_drop_cnt: dropped due to queue full 1764 * @device_in_reset_drop_cnt: dropped due to device in reset 1765 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight 1766 * @validation_drop_cnt: dropped due to error in validation 1767 */ 1768 struct hl_cs_counters_atomic { 1769 atomic64_t out_of_mem_drop_cnt; 1770 atomic64_t parsing_drop_cnt; 1771 atomic64_t queue_full_drop_cnt; 1772 atomic64_t device_in_reset_drop_cnt; 1773 atomic64_t max_cs_in_flight_drop_cnt; 1774 atomic64_t validation_drop_cnt; 1775 }; 1776 1777 /** 1778 * struct hl_dmabuf_priv - a dma-buf private object. 1779 * @dmabuf: pointer to dma-buf object. 1780 * @ctx: pointer to the dma-buf owner's context. 1781 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported 1782 * where virtual memory is supported. 1783 * @memhash_hnode: pointer to the memhash node. this object holds the export count. 1784 * @device_address: physical address of the device's memory. Relevant only 1785 * if phys_pg_pack is NULL (dma-buf was exported from address). 1786 * The total size can be taken from the dmabuf object. 1787 */ 1788 struct hl_dmabuf_priv { 1789 struct dma_buf *dmabuf; 1790 struct hl_ctx *ctx; 1791 struct hl_vm_phys_pg_pack *phys_pg_pack; 1792 struct hl_vm_hash_node *memhash_hnode; 1793 uint64_t device_address; 1794 }; 1795 1796 #define HL_CS_OUTCOME_HISTORY_LEN 256 1797 1798 /** 1799 * struct hl_cs_outcome - represents a single completed CS outcome 1800 * @list_link: link to either container's used list or free list 1801 * @map_link: list to the container hash map 1802 * @ts: completion ts 1803 * @seq: the original cs sequence 1804 * @error: error code cs completed with, if any 1805 */ 1806 struct hl_cs_outcome { 1807 struct list_head list_link; 1808 struct hlist_node map_link; 1809 ktime_t ts; 1810 u64 seq; 1811 int error; 1812 }; 1813 1814 /** 1815 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes 1816 * @outcome_map: index of completed CS searchable by sequence number 1817 * @used_list: list of outcome objects currently in use 1818 * @free_list: list of outcome objects currently not in use 1819 * @nodes_pool: a static pool of pre-allocated outcome objects 1820 * @db_lock: any operation on the store must take this lock 1821 */ 1822 struct hl_cs_outcome_store { 1823 DECLARE_HASHTABLE(outcome_map, 8); 1824 struct list_head used_list; 1825 struct list_head free_list; 1826 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; 1827 spinlock_t db_lock; 1828 }; 1829 1830 /** 1831 * struct hl_ctx - user/kernel context. 1832 * @mem_hash: holds mapping from virtual address to virtual memory area 1833 * descriptor (hl_vm_phys_pg_list or hl_userptr). 1834 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. 1835 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from 1836 * MMU-hop-page physical address to its host-resident 1837 * pgt_info structure. 1838 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). 1839 * @hdev: pointer to the device structure. 1840 * @refcount: reference counter for the context. Context is released only when 1841 * this hits 0. It is incremented on CS and CS_WAIT. 1842 * @cs_pending: array of hl fence objects representing pending CS. 1843 * @outcome_store: storage data structure used to remember outcomes of completed 1844 * command submissions for a long time after CS id wraparound. 1845 * @va_range: holds available virtual addresses for host and dram mappings. 1846 * @mem_hash_lock: protects the mem_hash. 1847 * @hw_block_list_lock: protects the HW block memory list. 1848 * @debugfs_list: node in debugfs list of contexts. 1849 * @hw_block_mem_list: list of HW block virtual mapped addresses. 1850 * @cs_counters: context command submission counters. 1851 * @cb_va_pool: device VA pool for command buffers which are mapped to the 1852 * device's MMU. 1853 * @sig_mgr: encaps signals handle manager. 1854 * @cb_va_pool_base: the base address for the device VA pool 1855 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed 1856 * to user so user could inquire about CS. It is used as 1857 * index to cs_pending array. 1858 * @dram_default_hops: array that holds all hops addresses needed for default 1859 * DRAM mapping. 1860 * @cs_lock: spinlock to protect cs_sequence. 1861 * @dram_phys_mem: amount of used physical DRAM memory by this context. 1862 * @thread_ctx_switch_token: token to prevent multiple threads of the same 1863 * context from running the context switch phase. 1864 * Only a single thread should run it. 1865 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run 1866 * the context switch phase from moving to their 1867 * execution phase before the context switch phase 1868 * has finished. 1869 * @asid: context's unique address space ID in the device's MMU. 1870 * @handle: context's opaque handle for user 1871 */ 1872 struct hl_ctx { 1873 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); 1874 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); 1875 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); 1876 struct hl_fpriv *hpriv; 1877 struct hl_device *hdev; 1878 struct kref refcount; 1879 struct hl_fence **cs_pending; 1880 struct hl_cs_outcome_store outcome_store; 1881 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; 1882 struct mutex mem_hash_lock; 1883 struct mutex hw_block_list_lock; 1884 struct list_head debugfs_list; 1885 struct list_head hw_block_mem_list; 1886 struct hl_cs_counters_atomic cs_counters; 1887 struct gen_pool *cb_va_pool; 1888 struct hl_encaps_signals_mgr sig_mgr; 1889 u64 cb_va_pool_base; 1890 u64 cs_sequence; 1891 u64 *dram_default_hops; 1892 spinlock_t cs_lock; 1893 atomic64_t dram_phys_mem; 1894 atomic_t thread_ctx_switch_token; 1895 u32 thread_ctx_switch_wait_token; 1896 u32 asid; 1897 u32 handle; 1898 }; 1899 1900 /** 1901 * struct hl_ctx_mgr - for handling multiple contexts. 1902 * @lock: protects ctx_handles. 1903 * @handles: idr to hold all ctx handles. 1904 */ 1905 struct hl_ctx_mgr { 1906 struct mutex lock; 1907 struct idr handles; 1908 }; 1909 1910 1911 /* 1912 * COMMAND SUBMISSIONS 1913 */ 1914 1915 /** 1916 * struct hl_userptr - memory mapping chunk information 1917 * @vm_type: type of the VM. 1918 * @job_node: linked-list node for hanging the object on the Job's list. 1919 * @pages: pointer to struct page array 1920 * @npages: size of @pages array 1921 * @sgt: pointer to the scatter-gather table that holds the pages. 1922 * @dir: for DMA unmapping, the direction must be supplied, so save it. 1923 * @debugfs_list: node in debugfs list of command submissions. 1924 * @pid: the pid of the user process owning the memory 1925 * @addr: user-space virtual address of the start of the memory area. 1926 * @size: size of the memory area to pin & map. 1927 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. 1928 */ 1929 struct hl_userptr { 1930 enum vm_type vm_type; /* must be first */ 1931 struct list_head job_node; 1932 struct page **pages; 1933 unsigned int npages; 1934 struct sg_table *sgt; 1935 enum dma_data_direction dir; 1936 struct list_head debugfs_list; 1937 pid_t pid; 1938 u64 addr; 1939 u64 size; 1940 u8 dma_mapped; 1941 }; 1942 1943 /** 1944 * struct hl_cs - command submission. 1945 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. 1946 * @ctx: the context this CS belongs to. 1947 * @job_list: list of the CS's jobs in the various queues. 1948 * @job_lock: spinlock for the CS's jobs list. Needed for free_job. 1949 * @refcount: reference counter for usage of the CS. 1950 * @fence: pointer to the fence object of this CS. 1951 * @signal_fence: pointer to the fence object of the signal CS (used by wait 1952 * CS only). 1953 * @finish_work: workqueue object to run when CS is completed by H/W. 1954 * @work_tdr: delayed work node for TDR. 1955 * @mirror_node : node in device mirror list of command submissions. 1956 * @staged_cs_node: node in the staged cs list. 1957 * @debugfs_list: node in debugfs list of command submissions. 1958 * @encaps_sig_hdl: holds the encaps signals handle. 1959 * @sequence: the sequence number of this CS. 1960 * @staged_sequence: the sequence of the staged submission this CS is part of, 1961 * relevant only if staged_cs is set. 1962 * @timeout_jiffies: cs timeout in jiffies. 1963 * @submission_time_jiffies: submission time of the cs 1964 * @type: CS_TYPE_*. 1965 * @jobs_cnt: counter of submitted jobs on all queues. 1966 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. 1967 * @completion_timestamp: timestamp of the last completed cs job. 1968 * @sob_addr_offset: sob offset from the configuration base address. 1969 * @initial_sob_count: count of completed signals in SOB before current submission of signal or 1970 * cs with encaps signals. 1971 * @submitted: true if CS was submitted to H/W. 1972 * @completed: true if CS was completed by device. 1973 * @timedout : true if CS was timedout. 1974 * @tdr_active: true if TDR was activated for this CS (to prevent 1975 * double TDR activation). 1976 * @aborted: true if CS was aborted due to some device error. 1977 * @timestamp: true if a timestamp must be captured upon completion. 1978 * @staged_last: true if this is the last staged CS and needs completion. 1979 * @staged_first: true if this is the first staged CS and we need to receive 1980 * timeout for this CS. 1981 * @staged_cs: true if this CS is part of a staged submission. 1982 * @skip_reset_on_timeout: true if we shall not reset the device in case 1983 * timeout occurs (debug scenario). 1984 * @encaps_signals: true if this CS has encaps reserved signals. 1985 */ 1986 struct hl_cs { 1987 u16 *jobs_in_queue_cnt; 1988 struct hl_ctx *ctx; 1989 struct list_head job_list; 1990 spinlock_t job_lock; 1991 struct kref refcount; 1992 struct hl_fence *fence; 1993 struct hl_fence *signal_fence; 1994 struct work_struct finish_work; 1995 struct delayed_work work_tdr; 1996 struct list_head mirror_node; 1997 struct list_head staged_cs_node; 1998 struct list_head debugfs_list; 1999 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 2000 ktime_t completion_timestamp; 2001 u64 sequence; 2002 u64 staged_sequence; 2003 u64 timeout_jiffies; 2004 u64 submission_time_jiffies; 2005 enum hl_cs_type type; 2006 u32 jobs_cnt; 2007 u32 encaps_sig_hdl_id; 2008 u32 sob_addr_offset; 2009 u16 initial_sob_count; 2010 u8 submitted; 2011 u8 completed; 2012 u8 timedout; 2013 u8 tdr_active; 2014 u8 aborted; 2015 u8 timestamp; 2016 u8 staged_last; 2017 u8 staged_first; 2018 u8 staged_cs; 2019 u8 skip_reset_on_timeout; 2020 u8 encaps_signals; 2021 }; 2022 2023 /** 2024 * struct hl_cs_job - command submission job. 2025 * @cs_node: the node to hang on the CS jobs list. 2026 * @cs: the CS this job belongs to. 2027 * @user_cb: the CB we got from the user. 2028 * @patched_cb: in case of patching, this is internal CB which is submitted on 2029 * the queue instead of the CB we got from the IOCTL. 2030 * @finish_work: workqueue object to run when job is completed. 2031 * @userptr_list: linked-list of userptr mappings that belong to this job and 2032 * wait for completion. 2033 * @debugfs_list: node in debugfs list of command submission jobs. 2034 * @refcount: reference counter for usage of the CS job. 2035 * @queue_type: the type of the H/W queue this job is submitted to. 2036 * @timestamp: timestamp upon job completion 2037 * @id: the id of this job inside a CS. 2038 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2039 * @user_cb_size: the actual size of the CB we got from the user. 2040 * @job_cb_size: the actual size of the CB that we put on the queue. 2041 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user 2042 * to wait on part of the reserved signals. 