1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * Copyright 2016-2022 HabanaLabs, Ltd. 4 * All Rights Reserved. 5 * 6 */ 7 8 #ifndef HABANALABSP_H_ 9 #define HABANALABSP_H_ 10 11 #include "../include/common/cpucp_if.h" 12 #include "../include/common/qman_if.h" 13 #include "../include/hw_ip/mmu/mmu_general.h" 14 #include <uapi/drm/habanalabs_accel.h> 15 16 #include <linux/cdev.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqreturn.h> 19 #include <linux/dma-direction.h> 20 #include <linux/scatterlist.h> 21 #include <linux/hashtable.h> 22 #include <linux/debugfs.h> 23 #include <linux/rwsem.h> 24 #include <linux/eventfd.h> 25 #include <linux/bitfield.h> 26 #include <linux/genalloc.h> 27 #include <linux/sched/signal.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/coresight.h> 30 #include <linux/dma-buf.h> 31 32 #include "security.h" 33 34 #define HL_NAME "habanalabs" 35 36 struct hl_device; 37 struct hl_fpriv; 38 39 #define PCI_VENDOR_ID_HABANALABS 0x1da3 40 41 /* Use upper bits of mmap offset to store habana driver specific information. 42 * bits[63:59] - Encode mmap type 43 * bits[45:0] - mmap offset value 44 * 45 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 46 * defines are w.r.t to PAGE_SIZE 47 */ 48 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) 49 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) 50 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) 51 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) 52 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) 53 54 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) 55 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) 56 57 #define HL_PENDING_RESET_PER_SEC 10 58 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ 59 #define HL_PENDING_RESET_LONG_SEC 60 60 /* 61 * In device fini, wait 10 minutes for user processes to be terminated after we kill them. 62 * This is needed to prevent situation of clearing resources while user processes are still alive. 63 */ 64 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600 65 66 #define HL_HARD_RESET_MAX_TIMEOUT 120 67 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) 68 69 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ 70 71 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ 72 73 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ 74 75 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ 76 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ 77 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ 78 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ 79 80 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ 81 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ 82 83 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ 84 85 #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */ 86 87 #define HL_INVALID_QUEUE UINT_MAX 88 89 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF 90 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE 91 92 #define HL_STATE_DUMP_HIST_LEN 5 93 94 /* Default value for device reset trigger , an invalid value */ 95 #define HL_RESET_TRIGGER_DEFAULT 0xFF 96 97 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 98 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 99 100 /* Memory */ 101 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 102 103 /* MMU */ 104 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 105 106 /** 107 * enum hl_mmu_page_table_location - mmu page table location 108 * @MMU_DR_PGT: page-table is located on device DRAM. 109 * @MMU_HR_PGT: page-table is located on host memory. 110 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. 111 */ 112 enum hl_mmu_page_table_location { 113 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ 114 MMU_HR_PGT, /* host resident MMU PGT */ 115 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ 116 }; 117 118 /* 119 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream 120 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream 121 */ 122 #define HL_RSVD_SOBS 2 123 #define HL_RSVD_MONS 1 124 125 /* 126 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream 127 */ 128 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 129 130 #define HL_MAX_SOB_VAL (1 << 15) 131 132 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) 133 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) 134 135 #define HL_PCI_NUM_BARS 6 136 137 /* Completion queue entry relates to completed job */ 138 #define HL_COMPLETION_MODE_JOB 0 139 /* Completion queue entry relates to completed command submission */ 140 #define HL_COMPLETION_MODE_CS 1 141 142 #define HL_MAX_DCORES 8 143 144 /* DMA alloc/free wrappers */ 145 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ 146 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) 147 148 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ 149 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) 150 151 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ 152 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) 153 154 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ 155 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) 156 157 /* 158 * Reset Flags 159 * 160 * - HL_DRV_RESET_HARD 161 * If set do hard reset to all engines. If not set reset just 162 * compute/DMA engines. 163 * 164 * - HL_DRV_RESET_FROM_RESET_THR 165 * Set if the caller is the hard-reset thread 166 * 167 * - HL_DRV_RESET_HEARTBEAT 168 * Set if reset is due to heartbeat 169 * 170 * - HL_DRV_RESET_TDR 171 * Set if reset is due to TDR 172 * 173 * - HL_DRV_RESET_DEV_RELEASE 174 * Set if reset is due to device release 175 * 176 * - HL_DRV_RESET_BYPASS_REQ_TO_FW 177 * F/W will perform the reset. No need to ask it to reset the device. This is relevant 178 * only when running with secured f/w 179 * 180 * - HL_DRV_RESET_FW_FATAL_ERR 181 * Set if reset is due to a fatal error from FW 182 * 183 * - HL_DRV_RESET_DELAY 184 * Set if a delay should be added before the reset 185 * 186 * - HL_DRV_RESET_FROM_WD_THR 187 * Set if the caller is the device release watchdog thread 188 */ 189 190 #define HL_DRV_RESET_HARD (1 << 0) 191 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) 192 #define HL_DRV_RESET_HEARTBEAT (1 << 2) 193 #define HL_DRV_RESET_TDR (1 << 3) 194 #define HL_DRV_RESET_DEV_RELEASE (1 << 4) 195 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) 196 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) 197 #define HL_DRV_RESET_DELAY (1 << 7) 198 #define HL_DRV_RESET_FROM_WD_THR (1 << 8) 199 200 /* 201 * Security 202 */ 203 204 #define HL_PB_SHARED 1 205 #define HL_PB_NA 0 206 #define HL_PB_SINGLE_INSTANCE 1 207 #define HL_BLOCK_SIZE 0x1000 208 #define HL_BLOCK_GLBL_ERR_MASK 0xF40 209 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 210 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 211 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 212 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) 213 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) 214 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) 215 216 enum hl_protection_levels { 217 SECURED_LVL, 218 PRIVILEGED_LVL, 219 NON_SECURED_LVL 220 }; 221 222 /** 223 * struct iterate_module_ctx - HW module iterator 224 * @fn: function to apply to each HW module instance 225 * @data: optional internal data to the function iterator 226 * @rc: return code for optional use of iterator/iterator-caller 227 */ 228 struct iterate_module_ctx { 229 /* 230 * callback for the HW module iterator 231 * @hdev: pointer to the habanalabs device structure 232 * @block: block (ASIC specific definition can be dcore/hdcore) 233 * @inst: HW module instance within the block 234 * @offset: current HW module instance offset from the 1-st HW module instance 235 * in the 1-st block 236 * @ctx: the iterator context. 237 */ 238 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, 239 struct iterate_module_ctx *ctx); 240 void *data; 241 int rc; 242 }; 243 244 struct hl_block_glbl_sec { 245 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; 246 }; 247 248 #define HL_MAX_SOBS_PER_MONITOR 8 249 250 /** 251 * struct hl_gen_wait_properties - properties for generating a wait CB 252 * @data: command buffer 253 * @q_idx: queue id is used to extract fence register address 254 * @size: offset in command buffer 255 * @sob_base: SOB base to use in this wait CB 256 * @sob_val: SOB value to wait for 257 * @mon_id: monitor to use in this wait CB 258 * @sob_mask: each bit represents a SOB offset from sob_base to be used 259 */ 260 struct hl_gen_wait_properties { 261 void *data; 262 u32 q_idx; 263 u32 size; 264 u16 sob_base; 265 u16 sob_val; 266 u16 mon_id; 267 u8 sob_mask; 268 }; 269 270 /** 271 * struct pgt_info - MMU hop page info. 272 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and 273 * actual pgts for host resident MMU). 274 * @phys_addr: physical address of the pgt. 275 * @virt_addr: host virtual address of the pgt (see above device/host resident). 276 * @shadow_addr: shadow hop in the host for device resident MMU. 277 * @ctx: pointer to the owner ctx. 278 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically 279 * allocated HOPs (all HOPs but HOP0) 280 * 281 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow 282 * pgts will be stored on host memory) or on host memory (in which case no shadow is required). 283 * 284 * When a new level (hop) is needed during mapping this structure will be used to describe 285 * the newly allocated hop as well as to track number of PTEs in it. 286 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is 287 * freed with its pgt_info structure. 288 */ 289 struct pgt_info { 290 struct hlist_node node; 291 u64 phys_addr; 292 u64 virt_addr; 293 u64 shadow_addr; 294 struct hl_ctx *ctx; 295 int num_of_ptes; 296 }; 297 298 /** 299 * enum hl_pci_match_mode - pci match mode per region 300 * @PCI_ADDRESS_MATCH_MODE: address match mode 301 * @PCI_BAR_MATCH_MODE: bar match mode 302 */ 303 enum hl_pci_match_mode { 304 PCI_ADDRESS_MATCH_MODE, 305 PCI_BAR_MATCH_MODE 306 }; 307 308 /** 309 * enum hl_fw_component - F/W components to read version through registers. 310 * @FW_COMP_BOOT_FIT: boot fit. 311 * @FW_COMP_PREBOOT: preboot. 312 * @FW_COMP_LINUX: linux. 313 */ 314 enum hl_fw_component { 315 FW_COMP_BOOT_FIT, 316 FW_COMP_PREBOOT, 317 FW_COMP_LINUX, 318 }; 319 320 /** 321 * enum hl_fw_types - F/W types present in the system 322 * @FW_TYPE_NONE: no FW component indication 323 * @FW_TYPE_LINUX: Linux image for device CPU 324 * @FW_TYPE_BOOT_CPU: Boot image for device CPU 325 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system 326 * (preboot, ppboot etc...) 327 * @FW_TYPE_ALL_TYPES: Mask for all types 328 */ 329 enum hl_fw_types { 330 FW_TYPE_NONE = 0x0, 331 FW_TYPE_LINUX = 0x1, 332 FW_TYPE_BOOT_CPU = 0x2, 333 FW_TYPE_PREBOOT_CPU = 0x4, 334 FW_TYPE_ALL_TYPES = 335 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) 336 }; 337 338 /** 339 * enum hl_queue_type - Supported QUEUE types. 340 * @QUEUE_TYPE_NA: queue is not available. 341 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the 342 * host. 343 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's 344 * memories and/or operates the compute engines. 345 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. 