1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * Copyright 2016-2022 HabanaLabs, Ltd. 4 * All Rights Reserved. 5 * 6 */ 7 8 #ifndef HABANALABSP_H_ 9 #define HABANALABSP_H_ 10 11 #include "../include/common/cpucp_if.h" 12 #include "../include/common/qman_if.h" 13 #include "../include/hw_ip/mmu/mmu_general.h" 14 #include <uapi/drm/habanalabs_accel.h> 15 16 #include <linux/cdev.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqreturn.h> 19 #include <linux/dma-direction.h> 20 #include <linux/scatterlist.h> 21 #include <linux/hashtable.h> 22 #include <linux/debugfs.h> 23 #include <linux/rwsem.h> 24 #include <linux/eventfd.h> 25 #include <linux/bitfield.h> 26 #include <linux/genalloc.h> 27 #include <linux/sched/signal.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/coresight.h> 30 #include <linux/dma-buf.h> 31 32 #include "security.h" 33 34 #define HL_NAME "habanalabs" 35 36 struct hl_device; 37 struct hl_fpriv; 38 39 /* Use upper bits of mmap offset to store habana driver specific information. 40 * bits[63:59] - Encode mmap type 41 * bits[45:0] - mmap offset value 42 * 43 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 44 * defines are w.r.t to PAGE_SIZE 45 */ 46 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) 47 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) 48 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) 49 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) 50 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) 51 52 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) 53 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) 54 55 #define HL_PENDING_RESET_PER_SEC 10 56 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ 57 #define HL_PENDING_RESET_LONG_SEC 60 58 /* 59 * In device fini, wait 10 minutes for user processes to be terminated after we kill them. 60 * This is needed to prevent situation of clearing resources while user processes are still alive. 61 */ 62 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600 63 64 #define HL_HARD_RESET_MAX_TIMEOUT 120 65 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) 66 67 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ 68 69 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ 70 71 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ 72 73 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ 74 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ 75 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ 76 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ 77 78 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ 79 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ 80 81 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ 82 83 #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */ 84 85 #define HL_INVALID_QUEUE UINT_MAX 86 87 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF 88 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE 89 90 #define HL_STATE_DUMP_HIST_LEN 5 91 92 /* Default value for device reset trigger , an invalid value */ 93 #define HL_RESET_TRIGGER_DEFAULT 0xFF 94 95 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 96 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 97 98 /* Memory */ 99 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 100 101 /* MMU */ 102 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 103 104 /** 105 * enum hl_mmu_page_table_location - mmu page table location 106 * @MMU_DR_PGT: page-table is located on device DRAM. 107 * @MMU_HR_PGT: page-table is located on host memory. 108 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. 109 */ 110 enum hl_mmu_page_table_location { 111 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ 112 MMU_HR_PGT, /* host resident MMU PGT */ 113 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ 114 }; 115 116 /** 117 * enum hl_mmu_enablement - what mmu modules to enable 118 * @MMU_EN_NONE: mmu disabled. 119 * @MMU_EN_ALL: enable all. 120 * @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled. 121 */ 122 enum hl_mmu_enablement { 123 MMU_EN_NONE = 0, 124 MMU_EN_ALL = 1, 125 MMU_EN_PMMU_ONLY = 3, /* N/A for Goya/Gaudi */ 126 }; 127 128 /* 129 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream 130 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream 131 */ 132 #define HL_RSVD_SOBS 2 133 #define HL_RSVD_MONS 1 134 135 /* 136 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream 137 */ 138 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 139 140 #define HL_MAX_SOB_VAL (1 << 15) 141 142 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) 143 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) 144 145 #define HL_PCI_NUM_BARS 6 146 147 /* Completion queue entry relates to completed job */ 148 #define HL_COMPLETION_MODE_JOB 0 149 /* Completion queue entry relates to completed command submission */ 150 #define HL_COMPLETION_MODE_CS 1 151 152 #define HL_MAX_DCORES 8 153 154 /* DMA alloc/free wrappers */ 155 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ 156 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) 157 158 #define hl_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle) \ 159 hl_cpu_accessible_dma_pool_alloc_caller(hdev, size, dma_handle, __func__) 160 161 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ 162 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) 163 164 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ 165 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) 166 167 #define hl_cpu_accessible_dma_pool_free(hdev, size, vaddr) \ 168 hl_cpu_accessible_dma_pool_free_caller(hdev, size, vaddr, __func__) 169 170 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ 171 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) 172 173 /* 174 * Reset Flags 175 * 176 * - HL_DRV_RESET_HARD 177 * If set do hard reset to all engines. If not set reset just 178 * compute/DMA engines. 179 * 180 * - HL_DRV_RESET_FROM_RESET_THR 181 * Set if the caller is the hard-reset thread 182 * 183 * - HL_DRV_RESET_HEARTBEAT 184 * Set if reset is due to heartbeat 185 * 186 * - HL_DRV_RESET_TDR 187 * Set if reset is due to TDR 188 * 189 * - HL_DRV_RESET_DEV_RELEASE 190 * Set if reset is due to device release 191 * 192 * - HL_DRV_RESET_BYPASS_REQ_TO_FW 193 * F/W will perform the reset. No need to ask it to reset the device. This is relevant 194 * only when running with secured f/w 195 * 196 * - HL_DRV_RESET_FW_FATAL_ERR 197 * Set if reset is due to a fatal error from FW 198 * 199 * - HL_DRV_RESET_DELAY 200 * Set if a delay should be added before the reset 201 * 202 * - HL_DRV_RESET_FROM_WD_THR 203 * Set if the caller is the device release watchdog thread 204 */ 205 206 #define HL_DRV_RESET_HARD (1 << 0) 207 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) 208 #define HL_DRV_RESET_HEARTBEAT (1 << 2) 209 #define HL_DRV_RESET_TDR (1 << 3) 210 #define HL_DRV_RESET_DEV_RELEASE (1 << 4) 211 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) 212 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) 213 #define HL_DRV_RESET_DELAY (1 << 7) 214 #define HL_DRV_RESET_FROM_WD_THR (1 << 8) 215 216 /* 217 * Security 218 */ 219 220 #define HL_PB_SHARED 1 221 #define HL_PB_NA 0 222 #define HL_PB_SINGLE_INSTANCE 1 223 #define HL_BLOCK_SIZE 0x1000 224 #define HL_BLOCK_GLBL_ERR_MASK 0xF40 225 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 226 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 227 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 228 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) 229 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) 230 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) 231 232 enum hl_protection_levels { 233 SECURED_LVL, 234 PRIVILEGED_LVL, 235 NON_SECURED_LVL 236 }; 237 238 /** 239 * struct iterate_module_ctx - HW module iterator 240 * @fn: function to apply to each HW module instance 241 * @data: optional internal data to the function iterator 242 * @rc: return code for optional use of iterator/iterator-caller 243 */ 244 struct iterate_module_ctx { 245 /* 246 * callback for the HW module iterator 247 * @hdev: pointer to the habanalabs device structure 248 * @block: block (ASIC specific definition can be dcore/hdcore) 249 * @inst: HW module instance within the block 250 * @offset: current HW module instance offset from the 1-st HW module instance 251 * in the 1-st block 252 * @ctx: the iterator context. 253 */ 254 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, 255 struct iterate_module_ctx *ctx); 256 void *data; 257 int rc; 258 }; 259 260 struct hl_block_glbl_sec { 261 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; 262 }; 263 264 #define HL_MAX_SOBS_PER_MONITOR 8 265 266 /** 267 * struct hl_gen_wait_properties - properties for generating a wait CB 268 * @data: command buffer 269 * @q_idx: queue id is used to extract fence register address 270 * @size: offset in command buffer 271 * @sob_base: SOB base to use in this wait CB 272 * @sob_val: SOB value to wait for 273 * @mon_id: monitor to use in this wait CB 274 * @sob_mask: each bit represents a SOB offset from sob_base to be used 275 */ 276 struct hl_gen_wait_properties { 277 void *data; 278 u32 q_idx; 279 u32 size; 280 u16 sob_base; 281 u16 sob_val; 282 u16 mon_id; 283 u8 sob_mask; 284 }; 285 286 /** 287 * struct pgt_info - MMU hop page info. 288 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and 289 * actual pgts for host resident MMU). 290 * @phys_addr: physical address of the pgt. 291 * @virt_addr: host virtual address of the pgt (see above device/host resident). 292 * @shadow_addr: shadow hop in the host for device resident MMU. 293 * @ctx: pointer to the owner ctx. 294 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically 295 * allocated HOPs (all HOPs but HOP0) 296 * 297 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow 298 * pgts will be stored on host memory) or on host memory (in which case no shadow is required). 299 * 300 * When a new level (hop) is needed during mapping this structure will be used to describe 301 * the newly allocated hop as well as to track number of PTEs in it. 302 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is 303 * freed with its pgt_info structure. 304 */ 305 struct pgt_info { 306 struct hlist_node node; 307 u64 phys_addr; 308 u64 virt_addr; 309 u64 shadow_addr; 310 struct hl_ctx *ctx; 311 int num_of_ptes; 312 }; 313 314 /** 315 * enum hl_pci_match_mode - pci match mode per region 316 * @PCI_ADDRESS_MATCH_MODE: address match mode 317 * @PCI_BAR_MATCH_MODE: bar match mode 318 */ 319 enum hl_pci_match_mode { 320 PCI_ADDRESS_MATCH_MODE, 321 PCI_BAR_MATCH_MODE 322 }; 323 324 /** 325 * enum hl_fw_component - F/W components to read version through registers. 326 * @FW_COMP_BOOT_FIT: boot fit. 327 * @FW_COMP_PREBOOT: preboot. 328 * @FW_COMP_LINUX: linux. 329 */ 330 enum hl_fw_component { 331 FW_COMP_BOOT_FIT, 332 FW_COMP_PREBOOT, 333 FW_COMP_LINUX, 334 }; 335 336 /** 337 * enum hl_fw_types - F/W types present in the system 338 * @FW_TYPE_NONE: no FW component indication 339 * @FW_TYPE_LINUX: Linux image for device CPU 340 * @FW_TYPE_BOOT_CPU: Boot image for device CPU 341 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system 342 * (preboot, ppboot etc...) 343 * @FW_TYPE_ALL_TYPES: Mask for all types 344 */ 345 enum hl_fw_types { 346 FW_TYPE_NONE = 0x0, 347 FW_TYPE_LINUX = 0x1, 348 FW_TYPE_BOOT_CPU = 0x2, 349 FW_TYPE_PREBOOT_CPU = 0x4, 350 FW_TYPE_ALL_TYPES = 351 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) 352 }; 353 354 /** 355 * enum hl_queue_type - Supported QUEUE types. 356 * @QUEUE_TYPE_NA: queue is not available. 357 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the 358 * host. 359 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's 360 * memories and/or operates the compute engines. 361 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. 362 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion 363 * notifications are sent by H/W. 364 */ 365 enum hl_queue_type { 366 QUEUE_TYPE_NA, 367 QUEUE_TYPE_EXT, 368 QUEUE_TYPE_INT, 369 QUEUE_TYPE_CPU, 370 QUEUE_TYPE_HW 371 }; 372 373 enum hl_cs_type { 374 CS_TYPE_DEFAULT, 375 CS_TYPE_SIGNAL, 376 CS_TYPE_WAIT, 377 CS_TYPE_COLLECTIVE_WAIT, 378 CS_RESERVE_SIGNALS, 379 CS_UNRESERVE_SIGNALS, 380 CS_TYPE_ENGINE_CORE, 381 CS_TYPE_FLUSH_PCI_HBW_WRITES, 382 }; 383 384 /* 385 * struct hl_inbound_pci_region - inbound region descriptor 386 * @mode: pci match mode for this region 387 * @addr: region target address 388 * @size: region size in bytes 389 * @offset_in_bar: offset within bar (address match mode) 390 * @bar: bar id 391 */ 392 struct hl_inbound_pci_region { 393 enum hl_pci_match_mode mode; 394 u64 addr; 395 u64 size; 396 u64 offset_in_bar; 397 u8 bar; 398 }; 399 400 /* 401 * struct hl_outbound_pci_region - outbound region descriptor 402 * @addr: region target address 403 * @size: region size in bytes 404 */ 405 struct hl_outbound_pci_region { 406 u64 addr; 407 u64 size; 408 }; 409 410 /* 411 * enum queue_cb_alloc_flags - Indicates queue support for CBs that 412 * allocated by Kernel or by User 413 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel 414 * @CB_ALLOC_USER: support only CBs that allocated by User 415 */ 416 enum queue_cb_alloc_flags { 417 CB_ALLOC_KERNEL = 0x1, 418 CB_ALLOC_USER = 0x2 419 }; 420 421 /* 422 * struct hl_hw_sob - H/W SOB info. 423 * @hdev: habanalabs device structure. 424 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. 425 * @sob_id: id of this SOB. 426 * @sob_addr: the sob offset from the base address. 427 * @q_idx: the H/W queue that uses this SOB. 428 * @need_reset: reset indication set when switching to the other sob. 429 */ 430 struct hl_hw_sob { 431 struct hl_device *hdev; 432 struct kref kref; 433 u32 sob_id; 434 u32 sob_addr; 435 u32 q_idx; 436 bool need_reset; 437 }; 438 439 enum hl_collective_mode { 440 HL_COLLECTIVE_NOT_SUPPORTED = 0x0, 441 HL_COLLECTIVE_MASTER = 0x1, 442 HL_COLLECTIVE_SLAVE = 0x2 443 }; 444 445 /** 446 * struct hw_queue_properties - queue information. 447 * @type: queue type. 448 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB 449 * that allocated by the Kernel driver and therefore, 450 * a CB handle can be provided for jobs on this queue. 451 * Otherwise, a CB address must be provided. 452 * @collective_mode: collective mode of current queue 453 * @driver_only: true if only the driver is allowed to send a job to this queue, 454 * false otherwise. 455 * @binned: True if the queue is binned out and should not be used 456 * @supports_sync_stream: True if queue supports sync stream 457 */ 458 struct hw_queue_properties { 459 enum hl_queue_type type; 460 enum queue_cb_alloc_flags cb_alloc_flags; 461 enum hl_collective_mode collective_mode; 462 u8 driver_only; 463 u8 binned; 464 u8 supports_sync_stream; 465 }; 466 467 /** 468 * enum vm_type - virtual memory mapping request information. 469 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. 470 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. 471 */ 472 enum vm_type { 473 VM_TYPE_USERPTR = 0x1, 474 VM_TYPE_PHYS_PACK = 0x2 475 }; 476 477 /** 478 * enum mmu_op_flags - mmu operation relevant information. 479 * @MMU_OP_USERPTR: operation on user memory (host resident). 480 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). 481 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. 482 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. 483 */ 484 enum mmu_op_flags { 485 MMU_OP_USERPTR = 0x1, 486 MMU_OP_PHYS_PACK = 0x2, 487 MMU_OP_CLEAR_MEMCACHE = 0x4, 488 MMU_OP_SKIP_LOW_CACHE_INV = 0x8, 489 }; 490 491 492 /** 493 * enum hl_device_hw_state - H/W device state. use this to understand whether 494 * to do reset before hw_init or not 495 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset 496 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute 497 * hw_init 498 */ 499 enum hl_device_hw_state { 500 HL_DEVICE_HW_STATE_CLEAN = 0, 501 HL_DEVICE_HW_STATE_DIRTY 502 }; 503 504 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 505 506 /** 507 * struct hl_mmu_properties - ASIC specific MMU address translation properties. 508 * @start_addr: virtual start address of the memory region. 509 * @end_addr: virtual end address of the memory region. 510 * @hop_shifts: array holds HOPs shifts. 511 * @hop_masks: array holds HOPs masks. 512 * @last_mask: mask to get the bit indicating this is the last hop. 513 * @pgt_size: size for page tables. 514 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs 515 * supporting multiple page size). 516 * @page_size: default page size used to allocate memory. 517 * @num_hops: The amount of hops supported by the translation table. 518 * @hop_table_size: HOP table size. 519 * @hop0_tables_total_size: total size for all HOP0 tables. 520 * @host_resident: Should the MMU page table reside in host memory or in the 521 * device DRAM. 522 */ 523 struct hl_mmu_properties { 524 u64 start_addr; 525 u64 end_addr; 526 u64 hop_shifts[MMU_HOP_MAX]; 527 u64 hop_masks[MMU_HOP_MAX]; 528 u64 last_mask; 529 u64 pgt_size; 530 u64 supported_pages_mask; 531 u32 page_size; 532 u32 num_hops; 533 u32 hop_table_size; 534 u32 hop0_tables_total_size; 535 u8 host_resident; 536 }; 537 538 /** 539 * struct hl_hints_range - hint addresses reserved va range. 540 * @start_addr: start address of the va range. 541 * @end_addr: end address of the va range. 542 */ 543 struct hl_hints_range { 544 u64 start_addr; 545 u64 end_addr; 546 }; 547 548 /** 549 * struct asic_fixed_properties - ASIC specific immutable properties. 550 * @hw_queues_props: H/W queues properties. 551 * @special_blocks: points to an array containing special blocks info. 552 * @skip_special_blocks_cfg: special blocks skip configs. 553 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. 554 * available sensors. 555 * @uboot_ver: F/W U-boot version. 556 * @preboot_ver: F/W Preboot version. 557 * @dmmu: DRAM MMU address translation properties. 558 * @pmmu: PCI (host) MMU address translation properties. 559 * @pmmu_huge: PCI (host) MMU address translation properties for memory 560 * allocated with huge pages. 561 * @hints_dram_reserved_va_range: dram hint addresses reserved range. 562 * @hints_host_reserved_va_range: host hint addresses reserved range. 563 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved 564 * range. 565 * @sram_base_address: SRAM physical start address. 566 * @sram_end_address: SRAM physical end address. 567 * @sram_user_base_address - SRAM physical start address for user access. 568 * @dram_base_address: DRAM physical start address. 569 * @dram_end_address: DRAM physical end address. 570 * @dram_user_base_address: DRAM physical start address for user access. 571 * @dram_size: DRAM total size. 572 * @dram_pci_bar_size: size of PCI bar towards DRAM. 573 * @max_power_default: max power of the device after reset. 574 * @dc_power_default: power consumed by the device in mode idle. 575 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page 576 * fault. 577 * @pcie_dbi_base_address: Base address of the PCIE_DBI block. 578 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. 579 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. 580 * @mmu_dram_default_page_addr: DRAM default page physical address. 581 * @tpc_enabled_mask: which TPCs are enabled. 582 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. 583 * @dram_enabled_mask: which DRAMs are enabled. 584 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. 585 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used 586 * for hints validity check. 