2043 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2044 * handle to a kernel-allocated CB object, false 2045 * otherwise (SRAM/DRAM/host address). 2046 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2047 * info is needed later, when adding the 2xMSG_PROT at the 2048 * end of the JOB, to know which barriers to put in the 2049 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2050 * have streams so the engine can't be busy by another 2051 * stream. 2052 */ 2053 struct hl_cs_job { 2054 struct list_head cs_node; 2055 struct hl_cs *cs; 2056 struct hl_cb *user_cb; 2057 struct hl_cb *patched_cb; 2058 struct work_struct finish_work; 2059 struct list_head userptr_list; 2060 struct list_head debugfs_list; 2061 struct kref refcount; 2062 enum hl_queue_type queue_type; 2063 ktime_t timestamp; 2064 u32 id; 2065 u32 hw_queue_id; 2066 u32 user_cb_size; 2067 u32 job_cb_size; 2068 u32 encaps_sig_wait_offset; 2069 u8 is_kernel_allocated_cb; 2070 u8 contains_dma_pkt; 2071 }; 2072 2073 /** 2074 * struct hl_cs_parser - command submission parser properties. 2075 * @user_cb: the CB we got from the user. 2076 * @patched_cb: in case of patching, this is internal CB which is submitted on 2077 * the queue instead of the CB we got from the IOCTL. 2078 * @job_userptr_list: linked-list of userptr mappings that belong to the related 2079 * job and wait for completion. 2080 * @cs_sequence: the sequence number of the related CS. 2081 * @queue_type: the type of the H/W queue this job is submitted to. 2082 * @ctx_id: the ID of the context the related CS belongs to. 2083 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2084 * @user_cb_size: the actual size of the CB we got from the user. 2085 * @patched_cb_size: the size of the CB after parsing. 2086 * @job_id: the id of the related job inside the related CS. 2087 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2088 * handle to a kernel-allocated CB object, false 2089 * otherwise (SRAM/DRAM/host address). 2090 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2091 * info is needed later, when adding the 2xMSG_PROT at the 2092 * end of the JOB, to know which barriers to put in the 2093 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2094 * have streams so the engine can't be busy by another 2095 * stream. 2096 * @completion: true if we need completion for this CS. 2097 */ 2098 struct hl_cs_parser { 2099 struct hl_cb *user_cb; 2100 struct hl_cb *patched_cb; 2101 struct list_head *job_userptr_list; 2102 u64 cs_sequence; 2103 enum hl_queue_type queue_type; 2104 u32 ctx_id; 2105 u32 hw_queue_id; 2106 u32 user_cb_size; 2107 u32 patched_cb_size; 2108 u8 job_id; 2109 u8 is_kernel_allocated_cb; 2110 u8 contains_dma_pkt; 2111 u8 completion; 2112 }; 2113 2114 /* 2115 * MEMORY STRUCTURE 2116 */ 2117 2118 /** 2119 * struct hl_vm_hash_node - hash element from virtual address to virtual 2120 * memory area descriptor (hl_vm_phys_pg_list or 2121 * hl_userptr). 2122 * @node: node to hang on the hash table in context object. 2123 * @vaddr: key virtual address. 2124 * @handle: memory handle for device memory allocation. 2125 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). 2126 * @export_cnt: number of exports from within the VA block. 2127 */ 2128 struct hl_vm_hash_node { 2129 struct hlist_node node; 2130 u64 vaddr; 2131 u64 handle; 2132 void *ptr; 2133 int export_cnt; 2134 }; 2135 2136 /** 2137 * struct hl_vm_hw_block_list_node - list element from user virtual address to 2138 * HW block id. 2139 * @node: node to hang on the list in context object. 2140 * @ctx: the context this node belongs to. 2141 * @vaddr: virtual address of the HW block. 2142 * @block_size: size of the block. 2143 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. 2144 * @id: HW block id (handle). 2145 */ 2146 struct hl_vm_hw_block_list_node { 2147 struct list_head node; 2148 struct hl_ctx *ctx; 2149 unsigned long vaddr; 2150 u32 block_size; 2151 u32 mapped_size; 2152 u32 id; 2153 }; 2154 2155 /** 2156 * struct hl_vm_phys_pg_pack - physical page pack. 2157 * @vm_type: describes the type of the virtual area descriptor. 2158 * @pages: the physical page array. 2159 * @npages: num physical pages in the pack. 2160 * @total_size: total size of all the pages in this list. 2161 * @exported_size: buffer exported size. 2162 * @node: used to attach to deletion list that is used when all the allocations are cleared 2163 * at the teardown of the context. 2164 * @mapping_cnt: number of shared mappings. 2165 * @asid: the context related to this list. 2166 * @page_size: size of each page in the pack. 2167 * @flags: HL_MEM_* flags related to this list. 2168 * @handle: the provided handle related to this list. 2169 * @offset: offset from the first page. 2170 * @contiguous: is contiguous physical memory. 2171 * @created_from_userptr: is product of host virtual address. 2172 */ 2173 struct hl_vm_phys_pg_pack { 2174 enum vm_type vm_type; /* must be first */ 2175 u64 *pages; 2176 u64 npages; 2177 u64 total_size; 2178 u64 exported_size; 2179 struct list_head node; 2180 atomic_t mapping_cnt; 2181 u32 asid; 2182 u32 page_size; 2183 u32 flags; 2184 u32 handle; 2185 u32 offset; 2186 u8 contiguous; 2187 u8 created_from_userptr; 2188 }; 2189 2190 /** 2191 * struct hl_vm_va_block - virtual range block information. 2192 * @node: node to hang on the virtual range list in context object. 2193 * @start: virtual range start address. 2194 * @end: virtual range end address. 2195 * @size: virtual range size. 2196 */ 2197 struct hl_vm_va_block { 2198 struct list_head node; 2199 u64 start; 2200 u64 end; 2201 u64 size; 2202 }; 2203 2204 /** 2205 * struct hl_vm - virtual memory manager for MMU. 2206 * @dram_pg_pool: pool for DRAM physical pages of 2MB. 2207 * @dram_pg_pool_refcount: reference counter for the pool usage. 2208 * @idr_lock: protects the phys_pg_list_handles. 2209 * @phys_pg_pack_handles: idr to hold all device allocations handles. 2210 * @init_done: whether initialization was done. We need this because VM 2211 * initialization might be skipped during device initialization. 2212 */ 2213 struct hl_vm { 2214 struct gen_pool *dram_pg_pool; 2215 struct kref dram_pg_pool_refcount; 2216 spinlock_t idr_lock; 2217 struct idr phys_pg_pack_handles; 2218 u8 init_done; 2219 }; 2220 2221 2222 /* 2223 * DEBUG, PROFILING STRUCTURE 2224 */ 2225 2226 /** 2227 * struct hl_debug_params - Coresight debug parameters. 2228 * @input: pointer to component specific input parameters. 2229 * @output: pointer to component specific output parameters. 2230 * @output_size: size of output buffer. 2231 * @reg_idx: relevant register ID. 2232 * @op: component operation to execute. 2233 * @enable: true if to enable component debugging, false otherwise. 2234 */ 2235 struct hl_debug_params { 2236 void *input; 2237 void *output; 2238 u32 output_size; 2239 u32 reg_idx; 2240 u32 op; 2241 bool enable; 2242 }; 2243 2244 /** 2245 * struct hl_notifier_event - holds the notifier data structure 2246 * @eventfd: the event file descriptor to raise the notifications 2247 * @lock: mutex lock to protect the notifier data flows 2248 * @events_mask: indicates the bitmap events 2249 */ 2250 struct hl_notifier_event { 2251 struct eventfd_ctx *eventfd; 2252 struct mutex lock; 2253 u64 events_mask; 2254 }; 2255 2256 /* 2257 * FILE PRIVATE STRUCTURE 2258 */ 2259 2260 /** 2261 * struct hl_fpriv - process information stored in FD private data. 2262 * @hdev: habanalabs device structure. 2263 * @filp: pointer to the given file structure. 2264 * @taskpid: current process ID. 2265 * @ctx: current executing context. TODO: remove for multiple ctx per process 2266 * @ctx_mgr: context manager to handle multiple context for this FD. 2267 * @mem_mgr: manager descriptor for memory exportable via mmap 2268 * @notifier_event: notifier eventfd towards user process 2269 * @debugfs_list: list of relevant ASIC debugfs. 2270 * @dev_node: node in the device list of file private data 2271 * @refcount: number of related contexts. 2272 * @restore_phase_mutex: lock for context switch and restore phase. 2273 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple 2274 * ctx per process. 2275 */ 2276 struct hl_fpriv { 2277 struct hl_device *hdev; 2278 struct file *filp; 2279 struct pid *taskpid; 2280 struct hl_ctx *ctx; 2281 struct hl_ctx_mgr ctx_mgr; 2282 struct hl_mem_mgr mem_mgr; 2283 struct hl_notifier_event notifier_event; 2284 struct list_head debugfs_list; 2285 struct list_head dev_node; 2286 struct kref refcount; 2287 struct mutex restore_phase_mutex; 2288 struct mutex ctx_lock; 2289 }; 2290 2291 2292 /* 2293 * DebugFS 2294 */ 2295 2296 /** 2297 * struct hl_info_list - debugfs file ops. 2298 * @name: file name. 2299 * @show: function to output information. 2300 * @write: function to write to the file. 2301 */ 2302 struct hl_info_list { 2303 const char *name; 2304 int (*show)(struct seq_file *s, void *data); 2305 ssize_t (*write)(struct file *file, const char __user *buf, 2306 size_t count, loff_t *f_pos); 2307 }; 2308 2309 /** 2310 * struct hl_debugfs_entry - debugfs dentry wrapper. 2311 * @info_ent: dentry related ops. 2312 * @dev_entry: ASIC specific debugfs manager. 2313 */ 2314 struct hl_debugfs_entry { 2315 const struct hl_info_list *info_ent; 2316 struct hl_dbg_device_entry *dev_entry; 2317 }; 2318 2319 /** 2320 * struct hl_dbg_device_entry - ASIC specific debugfs manager. 2321 * @root: root dentry. 2322 * @hdev: habanalabs device structure. 2323 * @entry_arr: array of available hl_debugfs_entry. 2324 * @file_list: list of available debugfs files. 2325 * @file_mutex: protects file_list. 2326 * @cb_list: list of available CBs. 2327 * @cb_spinlock: protects cb_list. 2328 * @cs_list: list of available CSs. 2329 * @cs_spinlock: protects cs_list. 2330 * @cs_job_list: list of available CB jobs. 2331 * @cs_job_spinlock: protects cs_job_list. 2332 * @userptr_list: list of available userptrs (virtual memory chunk descriptor). 2333 * @userptr_spinlock: protects userptr_list. 2334 * @ctx_mem_hash_list: list of available contexts with MMU mappings. 2335 * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings. 2336 * @data_dma_blob_desc: data DMA descriptor of blob. 2337 * @mon_dump_blob_desc: monitor dump descriptor of blob. 2338 * @state_dump: data of the system states in case of a bad cs. 2339 * @state_dump_sem: protects state_dump. 2340 * @addr: next address to read/write from/to in read/write32. 2341 * @mmu_addr: next virtual address to translate to physical address in mmu_show. 2342 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. 2343 * @userptr_lookup: the target user ptr to look up for on demand. 2344 * @mmu_asid: ASID to use while translating in mmu_show. 2345 * @state_dump_head: index of the latest state dump 2346 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. 2347 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. 2348 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. 2349 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. 