346 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion 347 * notifications are sent by H/W. 348 */ 349 enum hl_queue_type { 350 QUEUE_TYPE_NA, 351 QUEUE_TYPE_EXT, 352 QUEUE_TYPE_INT, 353 QUEUE_TYPE_CPU, 354 QUEUE_TYPE_HW 355 }; 356 357 enum hl_cs_type { 358 CS_TYPE_DEFAULT, 359 CS_TYPE_SIGNAL, 360 CS_TYPE_WAIT, 361 CS_TYPE_COLLECTIVE_WAIT, 362 CS_RESERVE_SIGNALS, 363 CS_UNRESERVE_SIGNALS, 364 CS_TYPE_ENGINE_CORE, 365 CS_TYPE_ENGINES, 366 CS_TYPE_FLUSH_PCI_HBW_WRITES, 367 }; 368 369 /* 370 * struct hl_inbound_pci_region - inbound region descriptor 371 * @mode: pci match mode for this region 372 * @addr: region target address 373 * @size: region size in bytes 374 * @offset_in_bar: offset within bar (address match mode) 375 * @bar: bar id 376 */ 377 struct hl_inbound_pci_region { 378 enum hl_pci_match_mode mode; 379 u64 addr; 380 u64 size; 381 u64 offset_in_bar; 382 u8 bar; 383 }; 384 385 /* 386 * struct hl_outbound_pci_region - outbound region descriptor 387 * @addr: region target address 388 * @size: region size in bytes 389 */ 390 struct hl_outbound_pci_region { 391 u64 addr; 392 u64 size; 393 }; 394 395 /* 396 * enum queue_cb_alloc_flags - Indicates queue support for CBs that 397 * allocated by Kernel or by User 398 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel 399 * @CB_ALLOC_USER: support only CBs that allocated by User 400 */ 401 enum queue_cb_alloc_flags { 402 CB_ALLOC_KERNEL = 0x1, 403 CB_ALLOC_USER = 0x2 404 }; 405 406 /* 407 * struct hl_hw_sob - H/W SOB info. 408 * @hdev: habanalabs device structure. 409 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. 410 * @sob_id: id of this SOB. 411 * @sob_addr: the sob offset from the base address. 412 * @q_idx: the H/W queue that uses this SOB. 413 * @need_reset: reset indication set when switching to the other sob. 414 */ 415 struct hl_hw_sob { 416 struct hl_device *hdev; 417 struct kref kref; 418 u32 sob_id; 419 u32 sob_addr; 420 u32 q_idx; 421 bool need_reset; 422 }; 423 424 enum hl_collective_mode { 425 HL_COLLECTIVE_NOT_SUPPORTED = 0x0, 426 HL_COLLECTIVE_MASTER = 0x1, 427 HL_COLLECTIVE_SLAVE = 0x2 428 }; 429 430 /** 431 * struct hw_queue_properties - queue information. 432 * @type: queue type. 433 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB 434 * that allocated by the Kernel driver and therefore, 435 * a CB handle can be provided for jobs on this queue. 436 * Otherwise, a CB address must be provided. 437 * @collective_mode: collective mode of current queue 438 * @driver_only: true if only the driver is allowed to send a job to this queue, 439 * false otherwise. 440 * @binned: True if the queue is binned out and should not be used 441 * @supports_sync_stream: True if queue supports sync stream 442 */ 443 struct hw_queue_properties { 444 enum hl_queue_type type; 445 enum queue_cb_alloc_flags cb_alloc_flags; 446 enum hl_collective_mode collective_mode; 447 u8 driver_only; 448 u8 binned; 449 u8 supports_sync_stream; 450 }; 451 452 /** 453 * enum vm_type - virtual memory mapping request information. 454 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. 455 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. 456 */ 457 enum vm_type { 458 VM_TYPE_USERPTR = 0x1, 459 VM_TYPE_PHYS_PACK = 0x2 460 }; 461 462 /** 463 * enum mmu_op_flags - mmu operation relevant information. 464 * @MMU_OP_USERPTR: operation on user memory (host resident). 465 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). 466 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. 467 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. 468 */ 469 enum mmu_op_flags { 470 MMU_OP_USERPTR = 0x1, 471 MMU_OP_PHYS_PACK = 0x2, 472 MMU_OP_CLEAR_MEMCACHE = 0x4, 473 MMU_OP_SKIP_LOW_CACHE_INV = 0x8, 474 }; 475 476 477 /** 478 * enum hl_device_hw_state - H/W device state. use this to understand whether 479 * to do reset before hw_init or not 480 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset 481 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute 482 * hw_init 483 */ 484 enum hl_device_hw_state { 485 HL_DEVICE_HW_STATE_CLEAN = 0, 486 HL_DEVICE_HW_STATE_DIRTY 487 }; 488 489 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 490 491 /** 492 * struct hl_mmu_properties - ASIC specific MMU address translation properties. 493 * @start_addr: virtual start address of the memory region. 494 * @end_addr: virtual end address of the memory region. 495 * @hop_shifts: array holds HOPs shifts. 496 * @hop_masks: array holds HOPs masks. 497 * @last_mask: mask to get the bit indicating this is the last hop. 498 * @pgt_size: size for page tables. 499 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs 500 * supporting multiple page size). 501 * @page_size: default page size used to allocate memory. 502 * @num_hops: The amount of hops supported by the translation table. 503 * @hop_table_size: HOP table size. 504 * @hop0_tables_total_size: total size for all HOP0 tables. 505 * @host_resident: Should the MMU page table reside in host memory or in the 506 * device DRAM. 507 */ 508 struct hl_mmu_properties { 509 u64 start_addr; 510 u64 end_addr; 511 u64 hop_shifts[MMU_HOP_MAX]; 512 u64 hop_masks[MMU_HOP_MAX]; 513 u64 last_mask; 514 u64 pgt_size; 515 u64 supported_pages_mask; 516 u32 page_size; 517 u32 num_hops; 518 u32 hop_table_size; 519 u32 hop0_tables_total_size; 520 u8 host_resident; 521 }; 522 523 /** 524 * struct hl_hints_range - hint addresses reserved va range. 525 * @start_addr: start address of the va range. 526 * @end_addr: end address of the va range. 527 */ 528 struct hl_hints_range { 529 u64 start_addr; 530 u64 end_addr; 531 }; 532 533 /** 534 * struct asic_fixed_properties - ASIC specific immutable properties. 535 * @hw_queues_props: H/W queues properties. 536 * @special_blocks: points to an array containing special blocks info. 537 * @skip_special_blocks_cfg: special blocks skip configs. 538 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. 539 * available sensors. 540 * @uboot_ver: F/W U-boot version. 541 * @preboot_ver: F/W Preboot version. 542 * @dmmu: DRAM MMU address translation properties. 543 * @pmmu: PCI (host) MMU address translation properties. 544 * @pmmu_huge: PCI (host) MMU address translation properties for memory 545 * allocated with huge pages. 546 * @hints_dram_reserved_va_range: dram hint addresses reserved range. 547 * @hints_host_reserved_va_range: host hint addresses reserved range. 548 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved 549 * range. 550 * @sram_base_address: SRAM physical start address. 551 * @sram_end_address: SRAM physical end address. 552 * @sram_user_base_address - SRAM physical start address for user access. 553 * @dram_base_address: DRAM physical start address. 554 * @dram_end_address: DRAM physical end address. 555 * @dram_user_base_address: DRAM physical start address for user access. 556 * @dram_size: DRAM total size. 557 * @dram_pci_bar_size: size of PCI bar towards DRAM. 558 * @max_power_default: max power of the device after reset. 559 * @dc_power_default: power consumed by the device in mode idle. 560 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page 561 * fault. 562 * @pcie_dbi_base_address: Base address of the PCIE_DBI block. 563 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. 564 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. 565 * @mmu_dram_default_page_addr: DRAM default page physical address. 566 * @tpc_enabled_mask: which TPCs are enabled. 567 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. 568 * @dram_enabled_mask: which DRAMs are enabled. 569 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. 570 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used 571 * for hints validity check. 572 * @cfg_base_address: config space base address. 573 * @mmu_cache_mng_addr: address of the MMU cache. 574 * @mmu_cache_mng_size: size of the MMU cache. 575 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses 576 * to enable the device to access them. 577 * @host_base_address: host physical start address for host DMA from device 578 * @host_end_address: host physical end address for host DMA from device 579 * @max_freq_value: current max clk frequency. 580 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use 581 * in order to raise events toward FW. 582 * @clk_pll_index: clock PLL index that specify which PLL determines the clock 583 * we display to the user 584 * @mmu_pgt_size: MMU page tables total size. 585 * @mmu_pte_size: PTE size in MMU page tables. 586 * @mmu_hop_table_size: MMU hop table size. 587 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. 588 * @dram_page_size: page size for MMU DRAM allocation. 589 * @cfg_size: configuration space size on SRAM. 590 * @sram_size: total size of SRAM. 591 * @max_asid: maximum number of open contexts (ASIDs). 592 * @num_of_events: number of possible internal H/W IRQs. 593 * @psoc_pci_pll_nr: PCI PLL NR value. 594 * @psoc_pci_pll_nf: PCI PLL NF value. 595 * @psoc_pci_pll_od: PCI PLL OD value. 596 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. 597 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. 598 * @high_pll: high PLL frequency used by the device. 599 * @cb_pool_cb_cnt: number of CBs in the CB pool. 600 * @cb_pool_cb_size: size of each CB in the CB pool. 601 * @decoder_enabled_mask: which decoders are enabled. 602 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned. 603 * @rotator_enabled_mask: which rotators are enabled. 604 * @edma_enabled_mask: which EDMAs are enabled. 605 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means 606 * binned (at most one binned DMA). 607 * @max_pending_cs: maximum of concurrent pending command submissions 608 * @max_queues: maximum amount of queues in the system 609 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu 610 * capabilities reported by FW, bit description 611 * can be found in CPU_BOOT_DEV_STS0 612 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu 613 * capabilities reported by FW, bit description 614 * can be found in CPU_BOOT_DEV_STS1 615 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security 616 * status reported by FW, bit description can be 617 * found in CPU_BOOT_DEV_STS0 618 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security 619 * status reported by FW, bit description can be 620 * found in CPU_BOOT_DEV_STS1 621 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security 622 * status reported by FW, bit description can be 623 * found in CPU_BOOT_DEV_STS0 624 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security 625 * status reported by FW, bit description can be 626 * found in CPU_BOOT_DEV_STS1 627 * @max_dec: maximum number of decoders 628 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) 629 * 1- enabled, 0- isolated. 630 * @faulty_dram_cluster_map: mask of faulty DRAM cluster. 631 * 1- faulty cluster, 0- good cluster. 632 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) 633 * 1- enabled, 0- isolated. 634 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for 635 * which the property supports_user_set_page_size is true 636 * (i.e. the DRAM supports multiple page sizes), otherwise 637 * it will shall be equal to dram_page_size. 638 * @num_engine_cores: number of engine cpu cores. 639 * @max_num_of_engines: maximum number of all engines in the ASIC. 640 * @num_of_special_blocks: special_blocks array size. 641 * @glbl_err_cause_num: global err cause number. 