587 * @cfg_base_address: config space base address. 588 * @mmu_cache_mng_addr: address of the MMU cache. 589 * @mmu_cache_mng_size: size of the MMU cache. 590 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses 591 * to enable the device to access them. 592 * @host_base_address: host physical start address for host DMA from device 593 * @host_end_address: host physical end address for host DMA from device 594 * @max_freq_value: current max clk frequency. 595 * @clk_pll_index: clock PLL index that specify which PLL determines the clock 596 * we display to the user 597 * @mmu_pgt_size: MMU page tables total size. 598 * @mmu_pte_size: PTE size in MMU page tables. 599 * @mmu_hop_table_size: MMU hop table size. 600 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. 601 * @dram_page_size: page size for MMU DRAM allocation. 602 * @cfg_size: configuration space size on SRAM. 603 * @sram_size: total size of SRAM. 604 * @max_asid: maximum number of open contexts (ASIDs). 605 * @num_of_events: number of possible internal H/W IRQs. 606 * @psoc_pci_pll_nr: PCI PLL NR value. 607 * @psoc_pci_pll_nf: PCI PLL NF value. 608 * @psoc_pci_pll_od: PCI PLL OD value. 609 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. 610 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. 611 * @high_pll: high PLL frequency used by the device. 612 * @cb_pool_cb_cnt: number of CBs in the CB pool. 613 * @cb_pool_cb_size: size of each CB in the CB pool. 614 * @decoder_enabled_mask: which decoders are enabled. 615 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 616 * means binned (at most one binned decoder per dcore). 617 * @edma_enabled_mask: which EDMAs are enabled. 618 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means 619 * binned (at most one binned DMA). 620 * @max_pending_cs: maximum of concurrent pending command submissions 621 * @max_queues: maximum amount of queues in the system 622 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu 623 * capabilities reported by FW, bit description 624 * can be found in CPU_BOOT_DEV_STS0 625 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu 626 * capabilities reported by FW, bit description 627 * can be found in CPU_BOOT_DEV_STS1 628 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security 629 * status reported by FW, bit description can be 630 * found in CPU_BOOT_DEV_STS0 631 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security 632 * status reported by FW, bit description can be 633 * found in CPU_BOOT_DEV_STS1 634 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security 635 * status reported by FW, bit description can be 636 * found in CPU_BOOT_DEV_STS0 637 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security 638 * status reported by FW, bit description can be 639 * found in CPU_BOOT_DEV_STS1 640 * @max_dec: maximum number of decoders 641 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) 642 * 1- enabled, 0- isolated. 643 * @faulty_dram_cluster_map: mask of faulty DRAM cluster. 644 * 1- faulty cluster, 0- good cluster. 645 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) 646 * 1- enabled, 0- isolated. 647 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for 648 * which the property supports_user_set_page_size is true 649 * (i.e. the DRAM supports multiple page sizes), otherwise 650 * it will shall be equal to dram_page_size. 651 * @num_engine_cores: number of engine cpu cores 652 * @num_of_special_blocks: special_blocks array size. 653 * @glbl_err_cause_num: global err cause number. 654 * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is 655 * not supported. 656 * @collective_first_sob: first sync object available for collective use 657 * @collective_first_mon: first monitor available for collective use 658 * @sync_stream_first_sob: first sync object available for sync stream use 659 * @sync_stream_first_mon: first monitor available for sync stream use 660 * @first_available_user_sob: first sob available for the user 661 * @first_available_user_mon: first monitor available for the user 662 * @first_available_user_interrupt: first available interrupt reserved for the user 663 * @first_available_cq: first available CQ for the user. 664 * @user_interrupt_count: number of user interrupts. 665 * @user_dec_intr_count: number of decoder interrupts exposed to user. 666 * @cache_line_size: device cache line size. 667 * @server_type: Server type that the ASIC is currently installed in. 668 * The value is according to enum hl_server_type in uapi file. 669 * @completion_queues_count: number of completion queues. 670 * @completion_mode: 0 - job based completion, 1 - cs based completion 671 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works 672 * in Master/Slave mode 673 * @fw_security_enabled: true if security measures are enabled in firmware, 674 * false otherwise 675 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from 676 * BOOT_DEV_STS0 677 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from 678 * BOOT_DEV_STS1 679 * @dram_supports_virtual_memory: is there an MMU towards the DRAM 680 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow 681 * @num_functional_hbms: number of functional HBMs in each DCORE. 682 * @hints_range_reservation: device support hint addresses range reservation. 683 * @iatu_done_by_fw: true if iATU configuration is being done by FW. 684 * @dynamic_fw_load: is dynamic FW load is supported. 685 * @gic_interrupts_enable: true if FW is not blocking GIC controller, 686 * false otherwise. 687 * @use_get_power_for_reset_history: To support backward compatibility for Goya 688 * and Gaudi 689 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. 690 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is 691 * initiated by user or TDR. This is only true 692 * in inference ASICs, as there is no real-world 693 * use-case of doing soft-reset in training (due 694 * to the fact that training runs on multiple 695 * devices) 696 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. 697 * @set_max_power_on_device_init: true if need to set max power in F/W on device init. 698 * @supports_user_set_page_size: true if user can set the allocation page size. 699 * @dma_mask: the dma mask to be set for this device 700 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. 701 */ 702 struct asic_fixed_properties { 703 struct hw_queue_properties *hw_queues_props; 704 struct hl_special_block_info *special_blocks; 705 struct hl_skip_blocks_cfg skip_special_blocks_cfg; 706 struct cpucp_info cpucp_info; 707 char uboot_ver[VERSION_MAX_LEN]; 708 char preboot_ver[VERSION_MAX_LEN]; 709 struct hl_mmu_properties dmmu; 710 struct hl_mmu_properties pmmu; 711 struct hl_mmu_properties pmmu_huge; 712 struct hl_hints_range hints_dram_reserved_va_range; 713 struct hl_hints_range hints_host_reserved_va_range; 714 struct hl_hints_range hints_host_hpage_reserved_va_range; 715 u64 sram_base_address; 716 u64 sram_end_address; 717 u64 sram_user_base_address; 718 u64 dram_base_address; 719 u64 dram_end_address; 720 u64 dram_user_base_address; 721 u64 dram_size; 722 u64 dram_pci_bar_size; 723 u64 max_power_default; 724 u64 dc_power_default; 725 u64 dram_size_for_default_page_mapping; 726 u64 pcie_dbi_base_address; 727 u64 pcie_aux_dbi_reg_addr; 728 u64 mmu_pgt_addr; 729 u64 mmu_dram_default_page_addr; 730 u64 tpc_enabled_mask; 731 u64 tpc_binning_mask; 732 u64 dram_enabled_mask; 733 u64 dram_binning_mask; 734 u64 dram_hints_align_mask; 735 u64 cfg_base_address; 736 u64 mmu_cache_mng_addr; 737 u64 mmu_cache_mng_size; 738 u64 device_dma_offset_for_host_access; 739 u64 host_base_address; 740 u64 host_end_address; 741 u64 max_freq_value; 742 u32 clk_pll_index; 743 u32 mmu_pgt_size; 744 u32 mmu_pte_size; 745 u32 mmu_hop_table_size; 746 u32 mmu_hop0_tables_total_size; 747 u32 dram_page_size; 748 u32 cfg_size; 749 u32 sram_size; 750 u32 max_asid; 751 u32 num_of_events; 752 u32 psoc_pci_pll_nr; 753 u32 psoc_pci_pll_nf; 754 u32 psoc_pci_pll_od; 755 u32 psoc_pci_pll_div_factor; 756 u32 psoc_timestamp_frequency; 757 u32 high_pll; 758 u32 cb_pool_cb_cnt; 759 u32 cb_pool_cb_size; 760 u32 decoder_enabled_mask; 761 u32 decoder_binning_mask; 762 u32 edma_enabled_mask; 763 u32 edma_binning_mask; 764 u32 max_pending_cs; 765 u32 max_queues; 766 u32 fw_preboot_cpu_boot_dev_sts0; 767 u32 fw_preboot_cpu_boot_dev_sts1; 768 u32 fw_bootfit_cpu_boot_dev_sts0; 769 u32 fw_bootfit_cpu_boot_dev_sts1; 770 u32 fw_app_cpu_boot_dev_sts0; 771 u32 fw_app_cpu_boot_dev_sts1; 772 u32 max_dec; 773 u32 hmmu_hif_enabled_mask; 774 u32 faulty_dram_cluster_map; 775 u32 xbar_edge_enabled_mask; 776 u32 device_mem_alloc_default_page_size; 777 u32 num_engine_cores; 778 u32 num_of_special_blocks; 779 u32 glbl_err_cause_num; 780 u32 hbw_flush_reg; 781 u16 collective_first_sob; 782 u16 collective_first_mon; 783 u16 sync_stream_first_sob; 784 u16 sync_stream_first_mon; 785 u16 first_available_user_sob[HL_MAX_DCORES]; 786 u16 first_available_user_mon[HL_MAX_DCORES]; 787 u16 first_available_user_interrupt; 788 u16 first_available_cq[HL_MAX_DCORES]; 789 u16 user_interrupt_count; 790 u16 user_dec_intr_count; 791 u16 cache_line_size; 792 u16 server_type; 793 u8 completion_queues_count; 794 u8 completion_mode; 795 u8 mme_master_slave_mode; 796 u8 fw_security_enabled; 797 u8 fw_cpu_boot_dev_sts0_valid; 798 u8 fw_cpu_boot_dev_sts1_valid; 799 u8 dram_supports_virtual_memory; 800 u8 hard_reset_done_by_fw; 801 u8 num_functional_hbms; 802 u8 hints_range_reservation; 803 u8 iatu_done_by_fw; 804 u8 dynamic_fw_load; 805 u8 gic_interrupts_enable; 806 u8 use_get_power_for_reset_history; 807 u8 supports_compute_reset; 808 u8 allow_inference_soft_reset; 809 u8 configurable_stop_on_err; 810 u8 set_max_power_on_device_init; 811 u8 supports_user_set_page_size; 812 u8 dma_mask; 813 u8 supports_advanced_cpucp_rc; 814 }; 815 816 /** 817 * struct hl_fence - software synchronization primitive 818 * @completion: fence is implemented using completion 819 * @refcount: refcount for this fence 820 * @cs_sequence: sequence of the corresponding command submission 821 * @stream_master_qid_map: streams masters QID bitmap to represent all streams 822 * masters QIDs that multi cs is waiting on 823 * @error: mark this fence with error 824 * @timestamp: timestamp upon completion 825 * @mcs_handling_done: indicates that corresponding command submission has 826 * finished msc handling, this does not mean it was part 827 * of the mcs 828 */ 829 struct hl_fence { 830 struct completion completion; 831 struct kref refcount; 832 u64 cs_sequence; 833 u32 stream_master_qid_map; 834 int error; 835 ktime_t timestamp; 836 u8 mcs_handling_done; 837 }; 838 839 /** 840 * struct hl_cs_compl - command submission completion object. 841 * @base_fence: hl fence object. 842 * @lock: spinlock to protect fence. 843 * @hdev: habanalabs device structure. 844 * @hw_sob: the H/W SOB used in this signal/wait CS. 845 * @encaps_sig_hdl: encaps signals handler. 846 * @cs_seq: command submission sequence number. 847 * @type: type of the CS - signal/wait. 848 * @sob_val: the SOB value that is used in this signal/wait CS. 849 * @sob_group: the SOB group that is used in this collective wait CS. 850 * @encaps_signals: indication whether it's a completion object of cs with 851 * encaps signals or not. 852 */ 853 struct hl_cs_compl { 854 struct hl_fence base_fence; 855 spinlock_t lock; 856 struct hl_device *hdev; 857 struct hl_hw_sob *hw_sob; 858 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 859 u64 cs_seq; 860 enum hl_cs_type type; 861 u16 sob_val; 862 u16 sob_group; 863 bool encaps_signals; 864 }; 865 866 /* 867 * Command Buffers 868 */ 869 870 /** 871 * struct hl_ts_buff - describes a timestamp buffer. 872 * @kernel_buff_address: Holds the internal buffer's kernel virtual address. 873 * @user_buff_address: Holds the user buffer's kernel virtual address. 874 * @kernel_buff_size: Holds the internal kernel buffer size. 875 */ 876 struct hl_ts_buff { 877 void *kernel_buff_address; 878 void *user_buff_address; 879 u32 kernel_buff_size; 880 }; 881 882 struct hl_mmap_mem_buf; 883 884 /** 885 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. 886 * @dev: back pointer to the owning device 887 * @lock: protects handles 888 * @handles: an idr holding all active handles to the memory buffers in the system. 889 */ 890 struct hl_mem_mgr { 891 struct device *dev; 892 spinlock_t lock; 893 struct idr handles; 894 }; 895 896 /** 897 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior 898 * @topic: string identifier used for logging 899 * @mem_id: memory type identifier, embedded in the handle and used to identify 900 * the memory type by handle. 901 * @alloc: callback executed on buffer allocation, shall allocate the memory, 902 * set it under buffer private, and set mappable size. 903 * @mmap: callback executed on mmap, must map the buffer to vma 904 * @release: callback executed on release, must free the resources used by the buffer 905 */ 906 struct hl_mmap_mem_buf_behavior { 907 const char *topic; 908 u64 mem_id; 909 910 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); 911 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); 912 void (*release)(struct hl_mmap_mem_buf *buf); 913 }; 914 915 /** 916 * struct hl_mmap_mem_buf - describes a single unified memory buffer 917 * @behavior: buffer behavior 918 * @mmg: back pointer to the unified memory manager 919 * @refcount: reference counter for buffer users 920 * @private: pointer to buffer behavior private data 921 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now 922 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, 923 * may change at runtime. 924 * @mappable_size: the original mappable size of the buffer, does not change after 925 * the allocation. 926 * @handle: the buffer id in mmg handles store 927 */ 928 struct hl_mmap_mem_buf { 929 struct hl_mmap_mem_buf_behavior *behavior; 930 struct hl_mem_mgr *mmg; 931 struct kref refcount; 932 void *private; 933 atomic_t mmap; 934 u64 real_mapped_size; 935 u64 mappable_size; 936 u64 handle; 937 }; 938 939 /** 940 * struct hl_cb - describes a Command Buffer. 941 * @hdev: pointer to device this CB belongs to. 942 * @ctx: pointer to the CB owner's context. 943 * @buf: back pointer to the parent mappable memory buffer 944 * @debugfs_list: node in debugfs list of command buffers. 945 * @pool_list: node in pool list of command buffers. 946 * @kernel_address: Holds the CB's kernel virtual address. 947 * @virtual_addr: Holds the CB's virtual address. 948 * @bus_address: Holds the CB's DMA address. 949 * @size: holds the CB's size. 950 * @roundup_size: holds the cb size after roundup to page size. 951 * @cs_cnt: holds number of CS that this CB participates in. 952 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed. 953 * @is_pool: true if CB was acquired from the pool, false otherwise. 954 * @is_internal: internally allocated 955 * @is_mmu_mapped: true if the CB is mapped to the device's MMU. 956 */ 957 struct hl_cb { 958 struct hl_device *hdev; 959 struct hl_ctx *ctx; 960 struct hl_mmap_mem_buf *buf; 961 struct list_head debugfs_list; 962 struct list_head pool_list; 963 void *kernel_address; 964 u64 virtual_addr; 965 dma_addr_t bus_address; 966 u32 size; 967 u32 roundup_size; 968 atomic_t cs_cnt; 969 atomic_t is_handle_destroyed; 970 u8 is_pool; 971 u8 is_internal; 972 u8 is_mmu_mapped; 973 }; 974 975 976 /* 977 * QUEUES 978 */ 979 980 struct hl_cs_job; 981 982 /* Queue length of external and HW queues */ 983 #define HL_QUEUE_LENGTH 4096 984 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) 985 986 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) 987 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" 988 #endif 989 990 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ 991 #define HL_CQ_LENGTH HL_QUEUE_LENGTH 992 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) 993 994 /* Must be power of 2 */ 995 #define HL_EQ_LENGTH 64 996 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) 997 998 /* Host <-> CPU-CP shared memory size */ 999 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M 1000 1001 /** 1002 * struct hl_sync_stream_properties - 1003 * describes a H/W queue sync stream properties 1004 * @hw_sob: array of the used H/W SOBs by this H/W queue. 1005 * @next_sob_val: the next value to use for the currently used SOB. 1006 * @base_sob_id: the base SOB id of the SOBs used by this queue. 1007 * @base_mon_id: the base MON id of the MONs used by this queue. 1008 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue 1009 * in order to sync with all slave queues. 1010 * @collective_slave_mon_id: the MON id used by this slave queue in order to 1011 * sync with its master queue. 1012 * @collective_sob_id: current SOB id used by this collective slave queue 1013 * to signal its collective master queue upon completion. 1014 * @curr_sob_offset: the id offset to the currently used SOB from the 1015 * HL_RSVD_SOBS that are being used by this queue. 1016 */ 1017 struct hl_sync_stream_properties { 1018 struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; 1019 u16 next_sob_val; 1020 u16 base_sob_id; 1021 u16 base_mon_id; 1022 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; 1023 u16 collective_slave_mon_id; 1024 u16 collective_sob_id; 1025 u8 curr_sob_offset; 1026 }; 1027 1028 /** 1029 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals 1030 * handlers manager 1031 * @lock: protects handles. 1032 * @handles: an idr to hold all encapsulated signals handles. 1033 */ 1034 struct hl_encaps_signals_mgr { 1035 spinlock_t lock; 1036 struct idr handles; 1037 }; 1038 1039 /** 1040 * struct hl_hw_queue - describes a H/W transport queue. 1041 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. 1042 * @sync_stream_prop: sync stream queue properties 1043 * @queue_type: type of queue. 1044 * @collective_mode: collective mode of current queue 1045 * @kernel_address: holds the queue's kernel virtual address. 1046 * @bus_address: holds the queue's DMA address. 1047 * @pi: holds the queue's pi value. 1048 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). 1049 * @hw_queue_id: the id of the H/W queue. 1050 * @cq_id: the id for the corresponding CQ for this H/W queue. 1051 * @msi_vec: the IRQ number of the H/W queue. 1052 * @int_queue_len: length of internal queue (number of entries). 1053 * @valid: is the queue valid (we have array of 32 queues, not all of them 1054 * exist). 