2350 */ 2351 struct hl_dbg_device_entry { 2352 struct dentry *root; 2353 struct hl_device *hdev; 2354 struct hl_debugfs_entry *entry_arr; 2355 struct list_head file_list; 2356 struct mutex file_mutex; 2357 struct list_head cb_list; 2358 spinlock_t cb_spinlock; 2359 struct list_head cs_list; 2360 spinlock_t cs_spinlock; 2361 struct list_head cs_job_list; 2362 spinlock_t cs_job_spinlock; 2363 struct list_head userptr_list; 2364 spinlock_t userptr_spinlock; 2365 struct list_head ctx_mem_hash_list; 2366 struct mutex ctx_mem_hash_mutex; 2367 struct debugfs_blob_wrapper data_dma_blob_desc; 2368 struct debugfs_blob_wrapper mon_dump_blob_desc; 2369 char *state_dump[HL_STATE_DUMP_HIST_LEN]; 2370 struct rw_semaphore state_dump_sem; 2371 u64 addr; 2372 u64 mmu_addr; 2373 u64 mmu_cap_mask; 2374 u64 userptr_lookup; 2375 u32 mmu_asid; 2376 u32 state_dump_head; 2377 u8 i2c_bus; 2378 u8 i2c_addr; 2379 u8 i2c_reg; 2380 u8 i2c_len; 2381 }; 2382 2383 /** 2384 * struct hl_hw_obj_name_entry - single hw object name, member of 2385 * hl_state_dump_specs 2386 * @node: link to the containing hash table 2387 * @name: hw object name 2388 * @id: object identifier 2389 */ 2390 struct hl_hw_obj_name_entry { 2391 struct hlist_node node; 2392 const char *name; 2393 u32 id; 2394 }; 2395 2396 enum hl_state_dump_specs_props { 2397 SP_SYNC_OBJ_BASE_ADDR, 2398 SP_NEXT_SYNC_OBJ_ADDR, 2399 SP_SYNC_OBJ_AMOUNT, 2400 SP_MON_OBJ_WR_ADDR_LOW, 2401 SP_MON_OBJ_WR_ADDR_HIGH, 2402 SP_MON_OBJ_WR_DATA, 2403 SP_MON_OBJ_ARM_DATA, 2404 SP_MON_OBJ_STATUS, 2405 SP_MONITORS_AMOUNT, 2406 SP_TPC0_CMDQ, 2407 SP_TPC0_CFG_SO, 2408 SP_NEXT_TPC, 2409 SP_MME_CMDQ, 2410 SP_MME_CFG_SO, 2411 SP_NEXT_MME, 2412 SP_DMA_CMDQ, 2413 SP_DMA_CFG_SO, 2414 SP_DMA_QUEUES_OFFSET, 2415 SP_NUM_OF_MME_ENGINES, 2416 SP_SUB_MME_ENG_NUM, 2417 SP_NUM_OF_DMA_ENGINES, 2418 SP_NUM_OF_TPC_ENGINES, 2419 SP_ENGINE_NUM_OF_QUEUES, 2420 SP_ENGINE_NUM_OF_STREAMS, 2421 SP_ENGINE_NUM_OF_FENCES, 2422 SP_FENCE0_CNT_OFFSET, 2423 SP_FENCE0_RDATA_OFFSET, 2424 SP_CP_STS_OFFSET, 2425 SP_NUM_CORES, 2426 2427 SP_MAX 2428 }; 2429 2430 enum hl_sync_engine_type { 2431 ENGINE_TPC, 2432 ENGINE_DMA, 2433 ENGINE_MME, 2434 }; 2435 2436 /** 2437 * struct hl_mon_state_dump - represents a state dump of a single monitor 2438 * @id: monitor id 2439 * @wr_addr_low: address monitor will write to, low bits 2440 * @wr_addr_high: address monitor will write to, high bits 2441 * @wr_data: data monitor will write 2442 * @arm_data: register value containing monitor configuration 2443 * @status: monitor status 2444 */ 2445 struct hl_mon_state_dump { 2446 u32 id; 2447 u32 wr_addr_low; 2448 u32 wr_addr_high; 2449 u32 wr_data; 2450 u32 arm_data; 2451 u32 status; 2452 }; 2453 2454 /** 2455 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry 2456 * @engine_type: type of the engine 2457 * @engine_id: id of the engine 2458 * @sync_id: id of the sync object 2459 */ 2460 struct hl_sync_to_engine_map_entry { 2461 struct hlist_node node; 2462 enum hl_sync_engine_type engine_type; 2463 u32 engine_id; 2464 u32 sync_id; 2465 }; 2466 2467 /** 2468 * struct hl_sync_to_engine_map - maps sync object id to associated engine id 2469 * @tb: hash table containing the mapping, each element is of type 2470 * struct hl_sync_to_engine_map_entry 2471 */ 2472 struct hl_sync_to_engine_map { 2473 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); 2474 }; 2475 2476 /** 2477 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump 2478 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine 2479 * @print_single_monitor: format monitor data as string 2480 * @monitor_valid: return true if given monitor dump is valid 2481 * @print_fences_single_engine: format fences data as string 2482 */ 2483 struct hl_state_dump_specs_funcs { 2484 int (*gen_sync_to_engine_map)(struct hl_device *hdev, 2485 struct hl_sync_to_engine_map *map); 2486 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, 2487 struct hl_device *hdev, 2488 struct hl_mon_state_dump *mon); 2489 int (*monitor_valid)(struct hl_mon_state_dump *mon); 2490 int (*print_fences_single_engine)(struct hl_device *hdev, 2491 u64 base_offset, 2492 u64 status_base_offset, 2493 enum hl_sync_engine_type engine_type, 2494 u32 engine_id, char **buf, 2495 size_t *size, size_t *offset); 2496 }; 2497 2498 /** 2499 * struct hl_state_dump_specs - defines ASIC known hw objects names 2500 * @so_id_to_str_tb: sync objects names index table 2501 * @monitor_id_to_str_tb: monitors names index table 2502 * @funcs: virtual functions used for state dump 2503 * @sync_namager_names: readable names for sync manager if available (ex: N_E) 2504 * @props: pointer to a per asic const props array required for state dump 2505 */ 2506 struct hl_state_dump_specs { 2507 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2508 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2509 struct hl_state_dump_specs_funcs funcs; 2510 const char * const *sync_namager_names; 2511 s64 *props; 2512 }; 2513 2514 2515 /* 2516 * DEVICES 2517 */ 2518 2519 #define HL_STR_MAX 32 2520 2521 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) 2522 2523 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe 2524 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. 2525 */ 2526 #define HL_MAX_MINORS 256 2527 2528 /* 2529 * Registers read & write functions. 2530 */ 2531 2532 u32 hl_rreg(struct hl_device *hdev, u32 reg); 2533 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); 2534 2535 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) 2536 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) 2537 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ 2538 hdev->asic_funcs->rreg(hdev, (reg))) 2539 2540 #define WREG32_P(reg, val, mask) \ 2541 do { \ 2542 u32 tmp_ = RREG32(reg); \ 2543 tmp_ &= (mask); \ 2544 tmp_ |= ((val) & ~(mask)); \ 2545 WREG32(reg, tmp_); \ 2546 } while (0) 2547 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) 2548 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) 2549 2550 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask)) 2551 2552 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask) 2553 2554 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) 2555 2556 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT 2557 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK 2558 #define WREG32_FIELD(reg, offset, field, val) \ 2559 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ 2560 ~REG_FIELD_MASK(reg, field)) | \ 2561 (val) << REG_FIELD_SHIFT(reg, field)) 2562 2563 /* Timeout should be longer when working with simulator but cap the 2564 * increased timeout to some maximum 2565 */ 2566 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ 2567 ({ \ 2568 ktime_t __timeout; \ 2569 u32 __elbi_read; \ 2570 int __rc = 0; \ 2571 if (hdev->pdev) \ 2572 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2573 else \ 2574 __timeout = ktime_add_us(ktime_get(),\ 2575 min((u64)(timeout_us * 10), \ 2576 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2577 might_sleep_if(sleep_us); \ 2578 for (;;) { \ 2579 if (elbi) { \ 2580 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2581 if (__rc) \ 2582 break; \ 2583 (val) = __elbi_read; \ 2584 } else {\ 2585 (val) = RREG32(lower_32_bits(addr)); \ 2586 } \ 2587 if (cond) \ 2588 break; \ 2589 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2590 if (elbi) { \ 2591 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2592 if (__rc) \ 2593 break; \ 2594 (val) = __elbi_read; \ 2595 } else {\ 2596 (val) = RREG32(lower_32_bits(addr)); \ 2597 } \ 2598 break; \ 2599 } \ 2600 if (sleep_us) \ 2601 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2602 } \ 2603 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ 2604 }) 2605 2606 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ 2607 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) 2608 2609 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ 2610 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) 2611 2612 /* 2613 * poll array of register addresses. 2614 * condition is satisfied if all registers values match the expected value. 2615 * once some register in the array satisfies the condition it will not be polled again, 2616 * this is done both for efficiency and due to some registers are "clear on read". 2617 * TODO: use read from PCI bar in other places in the code (SW-91406) 2618 */ 2619 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2620 timeout_us, elbi) \ 2621 ({ \ 2622 ktime_t __timeout; \ 2623 u64 __elem_bitmask; \ 2624 u32 __read_val; \ 2625 u8 __arr_idx; \ 2626 int __rc = 0; \ 2627 \ 2628 if (hdev->pdev) \ 2629 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2630 else \ 2631 __timeout = ktime_add_us(ktime_get(),\ 2632 min(((u64)timeout_us * 10), \ 2633 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2634 \ 2635 might_sleep_if(sleep_us); \ 2636 if (arr_size >= 64) \ 2637 __rc = -EINVAL; \ 2638 else \ 2639 __elem_bitmask = BIT_ULL(arr_size) - 1; \ 2640 for (;;) { \ 2641 if (__rc) \ 2642 break; \ 2643 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ 2644 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ 2645 continue; \ 2646 if (elbi) { \ 2647 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ 2648 if (__rc) \ 2649 break; \ 2650 } else { \ 2651 __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \ 2652 } \ 2653 if (__read_val == (expected_val)) \ 2654 __elem_bitmask &= ~BIT_ULL(__arr_idx); \ 2655 } \ 2656 if (__rc || (__elem_bitmask == 0)) \ 2657 break; \ 2658 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ 2659 break; \ 2660 if (sleep_us) \ 2661 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2662 } \ 2663 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ 2664 }) 2665 2666 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2667 timeout_us) \ 2668 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2669 timeout_us, false) 2670 2671 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2672 timeout_us) \ 2673 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2674 timeout_us, true) 2675 2676 /* 2677 * address in this macro points always to a memory location in the 2678 * host's (server's) memory. That location is updated asynchronously 2679 * either by the direct access of the device or by another core. 2680 * 2681 * To work both in LE and BE architectures, we need to distinguish between the 2682 * two states (device or another core updates the memory location). Therefore, 2683 * if mem_written_by_device is true, the host memory being polled will be 2684 * updated directly by the device. If false, the host memory being polled will 2685 * be updated by host CPU. Required so host knows whether or not the memory 2686 * might need to be byte-swapped before returning value to caller. 2687 */ 2688 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ 2689 mem_written_by_device) \ 2690 ({ \ 2691 ktime_t __timeout; \ 2692 if (hdev->pdev) \ 2693 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2694 else \ 2695 __timeout = ktime_add_us(ktime_get(),\ 2696 min((u64)(timeout_us * 100), \ 2697 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2698 might_sleep_if(sleep_us); \ 2699 for (;;) { \ 2700 /* Verify we read updates done by other cores or by device */ \ 2701 mb(); \ 2702 (val) = *((u32 *)(addr)); \ 2703 if (mem_written_by_device) \ 2704 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2705 if (cond) \ 2706 break; \ 2707 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2708 (val) = *((u32 *)(addr)); \ 2709 if (mem_written_by_device) \ 2710 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2711 break; \ 2712 } \ 2713 if (sleep_us) \ 2714 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2715 } \ 2716 (cond) ? 0 : -ETIMEDOUT; \ 2717 }) 2718 2719 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ 2720 ({ \ 2721 struct user_mapped_block *p = blk; \ 2722 \ 2723 p->address = base; \ 2724 p->size = sz; \ 2725 }) 2726 2727 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \ 2728 ({ \ 2729 usr_intr.hdev = hdev; \ 2730 usr_intr.interrupt_id = intr_id; \ 2731 usr_intr.type = intr_type; \ 2732 INIT_LIST_HEAD(&usr_intr.wait_list_head); \ 2733 spin_lock_init(&usr_intr.wait_list_lock); \ 2734 }) 2735 2736 struct hwmon_chip_info; 2737 2738 /** 2739 * struct hl_device_reset_work - reset work wrapper. 