642 * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is 643 * not supported. 644 * @collective_first_sob: first sync object available for collective use 645 * @collective_first_mon: first monitor available for collective use 646 * @sync_stream_first_sob: first sync object available for sync stream use 647 * @sync_stream_first_mon: first monitor available for sync stream use 648 * @first_available_user_sob: first sob available for the user 649 * @first_available_user_mon: first monitor available for the user 650 * @first_available_user_interrupt: first available interrupt reserved for the user 651 * @first_available_cq: first available CQ for the user. 652 * @user_interrupt_count: number of user interrupts. 653 * @user_dec_intr_count: number of decoder interrupts exposed to user. 654 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host. 655 * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset. 656 * @cache_line_size: device cache line size. 657 * @server_type: Server type that the ASIC is currently installed in. 658 * The value is according to enum hl_server_type in uapi file. 659 * @completion_queues_count: number of completion queues. 660 * @completion_mode: 0 - job based completion, 1 - cs based completion 661 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works 662 * in Master/Slave mode 663 * @fw_security_enabled: true if security measures are enabled in firmware, 664 * false otherwise 665 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from 666 * BOOT_DEV_STS0 667 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from 668 * BOOT_DEV_STS1 669 * @dram_supports_virtual_memory: is there an MMU towards the DRAM 670 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow 671 * @num_functional_hbms: number of functional HBMs in each DCORE. 672 * @hints_range_reservation: device support hint addresses range reservation. 673 * @iatu_done_by_fw: true if iATU configuration is being done by FW. 674 * @dynamic_fw_load: is dynamic FW load is supported. 675 * @gic_interrupts_enable: true if FW is not blocking GIC controller, 676 * false otherwise. 677 * @use_get_power_for_reset_history: To support backward compatibility for Goya 678 * and Gaudi 679 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. 680 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is 681 * initiated by user or TDR. This is only true 682 * in inference ASICs, as there is no real-world 683 * use-case of doing soft-reset in training (due 684 * to the fact that training runs on multiple 685 * devices) 686 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. 687 * @set_max_power_on_device_init: true if need to set max power in F/W on device init. 688 * @supports_user_set_page_size: true if user can set the allocation page size. 689 * @dma_mask: the dma mask to be set for this device 690 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. 691 * @supports_engine_modes: true if changing engines/engine_cores modes is supported. 692 */ 693 struct asic_fixed_properties { 694 struct hw_queue_properties *hw_queues_props; 695 struct hl_special_block_info *special_blocks; 696 struct hl_skip_blocks_cfg skip_special_blocks_cfg; 697 struct cpucp_info cpucp_info; 698 char uboot_ver[VERSION_MAX_LEN]; 699 char preboot_ver[VERSION_MAX_LEN]; 700 struct hl_mmu_properties dmmu; 701 struct hl_mmu_properties pmmu; 702 struct hl_mmu_properties pmmu_huge; 703 struct hl_hints_range hints_dram_reserved_va_range; 704 struct hl_hints_range hints_host_reserved_va_range; 705 struct hl_hints_range hints_host_hpage_reserved_va_range; 706 u64 sram_base_address; 707 u64 sram_end_address; 708 u64 sram_user_base_address; 709 u64 dram_base_address; 710 u64 dram_end_address; 711 u64 dram_user_base_address; 712 u64 dram_size; 713 u64 dram_pci_bar_size; 714 u64 max_power_default; 715 u64 dc_power_default; 716 u64 dram_size_for_default_page_mapping; 717 u64 pcie_dbi_base_address; 718 u64 pcie_aux_dbi_reg_addr; 719 u64 mmu_pgt_addr; 720 u64 mmu_dram_default_page_addr; 721 u64 tpc_enabled_mask; 722 u64 tpc_binning_mask; 723 u64 dram_enabled_mask; 724 u64 dram_binning_mask; 725 u64 dram_hints_align_mask; 726 u64 cfg_base_address; 727 u64 mmu_cache_mng_addr; 728 u64 mmu_cache_mng_size; 729 u64 device_dma_offset_for_host_access; 730 u64 host_base_address; 731 u64 host_end_address; 732 u64 max_freq_value; 733 u64 engine_core_interrupt_reg_addr; 734 u32 clk_pll_index; 735 u32 mmu_pgt_size; 736 u32 mmu_pte_size; 737 u32 mmu_hop_table_size; 738 u32 mmu_hop0_tables_total_size; 739 u32 dram_page_size; 740 u32 cfg_size; 741 u32 sram_size; 742 u32 max_asid; 743 u32 num_of_events; 744 u32 psoc_pci_pll_nr; 745 u32 psoc_pci_pll_nf; 746 u32 psoc_pci_pll_od; 747 u32 psoc_pci_pll_div_factor; 748 u32 psoc_timestamp_frequency; 749 u32 high_pll; 750 u32 cb_pool_cb_cnt; 751 u32 cb_pool_cb_size; 752 u32 decoder_enabled_mask; 753 u32 decoder_binning_mask; 754 u32 rotator_enabled_mask; 755 u32 edma_enabled_mask; 756 u32 edma_binning_mask; 757 u32 max_pending_cs; 758 u32 max_queues; 759 u32 fw_preboot_cpu_boot_dev_sts0; 760 u32 fw_preboot_cpu_boot_dev_sts1; 761 u32 fw_bootfit_cpu_boot_dev_sts0; 762 u32 fw_bootfit_cpu_boot_dev_sts1; 763 u32 fw_app_cpu_boot_dev_sts0; 764 u32 fw_app_cpu_boot_dev_sts1; 765 u32 max_dec; 766 u32 hmmu_hif_enabled_mask; 767 u32 faulty_dram_cluster_map; 768 u32 xbar_edge_enabled_mask; 769 u32 device_mem_alloc_default_page_size; 770 u32 num_engine_cores; 771 u32 max_num_of_engines; 772 u32 num_of_special_blocks; 773 u32 glbl_err_cause_num; 774 u32 hbw_flush_reg; 775 u16 collective_first_sob; 776 u16 collective_first_mon; 777 u16 sync_stream_first_sob; 778 u16 sync_stream_first_mon; 779 u16 first_available_user_sob[HL_MAX_DCORES]; 780 u16 first_available_user_mon[HL_MAX_DCORES]; 781 u16 first_available_user_interrupt; 782 u16 first_available_cq[HL_MAX_DCORES]; 783 u16 user_interrupt_count; 784 u16 user_dec_intr_count; 785 u16 tpc_interrupt_id; 786 u16 eq_interrupt_id; 787 u16 cache_line_size; 788 u16 server_type; 789 u8 completion_queues_count; 790 u8 completion_mode; 791 u8 mme_master_slave_mode; 792 u8 fw_security_enabled; 793 u8 fw_cpu_boot_dev_sts0_valid; 794 u8 fw_cpu_boot_dev_sts1_valid; 795 u8 dram_supports_virtual_memory; 796 u8 hard_reset_done_by_fw; 797 u8 num_functional_hbms; 798 u8 hints_range_reservation; 799 u8 iatu_done_by_fw; 800 u8 dynamic_fw_load; 801 u8 gic_interrupts_enable; 802 u8 use_get_power_for_reset_history; 803 u8 supports_compute_reset; 804 u8 allow_inference_soft_reset; 805 u8 configurable_stop_on_err; 806 u8 set_max_power_on_device_init; 807 u8 supports_user_set_page_size; 808 u8 dma_mask; 809 u8 supports_advanced_cpucp_rc; 810 u8 supports_engine_modes; 811 }; 812 813 /** 814 * struct hl_fence - software synchronization primitive 815 * @completion: fence is implemented using completion 816 * @refcount: refcount for this fence 817 * @cs_sequence: sequence of the corresponding command submission 818 * @stream_master_qid_map: streams masters QID bitmap to represent all streams 819 * masters QIDs that multi cs is waiting on 820 * @error: mark this fence with error 821 * @timestamp: timestamp upon completion 822 * @mcs_handling_done: indicates that corresponding command submission has 823 * finished msc handling, this does not mean it was part 824 * of the mcs 825 */ 826 struct hl_fence { 827 struct completion completion; 828 struct kref refcount; 829 u64 cs_sequence; 830 u32 stream_master_qid_map; 831 int error; 832 ktime_t timestamp; 833 u8 mcs_handling_done; 834 }; 835 836 /** 837 * struct hl_cs_compl - command submission completion object. 838 * @base_fence: hl fence object. 839 * @lock: spinlock to protect fence. 840 * @hdev: habanalabs device structure. 841 * @hw_sob: the H/W SOB used in this signal/wait CS. 842 * @encaps_sig_hdl: encaps signals handler. 843 * @cs_seq: command submission sequence number. 844 * @type: type of the CS - signal/wait. 845 * @sob_val: the SOB value that is used in this signal/wait CS. 846 * @sob_group: the SOB group that is used in this collective wait CS. 847 * @encaps_signals: indication whether it's a completion object of cs with 848 * encaps signals or not. 849 */ 850 struct hl_cs_compl { 851 struct hl_fence base_fence; 852 spinlock_t lock; 853 struct hl_device *hdev; 854 struct hl_hw_sob *hw_sob; 855 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 856 u64 cs_seq; 857 enum hl_cs_type type; 858 u16 sob_val; 859 u16 sob_group; 860 bool encaps_signals; 861 }; 862 863 /* 864 * Command Buffers 865 */ 866 867 /** 868 * struct hl_ts_buff - describes a timestamp buffer. 869 * @kernel_buff_address: Holds the internal buffer's kernel virtual address. 870 * @user_buff_address: Holds the user buffer's kernel virtual address. 871 * @kernel_buff_size: Holds the internal kernel buffer size. 872 */ 873 struct hl_ts_buff { 874 void *kernel_buff_address; 875 void *user_buff_address; 876 u32 kernel_buff_size; 877 }; 878 879 struct hl_mmap_mem_buf; 880 881 /** 882 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. 883 * @dev: back pointer to the owning device 884 * @lock: protects handles 885 * @handles: an idr holding all active handles to the memory buffers in the system. 886 */ 887 struct hl_mem_mgr { 888 struct device *dev; 889 spinlock_t lock; 890 struct idr handles; 891 }; 892 893 /** 894 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior 895 * @topic: string identifier used for logging 896 * @mem_id: memory type identifier, embedded in the handle and used to identify 897 * the memory type by handle. 898 * @alloc: callback executed on buffer allocation, shall allocate the memory, 899 * set it under buffer private, and set mappable size. 900 * @mmap: callback executed on mmap, must map the buffer to vma 901 * @release: callback executed on release, must free the resources used by the buffer 902 */ 903 struct hl_mmap_mem_buf_behavior { 904 const char *topic; 905 u64 mem_id; 906 907 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); 908 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); 909 void (*release)(struct hl_mmap_mem_buf *buf); 910 }; 911 912 /** 913 * struct hl_mmap_mem_buf - describes a single unified memory buffer 914 * @behavior: buffer behavior 915 * @mmg: back pointer to the unified memory manager 916 * @refcount: reference counter for buffer users 917 * @private: pointer to buffer behavior private data 918 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now 919 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, 920 * may change at runtime. 921 * @mappable_size: the original mappable size of the buffer, does not change after 922 * the allocation. 923 * @handle: the buffer id in mmg handles store 924 */ 925 struct hl_mmap_mem_buf { 926 struct hl_mmap_mem_buf_behavior *behavior; 927 struct hl_mem_mgr *mmg; 928 struct kref refcount; 929 void *private; 930 atomic_t mmap; 931 u64 real_mapped_size; 932 u64 mappable_size; 933 u64 handle; 934 }; 935 936 /** 937 * struct hl_cb - describes a Command Buffer. 938 * @hdev: pointer to device this CB belongs to. 939 * @ctx: pointer to the CB owner's context. 940 * @buf: back pointer to the parent mappable memory buffer 941 * @debugfs_list: node in debugfs list of command buffers. 942 * @pool_list: node in pool list of command buffers. 943 * @kernel_address: Holds the CB's kernel virtual address. 