1055 * @supports_sync_stream: True if queue supports sync stream 1056 */ 1057 struct hl_hw_queue { 1058 struct hl_cs_job **shadow_queue; 1059 struct hl_sync_stream_properties sync_stream_prop; 1060 enum hl_queue_type queue_type; 1061 enum hl_collective_mode collective_mode; 1062 void *kernel_address; 1063 dma_addr_t bus_address; 1064 u32 pi; 1065 atomic_t ci; 1066 u32 hw_queue_id; 1067 u32 cq_id; 1068 u32 msi_vec; 1069 u16 int_queue_len; 1070 u8 valid; 1071 u8 supports_sync_stream; 1072 }; 1073 1074 /** 1075 * struct hl_cq - describes a completion queue 1076 * @hdev: pointer to the device structure 1077 * @kernel_address: holds the queue's kernel virtual address 1078 * @bus_address: holds the queue's DMA address 1079 * @cq_idx: completion queue index in array 1080 * @hw_queue_id: the id of the matching H/W queue 1081 * @ci: ci inside the queue 1082 * @pi: pi inside the queue 1083 * @free_slots_cnt: counter of free slots in queue 1084 */ 1085 struct hl_cq { 1086 struct hl_device *hdev; 1087 void *kernel_address; 1088 dma_addr_t bus_address; 1089 u32 cq_idx; 1090 u32 hw_queue_id; 1091 u32 ci; 1092 u32 pi; 1093 atomic_t free_slots_cnt; 1094 }; 1095 1096 enum hl_user_interrupt_type { 1097 HL_USR_INTERRUPT_CQ = 0, 1098 HL_USR_INTERRUPT_DECODER, 1099 }; 1100 1101 /** 1102 * struct hl_user_interrupt - holds user interrupt information 1103 * @hdev: pointer to the device structure 1104 * @type: user interrupt type 1105 * @wait_list_head: head to the list of user threads pending on this interrupt 1106 * @wait_list_lock: protects wait_list_head 1107 * @interrupt_id: msix interrupt id 1108 */ 1109 struct hl_user_interrupt { 1110 struct hl_device *hdev; 1111 enum hl_user_interrupt_type type; 1112 struct list_head wait_list_head; 1113 spinlock_t wait_list_lock; 1114 u32 interrupt_id; 1115 }; 1116 1117 /** 1118 * struct timestamp_reg_free_node - holds the timestamp registration free objects node 1119 * @free_objects_node: node in the list free_obj_jobs 1120 * @cq_cb: pointer to cq command buffer to be freed 1121 * @buf: pointer to timestamp buffer to be freed 1122 */ 1123 struct timestamp_reg_free_node { 1124 struct list_head free_objects_node; 1125 struct hl_cb *cq_cb; 1126 struct hl_mmap_mem_buf *buf; 1127 }; 1128 1129 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job 1130 * the job will be to pass over the free_obj_jobs list and put refcount to objects 1131 * in each node of the list 1132 * @free_obj: workqueue object to free timestamp registration node objects 1133 * @hdev: pointer to the device structure 1134 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) 1135 */ 1136 struct timestamp_reg_work_obj { 1137 struct work_struct free_obj; 1138 struct hl_device *hdev; 1139 struct list_head *free_obj_head; 1140 }; 1141 1142 /* struct timestamp_reg_info - holds the timestamp registration related data. 1143 * @buf: pointer to the timestamp buffer which include both user/kernel buffers. 1144 * relevant only when doing timestamps records registration. 1145 * @cq_cb: pointer to CQ counter CB. 1146 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp 1147 * relevant only when doing timestamps records 1148 * registration. 1149 * @in_use: indicates if the node already in use. relevant only when doing 1150 * timestamps records registration, since in this case the driver 1151 * will have it's own buffer which serve as a records pool instead of 1152 * allocating records dynamically. 1153 */ 1154 struct timestamp_reg_info { 1155 struct hl_mmap_mem_buf *buf; 1156 struct hl_cb *cq_cb; 1157 u64 *timestamp_kernel_addr; 1158 u8 in_use; 1159 }; 1160 1161 /** 1162 * struct hl_user_pending_interrupt - holds a context to a user thread 1163 * pending on an interrupt 1164 * @ts_reg_info: holds the timestamps registration nodes info 1165 * @wait_list_node: node in the list of user threads pending on an interrupt 1166 * @fence: hl fence object for interrupt completion 1167 * @cq_target_value: CQ target value 1168 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt 1169 * handler for target value comparison 1170 */ 1171 struct hl_user_pending_interrupt { 1172 struct timestamp_reg_info ts_reg_info; 1173 struct list_head wait_list_node; 1174 struct hl_fence fence; 1175 u64 cq_target_value; 1176 u64 *cq_kernel_addr; 1177 }; 1178 1179 /** 1180 * struct hl_eq - describes the event queue (single one per device) 1181 * @hdev: pointer to the device structure 1182 * @kernel_address: holds the queue's kernel virtual address 1183 * @bus_address: holds the queue's DMA address 1184 * @ci: ci inside the queue 1185 * @prev_eqe_index: the index of the previous event queue entry. The index of 1186 * the current entry's index must be +1 of the previous one. 1187 * @check_eqe_index: do we need to check the index of the current entry vs. the 1188 * previous one. This is for backward compatibility with older 1189 * firmwares 1190 */ 1191 struct hl_eq { 1192 struct hl_device *hdev; 1193 void *kernel_address; 1194 dma_addr_t bus_address; 1195 u32 ci; 1196 u32 prev_eqe_index; 1197 bool check_eqe_index; 1198 }; 1199 1200 /** 1201 * struct hl_dec - describes a decoder sw instance. 1202 * @hdev: pointer to the device structure. 1203 * @completion_abnrm_work: workqueue object to run when decoder generates an error interrupt 1204 * @core_id: ID of the decoder. 1205 * @base_addr: base address of the decoder. 1206 */ 1207 struct hl_dec { 1208 struct hl_device *hdev; 1209 struct work_struct completion_abnrm_work; 1210 u32 core_id; 1211 u32 base_addr; 1212 }; 1213 1214 /** 1215 * enum hl_asic_type - supported ASIC types. 1216 * @ASIC_INVALID: Invalid ASIC type. 1217 * @ASIC_GOYA: Goya device (HL-1000). 1218 * @ASIC_GAUDI: Gaudi device (HL-2000). 1219 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). 1220 * @ASIC_GAUDI2: Gaudi2 device. 1221 * @ASIC_GAUDI2B: Gaudi2B device. 1222 */ 1223 enum hl_asic_type { 1224 ASIC_INVALID, 1225 ASIC_GOYA, 1226 ASIC_GAUDI, 1227 ASIC_GAUDI_SEC, 1228 ASIC_GAUDI2, 1229 ASIC_GAUDI2B, 1230 }; 1231 1232 struct hl_cs_parser; 1233 1234 /** 1235 * enum hl_pm_mng_profile - power management profile. 1236 * @PM_AUTO: internal clock is set by the Linux driver. 1237 * @PM_MANUAL: internal clock is set by the user. 1238 * @PM_LAST: last power management type. 1239 */ 1240 enum hl_pm_mng_profile { 1241 PM_AUTO = 1, 1242 PM_MANUAL, 1243 PM_LAST 1244 }; 1245 1246 /** 1247 * enum hl_pll_frequency - PLL frequency. 1248 * @PLL_HIGH: high frequency. 1249 * @PLL_LOW: low frequency. 1250 * @PLL_LAST: last frequency values that were configured by the user. 1251 */ 1252 enum hl_pll_frequency { 1253 PLL_HIGH = 1, 1254 PLL_LOW, 1255 PLL_LAST 1256 }; 1257 1258 #define PLL_REF_CLK 50 1259 1260 enum div_select_defs { 1261 DIV_SEL_REF_CLK = 0, 1262 DIV_SEL_PLL_CLK = 1, 1263 DIV_SEL_DIVIDED_REF = 2, 1264 DIV_SEL_DIVIDED_PLL = 3, 1265 }; 1266 1267 enum debugfs_access_type { 1268 DEBUGFS_READ8, 1269 DEBUGFS_WRITE8, 1270 DEBUGFS_READ32, 1271 DEBUGFS_WRITE32, 1272 DEBUGFS_READ64, 1273 DEBUGFS_WRITE64, 1274 }; 1275 1276 enum pci_region { 1277 PCI_REGION_CFG, 1278 PCI_REGION_SRAM, 1279 PCI_REGION_DRAM, 1280 PCI_REGION_SP_SRAM, 1281 PCI_REGION_NUMBER, 1282 }; 1283 1284 /** 1285 * struct pci_mem_region - describe memory region in a PCI bar 1286 * @region_base: region base address 1287 * @region_size: region size 1288 * @bar_size: size of the BAR 1289 * @offset_in_bar: region offset into the bar 1290 * @bar_id: bar ID of the region 1291 * @used: if used 1, otherwise 0 1292 */ 1293 struct pci_mem_region { 1294 u64 region_base; 1295 u64 region_size; 1296 u64 bar_size; 1297 u64 offset_in_bar; 1298 u8 bar_id; 1299 u8 used; 1300 }; 1301 1302 /** 1303 * struct static_fw_load_mgr - static FW load manager 1304 * @preboot_version_max_off: max offset to preboot version 1305 * @boot_fit_version_max_off: max offset to boot fit version 1306 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages 1307 * @cpu_cmd_status_to_host_reg: register address for CPU command status response 1308 * @cpu_boot_status_reg: boot status register 1309 * @cpu_boot_dev_status0_reg: boot device status register 0 1310 * @cpu_boot_dev_status1_reg: boot device status register 1 1311 * @boot_err0_reg: boot error register 0 1312 * @boot_err1_reg: boot error register 1 1313 * @preboot_version_offset_reg: SRAM offset to preboot version register 1314 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register 1315 * @sram_offset_mask: mask for getting offset into the SRAM 1316 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg 1317 */ 1318 struct static_fw_load_mgr { 1319 u64 preboot_version_max_off; 1320 u64 boot_fit_version_max_off; 1321 u32 kmd_msg_to_cpu_reg; 1322 u32 cpu_cmd_status_to_host_reg; 1323 u32 cpu_boot_status_reg; 1324 u32 cpu_boot_dev_status0_reg; 1325 u32 cpu_boot_dev_status1_reg; 1326 u32 boot_err0_reg; 1327 u32 boot_err1_reg; 1328 u32 preboot_version_offset_reg; 1329 u32 boot_fit_version_offset_reg; 1330 u32 sram_offset_mask; 1331 u32 cpu_reset_wait_msec; 1332 }; 1333 1334 /** 1335 * struct fw_response - FW response to LKD command 1336 * @ram_offset: descriptor offset into the RAM 1337 * @ram_type: RAM type containing the descriptor (SRAM/DRAM) 1338 * @status: command status 1339 */ 1340 struct fw_response { 1341 u32 ram_offset; 1342 u8 ram_type; 1343 u8 status; 1344 }; 1345 1346 /** 1347 * struct dynamic_fw_load_mgr - dynamic FW load manager 1348 * @response: FW to LKD response 1349 * @comm_desc: the communication descriptor with FW 1350 * @image_region: region to copy the FW image to 1351 * @fw_image_size: size of FW image to load 1352 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond 1353 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used 1354 */ 1355 struct dynamic_fw_load_mgr { 1356 struct fw_response response; 1357 struct lkd_fw_comms_desc comm_desc; 1358 struct pci_mem_region *image_region; 1359 size_t fw_image_size; 1360 u32 wait_for_bl_timeout; 1361 bool fw_desc_valid; 1362 }; 1363 1364 /** 1365 * struct pre_fw_load_props - needed properties for pre-FW load 1366 * @cpu_boot_status_reg: cpu_boot_status register address 1367 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address 1368 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address 1369 * @boot_err0_reg: boot_err0 register address 1370 * @boot_err1_reg: boot_err1 register address 1371 * @wait_for_preboot_timeout: timeout to poll for preboot ready 1372 */ 1373 struct pre_fw_load_props { 1374 u32 cpu_boot_status_reg; 1375 u32 sts_boot_dev_sts0_reg; 1376 u32 sts_boot_dev_sts1_reg; 1377 u32 boot_err0_reg; 1378 u32 boot_err1_reg; 1379 u32 wait_for_preboot_timeout; 1380 }; 1381 1382 /** 1383 * struct fw_image_props - properties of FW image 1384 * @image_name: name of the image 1385 * @src_off: offset in src FW to copy from 1386 * @copy_size: amount of bytes to copy (0 to copy the whole binary) 1387 */ 1388 struct fw_image_props { 1389 char *image_name; 1390 u32 src_off; 1391 u32 copy_size; 1392 }; 1393 1394 /** 1395 * struct fw_load_mgr - manager FW loading process 1396 * @dynamic_loader: specific structure for dynamic load 1397 * @static_loader: specific structure for static load 1398 * @pre_fw_load_props: parameter for pre FW load 1399 * @boot_fit_img: boot fit image properties 1400 * @linux_img: linux image properties 1401 * @cpu_timeout: CPU response timeout in usec 1402 * @boot_fit_timeout: Boot fit load timeout in usec 1403 * @skip_bmc: should BMC be skipped 1404 * @sram_bar_id: SRAM bar ID 1405 * @dram_bar_id: DRAM bar ID 1406 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded 1407 * component. values are set according to enum hl_fw_types. 1408 */ 1409 struct fw_load_mgr { 1410 union { 1411 struct dynamic_fw_load_mgr dynamic_loader; 1412 struct static_fw_load_mgr static_loader; 1413 }; 1414 struct pre_fw_load_props pre_fw_load; 1415 struct fw_image_props boot_fit_img; 1416 struct fw_image_props linux_img; 1417 u32 cpu_timeout; 1418 u32 boot_fit_timeout; 1419 u8 skip_bmc; 1420 u8 sram_bar_id; 1421 u8 dram_bar_id; 1422 u8 fw_comp_loaded; 1423 }; 1424 1425 struct hl_cs; 1426 1427 /** 1428 * struct engines_data - asic engines data 1429 * @buf: buffer for engines data in ascii 1430 * @actual_size: actual size of data that was written by the driver to the allocated buffer 1431 * @allocated_buf_size: total size of allocated buffer 1432 */ 1433 struct engines_data { 1434 char *buf; 1435 int actual_size; 1436 u32 allocated_buf_size; 1437 }; 1438 1439 /** 1440 * struct hl_asic_funcs - ASIC specific functions that are can be called from 1441 * common code. 1442 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. 1443 * @early_fini: tears down what was done in early_init. 1444 * @late_init: sets up late driver/hw state (post hw_init) - Optional. 1445 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. 1446 * @sw_init: sets up driver state, does not configure H/W. 1447 * @sw_fini: tears down driver state, does not configure H/W. 1448 * @hw_init: sets up the H/W state. 1449 * @hw_fini: tears down the H/W state. 1450 * @halt_engines: halt engines, needed for reset sequence. This also disables 1451 * interrupts from the device. Should be called before 1452 * hw_fini and before CS rollback. 1453 * @suspend: handles IP specific H/W or SW changes for suspend. 1454 * @resume: handles IP specific H/W or SW changes for resume. 1455 * @mmap: maps a memory. 1456 * @ring_doorbell: increment PI on a given QMAN. 1457 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific 1458 * function because the PQs are located in different memory areas 1459 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of 1460 * writing the PQE must match the destination memory area 1461 * properties. 1462 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling 1463 * dma_alloc_coherent(). This is ASIC function because 1464 * its implementation is not trivial when the driver 1465 * is loaded in simulation mode (not upstreamed). 1466 * @asic_dma_free_coherent: Free coherent DMA memory by calling 1467 * dma_free_coherent(). This is ASIC function because 1468 * its implementation is not trivial when the driver 1469 * is loaded in simulation mode (not upstreamed). 1470 * @scrub_device_mem: Scrub the entire SRAM and DRAM. 1471 * @scrub_device_dram: Scrub the dram memory of the device. 1472 * @get_int_queue_base: get the internal queue base address. 1473 * @test_queues: run simple test on all queues for sanity check. 1474 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. 1475 * size of allocation is HL_DMA_POOL_BLK_SIZE. 1476 * @asic_dma_pool_free: free small DMA allocation from pool. 1477 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. 1478 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. 1479 * @asic_dma_unmap_single: unmap a single DMA buffer 1480 * @asic_dma_map_single: map a single buffer to a DMA 1481 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table. 1482 * @cs_parser: parse Command Submission. 1483 * @asic_dma_map_sgtable: DMA map scatter-gather table. 1484 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. 1485 * @update_eq_ci: update event queue CI. 1486 * @context_switch: called upon ASID context switch. 1487 * @restore_phase_topology: clear all SOBs amd MONs. 1488 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's 1489 * internal memory via DMA engine. 1490 * @add_device_attr: add ASIC specific device attributes. 1491 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. 1492 * @get_events_stat: retrieve event queue entries histogram. 1493 * @read_pte: read MMU page table entry from DRAM. 1494 * @write_pte: write MMU page table entry to DRAM. 1495 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft 1496 * (L1 only) or hard (L0 & L1) flush. 1497 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. 1498 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. 1499 * @send_heartbeat: send is-alive packet to CPU-CP and verify response. 1500 * @debug_coresight: perform certain actions on Coresight for debugging. 1501 * @is_device_idle: return true if device is idle, false otherwise. 1502 * @compute_reset_late_init: perform certain actions needed after a compute reset 1503 * @hw_queues_lock: acquire H/W queues lock. 1504 * @hw_queues_unlock: release H/W queues lock. 1505 * @get_pci_id: retrieve PCI ID. 1506 * @get_eeprom_data: retrieve EEPROM data from F/W. 1507 * @get_monitor_dump: retrieve monitor registers dump from F/W. 1508 * @send_cpu_message: send message to F/W. If the message is timedout, the 1509 * driver will eventually reset the device. The timeout can 1510 * be determined by the calling function or it can be 0 and 1511 * then the timeout is the default timeout for the specific 1512 * ASIC 1513 * @get_hw_state: retrieve the H/W state 1514 * @pci_bars_map: Map PCI BARs. 1515 * @init_iatu: Initialize the iATU unit inside the PCI controller. 1516 * @rreg: Read a register. Needed for simulator support. 1517 * @wreg: Write a register. Needed for simulator support. 1518 * @halt_coresight: stop the ETF and ETR traces. 1519 * @ctx_init: context dependent initialization. 1520 * @ctx_fini: context dependent cleanup. 1521 * @pre_schedule_cs: Perform pre-CS-scheduling operations. 1522 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. 1523 * @load_firmware_to_device: load the firmware to the device's memory 1524 * @load_boot_fit_to_device: load boot fit to device's memory 1525 * @get_signal_cb_size: Get signal CB size. 1526 * @get_wait_cb_size: Get wait CB size. 1527 * @gen_signal_cb: Generate a signal CB. 1528 * @gen_wait_cb: Generate a wait CB. 1529 * @reset_sob: Reset a SOB. 1530 * @reset_sob_group: Reset SOB group 1531 * @get_device_time: Get the device time. 1532 * @pb_print_security_errors: print security errors according block and cause 1533 * @collective_wait_init_cs: Generate collective master/slave packets 1534 * and place them in the relevant cs jobs 1535 * @collective_wait_create_jobs: allocate collective wait cs jobs 1536 * @get_dec_base_addr: get the base address of a given decoder. 1537 * @scramble_addr: Routine to scramble the address prior of mapping it 1538 * in the MMU. 1539 * @descramble_addr: Routine to de-scramble the address prior of 1540 * showing it to users. 1541 * @ack_protection_bits_errors: ack and dump all security violations 1542 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. 1543 * also returns the size of the block if caller supplies 1544 * a valid pointer for it 1545 * @hw_block_mmap: mmap a HW block with a given id. 1546 * @enable_events_from_fw: send interrupt to firmware to notify them the 1547 * driver is ready to receive asynchronous events. This 1548 * function should be called during the first init and 1549 * after every hard-reset of the device 1550 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. 1551 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event 1552 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to 1553 * generic f/w compatible PLL Indexes 1554 * @init_firmware_preload_params: initialize pre FW-load parameters. 1555 * @init_firmware_loader: initialize data for FW loader. 1556 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling 1557 * @state_dump_init: initialize constants required for state dump 1558 * @get_sob_addr: get SOB base address offset. 1559 * @set_pci_memory_regions: setting properties of PCI memory regions 1560 * @get_stream_master_qid_arr: get pointer to stream masters QID array 1561 * @check_if_razwi_happened: check if there was a razwi due to RR violation. 1562 * @access_dev_mem: access device memory 1563 * @set_dram_bar_base: set the base of the DRAM BAR 1564 * @set_engine_cores: set a config command to engine cores 1565 * @send_device_activity: indication to FW about device availability 1566 * @set_dram_properties: set DRAM related properties. 1567 * @set_binning_masks: set binning/enable masks for all relevant components. 