2740 * @reset_work: reset work to be done. 2741 * @hdev: habanalabs device structure. 2742 * @flags: reset flags. 2743 */ 2744 struct hl_device_reset_work { 2745 struct delayed_work reset_work; 2746 struct hl_device *hdev; 2747 u32 flags; 2748 }; 2749 2750 /** 2751 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident 2752 * page-table internal information. 2753 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for 2754 * allocating hops. 2755 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. 2756 */ 2757 struct hl_mmu_hr_priv { 2758 struct gen_pool *mmu_pgt_pool; 2759 struct pgt_info *mmu_asid_hop0; 2760 }; 2761 2762 /** 2763 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident 2764 * page-table internal information. 2765 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. 2766 * @mmu_shadow_hop0: shadow array of hop0 tables. 2767 */ 2768 struct hl_mmu_dr_priv { 2769 struct gen_pool *mmu_pgt_pool; 2770 void *mmu_shadow_hop0; 2771 }; 2772 2773 /** 2774 * struct hl_mmu_priv - used for holding per-device mmu internal information. 2775 * @dr: information on the device-resident MMU, when exists. 2776 * @hr: information on the host-resident MMU, when exists. 2777 */ 2778 struct hl_mmu_priv { 2779 struct hl_mmu_dr_priv dr; 2780 struct hl_mmu_hr_priv hr; 2781 }; 2782 2783 /** 2784 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry 2785 * that was created in order to translate a virtual address to a 2786 * physical one. 2787 * @hop_addr: The address of the hop. 2788 * @hop_pte_addr: The address of the hop entry. 2789 * @hop_pte_val: The value in the hop entry. 2790 */ 2791 struct hl_mmu_per_hop_info { 2792 u64 hop_addr; 2793 u64 hop_pte_addr; 2794 u64 hop_pte_val; 2795 }; 2796 2797 /** 2798 * struct hl_mmu_hop_info - A structure describing the TLB hops and their 2799 * hop-entries that were created in order to translate a virtual address to a 2800 * physical one. 2801 * @scrambled_vaddr: The value of the virtual address after scrambling. This 2802 * address replaces the original virtual-address when mapped 2803 * in the MMU tables. 2804 * @unscrambled_paddr: The un-scrambled physical address. 2805 * @hop_info: Array holding the per-hop information used for the translation. 2806 * @used_hops: The number of hops used for the translation. 2807 * @range_type: virtual address range type. 2808 */ 2809 struct hl_mmu_hop_info { 2810 u64 scrambled_vaddr; 2811 u64 unscrambled_paddr; 2812 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; 2813 u32 used_hops; 2814 enum hl_va_range_type range_type; 2815 }; 2816 2817 /** 2818 * struct hl_hr_mmu_funcs - Device related host resident MMU functions. 2819 * @get_hop0_pgt_info: get page table info structure for HOP0. 2820 * @get_pgt_info: get page table info structure for HOP other than HOP0. 2821 * @add_pgt_info: add page table info structure to hash. 2822 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. 2823 */ 2824 struct hl_hr_mmu_funcs { 2825 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); 2826 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); 2827 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); 2828 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, 2829 struct hl_mmu_hop_info *hops, 2830 u64 virt_addr, bool *is_huge); 2831 }; 2832 2833 /** 2834 * struct hl_mmu_funcs - Device related MMU functions. 2835 * @init: initialize the MMU module. 2836 * @fini: release the MMU module. 2837 * @ctx_init: Initialize a context for using the MMU module. 2838 * @ctx_fini: disable a ctx from using the mmu module. 2839 * @map: maps a virtual address to physical address for a context. 2840 * @unmap: unmap a virtual address of a context. 2841 * @flush: flush all writes from all cores to reach device MMU. 2842 * @swap_out: marks all mapping of the given context as swapped out. 2843 * @swap_in: marks all mapping of the given context as swapped in. 2844 * @get_tlb_info: returns the list of hops and hop-entries used that were 2845 * created in order to translate the giver virtual address to a 2846 * physical one. 2847 * @hr_funcs: functions specific to host resident MMU. 2848 */ 2849 struct hl_mmu_funcs { 2850 int (*init)(struct hl_device *hdev); 2851 void (*fini)(struct hl_device *hdev); 2852 int (*ctx_init)(struct hl_ctx *ctx); 2853 void (*ctx_fini)(struct hl_ctx *ctx); 2854 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, 2855 bool is_dram_addr); 2856 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); 2857 void (*flush)(struct hl_ctx *ctx); 2858 void (*swap_out)(struct hl_ctx *ctx); 2859 void (*swap_in)(struct hl_ctx *ctx); 2860 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); 2861 struct hl_hr_mmu_funcs hr_funcs; 2862 }; 2863 2864 /** 2865 * struct hl_prefetch_work - prefetch work structure handler 2866 * @prefetch_work: actual work struct. 2867 * @ctx: compute context. 2868 * @va: virtual address to pre-fetch. 2869 * @size: pre-fetch size. 2870 * @flags: operation flags. 2871 * @asid: ASID for maintenance operation. 2872 */ 2873 struct hl_prefetch_work { 2874 struct work_struct prefetch_work; 2875 struct hl_ctx *ctx; 2876 u64 va; 2877 u64 size; 2878 u32 flags; 2879 u32 asid; 2880 }; 2881 2882 /* 2883 * number of user contexts allowed to call wait_for_multi_cs ioctl in 2884 * parallel 2885 */ 2886 #define MULTI_CS_MAX_USER_CTX 2 2887 2888 /** 2889 * struct multi_cs_completion - multi CS wait completion. 2890 * @completion: completion of any of the CS in the list 2891 * @lock: spinlock for the completion structure 2892 * @timestamp: timestamp for the multi-CS completion 2893 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS 2894 * is waiting 2895 * @used: 1 if in use, otherwise 0 2896 */ 2897 struct multi_cs_completion { 2898 struct completion completion; 2899 spinlock_t lock; 2900 s64 timestamp; 2901 u32 stream_master_qid_map; 2902 u8 used; 2903 }; 2904 2905 /** 2906 * struct multi_cs_data - internal data for multi CS call 2907 * @ctx: pointer to the context structure 2908 * @fence_arr: array of fences of all CSs 2909 * @seq_arr: array of CS sequence numbers 2910 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete 2911 * @timestamp: timestamp of first completed CS 2912 * @wait_status: wait for CS status 2913 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) 2914 * @arr_len: fence_arr and seq_arr array length 2915 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) 2916 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. 2917 */ 2918 struct multi_cs_data { 2919 struct hl_ctx *ctx; 2920 struct hl_fence **fence_arr; 2921 u64 *seq_arr; 2922 s64 timeout_jiffies; 2923 s64 timestamp; 2924 long wait_status; 2925 u32 completion_bitmap; 2926 u8 arr_len; 2927 u8 gone_cs; 2928 u8 update_ts; 2929 }; 2930 2931 /** 2932 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp 2933 * @start: timestamp taken when 'start' event is received in driver 2934 * @end: timestamp taken when 'end' event is received in driver 2935 */ 2936 struct hl_clk_throttle_timestamp { 2937 ktime_t start; 2938 ktime_t end; 2939 }; 2940 2941 /** 2942 * struct hl_clk_throttle - keeps current/last clock throttling timestamps 2943 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER 2944 * index 1 refers to THERMAL 2945 * @lock: protects this structure as it can be accessed from both event queue 2946 * context and info_ioctl context 2947 * @current_reason: bitmask represents the current clk throttling reasons 2948 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load 2949 */ 2950 struct hl_clk_throttle { 2951 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; 2952 struct mutex lock; 2953 u32 current_reason; 2954 u32 aggregated_reason; 2955 }; 2956 2957 /** 2958 * struct user_mapped_block - describes a hw block allowed to be mmapped by user 2959 * @address: physical HW block address 2960 * @size: allowed size for mmap 2961 */ 2962 struct user_mapped_block { 2963 u32 address; 2964 u32 size; 2965 }; 2966 2967 /** 2968 * struct cs_timeout_info - info of last CS timeout occurred. 2969 * @timestamp: CS timeout timestamp. 2970 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, 2971 * so the first (root cause) CS timeout will not be overwritten. 2972 * @seq: CS timeout sequence number. 2973 */ 2974 struct cs_timeout_info { 2975 ktime_t timestamp; 2976 atomic_t write_enable; 2977 u64 seq; 2978 }; 2979 2980 #define MAX_QMAN_STREAMS_INFO 4 2981 #define OPCODE_INFO_MAX_ADDR_SIZE 8 2982 /** 2983 * struct undefined_opcode_info - info about last undefined opcode error 2984 * @timestamp: timestamp of the undefined opcode error 2985 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ 2986 * entries. In case all streams array entries are 2987 * filled with values, it means the execution was in Lower-CP. 2988 * @cq_addr: the address of the current handled command buffer 2989 * @cq_size: the size of the current handled command buffer 2990 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. 2991 * should be equal to 1 in case of undefined opcode 2992 * in Upper-CP (specific stream) and equal to 4 in case 2993 * of undefined opcode in Lower-CP. 2994 * @engine_id: engine-id that the error occurred on 2995 * @stream_id: the stream id the error occurred on. In case the stream equals to 2996 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. 2997 * @write_enable: if set, writing to undefined opcode parameters in the structure 2998 * is enable so the first (root cause) undefined opcode will not be 2999 * overwritten. 3000 */ 3001 struct undefined_opcode_info { 3002 ktime_t timestamp; 3003 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; 3004 u64 cq_addr; 3005 u32 cq_size; 3006 u32 cb_addr_streams_len; 3007 u32 engine_id; 3008 u32 stream_id; 3009 bool write_enable; 3010 }; 3011 3012 /** 3013 * struct page_fault_info - page fault information. 3014 * @page_fault: holds information collected during a page fault. 3015 * @user_mappings: buffer containing user mappings. 3016 * @num_of_user_mappings: number of user mappings. 3017 * @page_fault_detected: if set as 1, then a page-fault was discovered for the 3018 * first time after the driver has finished booting-up. 3019 * Since we're looking for the page-fault's root cause, 3020 * we don't care of the others that might follow it- 3021 * so once changed to 1, it will remain that way. 3022 * @page_fault_info_available: indicates that a page fault info is now available. 3023 */ 3024 struct page_fault_info { 3025 struct hl_page_fault_info page_fault; 3026 struct hl_user_mapping *user_mappings; 3027 u64 num_of_user_mappings; 3028 atomic_t page_fault_detected; 3029 bool page_fault_info_available; 3030 }; 3031 3032 /** 3033 * struct razwi_info - RAZWI information. 3034 * @razwi: holds information collected during a RAZWI 3035 * @razwi_detected: if set as 1, then a RAZWI was discovered for the 3036 * first time after the driver has finished booting-up. 3037 * Since we're looking for the RAZWI's root cause, 3038 * we don't care of the others that might follow it- 3039 * so once changed to 1, it will remain that way. 3040 * @razwi_info_available: indicates that a RAZWI info is now available. 3041 */ 3042 struct razwi_info { 3043 struct hl_info_razwi_event razwi; 3044 atomic_t razwi_detected; 3045 bool razwi_info_available; 3046 }; 3047 3048 /** 3049 * struct hw_err_info - HW error information. 3050 * @event: holds information on the event. 