944 * @virtual_addr: Holds the CB's virtual address. 945 * @bus_address: Holds the CB's DMA address. 946 * @size: holds the CB's size. 947 * @roundup_size: holds the cb size after roundup to page size. 948 * @cs_cnt: holds number of CS that this CB participates in. 949 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed. 950 * @is_pool: true if CB was acquired from the pool, false otherwise. 951 * @is_internal: internally allocated 952 * @is_mmu_mapped: true if the CB is mapped to the device's MMU. 953 */ 954 struct hl_cb { 955 struct hl_device *hdev; 956 struct hl_ctx *ctx; 957 struct hl_mmap_mem_buf *buf; 958 struct list_head debugfs_list; 959 struct list_head pool_list; 960 void *kernel_address; 961 u64 virtual_addr; 962 dma_addr_t bus_address; 963 u32 size; 964 u32 roundup_size; 965 atomic_t cs_cnt; 966 atomic_t is_handle_destroyed; 967 u8 is_pool; 968 u8 is_internal; 969 u8 is_mmu_mapped; 970 }; 971 972 973 /* 974 * QUEUES 975 */ 976 977 struct hl_cs_job; 978 979 /* Queue length of external and HW queues */ 980 #define HL_QUEUE_LENGTH 4096 981 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) 982 983 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) 984 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" 985 #endif 986 987 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ 988 #define HL_CQ_LENGTH HL_QUEUE_LENGTH 989 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) 990 991 /* Must be power of 2 */ 992 #define HL_EQ_LENGTH 64 993 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) 994 995 /* Host <-> CPU-CP shared memory size */ 996 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M 997 998 /** 999 * struct hl_sync_stream_properties - 1000 * describes a H/W queue sync stream properties 1001 * @hw_sob: array of the used H/W SOBs by this H/W queue. 1002 * @next_sob_val: the next value to use for the currently used SOB. 1003 * @base_sob_id: the base SOB id of the SOBs used by this queue. 1004 * @base_mon_id: the base MON id of the MONs used by this queue. 1005 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue 1006 * in order to sync with all slave queues. 1007 * @collective_slave_mon_id: the MON id used by this slave queue in order to 1008 * sync with its master queue. 1009 * @collective_sob_id: current SOB id used by this collective slave queue 1010 * to signal its collective master queue upon completion. 1011 * @curr_sob_offset: the id offset to the currently used SOB from the 1012 * HL_RSVD_SOBS that are being used by this queue. 1013 */ 1014 struct hl_sync_stream_properties { 1015 struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; 1016 u16 next_sob_val; 1017 u16 base_sob_id; 1018 u16 base_mon_id; 1019 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; 1020 u16 collective_slave_mon_id; 1021 u16 collective_sob_id; 1022 u8 curr_sob_offset; 1023 }; 1024 1025 /** 1026 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals 1027 * handlers manager 1028 * @lock: protects handles. 1029 * @handles: an idr to hold all encapsulated signals handles. 1030 */ 1031 struct hl_encaps_signals_mgr { 1032 spinlock_t lock; 1033 struct idr handles; 1034 }; 1035 1036 /** 1037 * struct hl_hw_queue - describes a H/W transport queue. 1038 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. 1039 * @sync_stream_prop: sync stream queue properties 1040 * @queue_type: type of queue. 1041 * @collective_mode: collective mode of current queue 1042 * @kernel_address: holds the queue's kernel virtual address. 1043 * @bus_address: holds the queue's DMA address. 1044 * @pi: holds the queue's pi value. 1045 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). 1046 * @hw_queue_id: the id of the H/W queue. 1047 * @cq_id: the id for the corresponding CQ for this H/W queue. 1048 * @msi_vec: the IRQ number of the H/W queue. 1049 * @int_queue_len: length of internal queue (number of entries). 1050 * @valid: is the queue valid (we have array of 32 queues, not all of them 1051 * exist). 1052 * @supports_sync_stream: True if queue supports sync stream 1053 */ 1054 struct hl_hw_queue { 1055 struct hl_cs_job **shadow_queue; 1056 struct hl_sync_stream_properties sync_stream_prop; 1057 enum hl_queue_type queue_type; 1058 enum hl_collective_mode collective_mode; 1059 void *kernel_address; 1060 dma_addr_t bus_address; 1061 u32 pi; 1062 atomic_t ci; 1063 u32 hw_queue_id; 1064 u32 cq_id; 1065 u32 msi_vec; 1066 u16 int_queue_len; 1067 u8 valid; 1068 u8 supports_sync_stream; 1069 }; 1070 1071 /** 1072 * struct hl_cq - describes a completion queue 1073 * @hdev: pointer to the device structure 1074 * @kernel_address: holds the queue's kernel virtual address 1075 * @bus_address: holds the queue's DMA address 1076 * @cq_idx: completion queue index in array 1077 * @hw_queue_id: the id of the matching H/W queue 1078 * @ci: ci inside the queue 1079 * @pi: pi inside the queue 1080 * @free_slots_cnt: counter of free slots in queue 1081 */ 1082 struct hl_cq { 1083 struct hl_device *hdev; 1084 void *kernel_address; 1085 dma_addr_t bus_address; 1086 u32 cq_idx; 1087 u32 hw_queue_id; 1088 u32 ci; 1089 u32 pi; 1090 atomic_t free_slots_cnt; 1091 }; 1092 1093 enum hl_user_interrupt_type { 1094 HL_USR_INTERRUPT_CQ = 0, 1095 HL_USR_INTERRUPT_DECODER, 1096 HL_USR_INTERRUPT_TPC, 1097 HL_USR_INTERRUPT_UNEXPECTED 1098 }; 1099 1100 /** 1101 * struct hl_user_interrupt - holds user interrupt information 1102 * @hdev: pointer to the device structure 1103 * @type: user interrupt type 1104 * @wait_list_head: head to the list of user threads pending on this interrupt 1105 * @wait_list_lock: protects wait_list_head 1106 * @timestamp: last timestamp taken upon interrupt 1107 * @interrupt_id: msix interrupt id 1108 */ 1109 struct hl_user_interrupt { 1110 struct hl_device *hdev; 1111 enum hl_user_interrupt_type type; 1112 struct list_head wait_list_head; 1113 spinlock_t wait_list_lock; 1114 ktime_t timestamp; 1115 u32 interrupt_id; 1116 }; 1117 1118 /** 1119 * struct timestamp_reg_free_node - holds the timestamp registration free objects node 1120 * @free_objects_node: node in the list free_obj_jobs 1121 * @cq_cb: pointer to cq command buffer to be freed 1122 * @buf: pointer to timestamp buffer to be freed 1123 */ 1124 struct timestamp_reg_free_node { 1125 struct list_head free_objects_node; 1126 struct hl_cb *cq_cb; 1127 struct hl_mmap_mem_buf *buf; 1128 }; 1129 1130 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job 1131 * the job will be to pass over the free_obj_jobs list and put refcount to objects 1132 * in each node of the list 1133 * @free_obj: workqueue object to free timestamp registration node objects 1134 * @hdev: pointer to the device structure 1135 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) 1136 */ 1137 struct timestamp_reg_work_obj { 1138 struct work_struct free_obj; 1139 struct hl_device *hdev; 1140 struct list_head *free_obj_head; 1141 }; 1142 1143 /* struct timestamp_reg_info - holds the timestamp registration related data. 1144 * @buf: pointer to the timestamp buffer which include both user/kernel buffers. 1145 * relevant only when doing timestamps records registration. 1146 * @cq_cb: pointer to CQ counter CB. 1147 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp 1148 * relevant only when doing timestamps records 1149 * registration. 1150 * @in_use: indicates if the node already in use. relevant only when doing 1151 * timestamps records registration, since in this case the driver 1152 * will have it's own buffer which serve as a records pool instead of 1153 * allocating records dynamically. 1154 */ 1155 struct timestamp_reg_info { 1156 struct hl_mmap_mem_buf *buf; 1157 struct hl_cb *cq_cb; 1158 u64 *timestamp_kernel_addr; 1159 u8 in_use; 1160 }; 1161 1162 /** 1163 * struct hl_user_pending_interrupt - holds a context to a user thread 1164 * pending on an interrupt 1165 * @ts_reg_info: holds the timestamps registration nodes info 1166 * @wait_list_node: node in the list of user threads pending on an interrupt 1167 * @fence: hl fence object for interrupt completion 1168 * @cq_target_value: CQ target value 1169 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt 1170 * handler for target value comparison 1171 */ 1172 struct hl_user_pending_interrupt { 1173 struct timestamp_reg_info ts_reg_info; 1174 struct list_head wait_list_node; 1175 struct hl_fence fence; 1176 u64 cq_target_value; 1177 u64 *cq_kernel_addr; 1178 }; 1179 1180 /** 1181 * struct hl_eq - describes the event queue (single one per device) 1182 * @hdev: pointer to the device structure 1183 * @kernel_address: holds the queue's kernel virtual address 1184 * @bus_address: holds the queue's DMA address 1185 * @ci: ci inside the queue 1186 * @prev_eqe_index: the index of the previous event queue entry. The index of 1187 * the current entry's index must be +1 of the previous one. 1188 * @check_eqe_index: do we need to check the index of the current entry vs. the 1189 * previous one. This is for backward compatibility with older 1190 * firmwares 1191 */ 1192 struct hl_eq { 1193 struct hl_device *hdev; 1194 void *kernel_address; 1195 dma_addr_t bus_address; 1196 u32 ci; 1197 u32 prev_eqe_index; 1198 bool check_eqe_index; 1199 }; 1200 1201 /** 1202 * struct hl_dec - describes a decoder sw instance. 1203 * @hdev: pointer to the device structure. 1204 * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt. 1205 * @core_id: ID of the decoder. 1206 * @base_addr: base address of the decoder. 1207 */ 1208 struct hl_dec { 1209 struct hl_device *hdev; 1210 struct work_struct abnrm_intr_work; 1211 u32 core_id; 1212 u32 base_addr; 1213 }; 1214 1215 /** 1216 * enum hl_asic_type - supported ASIC types. 1217 * @ASIC_INVALID: Invalid ASIC type. 1218 * @ASIC_GOYA: Goya device (HL-1000). 1219 * @ASIC_GAUDI: Gaudi device (HL-2000). 1220 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). 1221 * @ASIC_GAUDI2: Gaudi2 device. 1222 * @ASIC_GAUDI2B: Gaudi2B device. 1223 */ 1224 enum hl_asic_type { 1225 ASIC_INVALID, 1226 ASIC_GOYA, 1227 ASIC_GAUDI, 1228 ASIC_GAUDI_SEC, 1229 ASIC_GAUDI2, 1230 ASIC_GAUDI2B, 1231 }; 1232 1233 struct hl_cs_parser; 1234 1235 /** 1236 * enum hl_pm_mng_profile - power management profile. 1237 * @PM_AUTO: internal clock is set by the Linux driver. 1238 * @PM_MANUAL: internal clock is set by the user. 1239 * @PM_LAST: last power management type. 1240 */ 1241 enum hl_pm_mng_profile { 1242 PM_AUTO = 1, 1243 PM_MANUAL, 1244 PM_LAST 1245 }; 1246 1247 /** 1248 * enum hl_pll_frequency - PLL frequency. 1249 * @PLL_HIGH: high frequency. 1250 * @PLL_LOW: low frequency. 