1568 */ 1569 struct hl_asic_funcs { 1570 int (*early_init)(struct hl_device *hdev); 1571 int (*early_fini)(struct hl_device *hdev); 1572 int (*late_init)(struct hl_device *hdev); 1573 void (*late_fini)(struct hl_device *hdev); 1574 int (*sw_init)(struct hl_device *hdev); 1575 int (*sw_fini)(struct hl_device *hdev); 1576 int (*hw_init)(struct hl_device *hdev); 1577 void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1578 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1579 int (*suspend)(struct hl_device *hdev); 1580 int (*resume)(struct hl_device *hdev); 1581 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1582 void *cpu_addr, dma_addr_t dma_addr, size_t size); 1583 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); 1584 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, 1585 struct hl_bd *bd); 1586 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, 1587 dma_addr_t *dma_handle, gfp_t flag); 1588 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, 1589 void *cpu_addr, dma_addr_t dma_handle); 1590 int (*scrub_device_mem)(struct hl_device *hdev); 1591 int (*scrub_device_dram)(struct hl_device *hdev, u64 val); 1592 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, 1593 dma_addr_t *dma_handle, u16 *queue_len); 1594 int (*test_queues)(struct hl_device *hdev); 1595 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, 1596 gfp_t mem_flags, dma_addr_t *dma_handle); 1597 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, 1598 dma_addr_t dma_addr); 1599 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, 1600 size_t size, dma_addr_t *dma_handle); 1601 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, 1602 size_t size, void *vaddr); 1603 void (*asic_dma_unmap_single)(struct hl_device *hdev, 1604 dma_addr_t dma_addr, int len, 1605 enum dma_data_direction dir); 1606 dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev, 1607 void *addr, int len, 1608 enum dma_data_direction dir); 1609 void (*hl_dma_unmap_sgtable)(struct hl_device *hdev, 1610 struct sg_table *sgt, 1611 enum dma_data_direction dir); 1612 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); 1613 int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1614 enum dma_data_direction dir); 1615 void (*add_end_of_cb_packets)(struct hl_device *hdev, 1616 void *kernel_address, u32 len, 1617 u32 original_len, 1618 u64 cq_addr, u32 cq_val, u32 msix_num, 1619 bool eb); 1620 void (*update_eq_ci)(struct hl_device *hdev, u32 val); 1621 int (*context_switch)(struct hl_device *hdev, u32 asid); 1622 void (*restore_phase_topology)(struct hl_device *hdev); 1623 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, 1624 void *blob_addr); 1625 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, 1626 struct attribute_group *dev_vrm_attr_grp); 1627 void (*handle_eqe)(struct hl_device *hdev, 1628 struct hl_eq_entry *eq_entry); 1629 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, 1630 u32 *size); 1631 u64 (*read_pte)(struct hl_device *hdev, u64 addr); 1632 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); 1633 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, 1634 u32 flags); 1635 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, 1636 u32 flags, u32 asid, u64 va, u64 size); 1637 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 1638 int (*send_heartbeat)(struct hl_device *hdev); 1639 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); 1640 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, 1641 struct engines_data *e); 1642 int (*compute_reset_late_init)(struct hl_device *hdev); 1643 void (*hw_queues_lock)(struct hl_device *hdev); 1644 void (*hw_queues_unlock)(struct hl_device *hdev); 1645 u32 (*get_pci_id)(struct hl_device *hdev); 1646 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); 1647 int (*get_monitor_dump)(struct hl_device *hdev, void *data); 1648 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, 1649 u16 len, u32 timeout, u64 *result); 1650 int (*pci_bars_map)(struct hl_device *hdev); 1651 int (*init_iatu)(struct hl_device *hdev); 1652 u32 (*rreg)(struct hl_device *hdev, u32 reg); 1653 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); 1654 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); 1655 int (*ctx_init)(struct hl_ctx *ctx); 1656 void (*ctx_fini)(struct hl_ctx *ctx); 1657 int (*pre_schedule_cs)(struct hl_cs *cs); 1658 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); 1659 int (*load_firmware_to_device)(struct hl_device *hdev); 1660 int (*load_boot_fit_to_device)(struct hl_device *hdev); 1661 u32 (*get_signal_cb_size)(struct hl_device *hdev); 1662 u32 (*get_wait_cb_size)(struct hl_device *hdev); 1663 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, 1664 u32 size, bool eb); 1665 u32 (*gen_wait_cb)(struct hl_device *hdev, 1666 struct hl_gen_wait_properties *prop); 1667 void (*reset_sob)(struct hl_device *hdev, void *data); 1668 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); 1669 u64 (*get_device_time)(struct hl_device *hdev); 1670 void (*pb_print_security_errors)(struct hl_device *hdev, 1671 u32 block_addr, u32 cause, u32 offended_addr); 1672 int (*collective_wait_init_cs)(struct hl_cs *cs); 1673 int (*collective_wait_create_jobs)(struct hl_device *hdev, 1674 struct hl_ctx *ctx, struct hl_cs *cs, 1675 u32 wait_queue_id, u32 collective_engine_id, 1676 u32 encaps_signal_offset); 1677 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); 1678 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); 1679 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); 1680 void (*ack_protection_bits_errors)(struct hl_device *hdev); 1681 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, 1682 u32 *block_size, u32 *block_id); 1683 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1684 u32 block_id, u32 block_size); 1685 void (*enable_events_from_fw)(struct hl_device *hdev); 1686 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); 1687 void (*get_msi_info)(__le32 *table); 1688 int (*map_pll_idx_to_fw_idx)(u32 pll_idx); 1689 void (*init_firmware_preload_params)(struct hl_device *hdev); 1690 void (*init_firmware_loader)(struct hl_device *hdev); 1691 void (*init_cpu_scrambler_dram)(struct hl_device *hdev); 1692 void (*state_dump_init)(struct hl_device *hdev); 1693 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); 1694 void (*set_pci_memory_regions)(struct hl_device *hdev); 1695 u32* (*get_stream_master_qid_arr)(void); 1696 void (*check_if_razwi_happened)(struct hl_device *hdev); 1697 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 1698 u32 page_size, u32 *real_page_size, bool is_dram_addr); 1699 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, 1700 u64 addr, u64 *val, enum debugfs_access_type acc_type); 1701 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); 1702 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, 1703 u32 num_cores, u32 core_command); 1704 int (*send_device_activity)(struct hl_device *hdev, bool open); 1705 int (*set_dram_properties)(struct hl_device *hdev); 1706 int (*set_binning_masks)(struct hl_device *hdev); 1707 }; 1708 1709 1710 /* 1711 * CONTEXTS 1712 */ 1713 1714 #define HL_KERNEL_ASID_ID 0 1715 1716 /** 1717 * enum hl_va_range_type - virtual address range type. 1718 * @HL_VA_RANGE_TYPE_HOST: range type of host pages 1719 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages 1720 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages 1721 */ 1722 enum hl_va_range_type { 1723 HL_VA_RANGE_TYPE_HOST, 1724 HL_VA_RANGE_TYPE_HOST_HUGE, 1725 HL_VA_RANGE_TYPE_DRAM, 1726 HL_VA_RANGE_TYPE_MAX 1727 }; 1728 1729 /** 1730 * struct hl_va_range - virtual addresses range. 1731 * @lock: protects the virtual addresses list. 1732 * @list: list of virtual addresses blocks available for mappings. 1733 * @start_addr: range start address. 1734 * @end_addr: range end address. 1735 * @page_size: page size of this va range. 1736 */ 1737 struct hl_va_range { 1738 struct mutex lock; 1739 struct list_head list; 1740 u64 start_addr; 1741 u64 end_addr; 1742 u32 page_size; 1743 }; 1744 1745 /** 1746 * struct hl_cs_counters_atomic - command submission counters 1747 * @out_of_mem_drop_cnt: dropped due to memory allocation issue 1748 * @parsing_drop_cnt: dropped due to error in packet parsing 1749 * @queue_full_drop_cnt: dropped due to queue full 1750 * @device_in_reset_drop_cnt: dropped due to device in reset 1751 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight 1752 * @validation_drop_cnt: dropped due to error in validation 1753 */ 1754 struct hl_cs_counters_atomic { 1755 atomic64_t out_of_mem_drop_cnt; 1756 atomic64_t parsing_drop_cnt; 1757 atomic64_t queue_full_drop_cnt; 1758 atomic64_t device_in_reset_drop_cnt; 1759 atomic64_t max_cs_in_flight_drop_cnt; 1760 atomic64_t validation_drop_cnt; 1761 }; 1762 1763 /** 1764 * struct hl_dmabuf_priv - a dma-buf private object. 1765 * @dmabuf: pointer to dma-buf object. 1766 * @ctx: pointer to the dma-buf owner's context. 1767 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported 1768 * where virtual memory is supported. 1769 * @memhash_hnode: pointer to the memhash node. this object holds the export count. 1770 * @device_address: physical address of the device's memory. Relevant only 1771 * if phys_pg_pack is NULL (dma-buf was exported from address). 1772 * The total size can be taken from the dmabuf object. 1773 */ 1774 struct hl_dmabuf_priv { 1775 struct dma_buf *dmabuf; 1776 struct hl_ctx *ctx; 1777 struct hl_vm_phys_pg_pack *phys_pg_pack; 1778 struct hl_vm_hash_node *memhash_hnode; 1779 uint64_t device_address; 1780 }; 1781 1782 #define HL_CS_OUTCOME_HISTORY_LEN 256 1783 1784 /** 1785 * struct hl_cs_outcome - represents a single completed CS outcome 1786 * @list_link: link to either container's used list or free list 1787 * @map_link: list to the container hash map 1788 * @ts: completion ts 1789 * @seq: the original cs sequence 1790 * @error: error code cs completed with, if any 1791 */ 1792 struct hl_cs_outcome { 1793 struct list_head list_link; 1794 struct hlist_node map_link; 1795 ktime_t ts; 1796 u64 seq; 1797 int error; 1798 }; 1799 1800 /** 1801 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes 1802 * @outcome_map: index of completed CS searchable by sequence number 1803 * @used_list: list of outcome objects currently in use 1804 * @free_list: list of outcome objects currently not in use 1805 * @nodes_pool: a static pool of pre-allocated outcome objects 1806 * @db_lock: any operation on the store must take this lock 1807 */ 1808 struct hl_cs_outcome_store { 1809 DECLARE_HASHTABLE(outcome_map, 8); 1810 struct list_head used_list; 1811 struct list_head free_list; 1812 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; 1813 spinlock_t db_lock; 1814 }; 1815 1816 /** 1817 * struct hl_ctx - user/kernel context. 1818 * @mem_hash: holds mapping from virtual address to virtual memory area 1819 * descriptor (hl_vm_phys_pg_list or hl_userptr). 1820 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. 1821 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from 1822 * MMU-hop-page physical address to its host-resident 1823 * pgt_info structure. 1824 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). 1825 * @hdev: pointer to the device structure. 1826 * @refcount: reference counter for the context. Context is released only when 1827 * this hits 0l. It is incremented on CS and CS_WAIT. 1828 * @cs_pending: array of hl fence objects representing pending CS. 1829 * @outcome_store: storage data structure used to remember outcomes of completed 1830 * command submissions for a long time after CS id wraparound. 1831 * @va_range: holds available virtual addresses for host and dram mappings. 1832 * @mem_hash_lock: protects the mem_hash. 1833 * @hw_block_list_lock: protects the HW block memory list. 1834 * @debugfs_list: node in debugfs list of contexts. 1835 * @hw_block_mem_list: list of HW block virtual mapped addresses. 1836 * @cs_counters: context command submission counters. 1837 * @cb_va_pool: device VA pool for command buffers which are mapped to the 1838 * device's MMU. 1839 * @sig_mgr: encaps signals handle manager. 1840 * @cb_va_pool_base: the base address for the device VA pool 1841 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed 1842 * to user so user could inquire about CS. It is used as 1843 * index to cs_pending array. 1844 * @dram_default_hops: array that holds all hops addresses needed for default 1845 * DRAM mapping. 1846 * @cs_lock: spinlock to protect cs_sequence. 1847 * @dram_phys_mem: amount of used physical DRAM memory by this context. 1848 * @thread_ctx_switch_token: token to prevent multiple threads of the same 1849 * context from running the context switch phase. 1850 * Only a single thread should run it. 1851 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run 1852 * the context switch phase from moving to their 1853 * execution phase before the context switch phase 1854 * has finished. 1855 * @asid: context's unique address space ID in the device's MMU. 1856 * @handle: context's opaque handle for user 1857 */ 1858 struct hl_ctx { 1859 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); 1860 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); 1861 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); 1862 struct hl_fpriv *hpriv; 1863 struct hl_device *hdev; 1864 struct kref refcount; 1865 struct hl_fence **cs_pending; 1866 struct hl_cs_outcome_store outcome_store; 1867 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; 1868 struct mutex mem_hash_lock; 1869 struct mutex hw_block_list_lock; 1870 struct list_head debugfs_list; 1871 struct list_head hw_block_mem_list; 1872 struct hl_cs_counters_atomic cs_counters; 1873 struct gen_pool *cb_va_pool; 1874 struct hl_encaps_signals_mgr sig_mgr; 1875 u64 cb_va_pool_base; 1876 u64 cs_sequence; 1877 u64 *dram_default_hops; 1878 spinlock_t cs_lock; 1879 atomic64_t dram_phys_mem; 1880 atomic_t thread_ctx_switch_token; 1881 u32 thread_ctx_switch_wait_token; 1882 u32 asid; 1883 u32 handle; 1884 }; 1885 1886 /** 1887 * struct hl_ctx_mgr - for handling multiple contexts. 1888 * @lock: protects ctx_handles. 1889 * @handles: idr to hold all ctx handles. 1890 */ 1891 struct hl_ctx_mgr { 1892 struct mutex lock; 1893 struct idr handles; 1894 }; 1895 1896 1897 /* 1898 * COMMAND SUBMISSIONS 1899 */ 1900 1901 /** 1902 * struct hl_userptr - memory mapping chunk information 1903 * @vm_type: type of the VM. 1904 * @job_node: linked-list node for hanging the object on the Job's list. 1905 * @pages: pointer to struct page array 1906 * @npages: size of @pages array 1907 * @sgt: pointer to the scatter-gather table that holds the pages. 1908 * @dir: for DMA unmapping, the direction must be supplied, so save it. 1909 * @debugfs_list: node in debugfs list of command submissions. 1910 * @pid: the pid of the user process owning the memory 1911 * @addr: user-space virtual address of the start of the memory area. 1912 * @size: size of the memory area to pin & map. 1913 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. 1914 */ 1915 struct hl_userptr { 1916 enum vm_type vm_type; /* must be first */ 1917 struct list_head job_node; 1918 struct page **pages; 1919 unsigned int npages; 1920 struct sg_table *sgt; 1921 enum dma_data_direction dir; 1922 struct list_head debugfs_list; 1923 pid_t pid; 1924 u64 addr; 1925 u64 size; 1926 u8 dma_mapped; 1927 }; 1928 1929 /** 1930 * struct hl_cs - command submission. 1931 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. 1932 * @ctx: the context this CS belongs to. 1933 * @job_list: list of the CS's jobs in the various queues. 1934 * @job_lock: spinlock for the CS's jobs list. Needed for free_job. 1935 * @refcount: reference counter for usage of the CS. 1936 * @fence: pointer to the fence object of this CS. 1937 * @signal_fence: pointer to the fence object of the signal CS (used by wait 1938 * CS only). 1939 * @finish_work: workqueue object to run when CS is completed by H/W. 1940 * @work_tdr: delayed work node for TDR. 1941 * @mirror_node : node in device mirror list of command submissions. 1942 * @staged_cs_node: node in the staged cs list. 1943 * @debugfs_list: node in debugfs list of command submissions. 1944 * @encaps_sig_hdl: holds the encaps signals handle. 1945 * @sequence: the sequence number of this CS. 1946 * @staged_sequence: the sequence of the staged submission this CS is part of, 1947 * relevant only if staged_cs is set. 1948 * @timeout_jiffies: cs timeout in jiffies. 1949 * @submission_time_jiffies: submission time of the cs 1950 * @type: CS_TYPE_*. 1951 * @jobs_cnt: counter of submitted jobs on all queues. 1952 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. 1953 * @completion_timestamp: timestamp of the last completed cs job. 1954 * @sob_addr_offset: sob offset from the configuration base address. 1955 * @initial_sob_count: count of completed signals in SOB before current submission of signal or 1956 * cs with encaps signals. 1957 * @submitted: true if CS was submitted to H/W. 1958 * @completed: true if CS was completed by device. 1959 * @timedout : true if CS was timedout. 1960 * @tdr_active: true if TDR was activated for this CS (to prevent 1961 * double TDR activation). 1962 * @aborted: true if CS was aborted due to some device error. 1963 * @timestamp: true if a timestamp must be captured upon completion. 1964 * @staged_last: true if this is the last staged CS and needs completion. 1965 * @staged_first: true if this is the first staged CS and we need to receive 1966 * timeout for this CS. 1967 * @staged_cs: true if this CS is part of a staged submission. 1968 * @skip_reset_on_timeout: true if we shall not reset the device in case 1969 * timeout occurs (debug scenario). 1970 * @encaps_signals: true if this CS has encaps reserved signals. 1971 */ 1972 struct hl_cs { 1973 u16 *jobs_in_queue_cnt; 1974 struct hl_ctx *ctx; 1975 struct list_head job_list; 1976 spinlock_t job_lock; 1977 struct kref refcount; 1978 struct hl_fence *fence; 1979 struct hl_fence *signal_fence; 1980 struct work_struct finish_work; 1981 struct delayed_work work_tdr; 1982 struct list_head mirror_node; 1983 struct list_head staged_cs_node; 1984 struct list_head debugfs_list; 1985 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 1986 ktime_t completion_timestamp; 1987 u64 sequence; 1988 u64 staged_sequence; 1989 u64 timeout_jiffies; 1990 u64 submission_time_jiffies; 1991 enum hl_cs_type type; 1992 u32 jobs_cnt; 1993 u32 encaps_sig_hdl_id; 1994 u32 sob_addr_offset; 1995 u16 initial_sob_count; 1996 u8 submitted; 1997 u8 completed; 1998 u8 timedout; 1999 u8 tdr_active; 2000 u8 aborted; 2001 u8 timestamp; 2002 u8 staged_last; 2003 u8 staged_first; 2004 u8 staged_cs; 2005 u8 skip_reset_on_timeout; 2006 u8 encaps_signals; 2007 }; 2008 2009 /** 2010 * struct hl_cs_job - command submission job. 2011 * @cs_node: the node to hang on the CS jobs list. 2012 * @cs: the CS this job belongs to. 2013 * @user_cb: the CB we got from the user. 2014 * @patched_cb: in case of patching, this is internal CB which is submitted on 2015 * the queue instead of the CB we got from the IOCTL. 2016 * @finish_work: workqueue object to run when job is completed. 2017 * @userptr_list: linked-list of userptr mappings that belong to this job and 2018 * wait for completion. 2019 * @debugfs_list: node in debugfs list of command submission jobs. 2020 * @refcount: reference counter for usage of the CS job. 2021 * @queue_type: the type of the H/W queue this job is submitted to. 2022 * @timestamp: timestamp upon job completion 2023 * @id: the id of this job inside a CS. 2024 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2025 * @user_cb_size: the actual size of the CB we got from the user. 2026 * @job_cb_size: the actual size of the CB that we put on the queue. 2027 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user 2028 * to wait on part of the reserved signals. 2029 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2030 * handle to a kernel-allocated CB object, false 2031 * otherwise (SRAM/DRAM/host address). 