3051 * @event_detected: if set as 1, then a HW event was discovered for the 3052 * first time after the driver has finished booting-up. 3053 * currently we assume that only fatal events (that require hard-reset) are 3054 * reported so we don't care of the others that might follow it. 3055 * so once changed to 1, it will remain that way. 3056 * TODO: support multiple events. 3057 * @event_info_available: indicates that a HW event info is now available. 3058 */ 3059 struct hw_err_info { 3060 struct hl_info_hw_err_event event; 3061 atomic_t event_detected; 3062 bool event_info_available; 3063 }; 3064 3065 /** 3066 * struct fw_err_info - FW error information. 3067 * @event: holds information on the event. 3068 * @event_detected: if set as 1, then a FW event was discovered for the 3069 * first time after the driver has finished booting-up. 3070 * currently we assume that only fatal events (that require hard-reset) are 3071 * reported so we don't care of the others that might follow it. 3072 * so once changed to 1, it will remain that way. 3073 * TODO: support multiple events. 3074 * @event_info_available: indicates that a HW event info is now available. 3075 */ 3076 struct fw_err_info { 3077 struct hl_info_fw_err_event event; 3078 atomic_t event_detected; 3079 bool event_info_available; 3080 }; 3081 3082 /** 3083 * struct hl_error_info - holds information collected during an error. 3084 * @cs_timeout: CS timeout error information. 3085 * @razwi_info: RAZWI information. 3086 * @undef_opcode: undefined opcode information. 3087 * @page_fault_info: page fault information. 3088 * @hw_err: (fatal) hardware error information. 3089 * @fw_err: firmware error information. 3090 */ 3091 struct hl_error_info { 3092 struct cs_timeout_info cs_timeout; 3093 struct razwi_info razwi_info; 3094 struct undefined_opcode_info undef_opcode; 3095 struct page_fault_info page_fault_info; 3096 struct hw_err_info hw_err; 3097 struct fw_err_info fw_err; 3098 }; 3099 3100 /** 3101 * struct hl_reset_info - holds current device reset information. 3102 * @lock: lock to protect critical reset flows. 3103 * @compute_reset_cnt: number of compute resets since the driver was loaded. 3104 * @hard_reset_cnt: number of hard resets since the driver was loaded. 3105 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, 3106 * here we hold the hard reset flags. 3107 * @in_reset: is device in reset flow. 3108 * @in_compute_reset: Device is currently in reset but not in hard-reset. 3109 * @needs_reset: true if reset_on_lockup is false and device should be reset 3110 * due to lockup. 3111 * @hard_reset_pending: is there a hard reset work pending. 3112 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is 3113 * triggered, and cleared after it is shared with preboot. 3114 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden 3115 * with a new value on next reset 3116 * @reset_trigger_repeated: set if device reset is triggered more than once with 3117 * same cause. 3118 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to 3119 * complete instead. 3120 * @watchdog_active: true if a device release watchdog work is scheduled. 3121 */ 3122 struct hl_reset_info { 3123 spinlock_t lock; 3124 u32 compute_reset_cnt; 3125 u32 hard_reset_cnt; 3126 u32 hard_reset_schedule_flags; 3127 u8 in_reset; 3128 u8 in_compute_reset; 3129 u8 needs_reset; 3130 u8 hard_reset_pending; 3131 u8 curr_reset_cause; 3132 u8 prev_reset_trigger; 3133 u8 reset_trigger_repeated; 3134 u8 skip_reset_on_timeout; 3135 u8 watchdog_active; 3136 }; 3137 3138 /** 3139 * struct hl_device - habanalabs device structure. 3140 * @pdev: pointer to PCI device, can be NULL in case of simulator device. 3141 * @pcie_bar_phys: array of available PCIe bars physical addresses. 3142 * (required only for PCI address match mode) 3143 * @pcie_bar: array of available PCIe bars virtual addresses. 3144 * @rmmio: configuration area address on SRAM. 3145 * @hclass: pointer to the habanalabs class. 3146 * @cdev: related char device. 3147 * @cdev_ctrl: char device for control operations only (INFO IOCTL) 3148 * @dev: related kernel basic device structure. 3149 * @dev_ctrl: related kernel device structure for the control device 3150 * @work_heartbeat: delayed work for CPU-CP is-alive check. 3151 * @device_reset_work: delayed work which performs hard reset 3152 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release 3153 * device upon certain error cases. 3154 * @asic_name: ASIC specific name. 3155 * @asic_type: ASIC specific type. 3156 * @completion_queue: array of hl_cq. 3157 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user 3158 * interrupt, driver will monitor the list of fences 3159 * registered to this interrupt. 3160 * @tpc_interrupt: single TPC interrupt for all TPCs. 3161 * @unexpected_error_interrupt: single interrupt for unexpected user error indication. 3162 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. 3163 * upon any user CQ interrupt, driver will monitor the 3164 * list of fences registered to this common structure. 3165 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. 3166 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to 3167 * outstanding command submissions. 3168 * @cq_wq: work queues of completion queues for executing work in process 3169 * context. 3170 * @eq_wq: work queue of event queue for executing work in process context. 3171 * @cs_cmplt_wq: work queue of CS completions for executing work in process 3172 * context. 3173 * @ts_free_obj_wq: work queue for timestamp registration objects release. 3174 * @prefetch_wq: work queue for MMU pre-fetch operations. 3175 * @reset_wq: work queue for device reset procedure. 3176 * @kernel_ctx: Kernel driver context structure. 3177 * @kernel_queues: array of hl_hw_queue. 3178 * @cs_mirror_list: CS mirror list for TDR. 3179 * @cs_mirror_lock: protects cs_mirror_list. 3180 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. 3181 * @event_queue: event queue for IRQ from CPU-CP. 3182 * @dma_pool: DMA pool for small allocations. 3183 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. 3184 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. 3185 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. 3186 * @asid_bitmap: holds used/available ASIDs. 3187 * @asid_mutex: protects asid_bitmap. 3188 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. 3189 * @debug_lock: protects critical section of setting debug mode for device 3190 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the 3191 * page tables are per context, the invalidation h/w is per MMU. 3192 * Therefore, we can't allow multiple contexts (we only have two, 3193 * user and kernel) to access the invalidation h/w at the same time. 3194 * In addition, any change to the PGT, modifying the MMU hash or 3195 * walking the PGT requires talking this lock. 3196 * @asic_prop: ASIC specific immutable properties. 3197 * @asic_funcs: ASIC specific functions. 3198 * @asic_specific: ASIC specific information to use only from ASIC files. 3199 * @vm: virtual memory manager for MMU. 3200 * @hwmon_dev: H/W monitor device. 3201 * @hl_chip_info: ASIC's sensors information. 3202 * @device_status_description: device status description. 3203 * @hl_debugfs: device's debugfs manager. 3204 * @cb_pool: list of pre allocated CBs. 3205 * @cb_pool_lock: protects the CB pool. 3206 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. 3207 * @internal_cb_pool_dma_addr: internal command buffer pool dma address. 3208 * @internal_cb_pool: internal command buffer memory pool. 3209 * @internal_cb_va_base: internal cb pool mmu virtual address base 3210 * @fpriv_list: list of file private data structures. Each structure is created 3211 * when a user opens the device 3212 * @fpriv_ctrl_list: list of file private data structures. Each structure is created 3213 * when a user opens the control device 3214 * @fpriv_list_lock: protects the fpriv_list 3215 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list 3216 * @aggregated_cs_counters: aggregated cs counters among all contexts 3217 * @mmu_priv: device-specific MMU data. 3218 * @mmu_func: device-related MMU functions. 3219 * @dec: list of decoder sw instance 3220 * @fw_loader: FW loader manager. 3221 * @pci_mem_region: array of memory regions in the PCI 3222 * @state_dump_specs: constants and dictionaries needed to dump system state. 3223 * @multi_cs_completion: array of multi-CS completion. 3224 * @clk_throttling: holds information about current/previous clock throttling events 3225 * @captured_err_info: holds information about errors. 3226 * @reset_info: holds current device reset information. 3227 * @stream_master_qid_arr: pointer to array with QIDs of master streams. 3228 * @fw_major_version: major version of current loaded preboot. 3229 * @fw_minor_version: minor version of current loaded preboot. 3230 * @dram_used_mem: current DRAM memory consumption. 3231 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram 3232 * @timeout_jiffies: device CS timeout value. 3233 * @max_power: the max power of the device, as configured by the sysadmin. This 3234 * value is saved so in case of hard-reset, the driver will restore 3235 * this value and update the F/W after the re-initialization 3236 * @boot_error_status_mask: contains a mask of the device boot error status. 3237 * Each bit represents a different error, according to 3238 * the defines in hl_boot_if.h. If the bit is cleared, 3239 * the error will be ignored by the driver during 3240 * device initialization. Mainly used to debug and 3241 * workaround firmware bugs 3242 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. 3243 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. 3244 * @last_successful_open_jif: timestamp (jiffies) of the last successful 3245 * device open. 3246 * @last_open_session_duration_jif: duration (jiffies) of the last device open 3247 * session. 3248 * @open_counter: number of successful device open operations. 3249 * @fw_poll_interval_usec: FW status poll interval in usec. 3250 * used for CPU boot status 3251 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. 3252 * used for COMMs protocols cmds(COMMS_STS_*) 3253 * @dram_binning: contains mask of drams that is received from the f/w which indicates which 3254 * drams are binned-out 3255 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which 3256 * tpc engines are binned-out 3257 * @dmabuf_export_cnt: number of dma-buf exporting. 3258 * @card_type: Various ASICs have several card types. This indicates the card 3259 * type of the current device. 3260 * @major: habanalabs kernel driver major. 3261 * @high_pll: high PLL profile frequency. 3262 * @decoder_binning: contains mask of decoder engines that is received from the f/w which 3263 * indicates which decoder engines are binned-out 3264 * @edma_binning: contains mask of edma engines that is received from the f/w which 3265 * indicates which edma engines are binned-out 3266 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds. 3267 * @rotator_binning: contains mask of rotators engines that is received from the f/w 3268 * which indicates which rotator engines are binned-out(Gaudi3 and above). 3269 * @id: device minor. 3270 * @id_control: minor of the control device. 3271 * @cdev_idx: char device index. Used for setting its name. 3272 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit 3273 * addresses. 3274 * @is_in_dram_scrub: true if dram scrub operation is on going. 3275 * @disabled: is device disabled. 3276 * @late_init_done: is late init stage was done during initialization. 3277 * @hwmon_initialized: is H/W monitor sensors was initialized. 