1251 * @PLL_LAST: last frequency values that were configured by the user. 1252 */ 1253 enum hl_pll_frequency { 1254 PLL_HIGH = 1, 1255 PLL_LOW, 1256 PLL_LAST 1257 }; 1258 1259 #define PLL_REF_CLK 50 1260 1261 enum div_select_defs { 1262 DIV_SEL_REF_CLK = 0, 1263 DIV_SEL_PLL_CLK = 1, 1264 DIV_SEL_DIVIDED_REF = 2, 1265 DIV_SEL_DIVIDED_PLL = 3, 1266 }; 1267 1268 enum debugfs_access_type { 1269 DEBUGFS_READ8, 1270 DEBUGFS_WRITE8, 1271 DEBUGFS_READ32, 1272 DEBUGFS_WRITE32, 1273 DEBUGFS_READ64, 1274 DEBUGFS_WRITE64, 1275 }; 1276 1277 enum pci_region { 1278 PCI_REGION_CFG, 1279 PCI_REGION_SRAM, 1280 PCI_REGION_DRAM, 1281 PCI_REGION_SP_SRAM, 1282 PCI_REGION_NUMBER, 1283 }; 1284 1285 /** 1286 * struct pci_mem_region - describe memory region in a PCI bar 1287 * @region_base: region base address 1288 * @region_size: region size 1289 * @bar_size: size of the BAR 1290 * @offset_in_bar: region offset into the bar 1291 * @bar_id: bar ID of the region 1292 * @used: if used 1, otherwise 0 1293 */ 1294 struct pci_mem_region { 1295 u64 region_base; 1296 u64 region_size; 1297 u64 bar_size; 1298 u64 offset_in_bar; 1299 u8 bar_id; 1300 u8 used; 1301 }; 1302 1303 /** 1304 * struct static_fw_load_mgr - static FW load manager 1305 * @preboot_version_max_off: max offset to preboot version 1306 * @boot_fit_version_max_off: max offset to boot fit version 1307 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages 1308 * @cpu_cmd_status_to_host_reg: register address for CPU command status response 1309 * @cpu_boot_status_reg: boot status register 1310 * @cpu_boot_dev_status0_reg: boot device status register 0 1311 * @cpu_boot_dev_status1_reg: boot device status register 1 1312 * @boot_err0_reg: boot error register 0 1313 * @boot_err1_reg: boot error register 1 1314 * @preboot_version_offset_reg: SRAM offset to preboot version register 1315 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register 1316 * @sram_offset_mask: mask for getting offset into the SRAM 1317 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg 1318 */ 1319 struct static_fw_load_mgr { 1320 u64 preboot_version_max_off; 1321 u64 boot_fit_version_max_off; 1322 u32 kmd_msg_to_cpu_reg; 1323 u32 cpu_cmd_status_to_host_reg; 1324 u32 cpu_boot_status_reg; 1325 u32 cpu_boot_dev_status0_reg; 1326 u32 cpu_boot_dev_status1_reg; 1327 u32 boot_err0_reg; 1328 u32 boot_err1_reg; 1329 u32 preboot_version_offset_reg; 1330 u32 boot_fit_version_offset_reg; 1331 u32 sram_offset_mask; 1332 u32 cpu_reset_wait_msec; 1333 }; 1334 1335 /** 1336 * struct fw_response - FW response to LKD command 1337 * @ram_offset: descriptor offset into the RAM 1338 * @ram_type: RAM type containing the descriptor (SRAM/DRAM) 1339 * @status: command status 1340 */ 1341 struct fw_response { 1342 u32 ram_offset; 1343 u8 ram_type; 1344 u8 status; 1345 }; 1346 1347 /** 1348 * struct dynamic_fw_load_mgr - dynamic FW load manager 1349 * @response: FW to LKD response 1350 * @comm_desc: the communication descriptor with FW 1351 * @image_region: region to copy the FW image to 1352 * @fw_image_size: size of FW image to load 1353 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond 1354 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used 1355 */ 1356 struct dynamic_fw_load_mgr { 1357 struct fw_response response; 1358 struct lkd_fw_comms_desc comm_desc; 1359 struct pci_mem_region *image_region; 1360 size_t fw_image_size; 1361 u32 wait_for_bl_timeout; 1362 bool fw_desc_valid; 1363 }; 1364 1365 /** 1366 * struct pre_fw_load_props - needed properties for pre-FW load 1367 * @cpu_boot_status_reg: cpu_boot_status register address 1368 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address 1369 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address 1370 * @boot_err0_reg: boot_err0 register address 1371 * @boot_err1_reg: boot_err1 register address 1372 * @wait_for_preboot_timeout: timeout to poll for preboot ready 1373 */ 1374 struct pre_fw_load_props { 1375 u32 cpu_boot_status_reg; 1376 u32 sts_boot_dev_sts0_reg; 1377 u32 sts_boot_dev_sts1_reg; 1378 u32 boot_err0_reg; 1379 u32 boot_err1_reg; 1380 u32 wait_for_preboot_timeout; 1381 }; 1382 1383 /** 1384 * struct fw_image_props - properties of FW image 1385 * @image_name: name of the image 1386 * @src_off: offset in src FW to copy from 1387 * @copy_size: amount of bytes to copy (0 to copy the whole binary) 1388 */ 1389 struct fw_image_props { 1390 char *image_name; 1391 u32 src_off; 1392 u32 copy_size; 1393 }; 1394 1395 /** 1396 * struct fw_load_mgr - manager FW loading process 1397 * @dynamic_loader: specific structure for dynamic load 1398 * @static_loader: specific structure for static load 1399 * @pre_fw_load_props: parameter for pre FW load 1400 * @boot_fit_img: boot fit image properties 1401 * @linux_img: linux image properties 1402 * @cpu_timeout: CPU response timeout in usec 1403 * @boot_fit_timeout: Boot fit load timeout in usec 1404 * @skip_bmc: should BMC be skipped 1405 * @sram_bar_id: SRAM bar ID 1406 * @dram_bar_id: DRAM bar ID 1407 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded 1408 * component. values are set according to enum hl_fw_types. 1409 */ 1410 struct fw_load_mgr { 1411 union { 1412 struct dynamic_fw_load_mgr dynamic_loader; 1413 struct static_fw_load_mgr static_loader; 1414 }; 1415 struct pre_fw_load_props pre_fw_load; 1416 struct fw_image_props boot_fit_img; 1417 struct fw_image_props linux_img; 1418 u32 cpu_timeout; 1419 u32 boot_fit_timeout; 1420 u8 skip_bmc; 1421 u8 sram_bar_id; 1422 u8 dram_bar_id; 1423 u8 fw_comp_loaded; 1424 }; 1425 1426 struct hl_cs; 1427 1428 /** 1429 * struct engines_data - asic engines data 1430 * @buf: buffer for engines data in ascii 1431 * @actual_size: actual size of data that was written by the driver to the allocated buffer 1432 * @allocated_buf_size: total size of allocated buffer 1433 */ 1434 struct engines_data { 1435 char *buf; 1436 int actual_size; 1437 u32 allocated_buf_size; 1438 }; 1439 1440 /** 1441 * struct hl_asic_funcs - ASIC specific functions that are can be called from 1442 * common code. 1443 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. 1444 * @early_fini: tears down what was done in early_init. 1445 * @late_init: sets up late driver/hw state (post hw_init) - Optional. 1446 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. 1447 * @sw_init: sets up driver state, does not configure H/W. 1448 * @sw_fini: tears down driver state, does not configure H/W. 1449 * @hw_init: sets up the H/W state. 1450 * @hw_fini: tears down the H/W state. 1451 * @halt_engines: halt engines, needed for reset sequence. This also disables 1452 * interrupts from the device. Should be called before 1453 * hw_fini and before CS rollback. 1454 * @suspend: handles IP specific H/W or SW changes for suspend. 1455 * @resume: handles IP specific H/W or SW changes for resume. 1456 * @mmap: maps a memory. 1457 * @ring_doorbell: increment PI on a given QMAN. 1458 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific 1459 * function because the PQs are located in different memory areas 1460 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of 1461 * writing the PQE must match the destination memory area 1462 * properties. 1463 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling 1464 * dma_alloc_coherent(). This is ASIC function because 1465 * its implementation is not trivial when the driver 1466 * is loaded in simulation mode (not upstreamed). 1467 * @asic_dma_free_coherent: Free coherent DMA memory by calling 1468 * dma_free_coherent(). This is ASIC function because 1469 * its implementation is not trivial when the driver 1470 * is loaded in simulation mode (not upstreamed). 1471 * @scrub_device_mem: Scrub the entire SRAM and DRAM. 1472 * @scrub_device_dram: Scrub the dram memory of the device. 1473 * @get_int_queue_base: get the internal queue base address. 1474 * @test_queues: run simple test on all queues for sanity check. 1475 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. 1476 * size of allocation is HL_DMA_POOL_BLK_SIZE. 1477 * @asic_dma_pool_free: free small DMA allocation from pool. 1478 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. 1479 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. 1480 * @asic_dma_unmap_single: unmap a single DMA buffer 1481 * @asic_dma_map_single: map a single buffer to a DMA 1482 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table. 1483 * @cs_parser: parse Command Submission. 1484 * @asic_dma_map_sgtable: DMA map scatter-gather table. 1485 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. 1486 * @update_eq_ci: update event queue CI. 1487 * @context_switch: called upon ASID context switch. 1488 * @restore_phase_topology: clear all SOBs amd MONs. 1489 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's 1490 * internal memory via DMA engine. 1491 * @add_device_attr: add ASIC specific device attributes. 1492 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. 1493 * @get_events_stat: retrieve event queue entries histogram. 1494 * @read_pte: read MMU page table entry from DRAM. 1495 * @write_pte: write MMU page table entry to DRAM. 1496 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft 1497 * (L1 only) or hard (L0 & L1) flush. 1498 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. 1499 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. 1500 * @send_heartbeat: send is-alive packet to CPU-CP and verify response. 1501 * @debug_coresight: perform certain actions on Coresight for debugging. 1502 * @is_device_idle: return true if device is idle, false otherwise. 1503 * @compute_reset_late_init: perform certain actions needed after a compute reset 1504 * @hw_queues_lock: acquire H/W queues lock. 1505 * @hw_queues_unlock: release H/W queues lock. 1506 * @get_pci_id: retrieve PCI ID. 1507 * @get_eeprom_data: retrieve EEPROM data from F/W. 1508 * @get_monitor_dump: retrieve monitor registers dump from F/W. 1509 * @send_cpu_message: send message to F/W. If the message is timedout, the 1510 * driver will eventually reset the device. The timeout can 1511 * be determined by the calling function or it can be 0 and 1512 * then the timeout is the default timeout for the specific 1513 * ASIC 1514 * @get_hw_state: retrieve the H/W state 1515 * @pci_bars_map: Map PCI BARs. 1516 * @init_iatu: Initialize the iATU unit inside the PCI controller. 1517 * @rreg: Read a register. Needed for simulator support. 1518 * @wreg: Write a register. Needed for simulator support. 1519 * @halt_coresight: stop the ETF and ETR traces. 1520 * @ctx_init: context dependent initialization. 1521 * @ctx_fini: context dependent cleanup. 1522 * @pre_schedule_cs: Perform pre-CS-scheduling operations. 1523 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. 1524 * @load_firmware_to_device: load the firmware to the device's memory 1525 * @load_boot_fit_to_device: load boot fit to device's memory 1526 * @get_signal_cb_size: Get signal CB size. 1527 * @get_wait_cb_size: Get wait CB size. 1528 * @gen_signal_cb: Generate a signal CB. 1529 * @gen_wait_cb: Generate a wait CB. 1530 * @reset_sob: Reset a SOB. 1531 * @reset_sob_group: Reset SOB group 1532 * @get_device_time: Get the device time. 1533 * @pb_print_security_errors: print security errors according block and cause 1534 * @collective_wait_init_cs: Generate collective master/slave packets 1535 * and place them in the relevant cs jobs 1536 * @collective_wait_create_jobs: allocate collective wait cs jobs 1537 * @get_dec_base_addr: get the base address of a given decoder. 1538 * @scramble_addr: Routine to scramble the address prior of mapping it 1539 * in the MMU. 1540 * @descramble_addr: Routine to de-scramble the address prior of 1541 * showing it to users. 1542 * @ack_protection_bits_errors: ack and dump all security violations 1543 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. 1544 * also returns the size of the block if caller supplies 1545 * a valid pointer for it 1546 * @hw_block_mmap: mmap a HW block with a given id. 1547 * @enable_events_from_fw: send interrupt to firmware to notify them the 1548 * driver is ready to receive asynchronous events. This 1549 * function should be called during the first init and 1550 * after every hard-reset of the device 1551 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. 