2032 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2033 * info is needed later, when adding the 2xMSG_PROT at the 2034 * end of the JOB, to know which barriers to put in the 2035 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2036 * have streams so the engine can't be busy by another 2037 * stream. 2038 */ 2039 struct hl_cs_job { 2040 struct list_head cs_node; 2041 struct hl_cs *cs; 2042 struct hl_cb *user_cb; 2043 struct hl_cb *patched_cb; 2044 struct work_struct finish_work; 2045 struct list_head userptr_list; 2046 struct list_head debugfs_list; 2047 struct kref refcount; 2048 enum hl_queue_type queue_type; 2049 ktime_t timestamp; 2050 u32 id; 2051 u32 hw_queue_id; 2052 u32 user_cb_size; 2053 u32 job_cb_size; 2054 u32 encaps_sig_wait_offset; 2055 u8 is_kernel_allocated_cb; 2056 u8 contains_dma_pkt; 2057 }; 2058 2059 /** 2060 * struct hl_cs_parser - command submission parser properties. 2061 * @user_cb: the CB we got from the user. 2062 * @patched_cb: in case of patching, this is internal CB which is submitted on 2063 * the queue instead of the CB we got from the IOCTL. 2064 * @job_userptr_list: linked-list of userptr mappings that belong to the related 2065 * job and wait for completion. 2066 * @cs_sequence: the sequence number of the related CS. 2067 * @queue_type: the type of the H/W queue this job is submitted to. 2068 * @ctx_id: the ID of the context the related CS belongs to. 2069 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2070 * @user_cb_size: the actual size of the CB we got from the user. 2071 * @patched_cb_size: the size of the CB after parsing. 2072 * @job_id: the id of the related job inside the related CS. 2073 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2074 * handle to a kernel-allocated CB object, false 2075 * otherwise (SRAM/DRAM/host address). 2076 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2077 * info is needed later, when adding the 2xMSG_PROT at the 2078 * end of the JOB, to know which barriers to put in the 2079 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2080 * have streams so the engine can't be busy by another 2081 * stream. 2082 * @completion: true if we need completion for this CS. 2083 */ 2084 struct hl_cs_parser { 2085 struct hl_cb *user_cb; 2086 struct hl_cb *patched_cb; 2087 struct list_head *job_userptr_list; 2088 u64 cs_sequence; 2089 enum hl_queue_type queue_type; 2090 u32 ctx_id; 2091 u32 hw_queue_id; 2092 u32 user_cb_size; 2093 u32 patched_cb_size; 2094 u8 job_id; 2095 u8 is_kernel_allocated_cb; 2096 u8 contains_dma_pkt; 2097 u8 completion; 2098 }; 2099 2100 /* 2101 * MEMORY STRUCTURE 2102 */ 2103 2104 /** 2105 * struct hl_vm_hash_node - hash element from virtual address to virtual 2106 * memory area descriptor (hl_vm_phys_pg_list or 2107 * hl_userptr). 2108 * @node: node to hang on the hash table in context object. 2109 * @vaddr: key virtual address. 2110 * @handle: memory handle for device memory allocation. 2111 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). 2112 * @export_cnt: number of exports from within the VA block. 2113 */ 2114 struct hl_vm_hash_node { 2115 struct hlist_node node; 2116 u64 vaddr; 2117 u64 handle; 2118 void *ptr; 2119 int export_cnt; 2120 }; 2121 2122 /** 2123 * struct hl_vm_hw_block_list_node - list element from user virtual address to 2124 * HW block id. 2125 * @node: node to hang on the list in context object. 2126 * @ctx: the context this node belongs to. 2127 * @vaddr: virtual address of the HW block. 2128 * @block_size: size of the block. 2129 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. 2130 * @id: HW block id (handle). 2131 */ 2132 struct hl_vm_hw_block_list_node { 2133 struct list_head node; 2134 struct hl_ctx *ctx; 2135 unsigned long vaddr; 2136 u32 block_size; 2137 u32 mapped_size; 2138 u32 id; 2139 }; 2140 2141 /** 2142 * struct hl_vm_phys_pg_pack - physical page pack. 2143 * @vm_type: describes the type of the virtual area descriptor. 2144 * @pages: the physical page array. 2145 * @npages: num physical pages in the pack. 2146 * @total_size: total size of all the pages in this list. 2147 * @exported_size: buffer exported size. 2148 * @node: used to attach to deletion list that is used when all the allocations are cleared 2149 * at the teardown of the context. 2150 * @mapping_cnt: number of shared mappings. 2151 * @asid: the context related to this list. 2152 * @page_size: size of each page in the pack. 2153 * @flags: HL_MEM_* flags related to this list. 2154 * @handle: the provided handle related to this list. 2155 * @offset: offset from the first page. 2156 * @contiguous: is contiguous physical memory. 2157 * @created_from_userptr: is product of host virtual address. 2158 */ 2159 struct hl_vm_phys_pg_pack { 2160 enum vm_type vm_type; /* must be first */ 2161 u64 *pages; 2162 u64 npages; 2163 u64 total_size; 2164 u64 exported_size; 2165 struct list_head node; 2166 atomic_t mapping_cnt; 2167 u32 asid; 2168 u32 page_size; 2169 u32 flags; 2170 u32 handle; 2171 u32 offset; 2172 u8 contiguous; 2173 u8 created_from_userptr; 2174 }; 2175 2176 /** 2177 * struct hl_vm_va_block - virtual range block information. 2178 * @node: node to hang on the virtual range list in context object. 2179 * @start: virtual range start address. 2180 * @end: virtual range end address. 2181 * @size: virtual range size. 2182 */ 2183 struct hl_vm_va_block { 2184 struct list_head node; 2185 u64 start; 2186 u64 end; 2187 u64 size; 2188 }; 2189 2190 /** 2191 * struct hl_vm - virtual memory manager for MMU. 2192 * @dram_pg_pool: pool for DRAM physical pages of 2MB. 2193 * @dram_pg_pool_refcount: reference counter for the pool usage. 2194 * @idr_lock: protects the phys_pg_list_handles. 2195 * @phys_pg_pack_handles: idr to hold all device allocations handles. 2196 * @init_done: whether initialization was done. We need this because VM 2197 * initialization might be skipped during device initialization. 2198 */ 2199 struct hl_vm { 2200 struct gen_pool *dram_pg_pool; 2201 struct kref dram_pg_pool_refcount; 2202 spinlock_t idr_lock; 2203 struct idr phys_pg_pack_handles; 2204 u8 init_done; 2205 }; 2206 2207 2208 /* 2209 * DEBUG, PROFILING STRUCTURE 2210 */ 2211 2212 /** 2213 * struct hl_debug_params - Coresight debug parameters. 2214 * @input: pointer to component specific input parameters. 2215 * @output: pointer to component specific output parameters. 2216 * @output_size: size of output buffer. 2217 * @reg_idx: relevant register ID. 2218 * @op: component operation to execute. 2219 * @enable: true if to enable component debugging, false otherwise. 2220 */ 2221 struct hl_debug_params { 2222 void *input; 2223 void *output; 2224 u32 output_size; 2225 u32 reg_idx; 2226 u32 op; 2227 bool enable; 2228 }; 2229 2230 /** 2231 * struct hl_notifier_event - holds the notifier data structure 2232 * @eventfd: the event file descriptor to raise the notifications 2233 * @lock: mutex lock to protect the notifier data flows 2234 * @events_mask: indicates the bitmap events 2235 */ 2236 struct hl_notifier_event { 2237 struct eventfd_ctx *eventfd; 2238 struct mutex lock; 2239 u64 events_mask; 2240 }; 2241 2242 /* 2243 * FILE PRIVATE STRUCTURE 2244 */ 2245 2246 /** 2247 * struct hl_fpriv - process information stored in FD private data. 2248 * @hdev: habanalabs device structure. 2249 * @filp: pointer to the given file structure. 2250 * @taskpid: current process ID. 2251 * @ctx: current executing context. TODO: remove for multiple ctx per process 2252 * @ctx_mgr: context manager to handle multiple context for this FD. 2253 * @mem_mgr: manager descriptor for memory exportable via mmap 2254 * @notifier_event: notifier eventfd towards user process 2255 * @debugfs_list: list of relevant ASIC debugfs. 2256 * @dev_node: node in the device list of file private data 2257 * @refcount: number of related contexts. 2258 * @restore_phase_mutex: lock for context switch and restore phase. 2259 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple 2260 * ctx per process. 2261 */ 2262 struct hl_fpriv { 2263 struct hl_device *hdev; 2264 struct file *filp; 2265 struct pid *taskpid; 2266 struct hl_ctx *ctx; 2267 struct hl_ctx_mgr ctx_mgr; 2268 struct hl_mem_mgr mem_mgr; 2269 struct hl_notifier_event notifier_event; 2270 struct list_head debugfs_list; 2271 struct list_head dev_node; 2272 struct kref refcount; 2273 struct mutex restore_phase_mutex; 2274 struct mutex ctx_lock; 2275 }; 2276 2277 2278 /* 2279 * DebugFS 2280 */ 2281 2282 /** 2283 * struct hl_info_list - debugfs file ops. 2284 * @name: file name. 2285 * @show: function to output information. 2286 * @write: function to write to the file. 2287 */ 2288 struct hl_info_list { 2289 const char *name; 2290 int (*show)(struct seq_file *s, void *data); 2291 ssize_t (*write)(struct file *file, const char __user *buf, 2292 size_t count, loff_t *f_pos); 2293 }; 2294 2295 /** 2296 * struct hl_debugfs_entry - debugfs dentry wrapper. 2297 * @info_ent: dentry related ops. 2298 * @dev_entry: ASIC specific debugfs manager. 2299 */ 2300 struct hl_debugfs_entry { 2301 const struct hl_info_list *info_ent; 2302 struct hl_dbg_device_entry *dev_entry; 2303 }; 2304 2305 /** 2306 * struct hl_dbg_device_entry - ASIC specific debugfs manager. 2307 * @root: root dentry. 2308 * @hdev: habanalabs device structure. 2309 * @entry_arr: array of available hl_debugfs_entry. 2310 * @file_list: list of available debugfs files. 2311 * @file_mutex: protects file_list. 2312 * @cb_list: list of available CBs. 2313 * @cb_spinlock: protects cb_list. 2314 * @cs_list: list of available CSs. 2315 * @cs_spinlock: protects cs_list. 2316 * @cs_job_list: list of available CB jobs. 2317 * @cs_job_spinlock: protects cs_job_list. 2318 * @userptr_list: list of available userptrs (virtual memory chunk descriptor). 2319 * @userptr_spinlock: protects userptr_list. 2320 * @ctx_mem_hash_list: list of available contexts with MMU mappings. 2321 * @ctx_mem_hash_spinlock: protects cb_list. 2322 * @data_dma_blob_desc: data DMA descriptor of blob. 2323 * @mon_dump_blob_desc: monitor dump descriptor of blob. 2324 * @state_dump: data of the system states in case of a bad cs. 2325 * @state_dump_sem: protects state_dump. 2326 * @addr: next address to read/write from/to in read/write32. 2327 * @mmu_addr: next virtual address to translate to physical address in mmu_show. 2328 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. 2329 * @userptr_lookup: the target user ptr to look up for on demand. 2330 * @mmu_asid: ASID to use while translating in mmu_show. 2331 * @state_dump_head: index of the latest state dump 2332 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. 2333 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. 2334 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. 2335 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. 2336 */ 2337 struct hl_dbg_device_entry { 2338 struct dentry *root; 2339 struct hl_device *hdev; 2340 struct hl_debugfs_entry *entry_arr; 2341 struct list_head file_list; 2342 struct mutex file_mutex; 2343 struct list_head cb_list; 2344 spinlock_t cb_spinlock; 2345 struct list_head cs_list; 2346 spinlock_t cs_spinlock; 2347 struct list_head cs_job_list; 2348 spinlock_t cs_job_spinlock; 2349 struct list_head userptr_list; 2350 spinlock_t userptr_spinlock; 2351 struct list_head ctx_mem_hash_list; 2352 spinlock_t ctx_mem_hash_spinlock; 2353 struct debugfs_blob_wrapper data_dma_blob_desc; 2354 struct debugfs_blob_wrapper mon_dump_blob_desc; 2355 char *state_dump[HL_STATE_DUMP_HIST_LEN]; 2356 struct rw_semaphore state_dump_sem; 2357 u64 addr; 2358 u64 mmu_addr; 2359 u64 mmu_cap_mask; 2360 u64 userptr_lookup; 2361 u32 mmu_asid; 2362 u32 state_dump_head; 2363 u8 i2c_bus; 2364 u8 i2c_addr; 2365 u8 i2c_reg; 2366 u8 i2c_len; 2367 }; 2368 2369 /** 2370 * struct hl_hw_obj_name_entry - single hw object name, member of 2371 * hl_state_dump_specs 2372 * @node: link to the containing hash table 2373 * @name: hw object name 2374 * @id: object identifier 2375 */ 2376 struct hl_hw_obj_name_entry { 2377 struct hlist_node node; 2378 const char *name; 2379 u32 id; 2380 }; 2381 2382 enum hl_state_dump_specs_props { 2383 SP_SYNC_OBJ_BASE_ADDR, 2384 SP_NEXT_SYNC_OBJ_ADDR, 2385 SP_SYNC_OBJ_AMOUNT, 2386 SP_MON_OBJ_WR_ADDR_LOW, 2387 SP_MON_OBJ_WR_ADDR_HIGH, 2388 SP_MON_OBJ_WR_DATA, 2389 SP_MON_OBJ_ARM_DATA, 2390 SP_MON_OBJ_STATUS, 2391 SP_MONITORS_AMOUNT, 2392 SP_TPC0_CMDQ, 2393 SP_TPC0_CFG_SO, 2394 SP_NEXT_TPC, 2395 SP_MME_CMDQ, 2396 SP_MME_CFG_SO, 2397 SP_NEXT_MME, 2398 SP_DMA_CMDQ, 2399 SP_DMA_CFG_SO, 2400 SP_DMA_QUEUES_OFFSET, 2401 SP_NUM_OF_MME_ENGINES, 2402 SP_SUB_MME_ENG_NUM, 2403 SP_NUM_OF_DMA_ENGINES, 2404 SP_NUM_OF_TPC_ENGINES, 2405 SP_ENGINE_NUM_OF_QUEUES, 2406 SP_ENGINE_NUM_OF_STREAMS, 2407 SP_ENGINE_NUM_OF_FENCES, 2408 SP_FENCE0_CNT_OFFSET, 2409 SP_FENCE0_RDATA_OFFSET, 2410 SP_CP_STS_OFFSET, 2411 SP_NUM_CORES, 2412 2413 SP_MAX 2414 }; 2415 2416 enum hl_sync_engine_type { 2417 ENGINE_TPC, 2418 ENGINE_DMA, 2419 ENGINE_MME, 2420 }; 2421 2422 /** 2423 * struct hl_mon_state_dump - represents a state dump of a single monitor 2424 * @id: monitor id 2425 * @wr_addr_low: address monitor will write to, low bits 2426 * @wr_addr_high: address monitor will write to, high bits 2427 * @wr_data: data monitor will write 2428 * @arm_data: register value containing monitor configuration 2429 * @status: monitor status 2430 */ 2431 struct hl_mon_state_dump { 2432 u32 id; 2433 u32 wr_addr_low; 2434 u32 wr_addr_high; 2435 u32 wr_data; 2436 u32 arm_data; 2437 u32 status; 2438 }; 2439 2440 /** 2441 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry 2442 * @engine_type: type of the engine 2443 * @engine_id: id of the engine 2444 * @sync_id: id of the sync object 2445 */ 2446 struct hl_sync_to_engine_map_entry { 2447 struct hlist_node node; 2448 enum hl_sync_engine_type engine_type; 2449 u32 engine_id; 2450 u32 sync_id; 2451 }; 2452 2453 /** 2454 * struct hl_sync_to_engine_map - maps sync object id to associated engine id 2455 * @tb: hash table containing the mapping, each element is of type 2456 * struct hl_sync_to_engine_map_entry 2457 */ 2458 struct hl_sync_to_engine_map { 2459 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); 2460 }; 2461 2462 /** 2463 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump 2464 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine 2465 * @print_single_monitor: format monitor data as string 2466 * @monitor_valid: return true if given monitor dump is valid 2467 * @print_fences_single_engine: format fences data as string 2468 */ 2469 struct hl_state_dump_specs_funcs { 2470 int (*gen_sync_to_engine_map)(struct hl_device *hdev, 2471 struct hl_sync_to_engine_map *map); 2472 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, 2473 struct hl_device *hdev, 2474 struct hl_mon_state_dump *mon); 2475 int (*monitor_valid)(struct hl_mon_state_dump *mon); 2476 int (*print_fences_single_engine)(struct hl_device *hdev, 2477 u64 base_offset, 2478 u64 status_base_offset, 2479 enum hl_sync_engine_type engine_type, 2480 u32 engine_id, char **buf, 2481 size_t *size, size_t *offset); 2482 }; 2483 2484 /** 2485 * struct hl_state_dump_specs - defines ASIC known hw objects names 2486 * @so_id_to_str_tb: sync objects names index table 2487 * @monitor_id_to_str_tb: monitors names index table 2488 * @funcs: virtual functions used for state dump 2489 * @sync_namager_names: readable names for sync manager if available (ex: N_E) 2490 * @props: pointer to a per asic const props array required for state dump 2491 */ 2492 struct hl_state_dump_specs { 2493 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2494 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2495 struct hl_state_dump_specs_funcs funcs; 2496 const char * const *sync_namager_names; 2497 s64 *props; 2498 }; 2499 2500 2501 /* 2502 * DEVICES 2503 */ 2504 2505 #define HL_STR_MAX 32 2506 2507 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) 2508 2509 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe 2510 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. 2511 */ 2512 #define HL_MAX_MINORS 256 2513 2514 /* 2515 * Registers read & write functions. 2516 */ 2517 2518 u32 hl_rreg(struct hl_device *hdev, u32 reg); 2519 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); 2520 2521 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) 2522 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) 2523 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ 2524 hdev->asic_funcs->rreg(hdev, (reg))) 2525 2526 #define WREG32_P(reg, val, mask) \ 2527 do { \ 2528 u32 tmp_ = RREG32(reg); \ 2529 tmp_ &= (mask); \ 2530 tmp_ |= ((val) & ~(mask)); \ 2531 WREG32(reg, tmp_); \ 2532 } while (0) 2533 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) 2534 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) 2535 2536 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask)) 2537 2538 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask) 2539 2540 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) 2541 2542 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT 2543 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK 2544 #define WREG32_FIELD(reg, offset, field, val) \ 2545 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ 2546 ~REG_FIELD_MASK(reg, field)) | \ 2547 (val) << REG_FIELD_SHIFT(reg, field)) 2548 2549 /* Timeout should be longer when working with simulator but cap the 2550 * increased timeout to some maximum 2551 */ 2552 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ 2553 ({ \ 2554 ktime_t __timeout; \ 2555 u32 __elbi_read; \ 2556 int __rc = 0; \ 2557 if (hdev->pdev) \ 2558 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2559 else \ 2560 __timeout = ktime_add_us(ktime_get(),\ 2561 min((u64)(timeout_us * 10), \ 2562 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2563 might_sleep_if(sleep_us); \ 2564 for (;;) { \ 2565 if (elbi) { \ 2566 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2567 if (__rc) \ 2568 break; \ 2569 (val) = __elbi_read; \ 2570 } else {\ 2571 (val) = RREG32(lower_32_bits(addr)); \ 2572 } \ 2573 if (cond) \ 2574 break; \ 2575 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2576 if (elbi) { \ 2577 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2578 if (__rc) \ 2579 break; \ 2580 (val) = __elbi_read; \ 2581 } else {\ 2582 (val) = RREG32(lower_32_bits(addr)); \ 2583 } \ 2584 break; \ 2585 } \ 2586 if (sleep_us) \ 2587 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2588 } \ 2589 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ 2590 }) 2591 2592 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ 2593 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) 2594 2595 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ 2596 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) 2597 2598 /* 2599 * poll array of register addresses. 2600 * condition is satisfied if all registers values match the expected value. 2601 * once some register in the array satisfies the condition it will not be polled again, 2602 * this is done both for efficiency and due to some registers are "clear on read". 