3278 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false 3279 * otherwise. 3280 * @dram_default_page_mapping: is DRAM default page mapping enabled. 3281 * @memory_scrub: true to perform device memory scrub in various locations, 3282 * such as context-switch, context close, page free, etc. 3283 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with 3284 * huge pages. 3285 * @init_done: is the initialization of the device done. 3286 * @device_cpu_disabled: is the device CPU disabled (due to timeouts) 3287 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure 3288 * can be used. This indication is needed because in some ASICs we need to do 3289 * specific operations to enable that infrastructure. 3290 * @cdev_sysfs_created: were char devices and sysfs nodes created. 3291 * @stop_on_err: true if engines should stop on error. 3292 * @supports_sync_stream: is sync stream supported. 3293 * @sync_stream_queue_idx: helper index for sync stream queues initialization. 3294 * @collective_mon_idx: helper index for collective initialization 3295 * @supports_coresight: is CoreSight supported. 3296 * @supports_cb_mapping: is mapping a CB to the device's MMU supported. 3297 * @process_kill_trial_cnt: number of trials reset thread tried killing 3298 * user processes 3299 * @device_fini_pending: true if device_fini was called and might be 3300 * waiting for the reset thread to finish 3301 * @supports_staged_submission: true if staged submissions are supported 3302 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already 3303 * halted. We can't halt it again because the COMMS 3304 * protocol will throw an error. Relevant only for 3305 * cases where Linux was not loaded to device CPU 3306 * @supports_wait_for_multi_cs: true if wait for multi CS is supported 3307 * @is_compute_ctx_active: Whether there is an active compute context executing. 3308 * @compute_ctx_in_release: true if the current compute context is being released. 3309 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. 3310 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the 3311 * device. 3312 * @supports_ctx_switch: true if a ctx switch is required upon first submission. 3313 * @support_preboot_binning: true if we support read binning info from preboot. 3314 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. 3315 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w 3316 * stages and sometimes we want to stop at a certain stage. Used only for testing. 3317 * @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing. 3318 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. 3319 * @pldm: Whether we are running in Palladium environment. Used only for testing. 3320 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from 3321 * the f/w. Used only for testing. 3322 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. 3323 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. 3324 * Used only for testing. 3325 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies 3326 * that the f/w is always alive. Used only for testing. 3327 */ 3328 struct hl_device { 3329 struct pci_dev *pdev; 3330 u64 pcie_bar_phys[HL_PCI_NUM_BARS]; 3331 void __iomem *pcie_bar[HL_PCI_NUM_BARS]; 3332 void __iomem *rmmio; 3333 struct class *hclass; 3334 struct cdev cdev; 3335 struct cdev cdev_ctrl; 3336 struct device *dev; 3337 struct device *dev_ctrl; 3338 struct delayed_work work_heartbeat; 3339 struct hl_device_reset_work device_reset_work; 3340 struct hl_device_reset_work device_release_watchdog_work; 3341 char asic_name[HL_STR_MAX]; 3342 char status[HL_DEV_STS_MAX][HL_STR_MAX]; 3343 enum hl_asic_type asic_type; 3344 struct hl_cq *completion_queue; 3345 struct hl_user_interrupt *user_interrupt; 3346 struct hl_user_interrupt tpc_interrupt; 3347 struct hl_user_interrupt unexpected_error_interrupt; 3348 struct hl_user_interrupt common_user_cq_interrupt; 3349 struct hl_user_interrupt common_decoder_interrupt; 3350 struct hl_cs **shadow_cs_queue; 3351 struct workqueue_struct **cq_wq; 3352 struct workqueue_struct *eq_wq; 3353 struct workqueue_struct *cs_cmplt_wq; 3354 struct workqueue_struct *ts_free_obj_wq; 3355 struct workqueue_struct *prefetch_wq; 3356 struct workqueue_struct *reset_wq; 3357 struct hl_ctx *kernel_ctx; 3358 struct hl_hw_queue *kernel_queues; 3359 struct list_head cs_mirror_list; 3360 spinlock_t cs_mirror_lock; 3361 struct hl_mem_mgr kernel_mem_mgr; 3362 struct hl_eq event_queue; 3363 struct dma_pool *dma_pool; 3364 void *cpu_accessible_dma_mem; 3365 dma_addr_t cpu_accessible_dma_address; 3366 struct gen_pool *cpu_accessible_dma_pool; 3367 unsigned long *asid_bitmap; 3368 struct mutex asid_mutex; 3369 struct mutex send_cpu_message_lock; 3370 struct mutex debug_lock; 3371 struct mutex mmu_lock; 3372 struct asic_fixed_properties asic_prop; 3373 const struct hl_asic_funcs *asic_funcs; 3374 void *asic_specific; 3375 struct hl_vm vm; 3376 struct device *hwmon_dev; 3377 struct hwmon_chip_info *hl_chip_info; 3378 3379 struct hl_dbg_device_entry hl_debugfs; 3380 3381 struct list_head cb_pool; 3382 spinlock_t cb_pool_lock; 3383 3384 void *internal_cb_pool_virt_addr; 3385 dma_addr_t internal_cb_pool_dma_addr; 3386 struct gen_pool *internal_cb_pool; 3387 u64 internal_cb_va_base; 3388 3389 struct list_head fpriv_list; 3390 struct list_head fpriv_ctrl_list; 3391 struct mutex fpriv_list_lock; 3392 struct mutex fpriv_ctrl_list_lock; 3393 3394 struct hl_cs_counters_atomic aggregated_cs_counters; 3395 3396 struct hl_mmu_priv mmu_priv; 3397 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; 3398 3399 struct hl_dec *dec; 3400 3401 struct fw_load_mgr fw_loader; 3402 3403 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; 3404 3405 struct hl_state_dump_specs state_dump_specs; 3406 3407 struct multi_cs_completion multi_cs_completion[ 3408 MULTI_CS_MAX_USER_CTX]; 3409 struct hl_clk_throttle clk_throttling; 3410 struct hl_error_info captured_err_info; 3411 3412 struct hl_reset_info reset_info; 3413 3414 u32 *stream_master_qid_arr; 3415 u32 fw_major_version; 3416 u32 fw_minor_version; 3417 atomic64_t dram_used_mem; 3418 u64 memory_scrub_val; 3419 u64 timeout_jiffies; 3420 u64 max_power; 3421 u64 boot_error_status_mask; 3422 u64 dram_pci_bar_start; 3423 u64 last_successful_open_jif; 3424 u64 last_open_session_duration_jif; 3425 u64 open_counter; 3426 u64 fw_poll_interval_usec; 3427 ktime_t last_successful_open_ktime; 3428 u64 fw_comms_poll_interval_usec; 3429 u64 dram_binning; 3430 u64 tpc_binning; 3431 atomic_t dmabuf_export_cnt; 3432 enum cpucp_card_types card_type; 3433 u32 major; 3434 u32 high_pll; 3435 u32 decoder_binning; 3436 u32 edma_binning; 3437 u32 device_release_watchdog_timeout_sec; 3438 u32 rotator_binning; 3439 u16 id; 3440 u16 id_control; 3441 u16 cdev_idx; 3442 u16 cpu_pci_msb_addr; 3443 u8 is_in_dram_scrub; 3444 u8 disabled; 3445 u8 late_init_done; 3446 u8 hwmon_initialized; 3447 u8 reset_on_lockup; 3448 u8 dram_default_page_mapping; 3449 u8 memory_scrub; 3450 u8 pmmu_huge_range; 3451 u8 init_done; 3452 u8 device_cpu_disabled; 3453 u8 in_debug; 3454 u8 cdev_sysfs_created; 3455 u8 stop_on_err; 3456 u8 supports_sync_stream; 3457 u8 sync_stream_queue_idx; 3458 u8 collective_mon_idx; 3459 u8 supports_coresight; 3460 u8 supports_cb_mapping; 3461 u8 process_kill_trial_cnt; 3462 u8 device_fini_pending; 3463 u8 supports_staged_submission; 3464 u8 device_cpu_is_halted; 3465 u8 supports_wait_for_multi_cs; 3466 u8 stream_master_qid_arr_size; 3467 u8 is_compute_ctx_active; 3468 u8 compute_ctx_in_release; 3469 u8 supports_mmu_prefetch; 3470 u8 reset_upon_device_release; 3471 u8 supports_ctx_switch; 3472 u8 support_preboot_binning; 3473 3474 /* Parameters for bring-up to be upstreamed */ 3475 u64 nic_ports_mask; 3476 u64 fw_components; 3477 u8 mmu_enable; 3478 u8 cpu_queues_enable; 3479 u8 pldm; 3480 u8 hard_reset_on_fw_events; 3481 u8 bmc_enable; 3482 u8 reset_on_preboot_fail; 3483 u8 heartbeat; 3484 }; 3485 3486 3487 /** 3488 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure 3489 * @refcount: refcount used to protect removing this id when several 3490 * wait cs are used to wait of the reserved encaps signals. 3491 * @hdev: pointer to habanalabs device structure. 3492 * @hw_sob: pointer to H/W SOB used in the reservation. 3493 * @ctx: pointer to the user's context data structure 3494 * @cs_seq: staged cs sequence which contains encapsulated signals 3495 * @id: idr handler id to be used to fetch the handler info 3496 * @q_idx: stream queue index 3497 * @pre_sob_val: current SOB value before reservation 3498 * @count: signals number 3499 */ 3500 struct hl_cs_encaps_sig_handle { 3501 struct kref refcount; 3502 struct hl_device *hdev; 3503 struct hl_hw_sob *hw_sob; 3504 struct hl_ctx *ctx; 3505 u64 cs_seq; 3506 u32 id; 3507 u32 q_idx; 3508 u32 pre_sob_val; 3509 u32 count; 3510 }; 3511 3512 /** 3513 * struct hl_info_fw_err_info - firmware error information structure 3514 * @err_type: The type of error detected (or reported). 3515 * @event_mask: Pointer to the event mask to be modified with the detected error flag 3516 * (can be NULL) 3517 * @event_id: The id of the event that reported the error 3518 * (applicable when err_type is HL_INFO_FW_REPORTED_ERR). 3519 */ 3520 struct hl_info_fw_err_info { 3521 enum hl_info_fw_err_type err_type; 3522 u64 *event_mask; 3523 u16 event_id; 3524 }; 3525 3526 /* 3527 * IOCTLs 3528 */ 3529 3530 /** 3531 * typedef hl_ioctl_t - typedef for ioctl function in the driver 3532 * @hpriv: pointer to the FD's private data, which contains state of 3533 * user process 3534 * @data: pointer to the input/output arguments structure of the IOCTL 3535 * 3536 * Return: 0 for success, negative value for error 3537 */ 3538 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); 3539 3540 /** 3541 * struct hl_ioctl_desc - describes an IOCTL entry of the driver. 3542 * @cmd: the IOCTL code as created by the kernel macros. 3543 * @func: pointer to the driver's function that should be called for this IOCTL. 3544 */ 3545 struct hl_ioctl_desc { 3546 unsigned int cmd; 3547 hl_ioctl_t *func; 3548 }; 3549 3550 static inline bool hl_is_fw_ver_below_1_9(struct hl_device *hdev) 3551 { 3552 return (hdev->fw_major_version < 42); 3553 } 3554 3555 /* 3556 * Kernel module functions that can be accessed by entire module 3557 */ 3558 3559 /** 3560 * hl_get_sg_info() - get number of pages and the DMA address from SG list. 3561 * @sg: the SG list. 3562 * @dma_addr: pointer to DMA address to return. 3563 * 3564 * Calculate the number of consecutive pages described by the SG list. Take the 3565 * offset of the address in the first page, add to it the length and round it up 3566 * to the number of needed pages. 3567 */ 3568 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) 3569 { 3570 *dma_addr = sg_dma_address(sg); 3571 3572 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + 3573 (PAGE_SIZE - 1)) >> PAGE_SHIFT; 3574 } 3575 3576 /** 3577 * hl_mem_area_inside_range() - Checks whether address+size are inside a range. 3578 * @address: The start address of the area we want to validate. 3579 * @size: The size in bytes of the area we want to validate. 3580 * @range_start_address: The start address of the valid range. 3581 * @range_end_address: The end address of the valid range. 3582 * 3583 * Return: true if the area is inside the valid range, false otherwise. 3584 */ 3585 static inline bool hl_mem_area_inside_range(u64 address, u64 size, 3586 u64 range_start_address, u64 range_end_address) 3587 { 3588 u64 end_address = address + size; 3589 3590 if ((address >= range_start_address) && 3591 (end_address <= range_end_address) && 3592 (end_address > address)) 3593 return true; 3594 3595 return false; 3596 } 3597 3598 /** 3599 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. 