1552 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event 1553 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to 1554 * generic f/w compatible PLL Indexes 1555 * @init_firmware_preload_params: initialize pre FW-load parameters. 1556 * @init_firmware_loader: initialize data for FW loader. 1557 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling 1558 * @state_dump_init: initialize constants required for state dump 1559 * @get_sob_addr: get SOB base address offset. 1560 * @set_pci_memory_regions: setting properties of PCI memory regions 1561 * @get_stream_master_qid_arr: get pointer to stream masters QID array 1562 * @check_if_razwi_happened: check if there was a razwi due to RR violation. 1563 * @access_dev_mem: access device memory 1564 * @set_dram_bar_base: set the base of the DRAM BAR 1565 * @set_engine_cores: set a config command to engine cores 1566 * @set_engines: set a config command to user engines 1567 * @send_device_activity: indication to FW about device availability 1568 * @set_dram_properties: set DRAM related properties. 1569 * @set_binning_masks: set binning/enable masks for all relevant components. 1570 */ 1571 struct hl_asic_funcs { 1572 int (*early_init)(struct hl_device *hdev); 1573 int (*early_fini)(struct hl_device *hdev); 1574 int (*late_init)(struct hl_device *hdev); 1575 void (*late_fini)(struct hl_device *hdev); 1576 int (*sw_init)(struct hl_device *hdev); 1577 int (*sw_fini)(struct hl_device *hdev); 1578 int (*hw_init)(struct hl_device *hdev); 1579 int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1580 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1581 int (*suspend)(struct hl_device *hdev); 1582 int (*resume)(struct hl_device *hdev); 1583 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1584 void *cpu_addr, dma_addr_t dma_addr, size_t size); 1585 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); 1586 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, 1587 struct hl_bd *bd); 1588 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, 1589 dma_addr_t *dma_handle, gfp_t flag); 1590 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, 1591 void *cpu_addr, dma_addr_t dma_handle); 1592 int (*scrub_device_mem)(struct hl_device *hdev); 1593 int (*scrub_device_dram)(struct hl_device *hdev, u64 val); 1594 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, 1595 dma_addr_t *dma_handle, u16 *queue_len); 1596 int (*test_queues)(struct hl_device *hdev); 1597 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, 1598 gfp_t mem_flags, dma_addr_t *dma_handle); 1599 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, 1600 dma_addr_t dma_addr); 1601 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, 1602 size_t size, dma_addr_t *dma_handle); 1603 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, 1604 size_t size, void *vaddr); 1605 void (*asic_dma_unmap_single)(struct hl_device *hdev, 1606 dma_addr_t dma_addr, int len, 1607 enum dma_data_direction dir); 1608 dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev, 1609 void *addr, int len, 1610 enum dma_data_direction dir); 1611 void (*hl_dma_unmap_sgtable)(struct hl_device *hdev, 1612 struct sg_table *sgt, 1613 enum dma_data_direction dir); 1614 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); 1615 int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1616 enum dma_data_direction dir); 1617 void (*add_end_of_cb_packets)(struct hl_device *hdev, 1618 void *kernel_address, u32 len, 1619 u32 original_len, 1620 u64 cq_addr, u32 cq_val, u32 msix_num, 1621 bool eb); 1622 void (*update_eq_ci)(struct hl_device *hdev, u32 val); 1623 int (*context_switch)(struct hl_device *hdev, u32 asid); 1624 void (*restore_phase_topology)(struct hl_device *hdev); 1625 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, 1626 void *blob_addr); 1627 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, 1628 struct attribute_group *dev_vrm_attr_grp); 1629 void (*handle_eqe)(struct hl_device *hdev, 1630 struct hl_eq_entry *eq_entry); 1631 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, 1632 u32 *size); 1633 u64 (*read_pte)(struct hl_device *hdev, u64 addr); 1634 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); 1635 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, 1636 u32 flags); 1637 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, 1638 u32 flags, u32 asid, u64 va, u64 size); 1639 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 1640 int (*send_heartbeat)(struct hl_device *hdev); 1641 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); 1642 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, 1643 struct engines_data *e); 1644 int (*compute_reset_late_init)(struct hl_device *hdev); 1645 void (*hw_queues_lock)(struct hl_device *hdev); 1646 void (*hw_queues_unlock)(struct hl_device *hdev); 1647 u32 (*get_pci_id)(struct hl_device *hdev); 1648 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); 1649 int (*get_monitor_dump)(struct hl_device *hdev, void *data); 1650 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, 1651 u16 len, u32 timeout, u64 *result); 1652 int (*pci_bars_map)(struct hl_device *hdev); 1653 int (*init_iatu)(struct hl_device *hdev); 1654 u32 (*rreg)(struct hl_device *hdev, u32 reg); 1655 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); 1656 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); 1657 int (*ctx_init)(struct hl_ctx *ctx); 1658 void (*ctx_fini)(struct hl_ctx *ctx); 1659 int (*pre_schedule_cs)(struct hl_cs *cs); 1660 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); 1661 int (*load_firmware_to_device)(struct hl_device *hdev); 1662 int (*load_boot_fit_to_device)(struct hl_device *hdev); 1663 u32 (*get_signal_cb_size)(struct hl_device *hdev); 1664 u32 (*get_wait_cb_size)(struct hl_device *hdev); 1665 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, 1666 u32 size, bool eb); 1667 u32 (*gen_wait_cb)(struct hl_device *hdev, 1668 struct hl_gen_wait_properties *prop); 1669 void (*reset_sob)(struct hl_device *hdev, void *data); 1670 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); 1671 u64 (*get_device_time)(struct hl_device *hdev); 1672 void (*pb_print_security_errors)(struct hl_device *hdev, 1673 u32 block_addr, u32 cause, u32 offended_addr); 1674 int (*collective_wait_init_cs)(struct hl_cs *cs); 1675 int (*collective_wait_create_jobs)(struct hl_device *hdev, 1676 struct hl_ctx *ctx, struct hl_cs *cs, 1677 u32 wait_queue_id, u32 collective_engine_id, 1678 u32 encaps_signal_offset); 1679 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); 1680 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); 1681 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); 1682 void (*ack_protection_bits_errors)(struct hl_device *hdev); 1683 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, 1684 u32 *block_size, u32 *block_id); 1685 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1686 u32 block_id, u32 block_size); 1687 void (*enable_events_from_fw)(struct hl_device *hdev); 1688 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); 1689 void (*get_msi_info)(__le32 *table); 1690 int (*map_pll_idx_to_fw_idx)(u32 pll_idx); 1691 void (*init_firmware_preload_params)(struct hl_device *hdev); 1692 void (*init_firmware_loader)(struct hl_device *hdev); 1693 void (*init_cpu_scrambler_dram)(struct hl_device *hdev); 1694 void (*state_dump_init)(struct hl_device *hdev); 1695 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); 1696 void (*set_pci_memory_regions)(struct hl_device *hdev); 1697 u32* (*get_stream_master_qid_arr)(void); 1698 void (*check_if_razwi_happened)(struct hl_device *hdev); 1699 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 1700 u32 page_size, u32 *real_page_size, bool is_dram_addr); 1701 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, 1702 u64 addr, u64 *val, enum debugfs_access_type acc_type); 1703 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); 1704 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, 1705 u32 num_cores, u32 core_command); 1706 int (*set_engines)(struct hl_device *hdev, u32 *engine_ids, 1707 u32 num_engines, u32 engine_command); 1708 int (*send_device_activity)(struct hl_device *hdev, bool open); 1709 int (*set_dram_properties)(struct hl_device *hdev); 1710 int (*set_binning_masks)(struct hl_device *hdev); 1711 }; 1712 1713 1714 /* 1715 * CONTEXTS 1716 */ 1717 1718 #define HL_KERNEL_ASID_ID 0 1719 1720 /** 1721 * enum hl_va_range_type - virtual address range type. 1722 * @HL_VA_RANGE_TYPE_HOST: range type of host pages 1723 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages 1724 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages 1725 */ 1726 enum hl_va_range_type { 1727 HL_VA_RANGE_TYPE_HOST, 1728 HL_VA_RANGE_TYPE_HOST_HUGE, 1729 HL_VA_RANGE_TYPE_DRAM, 1730 HL_VA_RANGE_TYPE_MAX 1731 }; 1732 1733 /** 1734 * struct hl_va_range - virtual addresses range. 1735 * @lock: protects the virtual addresses list. 1736 * @list: list of virtual addresses blocks available for mappings. 1737 * @start_addr: range start address. 1738 * @end_addr: range end address. 1739 * @page_size: page size of this va range. 1740 */ 1741 struct hl_va_range { 1742 struct mutex lock; 1743 struct list_head list; 1744 u64 start_addr; 1745 u64 end_addr; 1746 u32 page_size; 1747 }; 1748 1749 /** 1750 * struct hl_cs_counters_atomic - command submission counters 1751 * @out_of_mem_drop_cnt: dropped due to memory allocation issue 1752 * @parsing_drop_cnt: dropped due to error in packet parsing 1753 * @queue_full_drop_cnt: dropped due to queue full 1754 * @device_in_reset_drop_cnt: dropped due to device in reset 1755 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight 1756 * @validation_drop_cnt: dropped due to error in validation 1757 */ 1758 struct hl_cs_counters_atomic { 1759 atomic64_t out_of_mem_drop_cnt; 1760 atomic64_t parsing_drop_cnt; 1761 atomic64_t queue_full_drop_cnt; 1762 atomic64_t device_in_reset_drop_cnt; 1763 atomic64_t max_cs_in_flight_drop_cnt; 1764 atomic64_t validation_drop_cnt; 1765 }; 1766 1767 /** 1768 * struct hl_dmabuf_priv - a dma-buf private object. 1769 * @dmabuf: pointer to dma-buf object. 1770 * @ctx: pointer to the dma-buf owner's context. 1771 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported 1772 * where virtual memory is supported. 1773 * @memhash_hnode: pointer to the memhash node. this object holds the export count. 1774 * @device_address: physical address of the device's memory. Relevant only 1775 * if phys_pg_pack is NULL (dma-buf was exported from address). 1776 * The total size can be taken from the dmabuf object. 