2603 * TODO: use read from PCI bar in other places in the code (SW-91406) 2604 */ 2605 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2606 timeout_us, elbi) \ 2607 ({ \ 2608 ktime_t __timeout; \ 2609 u64 __elem_bitmask; \ 2610 u32 __read_val; \ 2611 u8 __arr_idx; \ 2612 int __rc = 0; \ 2613 \ 2614 if (hdev->pdev) \ 2615 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2616 else \ 2617 __timeout = ktime_add_us(ktime_get(),\ 2618 min(((u64)timeout_us * 10), \ 2619 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2620 \ 2621 might_sleep_if(sleep_us); \ 2622 if (arr_size >= 64) \ 2623 __rc = -EINVAL; \ 2624 else \ 2625 __elem_bitmask = BIT_ULL(arr_size) - 1; \ 2626 for (;;) { \ 2627 if (__rc) \ 2628 break; \ 2629 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ 2630 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ 2631 continue; \ 2632 if (elbi) { \ 2633 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ 2634 if (__rc) \ 2635 break; \ 2636 } else { \ 2637 __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \ 2638 } \ 2639 if (__read_val == (expected_val)) \ 2640 __elem_bitmask &= ~BIT_ULL(__arr_idx); \ 2641 } \ 2642 if (__rc || (__elem_bitmask == 0)) \ 2643 break; \ 2644 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ 2645 break; \ 2646 if (sleep_us) \ 2647 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2648 } \ 2649 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ 2650 }) 2651 2652 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2653 timeout_us) \ 2654 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2655 timeout_us, false) 2656 2657 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2658 timeout_us) \ 2659 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2660 timeout_us, true) 2661 2662 /* 2663 * address in this macro points always to a memory location in the 2664 * host's (server's) memory. That location is updated asynchronously 2665 * either by the direct access of the device or by another core. 2666 * 2667 * To work both in LE and BE architectures, we need to distinguish between the 2668 * two states (device or another core updates the memory location). Therefore, 2669 * if mem_written_by_device is true, the host memory being polled will be 2670 * updated directly by the device. If false, the host memory being polled will 2671 * be updated by host CPU. Required so host knows whether or not the memory 2672 * might need to be byte-swapped before returning value to caller. 2673 */ 2674 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ 2675 mem_written_by_device) \ 2676 ({ \ 2677 ktime_t __timeout; \ 2678 if (hdev->pdev) \ 2679 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2680 else \ 2681 __timeout = ktime_add_us(ktime_get(),\ 2682 min((u64)(timeout_us * 100), \ 2683 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2684 might_sleep_if(sleep_us); \ 2685 for (;;) { \ 2686 /* Verify we read updates done by other cores or by device */ \ 2687 mb(); \ 2688 (val) = *((u32 *)(addr)); \ 2689 if (mem_written_by_device) \ 2690 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2691 if (cond) \ 2692 break; \ 2693 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2694 (val) = *((u32 *)(addr)); \ 2695 if (mem_written_by_device) \ 2696 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2697 break; \ 2698 } \ 2699 if (sleep_us) \ 2700 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2701 } \ 2702 (cond) ? 0 : -ETIMEDOUT; \ 2703 }) 2704 2705 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ 2706 ({ \ 2707 struct user_mapped_block *p = blk; \ 2708 \ 2709 p->address = base; \ 2710 p->size = sz; \ 2711 }) 2712 2713 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \ 2714 ({ \ 2715 usr_intr.hdev = hdev; \ 2716 usr_intr.interrupt_id = intr_id; \ 2717 usr_intr.type = intr_type; \ 2718 INIT_LIST_HEAD(&usr_intr.wait_list_head); \ 2719 spin_lock_init(&usr_intr.wait_list_lock); \ 2720 }) 2721 2722 struct hwmon_chip_info; 2723 2724 /** 2725 * struct hl_device_reset_work - reset work wrapper. 2726 * @reset_work: reset work to be done. 2727 * @hdev: habanalabs device structure. 2728 * @flags: reset flags. 2729 */ 2730 struct hl_device_reset_work { 2731 struct delayed_work reset_work; 2732 struct hl_device *hdev; 2733 u32 flags; 2734 }; 2735 2736 /** 2737 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident 2738 * page-table internal information. 2739 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for 2740 * allocating hops. 2741 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. 2742 */ 2743 struct hl_mmu_hr_priv { 2744 struct gen_pool *mmu_pgt_pool; 2745 struct pgt_info *mmu_asid_hop0; 2746 }; 2747 2748 /** 2749 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident 2750 * page-table internal information. 2751 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. 2752 * @mmu_shadow_hop0: shadow array of hop0 tables. 2753 */ 2754 struct hl_mmu_dr_priv { 2755 struct gen_pool *mmu_pgt_pool; 2756 void *mmu_shadow_hop0; 2757 }; 2758 2759 /** 2760 * struct hl_mmu_priv - used for holding per-device mmu internal information. 2761 * @dr: information on the device-resident MMU, when exists. 2762 * @hr: information on the host-resident MMU, when exists. 2763 */ 2764 struct hl_mmu_priv { 2765 struct hl_mmu_dr_priv dr; 2766 struct hl_mmu_hr_priv hr; 2767 }; 2768 2769 /** 2770 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry 2771 * that was created in order to translate a virtual address to a 2772 * physical one. 2773 * @hop_addr: The address of the hop. 2774 * @hop_pte_addr: The address of the hop entry. 2775 * @hop_pte_val: The value in the hop entry. 2776 */ 2777 struct hl_mmu_per_hop_info { 2778 u64 hop_addr; 2779 u64 hop_pte_addr; 2780 u64 hop_pte_val; 2781 }; 2782 2783 /** 2784 * struct hl_mmu_hop_info - A structure describing the TLB hops and their 2785 * hop-entries that were created in order to translate a virtual address to a 2786 * physical one. 2787 * @scrambled_vaddr: The value of the virtual address after scrambling. This 2788 * address replaces the original virtual-address when mapped 2789 * in the MMU tables. 2790 * @unscrambled_paddr: The un-scrambled physical address. 2791 * @hop_info: Array holding the per-hop information used for the translation. 2792 * @used_hops: The number of hops used for the translation. 2793 * @range_type: virtual address range type. 2794 */ 2795 struct hl_mmu_hop_info { 2796 u64 scrambled_vaddr; 2797 u64 unscrambled_paddr; 2798 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; 2799 u32 used_hops; 2800 enum hl_va_range_type range_type; 2801 }; 2802 2803 /** 2804 * struct hl_hr_mmu_funcs - Device related host resident MMU functions. 2805 * @get_hop0_pgt_info: get page table info structure for HOP0. 2806 * @get_pgt_info: get page table info structure for HOP other than HOP0. 2807 * @add_pgt_info: add page table info structure to hash. 2808 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. 2809 */ 2810 struct hl_hr_mmu_funcs { 2811 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); 2812 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); 2813 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); 2814 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, 2815 struct hl_mmu_hop_info *hops, 2816 u64 virt_addr, bool *is_huge); 2817 }; 2818 2819 /** 2820 * struct hl_mmu_funcs - Device related MMU functions. 2821 * @init: initialize the MMU module. 2822 * @fini: release the MMU module. 2823 * @ctx_init: Initialize a context for using the MMU module. 2824 * @ctx_fini: disable a ctx from using the mmu module. 2825 * @map: maps a virtual address to physical address for a context. 2826 * @unmap: unmap a virtual address of a context. 2827 * @flush: flush all writes from all cores to reach device MMU. 2828 * @swap_out: marks all mapping of the given context as swapped out. 2829 * @swap_in: marks all mapping of the given context as swapped in. 2830 * @get_tlb_info: returns the list of hops and hop-entries used that were 2831 * created in order to translate the giver virtual address to a 2832 * physical one. 2833 * @hr_funcs: functions specific to host resident MMU. 2834 */ 2835 struct hl_mmu_funcs { 2836 int (*init)(struct hl_device *hdev); 2837 void (*fini)(struct hl_device *hdev); 2838 int (*ctx_init)(struct hl_ctx *ctx); 2839 void (*ctx_fini)(struct hl_ctx *ctx); 2840 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, 2841 bool is_dram_addr); 2842 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); 2843 void (*flush)(struct hl_ctx *ctx); 2844 void (*swap_out)(struct hl_ctx *ctx); 2845 void (*swap_in)(struct hl_ctx *ctx); 2846 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); 2847 struct hl_hr_mmu_funcs hr_funcs; 2848 }; 2849 2850 /** 2851 * struct hl_prefetch_work - prefetch work structure handler 2852 * @prefetch_work: actual work struct. 2853 * @ctx: compute context. 2854 * @va: virtual address to pre-fetch. 2855 * @size: pre-fetch size. 2856 * @flags: operation flags. 2857 * @asid: ASID for maintenance operation. 2858 */ 2859 struct hl_prefetch_work { 2860 struct work_struct prefetch_work; 2861 struct hl_ctx *ctx; 2862 u64 va; 2863 u64 size; 2864 u32 flags; 2865 u32 asid; 2866 }; 2867 2868 /* 2869 * number of user contexts allowed to call wait_for_multi_cs ioctl in 2870 * parallel 2871 */ 2872 #define MULTI_CS_MAX_USER_CTX 2 2873 2874 /** 2875 * struct multi_cs_completion - multi CS wait completion. 2876 * @completion: completion of any of the CS in the list 2877 * @lock: spinlock for the completion structure 2878 * @timestamp: timestamp for the multi-CS completion 2879 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS 2880 * is waiting 2881 * @used: 1 if in use, otherwise 0 2882 */ 2883 struct multi_cs_completion { 2884 struct completion completion; 2885 spinlock_t lock; 2886 s64 timestamp; 2887 u32 stream_master_qid_map; 2888 u8 used; 2889 }; 2890 2891 /** 2892 * struct multi_cs_data - internal data for multi CS call 2893 * @ctx: pointer to the context structure 2894 * @fence_arr: array of fences of all CSs 2895 * @seq_arr: array of CS sequence numbers 2896 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete 2897 * @timestamp: timestamp of first completed CS 2898 * @wait_status: wait for CS status 2899 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) 2900 * @arr_len: fence_arr and seq_arr array length 2901 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) 2902 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. 2903 */ 2904 struct multi_cs_data { 2905 struct hl_ctx *ctx; 2906 struct hl_fence **fence_arr; 2907 u64 *seq_arr; 2908 s64 timeout_jiffies; 2909 s64 timestamp; 2910 long wait_status; 2911 u32 completion_bitmap; 2912 u8 arr_len; 2913 u8 gone_cs; 2914 u8 update_ts; 2915 }; 2916 2917 /** 2918 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp 2919 * @start: timestamp taken when 'start' event is received in driver 2920 * @end: timestamp taken when 'end' event is received in driver 2921 */ 2922 struct hl_clk_throttle_timestamp { 2923 ktime_t start; 2924 ktime_t end; 2925 }; 2926 2927 /** 2928 * struct hl_clk_throttle - keeps current/last clock throttling timestamps 2929 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER 2930 * index 1 refers to THERMAL 2931 * @lock: protects this structure as it can be accessed from both event queue 2932 * context and info_ioctl context 2933 * @current_reason: bitmask represents the current clk throttling reasons 2934 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load 2935 */ 2936 struct hl_clk_throttle { 2937 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; 2938 struct mutex lock; 2939 u32 current_reason; 2940 u32 aggregated_reason; 2941 }; 2942 2943 /** 2944 * struct user_mapped_block - describes a hw block allowed to be mmapped by user 2945 * @address: physical HW block address 2946 * @size: allowed size for mmap 2947 */ 2948 struct user_mapped_block { 2949 u32 address; 2950 u32 size; 2951 }; 2952 2953 /** 2954 * struct cs_timeout_info - info of last CS timeout occurred. 2955 * @timestamp: CS timeout timestamp. 2956 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, 2957 * so the first (root cause) CS timeout will not be overwritten. 2958 * @seq: CS timeout sequence number. 2959 */ 2960 struct cs_timeout_info { 2961 ktime_t timestamp; 2962 atomic_t write_enable; 2963 u64 seq; 2964 }; 2965 2966 #define MAX_QMAN_STREAMS_INFO 4 2967 #define OPCODE_INFO_MAX_ADDR_SIZE 8 2968 /** 2969 * struct undefined_opcode_info - info about last undefined opcode error 2970 * @timestamp: timestamp of the undefined opcode error 2971 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ 2972 * entries. In case all streams array entries are 2973 * filled with values, it means the execution was in Lower-CP. 2974 * @cq_addr: the address of the current handled command buffer 2975 * @cq_size: the size of the current handled command buffer 2976 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. 2977 * should be equal to 1 incase of undefined opcode 2978 * in Upper-CP (specific stream) and equal to 4 incase 2979 * of undefined opcode in Lower-CP. 2980 * @engine_id: engine-id that the error occurred on 2981 * @stream_id: the stream id the error occurred on. In case the stream equals to 2982 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. 2983 * @write_enable: if set, writing to undefined opcode parameters in the structure 2984 * is enable so the first (root cause) undefined opcode will not be 2985 * overwritten. 2986 */ 2987 struct undefined_opcode_info { 2988 ktime_t timestamp; 2989 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; 2990 u64 cq_addr; 2991 u32 cq_size; 2992 u32 cb_addr_streams_len; 2993 u32 engine_id; 2994 u32 stream_id; 2995 bool write_enable; 2996 }; 2997 2998 /** 2999 * struct page_fault_info - page fault information. 3000 * @page_fault: holds information collected during a page fault. 3001 * @user_mappings: buffer containing user mappings. 3002 * @num_of_user_mappings: number of user mappings. 3003 * @page_fault_detected: if set as 1, then a page-fault was discovered for the 3004 * first time after the driver has finished booting-up. 3005 * Since we're looking for the page-fault's root cause, 3006 * we don't care of the others that might follow it- 3007 * so once changed to 1, it will remain that way. 3008 * @page_fault_info_available: indicates that a page fault info is now available. 3009 */ 3010 struct page_fault_info { 3011 struct hl_page_fault_info page_fault; 3012 struct hl_user_mapping *user_mappings; 3013 u64 num_of_user_mappings; 3014 atomic_t page_fault_detected; 3015 bool page_fault_info_available; 3016 }; 3017 3018 /** 3019 * struct razwi_info - RAZWI information. 3020 * @razwi: holds information collected during a RAZWI 3021 * @razwi_detected: if set as 1, then a RAZWI was discovered for the 3022 * first time after the driver has finished booting-up. 3023 * Since we're looking for the RAZWI's root cause, 3024 * we don't care of the others that might follow it- 3025 * so once changed to 1, it will remain that way. 3026 * @razwi_info_available: indicates that a RAZWI info is now available. 3027 */ 3028 struct razwi_info { 3029 struct hl_info_razwi_event razwi; 3030 atomic_t razwi_detected; 3031 bool razwi_info_available; 3032 }; 3033 3034 /** 3035 * struct hl_error_info - holds information collected during an error. 3036 * @cs_timeout: CS timeout error information. 3037 * @razwi_info: RAZWI information. 3038 * @undef_opcode: undefined opcode information. 3039 * @page_fault_info: page fault information. 3040 */ 3041 struct hl_error_info { 3042 struct cs_timeout_info cs_timeout; 3043 struct razwi_info razwi_info; 3044 struct undefined_opcode_info undef_opcode; 3045 struct page_fault_info page_fault_info; 3046 }; 3047 3048 /** 3049 * struct hl_reset_info - holds current device reset information. 3050 * @lock: lock to protect critical reset flows. 3051 * @compute_reset_cnt: number of compute resets since the driver was loaded. 3052 * @hard_reset_cnt: number of hard resets since the driver was loaded. 3053 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, 3054 * here we hold the hard reset flags. 3055 * @in_reset: is device in reset flow. 3056 * @in_compute_reset: Device is currently in reset but not in hard-reset. 3057 * @needs_reset: true if reset_on_lockup is false and device should be reset 3058 * due to lockup. 3059 * @hard_reset_pending: is there a hard reset work pending. 3060 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is 3061 * triggered, and cleared after it is shared with preboot. 3062 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden 3063 * with a new value on next reset 3064 * @reset_trigger_repeated: set if device reset is triggered more than once with 3065 * same cause. 3066 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to 3067 * complete instead. 3068 * @watchdog_active: true if a device release watchdog work is scheduled. 3069 */ 3070 struct hl_reset_info { 3071 spinlock_t lock; 3072 u32 compute_reset_cnt; 3073 u32 hard_reset_cnt; 3074 u32 hard_reset_schedule_flags; 3075 u8 in_reset; 3076 u8 in_compute_reset; 3077 u8 needs_reset; 3078 u8 hard_reset_pending; 3079 u8 curr_reset_cause; 3080 u8 prev_reset_trigger; 3081 u8 reset_trigger_repeated; 3082 u8 skip_reset_on_timeout; 3083 u8 watchdog_active; 3084 }; 3085 3086 /** 3087 * struct hl_device - habanalabs device structure. 3088 * @pdev: pointer to PCI device, can be NULL in case of simulator device. 3089 * @pcie_bar_phys: array of available PCIe bars physical addresses. 3090 * (required only for PCI address match mode) 3091 * @pcie_bar: array of available PCIe bars virtual addresses. 3092 * @rmmio: configuration area address on SRAM. 3093 * @cdev: related char device. 3094 * @cdev_ctrl: char device for control operations only (INFO IOCTL) 3095 * @dev: related kernel basic device structure. 3096 * @dev_ctrl: related kernel device structure for the control device 3097 * @work_heartbeat: delayed work for CPU-CP is-alive check. 3098 * @device_reset_work: delayed work which performs hard reset 3099 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release 3100 * device upon certain error cases. 3101 * @asic_name: ASIC specific name. 3102 * @asic_type: ASIC specific type. 3103 * @completion_queue: array of hl_cq. 3104 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user 3105 * interrupt, driver will monitor the list of fences 3106 * registered to this interrupt. 3107 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. 3108 * upon any user CQ interrupt, driver will monitor the 3109 * list of fences registered to this common structure. 3110 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. 3111 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to 3112 * outstanding command submissions. 3113 * @cq_wq: work queues of completion queues for executing work in process 3114 * context. 3115 * @eq_wq: work queue of event queue for executing work in process context. 3116 * @cs_cmplt_wq: work queue of CS completions for executing work in process 3117 * context. 3118 * @ts_free_obj_wq: work queue for timestamp registration objects release. 3119 * @prefetch_wq: work queue for MMU pre-fetch operations. 3120 * @reset_wq: work queue for device reset procedure. 3121 * @kernel_ctx: Kernel driver context structure. 3122 * @kernel_queues: array of hl_hw_queue. 3123 * @cs_mirror_list: CS mirror list for TDR. 3124 * @cs_mirror_lock: protects cs_mirror_list. 3125 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. 3126 * @event_queue: event queue for IRQ from CPU-CP. 3127 * @dma_pool: DMA pool for small allocations. 3128 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. 3129 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. 3130 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. 3131 * @asid_bitmap: holds used/available ASIDs. 3132 * @asid_mutex: protects asid_bitmap. 3133 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. 