3600 * @address: The start address of the area we want to validate. 3601 * @size: The size in bytes of the area we want to validate. 3602 * @range_start_address: The start address of the valid range. 3603 * @range_end_address: The end address of the valid range. 3604 * 3605 * Return: true if the area overlaps part or all of the valid range, 3606 * false otherwise. 3607 */ 3608 static inline bool hl_mem_area_crosses_range(u64 address, u32 size, 3609 u64 range_start_address, u64 range_end_address) 3610 { 3611 u64 end_address = address + size - 1; 3612 3613 return ((address <= range_end_address) && (range_start_address <= end_address)); 3614 } 3615 3616 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); 3617 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); 3618 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); 3619 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, 3620 gfp_t flag, const char *caller); 3621 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, 3622 dma_addr_t dma_handle, const char *caller); 3623 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, 3624 dma_addr_t *dma_handle, const char *caller); 3625 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, 3626 const char *caller); 3627 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); 3628 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3629 enum dma_data_direction dir); 3630 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, 3631 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar); 3632 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, 3633 enum debugfs_access_type acc_type); 3634 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, 3635 u64 addr, u64 *val, enum debugfs_access_type acc_type); 3636 int hl_device_open(struct inode *inode, struct file *filp); 3637 int hl_device_open_ctrl(struct inode *inode, struct file *filp); 3638 bool hl_device_operational(struct hl_device *hdev, 3639 enum hl_device_status *status); 3640 bool hl_ctrl_device_operational(struct hl_device *hdev, 3641 enum hl_device_status *status); 3642 enum hl_device_status hl_device_status(struct hl_device *hdev); 3643 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); 3644 int hl_hw_queues_create(struct hl_device *hdev); 3645 void hl_hw_queues_destroy(struct hl_device *hdev); 3646 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, 3647 u32 cb_size, u64 cb_ptr); 3648 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, 3649 u32 ctl, u32 len, u64 ptr); 3650 int hl_hw_queue_schedule_cs(struct hl_cs *cs); 3651 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); 3652 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); 3653 void hl_hw_queue_update_ci(struct hl_cs *cs); 3654 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); 3655 3656 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) 3657 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) 3658 3659 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); 3660 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); 3661 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); 3662 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); 3663 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); 3664 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); 3665 irqreturn_t hl_irq_handler_cq(int irq, void *arg); 3666 irqreturn_t hl_irq_handler_eq(int irq, void *arg); 3667 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); 3668 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg); 3669 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg); 3670 u32 hl_cq_inc_ptr(u32 ptr); 3671 3672 int hl_asid_init(struct hl_device *hdev); 3673 void hl_asid_fini(struct hl_device *hdev); 3674 unsigned long hl_asid_alloc(struct hl_device *hdev); 3675 void hl_asid_free(struct hl_device *hdev, unsigned long asid); 3676 3677 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); 3678 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); 3679 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); 3680 void hl_ctx_do_release(struct kref *ref); 3681 void hl_ctx_get(struct hl_ctx *ctx); 3682 int hl_ctx_put(struct hl_ctx *ctx); 3683 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); 3684 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); 3685 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, 3686 struct hl_fence **fence, u32 arr_len); 3687 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); 3688 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); 3689 3690 int hl_device_init(struct hl_device *hdev); 3691 void hl_device_fini(struct hl_device *hdev); 3692 int hl_device_suspend(struct hl_device *hdev); 3693 int hl_device_resume(struct hl_device *hdev); 3694 int hl_device_reset(struct hl_device *hdev, u32 flags); 3695 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask); 3696 void hl_hpriv_get(struct hl_fpriv *hpriv); 3697 int hl_hpriv_put(struct hl_fpriv *hpriv); 3698 int hl_device_utilization(struct hl_device *hdev, u32 *utilization); 3699 3700 int hl_build_hwmon_channel_info(struct hl_device *hdev, 3701 struct cpucp_sensor *sensors_arr); 3702 3703 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); 3704 3705 int hl_sysfs_init(struct hl_device *hdev); 3706 void hl_sysfs_fini(struct hl_device *hdev); 3707 3708 int hl_hwmon_init(struct hl_device *hdev); 3709 void hl_hwmon_fini(struct hl_device *hdev); 3710 void hl_hwmon_release_resources(struct hl_device *hdev); 3711 3712 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, 3713 struct hl_ctx *ctx, u32 cb_size, bool internal_cb, 3714 bool map_cb, u64 *handle); 3715 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); 3716 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); 3717 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); 3718 void hl_cb_put(struct hl_cb *cb); 3719 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, 3720 bool internal_cb); 3721 int hl_cb_pool_init(struct hl_device *hdev); 3722 int hl_cb_pool_fini(struct hl_device *hdev); 3723 int hl_cb_va_pool_init(struct hl_ctx *ctx); 3724 void hl_cb_va_pool_fini(struct hl_ctx *ctx); 3725 3726 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); 3727 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 3728 enum hl_queue_type queue_type, bool is_kernel_allocated_cb); 3729 void hl_sob_reset_error(struct kref *ref); 3730 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); 3731 void hl_fence_put(struct hl_fence *fence); 3732 void hl_fences_put(struct hl_fence **fence, int len); 3733 void hl_fence_get(struct hl_fence *fence); 3734 void cs_get(struct hl_cs *cs); 3735 bool cs_needs_completion(struct hl_cs *cs); 3736 bool cs_needs_timeout(struct hl_cs *cs); 3737 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); 3738 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); 3739 void hl_multi_cs_completion_init(struct hl_device *hdev); 3740 u32 hl_get_active_cs_num(struct hl_device *hdev); 3741 3742 void goya_set_asic_funcs(struct hl_device *hdev); 3743 void gaudi_set_asic_funcs(struct hl_device *hdev); 3744 void gaudi2_set_asic_funcs(struct hl_device *hdev); 3745 3746 int hl_vm_ctx_init(struct hl_ctx *ctx); 3747 void hl_vm_ctx_fini(struct hl_ctx *ctx); 3748 3749 int hl_vm_init(struct hl_device *hdev); 3750 void hl_vm_fini(struct hl_device *hdev); 3751 3752 void hl_hw_block_mem_init(struct hl_ctx *ctx); 3753 void hl_hw_block_mem_fini(struct hl_ctx *ctx); 3754 3755 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3756 enum hl_va_range_type type, u64 size, u32 alignment); 3757 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3758 u64 start_addr, u64 size); 3759 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 3760 struct hl_userptr *userptr); 3761 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); 3762 void hl_userptr_delete_list(struct hl_device *hdev, 3763 struct list_head *userptr_list); 3764 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, 3765 struct list_head *userptr_list, 3766 struct hl_userptr **userptr); 3767 3768 int hl_mmu_init(struct hl_device *hdev); 3769 void hl_mmu_fini(struct hl_device *hdev); 3770 int hl_mmu_ctx_init(struct hl_ctx *ctx); 3771 void hl_mmu_ctx_fini(struct hl_ctx *ctx); 3772 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, 3773 u32 page_size, bool flush_pte); 3774 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 3775 u32 page_size, u32 *real_page_size, bool is_dram_addr); 3776 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, 3777 bool flush_pte); 3778 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, 3779 u64 phys_addr, u32 size); 3780 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); 3781 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); 3782 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, 3783 u32 flags, u32 asid, u64 va, u64 size); 3784 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 3785 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); 3786 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 3787 u8 hop_idx, u64 hop_addr, u64 virt_addr); 3788 void hl_mmu_hr_flush(struct hl_ctx *ctx); 3789 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, 3790 u64 pgt_size); 3791 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); 3792 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3793 u32 hop_table_size); 3794 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, 3795 u32 hop_table_size); 3796 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3797 u64 val, u32 hop_table_size); 3798 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3799 u32 hop_table_size); 3800 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3801 u32 hop_table_size); 3802 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); 3803 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, 3804 struct hl_hr_mmu_funcs *hr_func, 3805 u64 curr_pte); 3806 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, 3807 struct hl_hr_mmu_funcs *hr_func, 3808 struct hl_mmu_properties *mmu_prop); 3809 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, 3810 struct hl_mmu_hr_priv *hr_priv, 3811 struct hl_hr_mmu_funcs *hr_func, 3812 struct hl_mmu_properties *mmu_prop, 3813 u64 curr_pte, bool *is_new_hop); 3814 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, 3815 struct hl_hr_mmu_funcs *hr_func); 3816 void hl_mmu_swap_out(struct hl_ctx *ctx); 3817 void hl_mmu_swap_in(struct hl_ctx *ctx); 3818 int hl_mmu_if_set_funcs(struct hl_device *hdev); 3819 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3820 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3821 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); 3822 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 3823 struct hl_mmu_hop_info *hops); 3824 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); 3825 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); 3826 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); 3827 3828 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, 3829 void __iomem *dst, u32 src_offset, u32 size); 3830 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); 3831 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, 3832 u16 len, u32 timeout, u64 *result); 3833 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); 3834 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, 3835 size_t irq_arr_size); 3836 int hl_fw_test_cpu_queue(struct hl_device *hdev); 3837 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, 3838 dma_addr_t *dma_handle); 