1777 */ 1778 struct hl_dmabuf_priv { 1779 struct dma_buf *dmabuf; 1780 struct hl_ctx *ctx; 1781 struct hl_vm_phys_pg_pack *phys_pg_pack; 1782 struct hl_vm_hash_node *memhash_hnode; 1783 uint64_t device_address; 1784 }; 1785 1786 #define HL_CS_OUTCOME_HISTORY_LEN 256 1787 1788 /** 1789 * struct hl_cs_outcome - represents a single completed CS outcome 1790 * @list_link: link to either container's used list or free list 1791 * @map_link: list to the container hash map 1792 * @ts: completion ts 1793 * @seq: the original cs sequence 1794 * @error: error code cs completed with, if any 1795 */ 1796 struct hl_cs_outcome { 1797 struct list_head list_link; 1798 struct hlist_node map_link; 1799 ktime_t ts; 1800 u64 seq; 1801 int error; 1802 }; 1803 1804 /** 1805 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes 1806 * @outcome_map: index of completed CS searchable by sequence number 1807 * @used_list: list of outcome objects currently in use 1808 * @free_list: list of outcome objects currently not in use 1809 * @nodes_pool: a static pool of pre-allocated outcome objects 1810 * @db_lock: any operation on the store must take this lock 1811 */ 1812 struct hl_cs_outcome_store { 1813 DECLARE_HASHTABLE(outcome_map, 8); 1814 struct list_head used_list; 1815 struct list_head free_list; 1816 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; 1817 spinlock_t db_lock; 1818 }; 1819 1820 /** 1821 * struct hl_ctx - user/kernel context. 1822 * @mem_hash: holds mapping from virtual address to virtual memory area 1823 * descriptor (hl_vm_phys_pg_list or hl_userptr). 1824 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. 1825 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from 1826 * MMU-hop-page physical address to its host-resident 1827 * pgt_info structure. 1828 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). 1829 * @hdev: pointer to the device structure. 1830 * @refcount: reference counter for the context. Context is released only when 1831 * this hits 0. It is incremented on CS and CS_WAIT. 1832 * @cs_pending: array of hl fence objects representing pending CS. 1833 * @outcome_store: storage data structure used to remember outcomes of completed 1834 * command submissions for a long time after CS id wraparound. 1835 * @va_range: holds available virtual addresses for host and dram mappings. 1836 * @mem_hash_lock: protects the mem_hash. 1837 * @hw_block_list_lock: protects the HW block memory list. 1838 * @debugfs_list: node in debugfs list of contexts. 1839 * @hw_block_mem_list: list of HW block virtual mapped addresses. 1840 * @cs_counters: context command submission counters. 1841 * @cb_va_pool: device VA pool for command buffers which are mapped to the 1842 * device's MMU. 1843 * @sig_mgr: encaps signals handle manager. 1844 * @cb_va_pool_base: the base address for the device VA pool 1845 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed 1846 * to user so user could inquire about CS. It is used as 1847 * index to cs_pending array. 1848 * @dram_default_hops: array that holds all hops addresses needed for default 1849 * DRAM mapping. 1850 * @cs_lock: spinlock to protect cs_sequence. 1851 * @dram_phys_mem: amount of used physical DRAM memory by this context. 1852 * @thread_ctx_switch_token: token to prevent multiple threads of the same 1853 * context from running the context switch phase. 1854 * Only a single thread should run it. 1855 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run 1856 * the context switch phase from moving to their 1857 * execution phase before the context switch phase 1858 * has finished. 1859 * @asid: context's unique address space ID in the device's MMU. 1860 * @handle: context's opaque handle for user 1861 */ 1862 struct hl_ctx { 1863 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); 1864 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); 1865 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); 1866 struct hl_fpriv *hpriv; 1867 struct hl_device *hdev; 1868 struct kref refcount; 1869 struct hl_fence **cs_pending; 1870 struct hl_cs_outcome_store outcome_store; 1871 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; 1872 struct mutex mem_hash_lock; 1873 struct mutex hw_block_list_lock; 1874 struct list_head debugfs_list; 1875 struct list_head hw_block_mem_list; 1876 struct hl_cs_counters_atomic cs_counters; 1877 struct gen_pool *cb_va_pool; 1878 struct hl_encaps_signals_mgr sig_mgr; 1879 u64 cb_va_pool_base; 1880 u64 cs_sequence; 1881 u64 *dram_default_hops; 1882 spinlock_t cs_lock; 1883 atomic64_t dram_phys_mem; 1884 atomic_t thread_ctx_switch_token; 1885 u32 thread_ctx_switch_wait_token; 1886 u32 asid; 1887 u32 handle; 1888 }; 1889 1890 /** 1891 * struct hl_ctx_mgr - for handling multiple contexts. 1892 * @lock: protects ctx_handles. 1893 * @handles: idr to hold all ctx handles. 1894 */ 1895 struct hl_ctx_mgr { 1896 struct mutex lock; 1897 struct idr handles; 1898 }; 1899 1900 1901 /* 1902 * COMMAND SUBMISSIONS 1903 */ 1904 1905 /** 1906 * struct hl_userptr - memory mapping chunk information 1907 * @vm_type: type of the VM. 1908 * @job_node: linked-list node for hanging the object on the Job's list. 1909 * @pages: pointer to struct page array 1910 * @npages: size of @pages array 1911 * @sgt: pointer to the scatter-gather table that holds the pages. 1912 * @dir: for DMA unmapping, the direction must be supplied, so save it. 1913 * @debugfs_list: node in debugfs list of command submissions. 1914 * @pid: the pid of the user process owning the memory 1915 * @addr: user-space virtual address of the start of the memory area. 1916 * @size: size of the memory area to pin & map. 1917 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. 1918 */ 1919 struct hl_userptr { 1920 enum vm_type vm_type; /* must be first */ 1921 struct list_head job_node; 1922 struct page **pages; 1923 unsigned int npages; 1924 struct sg_table *sgt; 1925 enum dma_data_direction dir; 1926 struct list_head debugfs_list; 1927 pid_t pid; 1928 u64 addr; 1929 u64 size; 1930 u8 dma_mapped; 1931 }; 1932 1933 /** 1934 * struct hl_cs - command submission. 1935 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. 1936 * @ctx: the context this CS belongs to. 1937 * @job_list: list of the CS's jobs in the various queues. 1938 * @job_lock: spinlock for the CS's jobs list. Needed for free_job. 1939 * @refcount: reference counter for usage of the CS. 1940 * @fence: pointer to the fence object of this CS. 1941 * @signal_fence: pointer to the fence object of the signal CS (used by wait 1942 * CS only). 1943 * @finish_work: workqueue object to run when CS is completed by H/W. 1944 * @work_tdr: delayed work node for TDR. 1945 * @mirror_node : node in device mirror list of command submissions. 1946 * @staged_cs_node: node in the staged cs list. 1947 * @debugfs_list: node in debugfs list of command submissions. 1948 * @encaps_sig_hdl: holds the encaps signals handle. 1949 * @sequence: the sequence number of this CS. 1950 * @staged_sequence: the sequence of the staged submission this CS is part of, 1951 * relevant only if staged_cs is set. 1952 * @timeout_jiffies: cs timeout in jiffies. 1953 * @submission_time_jiffies: submission time of the cs 1954 * @type: CS_TYPE_*. 1955 * @jobs_cnt: counter of submitted jobs on all queues. 1956 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. 1957 * @completion_timestamp: timestamp of the last completed cs job. 1958 * @sob_addr_offset: sob offset from the configuration base address. 1959 * @initial_sob_count: count of completed signals in SOB before current submission of signal or 1960 * cs with encaps signals. 1961 * @submitted: true if CS was submitted to H/W. 1962 * @completed: true if CS was completed by device. 1963 * @timedout : true if CS was timedout. 1964 * @tdr_active: true if TDR was activated for this CS (to prevent 1965 * double TDR activation). 1966 * @aborted: true if CS was aborted due to some device error. 1967 * @timestamp: true if a timestamp must be captured upon completion. 1968 * @staged_last: true if this is the last staged CS and needs completion. 1969 * @staged_first: true if this is the first staged CS and we need to receive 1970 * timeout for this CS. 1971 * @staged_cs: true if this CS is part of a staged submission. 1972 * @skip_reset_on_timeout: true if we shall not reset the device in case 1973 * timeout occurs (debug scenario). 1974 * @encaps_signals: true if this CS has encaps reserved signals. 1975 */ 1976 struct hl_cs { 1977 u16 *jobs_in_queue_cnt; 1978 struct hl_ctx *ctx; 1979 struct list_head job_list; 1980 spinlock_t job_lock; 1981 struct kref refcount; 1982 struct hl_fence *fence; 1983 struct hl_fence *signal_fence; 1984 struct work_struct finish_work; 1985 struct delayed_work work_tdr; 1986 struct list_head mirror_node; 1987 struct list_head staged_cs_node; 1988 struct list_head debugfs_list; 1989 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 1990 ktime_t completion_timestamp; 1991 u64 sequence; 1992 u64 staged_sequence; 1993 u64 timeout_jiffies; 1994 u64 submission_time_jiffies; 1995 enum hl_cs_type type; 1996 u32 jobs_cnt; 1997 u32 encaps_sig_hdl_id; 1998 u32 sob_addr_offset; 1999 u16 initial_sob_count; 2000 u8 submitted; 2001 u8 completed; 2002 u8 timedout; 2003 u8 tdr_active; 2004 u8 aborted; 2005 u8 timestamp; 2006 u8 staged_last; 2007 u8 staged_first; 2008 u8 staged_cs; 2009 u8 skip_reset_on_timeout; 2010 u8 encaps_signals; 2011 }; 2012 2013 /** 2014 * struct hl_cs_job - command submission job. 2015 * @cs_node: the node to hang on the CS jobs list. 2016 * @cs: the CS this job belongs to. 2017 * @user_cb: the CB we got from the user. 2018 * @patched_cb: in case of patching, this is internal CB which is submitted on 2019 * the queue instead of the CB we got from the IOCTL. 2020 * @finish_work: workqueue object to run when job is completed. 2021 * @userptr_list: linked-list of userptr mappings that belong to this job and 2022 * wait for completion. 2023 * @debugfs_list: node in debugfs list of command submission jobs. 2024 * @refcount: reference counter for usage of the CS job. 2025 * @queue_type: the type of the H/W queue this job is submitted to. 2026 * @timestamp: timestamp upon job completion 2027 * @id: the id of this job inside a CS. 2028 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2029 * @user_cb_size: the actual size of the CB we got from the user. 2030 * @job_cb_size: the actual size of the CB that we put on the queue. 2031 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user 2032 * to wait on part of the reserved signals. 2033 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2034 * handle to a kernel-allocated CB object, false 2035 * otherwise (SRAM/DRAM/host address). 2036 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2037 * info is needed later, when adding the 2xMSG_PROT at the 2038 * end of the JOB, to know which barriers to put in the 2039 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2040 * have streams so the engine can't be busy by another 2041 * stream. 2042 */ 2043 struct hl_cs_job { 2044 struct list_head cs_node; 2045 struct hl_cs *cs; 2046 struct hl_cb *user_cb; 2047 struct hl_cb *patched_cb; 2048 struct work_struct finish_work; 2049 struct list_head userptr_list; 2050 struct list_head debugfs_list; 2051 struct kref refcount; 2052 enum hl_queue_type queue_type; 2053 ktime_t timestamp; 2054 u32 id; 2055 u32 hw_queue_id; 2056 u32 user_cb_size; 2057 u32 job_cb_size; 2058 u32 encaps_sig_wait_offset; 2059 u8 is_kernel_allocated_cb; 2060 u8 contains_dma_pkt; 2061 }; 2062 2063 /** 2064 * struct hl_cs_parser - command submission parser properties. 2065 * @user_cb: the CB we got from the user. 2066 * @patched_cb: in case of patching, this is internal CB which is submitted on 2067 * the queue instead of the CB we got from the IOCTL. 