3134 * @debug_lock: protects critical section of setting debug mode for device 3135 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the 3136 * page tables are per context, the invalidation h/w is per MMU. 3137 * Therefore, we can't allow multiple contexts (we only have two, 3138 * user and kernel) to access the invalidation h/w at the same time. 3139 * In addition, any change to the PGT, modifying the MMU hash or 3140 * walking the PGT requires talking this lock. 3141 * @asic_prop: ASIC specific immutable properties. 3142 * @asic_funcs: ASIC specific functions. 3143 * @asic_specific: ASIC specific information to use only from ASIC files. 3144 * @vm: virtual memory manager for MMU. 3145 * @hwmon_dev: H/W monitor device. 3146 * @hl_chip_info: ASIC's sensors information. 3147 * @device_status_description: device status description. 3148 * @hl_debugfs: device's debugfs manager. 3149 * @cb_pool: list of pre allocated CBs. 3150 * @cb_pool_lock: protects the CB pool. 3151 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. 3152 * @internal_cb_pool_dma_addr: internal command buffer pool dma address. 3153 * @internal_cb_pool: internal command buffer memory pool. 3154 * @internal_cb_va_base: internal cb pool mmu virtual address base 3155 * @fpriv_list: list of file private data structures. Each structure is created 3156 * when a user opens the device 3157 * @fpriv_ctrl_list: list of file private data structures. Each structure is created 3158 * when a user opens the control device 3159 * @fpriv_list_lock: protects the fpriv_list 3160 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list 3161 * @aggregated_cs_counters: aggregated cs counters among all contexts 3162 * @mmu_priv: device-specific MMU data. 3163 * @mmu_func: device-related MMU functions. 3164 * @dec: list of decoder sw instance 3165 * @fw_loader: FW loader manager. 3166 * @pci_mem_region: array of memory regions in the PCI 3167 * @state_dump_specs: constants and dictionaries needed to dump system state. 3168 * @multi_cs_completion: array of multi-CS completion. 3169 * @clk_throttling: holds information about current/previous clock throttling events 3170 * @captured_err_info: holds information about errors. 3171 * @reset_info: holds current device reset information. 3172 * @stream_master_qid_arr: pointer to array with QIDs of master streams. 3173 * @fw_major_version: major version of current loaded preboot. 3174 * @fw_minor_version: minor version of current loaded preboot. 3175 * @dram_used_mem: current DRAM memory consumption. 3176 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram 3177 * @timeout_jiffies: device CS timeout value. 3178 * @max_power: the max power of the device, as configured by the sysadmin. This 3179 * value is saved so in case of hard-reset, the driver will restore 3180 * this value and update the F/W after the re-initialization 3181 * @boot_error_status_mask: contains a mask of the device boot error status. 3182 * Each bit represents a different error, according to 3183 * the defines in hl_boot_if.h. If the bit is cleared, 3184 * the error will be ignored by the driver during 3185 * device initialization. Mainly used to debug and 3186 * workaround firmware bugs 3187 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. 3188 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. 3189 * @last_successful_open_jif: timestamp (jiffies) of the last successful 3190 * device open. 3191 * @last_open_session_duration_jif: duration (jiffies) of the last device open 3192 * session. 3193 * @open_counter: number of successful device open operations. 3194 * @fw_poll_interval_usec: FW status poll interval in usec. 3195 * used for CPU boot status 3196 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. 3197 * used for COMMs protocols cmds(COMMS_STS_*) 3198 * @dram_binning: contains mask of drams that is received from the f/w which indicates which 3199 * drams are binned-out 3200 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which 3201 * tpc engines are binned-out 3202 * @card_type: Various ASICs have several card types. This indicates the card 3203 * type of the current device. 3204 * @major: habanalabs kernel driver major. 3205 * @high_pll: high PLL profile frequency. 3206 * @decoder_binning: contains mask of decoder engines that is received from the f/w which 3207 * indicates which decoder engines are binned-out 3208 * @edma_binning: contains mask of edma engines that is received from the f/w which 3209 * indicates which edma engines are binned-out 3210 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds. 3211 * @rotator_binning: contains mask of rotators engines that is received from the f/w 3212 * which indicates which rotator engines are binned-out(Gaudi3 and above). 3213 * @id: device minor. 3214 * @id_control: minor of the control device. 3215 * @cdev_idx: char device index. Used for setting its name. 3216 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit 3217 * addresses. 3218 * @is_in_dram_scrub: true if dram scrub operation is on going. 3219 * @disabled: is device disabled. 3220 * @late_init_done: is late init stage was done during initialization. 3221 * @hwmon_initialized: is H/W monitor sensors was initialized. 3222 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false 3223 * otherwise. 3224 * @dram_default_page_mapping: is DRAM default page mapping enabled. 3225 * @memory_scrub: true to perform device memory scrub in various locations, 3226 * such as context-switch, context close, page free, etc. 3227 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with 3228 * huge pages. 3229 * @init_done: is the initialization of the device done. 3230 * @device_cpu_disabled: is the device CPU disabled (due to timeouts) 3231 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure 3232 * can be used. This indication is needed because in some ASICs we need to do 3233 * specific operations to enable that infrastructure. 3234 * @cdev_sysfs_created: were char devices and sysfs nodes created. 3235 * @stop_on_err: true if engines should stop on error. 3236 * @supports_sync_stream: is sync stream supported. 3237 * @sync_stream_queue_idx: helper index for sync stream queues initialization. 3238 * @collective_mon_idx: helper index for collective initialization 3239 * @supports_coresight: is CoreSight supported. 3240 * @supports_cb_mapping: is mapping a CB to the device's MMU supported. 3241 * @process_kill_trial_cnt: number of trials reset thread tried killing 3242 * user processes 3243 * @device_fini_pending: true if device_fini was called and might be 3244 * waiting for the reset thread to finish 3245 * @supports_staged_submission: true if staged submissions are supported 3246 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already 3247 * halted. We can't halt it again because the COMMS 3248 * protocol will throw an error. Relevant only for 3249 * cases where Linux was not loaded to device CPU 3250 * @supports_wait_for_multi_cs: true if wait for multi CS is supported 3251 * @is_compute_ctx_active: Whether there is an active compute context executing. 3252 * @compute_ctx_in_release: true if the current compute context is being released. 3253 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. 3254 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the 3255 * device. 3256 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. 3257 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w 3258 * stages and sometimes we want to stop at a certain stage. Used only for testing. 3259 * @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing. 3260 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. 3261 * @pldm: Whether we are running in Palladium environment. Used only for testing. 3262 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from 3263 * the f/w. Used only for testing. 3264 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. 3265 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. 3266 * Used only for testing. 3267 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies 3268 * that the f/w is always alive. Used only for testing. 3269 * @supports_ctx_switch: true if a ctx switch is required upon first submission. 3270 * @support_preboot_binning: true if we support read binning info from preboot. 3271 */ 3272 struct hl_device { 3273 struct pci_dev *pdev; 3274 u64 pcie_bar_phys[HL_PCI_NUM_BARS]; 3275 void __iomem *pcie_bar[HL_PCI_NUM_BARS]; 3276 void __iomem *rmmio; 3277 struct cdev cdev; 3278 struct cdev cdev_ctrl; 3279 struct device *dev; 3280 struct device *dev_ctrl; 3281 struct delayed_work work_heartbeat; 3282 struct hl_device_reset_work device_reset_work; 3283 struct hl_device_reset_work device_release_watchdog_work; 3284 char asic_name[HL_STR_MAX]; 3285 char status[HL_DEV_STS_MAX][HL_STR_MAX]; 3286 enum hl_asic_type asic_type; 3287 struct hl_cq *completion_queue; 3288 struct hl_user_interrupt *user_interrupt; 3289 struct hl_user_interrupt common_user_cq_interrupt; 3290 struct hl_user_interrupt common_decoder_interrupt; 3291 struct hl_cs **shadow_cs_queue; 3292 struct workqueue_struct **cq_wq; 3293 struct workqueue_struct *eq_wq; 3294 struct workqueue_struct *cs_cmplt_wq; 3295 struct workqueue_struct *ts_free_obj_wq; 3296 struct workqueue_struct *prefetch_wq; 3297 struct workqueue_struct *reset_wq; 3298 struct hl_ctx *kernel_ctx; 3299 struct hl_hw_queue *kernel_queues; 3300 struct list_head cs_mirror_list; 3301 spinlock_t cs_mirror_lock; 3302 struct hl_mem_mgr kernel_mem_mgr; 3303 struct hl_eq event_queue; 3304 struct dma_pool *dma_pool; 3305 void *cpu_accessible_dma_mem; 3306 dma_addr_t cpu_accessible_dma_address; 3307 struct gen_pool *cpu_accessible_dma_pool; 3308 unsigned long *asid_bitmap; 3309 struct mutex asid_mutex; 3310 struct mutex send_cpu_message_lock; 3311 struct mutex debug_lock; 3312 struct mutex mmu_lock; 3313 struct asic_fixed_properties asic_prop; 3314 const struct hl_asic_funcs *asic_funcs; 3315 void *asic_specific; 3316 struct hl_vm vm; 3317 struct device *hwmon_dev; 3318 struct hwmon_chip_info *hl_chip_info; 3319 3320 struct hl_dbg_device_entry hl_debugfs; 3321 3322 struct list_head cb_pool; 3323 spinlock_t cb_pool_lock; 3324 3325 void *internal_cb_pool_virt_addr; 3326 dma_addr_t internal_cb_pool_dma_addr; 3327 struct gen_pool *internal_cb_pool; 3328 u64 internal_cb_va_base; 3329 3330 struct list_head fpriv_list; 3331 struct list_head fpriv_ctrl_list; 3332 struct mutex fpriv_list_lock; 3333 struct mutex fpriv_ctrl_list_lock; 3334 3335 struct hl_cs_counters_atomic aggregated_cs_counters; 3336 3337 struct hl_mmu_priv mmu_priv; 3338 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; 3339 3340 struct hl_dec *dec; 3341 3342 struct fw_load_mgr fw_loader; 3343 3344 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; 3345 3346 struct hl_state_dump_specs state_dump_specs; 3347 3348 struct multi_cs_completion multi_cs_completion[ 3349 MULTI_CS_MAX_USER_CTX]; 3350 struct hl_clk_throttle clk_throttling; 3351 struct hl_error_info captured_err_info; 3352 3353 struct hl_reset_info reset_info; 3354 3355 u32 *stream_master_qid_arr; 3356 u32 fw_major_version; 3357 u32 fw_minor_version; 3358 atomic64_t dram_used_mem; 3359 u64 memory_scrub_val; 3360 u64 timeout_jiffies; 3361 u64 max_power; 3362 u64 boot_error_status_mask; 3363 u64 dram_pci_bar_start; 3364 u64 last_successful_open_jif; 3365 u64 last_open_session_duration_jif; 3366 u64 open_counter; 3367 u64 fw_poll_interval_usec; 3368 ktime_t last_successful_open_ktime; 3369 u64 fw_comms_poll_interval_usec; 3370 u64 dram_binning; 3371 u64 tpc_binning; 3372 3373 enum cpucp_card_types card_type; 3374 u32 major; 3375 u32 high_pll; 3376 u32 decoder_binning; 3377 u32 edma_binning; 3378 u32 device_release_watchdog_timeout_sec; 3379 u32 rotator_binning; 3380 u16 id; 3381 u16 id_control; 3382 u16 cdev_idx; 3383 u16 cpu_pci_msb_addr; 3384 u8 is_in_dram_scrub; 3385 u8 disabled; 3386 u8 late_init_done; 3387 u8 hwmon_initialized; 3388 u8 reset_on_lockup; 3389 u8 dram_default_page_mapping; 3390 u8 memory_scrub; 3391 u8 pmmu_huge_range; 3392 u8 init_done; 3393 u8 device_cpu_disabled; 3394 u8 in_debug; 3395 u8 cdev_sysfs_created; 3396 u8 stop_on_err; 3397 u8 supports_sync_stream; 3398 u8 sync_stream_queue_idx; 3399 u8 collective_mon_idx; 3400 u8 supports_coresight; 3401 u8 supports_cb_mapping; 3402 u8 process_kill_trial_cnt; 3403 u8 device_fini_pending; 3404 u8 supports_staged_submission; 3405 u8 device_cpu_is_halted; 3406 u8 supports_wait_for_multi_cs; 3407 u8 stream_master_qid_arr_size; 3408 u8 is_compute_ctx_active; 3409 u8 compute_ctx_in_release; 3410 u8 supports_mmu_prefetch; 3411 u8 reset_upon_device_release; 3412 u8 supports_ctx_switch; 3413 u8 support_preboot_binning; 3414 3415 /* Parameters for bring-up */ 3416 u64 nic_ports_mask; 3417 u64 fw_components; 3418 u8 mmu_enable; 3419 u8 cpu_queues_enable; 3420 u8 pldm; 3421 u8 hard_reset_on_fw_events; 3422 u8 bmc_enable; 3423 u8 reset_on_preboot_fail; 3424 u8 heartbeat; 3425 }; 3426 3427 3428 /** 3429 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure 3430 * @refcount: refcount used to protect removing this id when several 3431 * wait cs are used to wait of the reserved encaps signals. 3432 * @hdev: pointer to habanalabs device structure. 3433 * @hw_sob: pointer to H/W SOB used in the reservation. 3434 * @ctx: pointer to the user's context data structure 3435 * @cs_seq: staged cs sequence which contains encapsulated signals 3436 * @id: idr handler id to be used to fetch the handler info 3437 * @q_idx: stream queue index 3438 * @pre_sob_val: current SOB value before reservation 3439 * @count: signals number 3440 */ 3441 struct hl_cs_encaps_sig_handle { 3442 struct kref refcount; 3443 struct hl_device *hdev; 3444 struct hl_hw_sob *hw_sob; 3445 struct hl_ctx *ctx; 3446 u64 cs_seq; 3447 u32 id; 3448 u32 q_idx; 3449 u32 pre_sob_val; 3450 u32 count; 3451 }; 3452 3453 /* 3454 * IOCTLs 3455 */ 3456 3457 /** 3458 * typedef hl_ioctl_t - typedef for ioctl function in the driver 3459 * @hpriv: pointer to the FD's private data, which contains state of 3460 * user process 3461 * @data: pointer to the input/output arguments structure of the IOCTL 3462 * 3463 * Return: 0 for success, negative value for error 3464 */ 3465 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); 3466 3467 /** 3468 * struct hl_ioctl_desc - describes an IOCTL entry of the driver. 3469 * @cmd: the IOCTL code as created by the kernel macros. 3470 * @func: pointer to the driver's function that should be called for this IOCTL. 3471 */ 3472 struct hl_ioctl_desc { 3473 unsigned int cmd; 3474 hl_ioctl_t *func; 3475 }; 3476 3477 3478 /* 3479 * Kernel module functions that can be accessed by entire module 3480 */ 3481 3482 /** 3483 * hl_get_sg_info() - get number of pages and the DMA address from SG list. 3484 * @sg: the SG list. 3485 * @dma_addr: pointer to DMA address to return. 3486 * 3487 * Calculate the number of consecutive pages described by the SG list. Take the 3488 * offset of the address in the first page, add to it the length and round it up 3489 * to the number of needed pages. 3490 */ 3491 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) 3492 { 3493 *dma_addr = sg_dma_address(sg); 3494 3495 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + 3496 (PAGE_SIZE - 1)) >> PAGE_SHIFT; 3497 } 3498 3499 /** 3500 * hl_mem_area_inside_range() - Checks whether address+size are inside a range. 3501 * @address: The start address of the area we want to validate. 3502 * @size: The size in bytes of the area we want to validate. 3503 * @range_start_address: The start address of the valid range. 3504 * @range_end_address: The end address of the valid range. 3505 * 3506 * Return: true if the area is inside the valid range, false otherwise. 3507 */ 3508 static inline bool hl_mem_area_inside_range(u64 address, u64 size, 3509 u64 range_start_address, u64 range_end_address) 3510 { 3511 u64 end_address = address + size; 3512 3513 if ((address >= range_start_address) && 3514 (end_address <= range_end_address) && 3515 (end_address > address)) 3516 return true; 3517 3518 return false; 3519 } 3520 3521 /** 3522 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. 3523 * @address: The start address of the area we want to validate. 3524 * @size: The size in bytes of the area we want to validate. 3525 * @range_start_address: The start address of the valid range. 3526 * @range_end_address: The end address of the valid range. 3527 * 3528 * Return: true if the area overlaps part or all of the valid range, 3529 * false otherwise. 3530 */ 3531 static inline bool hl_mem_area_crosses_range(u64 address, u32 size, 3532 u64 range_start_address, u64 range_end_address) 3533 { 3534 u64 end_address = address + size - 1; 3535 3536 return ((address <= range_end_address) && (range_start_address <= end_address)); 3537 } 3538 3539 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); 3540 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, 3541 gfp_t flag, const char *caller); 3542 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, 3543 dma_addr_t dma_handle, const char *caller); 3544 void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size, 3545 dma_addr_t *dma_handle, const char *caller); 3546 void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr, 3547 const char *caller); 3548 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, 3549 dma_addr_t *dma_handle, const char *caller); 3550 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, 3551 const char *caller); 3552 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); 3553 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3554 enum dma_data_direction dir); 3555 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, 3556 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar); 3557 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, 3558 enum debugfs_access_type acc_type); 3559 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, 3560 u64 addr, u64 *val, enum debugfs_access_type acc_type); 3561 int hl_device_open(struct inode *inode, struct file *filp); 3562 int hl_device_open_ctrl(struct inode *inode, struct file *filp); 3563 bool hl_device_operational(struct hl_device *hdev, 3564 enum hl_device_status *status); 3565 bool hl_ctrl_device_operational(struct hl_device *hdev, 3566 enum hl_device_status *status); 3567 enum hl_device_status hl_device_status(struct hl_device *hdev); 3568 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); 3569 int hl_hw_queues_create(struct hl_device *hdev); 3570 void hl_hw_queues_destroy(struct hl_device *hdev); 3571 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, 3572 u32 cb_size, u64 cb_ptr); 3573 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, 3574 u32 ctl, u32 len, u64 ptr); 3575 int hl_hw_queue_schedule_cs(struct hl_cs *cs); 3576 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); 3577 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); 3578 void hl_hw_queue_update_ci(struct hl_cs *cs); 3579 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); 3580 3581 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) 3582 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) 3583 3584 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); 3585 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); 3586 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); 3587 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); 3588 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); 3589 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); 3590 irqreturn_t hl_irq_handler_cq(int irq, void *arg); 3591 irqreturn_t hl_irq_handler_eq(int irq, void *arg); 3592 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); 3593 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg); 3594 irqreturn_t hl_irq_handler_default(int irq, void *arg); 3595 u32 hl_cq_inc_ptr(u32 ptr); 3596 3597 int hl_asid_init(struct hl_device *hdev); 3598 void hl_asid_fini(struct hl_device *hdev); 3599 unsigned long hl_asid_alloc(struct hl_device *hdev); 3600 void hl_asid_free(struct hl_device *hdev, unsigned long asid); 3601 3602 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); 3603 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); 3604 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); 3605 void hl_ctx_do_release(struct kref *ref); 3606 void hl_ctx_get(struct hl_ctx *ctx); 3607 int hl_ctx_put(struct hl_ctx *ctx); 3608 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); 3609 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); 3610 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, 3611 struct hl_fence **fence, u32 arr_len); 3612 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); 3613 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); 3614 3615 int hl_device_init(struct hl_device *hdev, struct class *hclass); 3616 void hl_device_fini(struct hl_device *hdev); 3617 int hl_device_suspend(struct hl_device *hdev); 3618 int hl_device_resume(struct hl_device *hdev); 3619 int hl_device_reset(struct hl_device *hdev, u32 flags); 3620 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask); 3621 void hl_hpriv_get(struct hl_fpriv *hpriv); 3622 int hl_hpriv_put(struct hl_fpriv *hpriv); 3623 int hl_device_utilization(struct hl_device *hdev, u32 *utilization); 3624 3625 int hl_build_hwmon_channel_info(struct hl_device *hdev, 3626 struct cpucp_sensor *sensors_arr); 3627 3628 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); 3629 3630 int hl_sysfs_init(struct hl_device *hdev); 3631 void hl_sysfs_fini(struct hl_device *hdev); 3632 3633 int hl_hwmon_init(struct hl_device *hdev); 3634 void hl_hwmon_fini(struct hl_device *hdev); 3635 void hl_hwmon_release_resources(struct hl_device *hdev); 3636 3637 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, 3638 struct hl_ctx *ctx, u32 cb_size, bool internal_cb, 3639 bool map_cb, u64 *handle); 3640 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); 3641 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); 3642 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); 3643 void hl_cb_put(struct hl_cb *cb); 3644 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, 3645 bool internal_cb); 3646 int hl_cb_pool_init(struct hl_device *hdev); 3647 int hl_cb_pool_fini(struct hl_device *hdev); 3648 int hl_cb_va_pool_init(struct hl_ctx *ctx); 3649 void hl_cb_va_pool_fini(struct hl_ctx *ctx); 3650 3651 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); 3652 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 3653 enum hl_queue_type queue_type, bool is_kernel_allocated_cb); 3654 void hl_sob_reset_error(struct kref *ref); 3655 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); 3656 void hl_fence_put(struct hl_fence *fence); 3657 void hl_fences_put(struct hl_fence **fence, int len); 3658 void hl_fence_get(struct hl_fence *fence); 3659 void cs_get(struct hl_cs *cs); 3660 bool cs_needs_completion(struct hl_cs *cs); 3661 bool cs_needs_timeout(struct hl_cs *cs); 3662 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); 3663 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); 3664 void hl_multi_cs_completion_init(struct hl_device *hdev); 3665 3666 void goya_set_asic_funcs(struct hl_device *hdev); 3667 void gaudi_set_asic_funcs(struct hl_device *hdev); 3668 void gaudi2_set_asic_funcs(struct hl_device *hdev); 3669 3670 int hl_vm_ctx_init(struct hl_ctx *ctx); 3671 void hl_vm_ctx_fini(struct hl_ctx *ctx); 3672 3673 int hl_vm_init(struct hl_device *hdev); 3674 void hl_vm_fini(struct hl_device *hdev); 3675 3676 void hl_hw_block_mem_init(struct hl_ctx *ctx); 3677 void hl_hw_block_mem_fini(struct hl_ctx *ctx); 3678 3679 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3680 enum hl_va_range_type type, u64 size, u32 alignment); 3681 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3682 u64 start_addr, u64 size); 3683 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 3684 struct hl_userptr *userptr); 3685 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); 3686 void hl_userptr_delete_list(struct hl_device *hdev, 3687 struct list_head *userptr_list); 3688 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, 3689 struct list_head *userptr_list, 3690 struct hl_userptr **userptr); 3691 3692 int hl_mmu_init(struct hl_device *hdev); 3693 void hl_mmu_fini(struct hl_device *hdev); 3694 int hl_mmu_ctx_init(struct hl_ctx *ctx); 3695 void hl_mmu_ctx_fini(struct hl_ctx *ctx); 3696 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, 3697 u32 page_size, bool flush_pte); 3698 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 3699 u32 page_size, u32 *real_page_size, bool is_dram_addr); 3700 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, 3701 bool flush_pte); 3702 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, 3703 u64 phys_addr, u32 size); 3704 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); 3705 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); 3706 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, 3707 u32 flags, u32 asid, u64 va, u64 size); 3708 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 3709 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); 3710 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 3711 u8 hop_idx, u64 hop_addr, u64 virt_addr); 3712 void hl_mmu_hr_flush(struct hl_ctx *ctx); 3713 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, 3714 u64 pgt_size); 3715 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); 3716 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3717 u32 hop_table_size); 3718 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, 3719 u32 hop_table_size); 3720 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3721 u64 val, u32 hop_table_size); 3722 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3723 u32 hop_table_size); 3724 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3725 u32 hop_table_size); 3726 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); 3727 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, 3728 struct hl_hr_mmu_funcs *hr_func, 3729 u64 curr_pte); 3730 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, 3731 struct hl_hr_mmu_funcs *hr_func, 3732 struct hl_mmu_properties *mmu_prop); 3733 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, 3734 struct hl_mmu_hr_priv *hr_priv, 3735 struct hl_hr_mmu_funcs *hr_func, 3736 struct hl_mmu_properties *mmu_prop, 3737 u64 curr_pte, bool *is_new_hop); 3738 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, 3739 struct hl_hr_mmu_funcs *hr_func); 3740 void hl_mmu_swap_out(struct hl_ctx *ctx); 3741 void hl_mmu_swap_in(struct hl_ctx *ctx); 3742 int hl_mmu_if_set_funcs(struct hl_device *hdev); 3743 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3744 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3745 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); 3746 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 3747 struct hl_mmu_hop_info *hops); 3748 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); 3749 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); 3750 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); 3751 3752 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, 3753 void __iomem *dst, u32 src_offset, u32 size); 3754 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); 3755 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, 3756 u16 len, u32 timeout, u64 *result); 3757 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); 3758 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, 3759 size_t irq_arr_size); 3760 int hl_fw_test_cpu_queue(struct hl_device *hdev); 3761 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, 3762 dma_addr_t *dma_handle); 3763 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, 3764 void *vaddr); 3765 int hl_fw_send_heartbeat(struct hl_device *hdev); 3766 int hl_fw_cpucp_info_get(struct hl_device *hdev, 3767 u32 sts_boot_dev_sts0_reg, 3768 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3769 u32 boot_err1_reg); 3770 int hl_fw_cpucp_handshake(struct hl_device *hdev, 3771 u32 sts_boot_dev_sts0_reg, 3772 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3773 u32 boot_err1_reg); 3774 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); 3775 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); 3776 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, 3777 struct hl_info_pci_counters *counters); 3778 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, 3779 u64 *total_energy); 3780 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, 3781 enum pll_index *pll_index); 3782 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, 3783 u16 *pll_freq_arr); 3784 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); 3785 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); 3786 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); 3787 int hl_fw_init_cpu(struct hl_device *hdev); 3788 int hl_fw_wait_preboot_ready(struct hl_device *hdev); 3789 int hl_fw_read_preboot_status(struct hl_device *hdev); 3790 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, 3791 struct fw_load_mgr *fw_loader, 3792 enum comms_cmd cmd, unsigned int size, 3793 bool wait_ok, u32 timeout); 3794 int hl_fw_dram_replaced_row_get(struct hl_device *hdev, 3795 struct cpucp_hbm_row_info *info); 3796 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); 3797 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); 3798 int hl_fw_send_device_activity(struct hl_device *hdev, bool open); 3799 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], 3800 bool is_wc[3]); 3801 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); 3802 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); 3803 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, 3804 struct hl_inbound_pci_region *pci_region); 3805 int hl_pci_set_outbound_region(struct hl_device *hdev, 3806 struct hl_outbound_pci_region *pci_region); 3807 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); 3808 int hl_pci_init(struct hl_device *hdev); 3809 void hl_pci_fini(struct hl_device *hdev); 3810 3811 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); 3812 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); 3813 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3814 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3815 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3816 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3817 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3818 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3819 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3820 long hl_fw_get_max_power(struct hl_device *hdev); 3821 void hl_fw_set_max_power(struct hl_device *hdev); 3822 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, 3823 u32 nonce); 3824 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3825 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3826 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3827 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3828 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); 3829 void hl_fw_set_pll_profile(struct hl_device *hdev); 3830 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); 3831 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); 3832 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode, 3833 dma_addr_t buff, u32 *size); 3834 3835 void hw_sob_get(struct hl_hw_sob *hw_sob); 3836 void hw_sob_put(struct hl_hw_sob *hw_sob); 3837 void hl_encaps_release_handle_and_put_ctx(struct kref *ref); 3838 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref); 3839 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, 3840 struct hl_cs *cs, struct hl_cs_job *job, 3841 struct hl_cs_compl *cs_cmpl); 3842 3843 int hl_dec_init(struct hl_device *hdev); 3844 void hl_dec_fini(struct hl_device *hdev); 3845 void hl_dec_ctx_fini(struct hl_ctx *ctx); 3846 3847 void hl_release_pending_user_interrupts(struct hl_device *hdev); 3848 void hl_abort_waitings_for_completion(struct hl_device *hdev); 3849 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 3850 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); 3851 3852 int hl_state_dump(struct hl_device *hdev); 3853 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); 3854 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, 3855 struct hl_mon_state_dump *mon); 3856 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); 3857 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, 3858 const char *format, ...); 3859 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); 3860 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); 3861 3862 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); 3863 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg); 3864 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, 3865 void *args); 3866 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, 3867 u64 handle); 3868 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); 3869 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); 3870 struct hl_mmap_mem_buf * 3871 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, 3872 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, 3873 void *args); 3874 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); 3875 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 3876 u8 flags); 3877 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 3878 u8 flags, u64 *event_mask); 3879 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu); 3880 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, 3881 u64 *event_mask); 3882 3883 #ifdef CONFIG_DEBUG_FS 3884 3885 void hl_debugfs_init(void); 3886 void hl_debugfs_fini(void); 3887 void hl_debugfs_add_device(struct hl_device *hdev); 3888 void hl_debugfs_remove_device(struct hl_device *hdev); 3889 void hl_debugfs_add_file(struct hl_fpriv *hpriv); 3890 void hl_debugfs_remove_file(struct hl_fpriv *hpriv); 3891 void hl_debugfs_add_cb(struct hl_cb *cb); 3892 void hl_debugfs_remove_cb(struct hl_cb *cb); 3893 void hl_debugfs_add_cs(struct hl_cs *cs); 3894 void hl_debugfs_remove_cs(struct hl_cs *cs); 3895 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); 3896 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); 3897 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); 3898 void hl_debugfs_remove_userptr(struct hl_device *hdev, 3899 struct hl_userptr *userptr); 3900 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 3901 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 3902 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, 3903 unsigned long length); 3904 3905 #else 3906 3907 static inline void __init hl_debugfs_init(void) 3908 { 3909 } 3910 3911 static inline void hl_debugfs_fini(void) 3912 { 3913 } 3914 3915 static inline void hl_debugfs_add_device(struct hl_device *hdev) 3916 { 3917 } 3918 3919 static inline void hl_debugfs_remove_device(struct hl_device *hdev) 3920 { 3921 } 3922 3923 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) 3924 { 3925 } 3926 3927 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 3928 { 3929 } 3930 3931 static inline void hl_debugfs_add_cb(struct hl_cb *cb) 3932 { 3933 } 3934 3935 static inline void hl_debugfs_remove_cb(struct hl_cb *cb) 3936 { 3937 } 3938 3939 static inline void hl_debugfs_add_cs(struct hl_cs *cs) 3940 { 3941 } 3942 3943 static inline void hl_debugfs_remove_cs(struct hl_cs *cs) 3944 { 3945 } 3946 3947 static inline void hl_debugfs_add_job(struct hl_device *hdev, 3948 struct hl_cs_job *job) 3949 { 3950 } 3951 3952 static inline void hl_debugfs_remove_job(struct hl_device *hdev, 3953 struct hl_cs_job *job) 3954 { 3955 } 3956 3957 static inline void hl_debugfs_add_userptr(struct hl_device *hdev, 3958 struct hl_userptr *userptr) 3959 { 3960 } 3961 3962 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, 3963 struct hl_userptr *userptr) 3964 { 3965 } 3966 3967 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, 3968 struct hl_ctx *ctx) 3969 { 3970 } 3971 3972 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, 3973 struct hl_ctx *ctx) 3974 { 3975 } 3976 3977 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, 3978 char *data, unsigned long length) 3979 { 3980 } 3981 3982 #endif 3983 3984 /* Security */ 3985 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, 3986 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], 3987 int array_size); 3988 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], 3989 int mm_array_size, int offset, const u32 pb_blocks[], 3990 struct hl_block_glbl_sec sgs_array[], int blocks_array_size); 3991 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], 3992 struct hl_block_glbl_sec sgs_array[], u32 block_offset, 3993 int array_size); 3994 void hl_secure_block(struct hl_device *hdev, 3995 struct hl_block_glbl_sec sgs_array[], int array_size); 3996 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 3997 u32 dcore_offset, u32 num_instances, u32 instance_offset, 3998 const u32 pb_blocks[], u32 blocks_array_size, 3999 const u32 *regs_array, u32 regs_array_size, u64 mask); 4000 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4001 u32 num_instances, u32 instance_offset, 4002 const u32 pb_blocks[], u32 blocks_array_size, 4003 const u32 *regs_array, u32 regs_array_size); 4004 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, 4005 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4006 const u32 pb_blocks[], u32 blocks_array_size, 4007 const struct range *regs_range_array, u32 regs_range_array_size, 4008 u64 mask); 4009 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, 4010 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4011 const u32 pb_blocks[], u32 blocks_array_size, 4012 const struct range *regs_range_array, 4013 u32 regs_range_array_size); 4014 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4015 u32 num_instances, u32 instance_offset, 4016 const u32 pb_blocks[], u32 blocks_array_size, 4017 const u32 *regs_array, u32 regs_array_size); 4018 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4019 u32 num_instances, u32 instance_offset, 4020 const u32 pb_blocks[], u32 blocks_array_size, 4021 const struct range *regs_range_array, 4022 u32 regs_range_array_size); 4023 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4024 u32 num_instances, u32 instance_offset, 4025 const u32 pb_blocks[], u32 blocks_array_size); 4026 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4027 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4028 const u32 pb_blocks[], u32 blocks_array_size, u64 mask); 4029 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4030 u32 num_instances, u32 instance_offset, 4031 const u32 pb_blocks[], u32 blocks_array_size); 4032 4033 /* IOCTLs */ 4034 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); 4035 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); 4036 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); 4037 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); 4038 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data); 4039 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); 4040 4041 #endif /* HABANALABSP_H_ */ 4042