3839 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, 3840 void *vaddr); 3841 int hl_fw_send_heartbeat(struct hl_device *hdev); 3842 int hl_fw_cpucp_info_get(struct hl_device *hdev, 3843 u32 sts_boot_dev_sts0_reg, 3844 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3845 u32 boot_err1_reg); 3846 int hl_fw_cpucp_handshake(struct hl_device *hdev, 3847 u32 sts_boot_dev_sts0_reg, 3848 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3849 u32 boot_err1_reg); 3850 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); 3851 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); 3852 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, 3853 struct hl_info_pci_counters *counters); 3854 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, 3855 u64 *total_energy); 3856 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, 3857 enum pll_index *pll_index); 3858 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, 3859 u16 *pll_freq_arr); 3860 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); 3861 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); 3862 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); 3863 int hl_fw_init_cpu(struct hl_device *hdev); 3864 int hl_fw_wait_preboot_ready(struct hl_device *hdev); 3865 int hl_fw_read_preboot_status(struct hl_device *hdev); 3866 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, 3867 struct fw_load_mgr *fw_loader, 3868 enum comms_cmd cmd, unsigned int size, 3869 bool wait_ok, u32 timeout); 3870 int hl_fw_dram_replaced_row_get(struct hl_device *hdev, 3871 struct cpucp_hbm_row_info *info); 3872 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); 3873 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); 3874 int hl_fw_send_device_activity(struct hl_device *hdev, bool open); 3875 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], 3876 bool is_wc[3]); 3877 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); 3878 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); 3879 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, 3880 struct hl_inbound_pci_region *pci_region); 3881 int hl_pci_set_outbound_region(struct hl_device *hdev, 3882 struct hl_outbound_pci_region *pci_region); 3883 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); 3884 int hl_pci_init(struct hl_device *hdev); 3885 void hl_pci_fini(struct hl_device *hdev); 3886 3887 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); 3888 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); 3889 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3890 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3891 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3892 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3893 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3894 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3895 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3896 long hl_fw_get_max_power(struct hl_device *hdev); 3897 void hl_fw_set_max_power(struct hl_device *hdev); 3898 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, 3899 u32 nonce); 3900 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3901 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3902 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3903 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3904 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); 3905 void hl_fw_set_pll_profile(struct hl_device *hdev); 3906 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); 3907 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); 3908 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode, 3909 dma_addr_t buff, u32 *size); 3910 3911 void hw_sob_get(struct hl_hw_sob *hw_sob); 3912 void hw_sob_put(struct hl_hw_sob *hw_sob); 3913 void hl_encaps_release_handle_and_put_ctx(struct kref *ref); 3914 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref); 3915 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, 3916 struct hl_cs *cs, struct hl_cs_job *job, 3917 struct hl_cs_compl *cs_cmpl); 3918 3919 int hl_dec_init(struct hl_device *hdev); 3920 void hl_dec_fini(struct hl_device *hdev); 3921 void hl_dec_ctx_fini(struct hl_ctx *ctx); 3922 3923 void hl_release_pending_user_interrupts(struct hl_device *hdev); 3924 void hl_abort_waitings_for_completion(struct hl_device *hdev); 3925 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 3926 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); 3927 3928 int hl_state_dump(struct hl_device *hdev); 3929 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); 3930 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, 3931 struct hl_mon_state_dump *mon); 3932 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); 3933 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, 3934 const char *format, ...); 3935 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); 3936 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); 3937 3938 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); 3939 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg); 3940 void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg); 3941 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, 3942 void *args); 3943 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, 3944 u64 handle); 3945 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); 3946 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); 3947 struct hl_mmap_mem_buf * 3948 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, 3949 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, 3950 void *args); 3951 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); 3952 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 3953 u8 flags); 3954 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 3955 u8 flags, u64 *event_mask); 3956 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu); 3957 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, 3958 u64 *event_mask); 3959 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask); 3960 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info); 3961 3962 #ifdef CONFIG_DEBUG_FS 3963 3964 void hl_debugfs_init(void); 3965 void hl_debugfs_fini(void); 3966 void hl_debugfs_add_device(struct hl_device *hdev); 3967 void hl_debugfs_remove_device(struct hl_device *hdev); 3968 void hl_debugfs_add_file(struct hl_fpriv *hpriv); 3969 void hl_debugfs_remove_file(struct hl_fpriv *hpriv); 3970 void hl_debugfs_add_cb(struct hl_cb *cb); 3971 void hl_debugfs_remove_cb(struct hl_cb *cb); 3972 void hl_debugfs_add_cs(struct hl_cs *cs); 3973 void hl_debugfs_remove_cs(struct hl_cs *cs); 3974 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); 3975 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); 3976 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); 3977 void hl_debugfs_remove_userptr(struct hl_device *hdev, 3978 struct hl_userptr *userptr); 3979 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 3980 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 3981 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, 3982 unsigned long length); 3983 3984 #else 3985 3986 static inline void __init hl_debugfs_init(void) 3987 { 3988 } 3989 3990 static inline void hl_debugfs_fini(void) 3991 { 3992 } 3993 3994 static inline void hl_debugfs_add_device(struct hl_device *hdev) 3995 { 3996 } 3997 3998 static inline void hl_debugfs_remove_device(struct hl_device *hdev) 3999 { 4000 } 4001 4002 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) 4003 { 4004 } 4005 4006 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 4007 { 4008 } 4009 4010 static inline void hl_debugfs_add_cb(struct hl_cb *cb) 4011 { 4012 } 4013 4014 static inline void hl_debugfs_remove_cb(struct hl_cb *cb) 4015 { 4016 } 4017 4018 static inline void hl_debugfs_add_cs(struct hl_cs *cs) 4019 { 4020 } 4021 4022 static inline void hl_debugfs_remove_cs(struct hl_cs *cs) 4023 { 4024 } 4025 4026 static inline void hl_debugfs_add_job(struct hl_device *hdev, 4027 struct hl_cs_job *job) 4028 { 4029 } 4030 4031 static inline void hl_debugfs_remove_job(struct hl_device *hdev, 4032 struct hl_cs_job *job) 4033 { 4034 } 4035 4036 static inline void hl_debugfs_add_userptr(struct hl_device *hdev, 4037 struct hl_userptr *userptr) 4038 { 4039 } 4040 4041 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, 4042 struct hl_userptr *userptr) 4043 { 4044 } 4045 4046 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, 4047 struct hl_ctx *ctx) 4048 { 4049 } 4050 4051 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, 4052 struct hl_ctx *ctx) 4053 { 4054 } 4055 4056 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, 4057 char *data, unsigned long length) 4058 { 4059 } 4060 4061 #endif 4062 4063 /* Security */ 4064 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, 4065 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], 4066 int array_size); 4067 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], 4068 int mm_array_size, int offset, const u32 pb_blocks[], 4069 struct hl_block_glbl_sec sgs_array[], int blocks_array_size); 4070 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], 4071 struct hl_block_glbl_sec sgs_array[], u32 block_offset, 4072 int array_size); 4073 void hl_secure_block(struct hl_device *hdev, 4074 struct hl_block_glbl_sec sgs_array[], int array_size); 4075 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4076 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4077 const u32 pb_blocks[], u32 blocks_array_size, 4078 const u32 *regs_array, u32 regs_array_size, u64 mask); 4079 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4080 u32 num_instances, u32 instance_offset, 4081 const u32 pb_blocks[], u32 blocks_array_size, 4082 const u32 *regs_array, u32 regs_array_size); 4083 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, 4084 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4085 const u32 pb_blocks[], u32 blocks_array_size, 4086 const struct range *regs_range_array, u32 regs_range_array_size, 4087 u64 mask); 4088 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, 4089 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4090 const u32 pb_blocks[], u32 blocks_array_size, 4091 const struct range *regs_range_array, 4092 u32 regs_range_array_size); 4093 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4094 u32 num_instances, u32 instance_offset, 4095 const u32 pb_blocks[], u32 blocks_array_size, 4096 const u32 *regs_array, u32 regs_array_size); 4097 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4098 u32 num_instances, u32 instance_offset, 4099 const u32 pb_blocks[], u32 blocks_array_size, 4100 const struct range *regs_range_array, 4101 u32 regs_range_array_size); 4102 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4103 u32 num_instances, u32 instance_offset, 4104 const u32 pb_blocks[], u32 blocks_array_size); 4105 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4106 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4107 const u32 pb_blocks[], u32 blocks_array_size, u64 mask); 4108 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4109 u32 num_instances, u32 instance_offset, 4110 const u32 pb_blocks[], u32 blocks_array_size); 4111 4112 /* IOCTLs */ 4113 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); 4114 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); 4115 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); 4116 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); 4117 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data); 4118 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); 4119 4120 #endif /* HABANALABSP_H_ */ 4121