2068 * @job_userptr_list: linked-list of userptr mappings that belong to the related 2069 * job and wait for completion. 2070 * @cs_sequence: the sequence number of the related CS. 2071 * @queue_type: the type of the H/W queue this job is submitted to. 2072 * @ctx_id: the ID of the context the related CS belongs to. 2073 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2074 * @user_cb_size: the actual size of the CB we got from the user. 2075 * @patched_cb_size: the size of the CB after parsing. 2076 * @job_id: the id of the related job inside the related CS. 2077 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2078 * handle to a kernel-allocated CB object, false 2079 * otherwise (SRAM/DRAM/host address). 2080 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2081 * info is needed later, when adding the 2xMSG_PROT at the 2082 * end of the JOB, to know which barriers to put in the 2083 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2084 * have streams so the engine can't be busy by another 2085 * stream. 2086 * @completion: true if we need completion for this CS. 2087 */ 2088 struct hl_cs_parser { 2089 struct hl_cb *user_cb; 2090 struct hl_cb *patched_cb; 2091 struct list_head *job_userptr_list; 2092 u64 cs_sequence; 2093 enum hl_queue_type queue_type; 2094 u32 ctx_id; 2095 u32 hw_queue_id; 2096 u32 user_cb_size; 2097 u32 patched_cb_size; 2098 u8 job_id; 2099 u8 is_kernel_allocated_cb; 2100 u8 contains_dma_pkt; 2101 u8 completion; 2102 }; 2103 2104 /* 2105 * MEMORY STRUCTURE 2106 */ 2107 2108 /** 2109 * struct hl_vm_hash_node - hash element from virtual address to virtual 2110 * memory area descriptor (hl_vm_phys_pg_list or 2111 * hl_userptr). 2112 * @node: node to hang on the hash table in context object. 2113 * @vaddr: key virtual address. 2114 * @handle: memory handle for device memory allocation. 2115 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). 2116 * @export_cnt: number of exports from within the VA block. 2117 */ 2118 struct hl_vm_hash_node { 2119 struct hlist_node node; 2120 u64 vaddr; 2121 u64 handle; 2122 void *ptr; 2123 int export_cnt; 2124 }; 2125 2126 /** 2127 * struct hl_vm_hw_block_list_node - list element from user virtual address to 2128 * HW block id. 2129 * @node: node to hang on the list in context object. 2130 * @ctx: the context this node belongs to. 2131 * @vaddr: virtual address of the HW block. 2132 * @block_size: size of the block. 2133 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. 2134 * @id: HW block id (handle). 2135 */ 2136 struct hl_vm_hw_block_list_node { 2137 struct list_head node; 2138 struct hl_ctx *ctx; 2139 unsigned long vaddr; 2140 u32 block_size; 2141 u32 mapped_size; 2142 u32 id; 2143 }; 2144 2145 /** 2146 * struct hl_vm_phys_pg_pack - physical page pack. 2147 * @vm_type: describes the type of the virtual area descriptor. 2148 * @pages: the physical page array. 2149 * @npages: num physical pages in the pack. 2150 * @total_size: total size of all the pages in this list. 2151 * @exported_size: buffer exported size. 2152 * @node: used to attach to deletion list that is used when all the allocations are cleared 2153 * at the teardown of the context. 2154 * @mapping_cnt: number of shared mappings. 2155 * @asid: the context related to this list. 2156 * @page_size: size of each page in the pack. 2157 * @flags: HL_MEM_* flags related to this list. 2158 * @handle: the provided handle related to this list. 2159 * @offset: offset from the first page. 2160 * @contiguous: is contiguous physical memory. 2161 * @created_from_userptr: is product of host virtual address. 2162 */ 2163 struct hl_vm_phys_pg_pack { 2164 enum vm_type vm_type; /* must be first */ 2165 u64 *pages; 2166 u64 npages; 2167 u64 total_size; 2168 u64 exported_size; 2169 struct list_head node; 2170 atomic_t mapping_cnt; 2171 u32 asid; 2172 u32 page_size; 2173 u32 flags; 2174 u32 handle; 2175 u32 offset; 2176 u8 contiguous; 2177 u8 created_from_userptr; 2178 }; 2179 2180 /** 2181 * struct hl_vm_va_block - virtual range block information. 2182 * @node: node to hang on the virtual range list in context object. 2183 * @start: virtual range start address. 2184 * @end: virtual range end address. 2185 * @size: virtual range size. 2186 */ 2187 struct hl_vm_va_block { 2188 struct list_head node; 2189 u64 start; 2190 u64 end; 2191 u64 size; 2192 }; 2193 2194 /** 2195 * struct hl_vm - virtual memory manager for MMU. 2196 * @dram_pg_pool: pool for DRAM physical pages of 2MB. 2197 * @dram_pg_pool_refcount: reference counter for the pool usage. 2198 * @idr_lock: protects the phys_pg_list_handles. 2199 * @phys_pg_pack_handles: idr to hold all device allocations handles. 2200 * @init_done: whether initialization was done. We need this because VM 2201 * initialization might be skipped during device initialization. 2202 */ 2203 struct hl_vm { 2204 struct gen_pool *dram_pg_pool; 2205 struct kref dram_pg_pool_refcount; 2206 spinlock_t idr_lock; 2207 struct idr phys_pg_pack_handles; 2208 u8 init_done; 2209 }; 2210 2211 2212 /* 2213 * DEBUG, PROFILING STRUCTURE 2214 */ 2215 2216 /** 2217 * struct hl_debug_params - Coresight debug parameters. 2218 * @input: pointer to component specific input parameters. 2219 * @output: pointer to component specific output parameters. 2220 * @output_size: size of output buffer. 2221 * @reg_idx: relevant register ID. 2222 * @op: component operation to execute. 2223 * @enable: true if to enable component debugging, false otherwise. 2224 */ 2225 struct hl_debug_params { 2226 void *input; 2227 void *output; 2228 u32 output_size; 2229 u32 reg_idx; 2230 u32 op; 2231 bool enable; 2232 }; 2233 2234 /** 2235 * struct hl_notifier_event - holds the notifier data structure 2236 * @eventfd: the event file descriptor to raise the notifications 2237 * @lock: mutex lock to protect the notifier data flows 2238 * @events_mask: indicates the bitmap events 2239 */ 2240 struct hl_notifier_event { 2241 struct eventfd_ctx *eventfd; 2242 struct mutex lock; 2243 u64 events_mask; 2244 }; 2245 2246 /* 2247 * FILE PRIVATE STRUCTURE 2248 */ 2249 2250 /** 2251 * struct hl_fpriv - process information stored in FD private data. 2252 * @hdev: habanalabs device structure. 2253 * @filp: pointer to the given file structure. 2254 * @taskpid: current process ID. 2255 * @ctx: current executing context. TODO: remove for multiple ctx per process 2256 * @ctx_mgr: context manager to handle multiple context for this FD. 2257 * @mem_mgr: manager descriptor for memory exportable via mmap 2258 * @notifier_event: notifier eventfd towards user process 2259 * @debugfs_list: list of relevant ASIC debugfs. 2260 * @dev_node: node in the device list of file private data 2261 * @refcount: number of related contexts. 2262 * @restore_phase_mutex: lock for context switch and restore phase. 2263 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple 2264 * ctx per process. 2265 */ 2266 struct hl_fpriv { 2267 struct hl_device *hdev; 2268 struct file *filp; 2269 struct pid *taskpid; 2270 struct hl_ctx *ctx; 2271 struct hl_ctx_mgr ctx_mgr; 2272 struct hl_mem_mgr mem_mgr; 2273 struct hl_notifier_event notifier_event; 2274 struct list_head debugfs_list; 2275 struct list_head dev_node; 2276 struct kref refcount; 2277 struct mutex restore_phase_mutex; 2278 struct mutex ctx_lock; 2279 }; 2280 2281 2282 /* 2283 * DebugFS 2284 */ 2285 2286 /** 2287 * struct hl_info_list - debugfs file ops. 2288 * @name: file name. 2289 * @show: function to output information. 2290 * @write: function to write to the file. 2291 */ 2292 struct hl_info_list { 2293 const char *name; 2294 int (*show)(struct seq_file *s, void *data); 2295 ssize_t (*write)(struct file *file, const char __user *buf, 2296 size_t count, loff_t *f_pos); 2297 }; 2298 2299 /** 2300 * struct hl_debugfs_entry - debugfs dentry wrapper. 2301 * @info_ent: dentry related ops. 2302 * @dev_entry: ASIC specific debugfs manager. 2303 */ 2304 struct hl_debugfs_entry { 2305 const struct hl_info_list *info_ent; 2306 struct hl_dbg_device_entry *dev_entry; 2307 }; 2308 2309 /** 2310 * struct hl_dbg_device_entry - ASIC specific debugfs manager. 2311 * @root: root dentry. 2312 * @hdev: habanalabs device structure. 2313 * @entry_arr: array of available hl_debugfs_entry. 2314 * @file_list: list of available debugfs files. 2315 * @file_mutex: protects file_list. 2316 * @cb_list: list of available CBs. 2317 * @cb_spinlock: protects cb_list. 2318 * @cs_list: list of available CSs. 2319 * @cs_spinlock: protects cs_list. 2320 * @cs_job_list: list of available CB jobs. 2321 * @cs_job_spinlock: protects cs_job_list. 2322 * @userptr_list: list of available userptrs (virtual memory chunk descriptor). 2323 * @userptr_spinlock: protects userptr_list. 2324 * @ctx_mem_hash_list: list of available contexts with MMU mappings. 2325 * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings. 2326 * @data_dma_blob_desc: data DMA descriptor of blob. 2327 * @mon_dump_blob_desc: monitor dump descriptor of blob. 2328 * @state_dump: data of the system states in case of a bad cs. 2329 * @state_dump_sem: protects state_dump. 2330 * @addr: next address to read/write from/to in read/write32. 2331 * @mmu_addr: next virtual address to translate to physical address in mmu_show. 2332 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. 2333 * @userptr_lookup: the target user ptr to look up for on demand. 2334 * @mmu_asid: ASID to use while translating in mmu_show. 2335 * @state_dump_head: index of the latest state dump 2336 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. 2337 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. 2338 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. 2339 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. 2340 */ 2341 struct hl_dbg_device_entry { 2342 struct dentry *root; 2343 struct hl_device *hdev; 2344 struct hl_debugfs_entry *entry_arr; 2345 struct list_head file_list; 2346 struct mutex file_mutex; 2347 struct list_head cb_list; 2348 spinlock_t cb_spinlock; 2349 struct list_head cs_list; 2350 spinlock_t cs_spinlock; 2351 struct list_head cs_job_list; 2352 spinlock_t cs_job_spinlock; 2353 struct list_head userptr_list; 2354 spinlock_t userptr_spinlock; 2355 struct list_head ctx_mem_hash_list; 2356 struct mutex ctx_mem_hash_mutex; 2357 struct debugfs_blob_wrapper data_dma_blob_desc; 2358 struct debugfs_blob_wrapper mon_dump_blob_desc; 2359 char *state_dump[HL_STATE_DUMP_HIST_LEN]; 2360 struct rw_semaphore state_dump_sem; 2361 u64 addr; 2362 u64 mmu_addr; 2363 u64 mmu_cap_mask; 2364 u64 userptr_lookup; 2365 u32 mmu_asid; 2366 u32 state_dump_head; 2367 u8 i2c_bus; 2368 u8 i2c_addr; 2369 u8 i2c_reg; 2370 u8 i2c_len; 2371 }; 2372 2373 /** 2374 * struct hl_hw_obj_name_entry - single hw object name, member of 2375 * hl_state_dump_specs 2376 * @node: link to the containing hash table 2377 * @name: hw object name 2378 * @id: object identifier 2379 */ 2380 struct hl_hw_obj_name_entry { 2381 struct hlist_node node; 2382 const char *name; 2383 u32 id; 2384 }; 2385 2386 enum hl_state_dump_specs_props { 2387 SP_SYNC_OBJ_BASE_ADDR, 2388 SP_NEXT_SYNC_OBJ_ADDR, 2389 SP_SYNC_OBJ_AMOUNT, 2390 SP_MON_OBJ_WR_ADDR_LOW, 2391 SP_MON_OBJ_WR_ADDR_HIGH, 2392 SP_MON_OBJ_WR_DATA, 2393 SP_MON_OBJ_ARM_DATA, 2394 SP_MON_OBJ_STATUS, 2395 SP_MONITORS_AMOUNT, 2396 SP_TPC0_CMDQ, 2397 SP_TPC0_CFG_SO, 2398 SP_NEXT_TPC, 2399 SP_MME_CMDQ, 2400 SP_MME_CFG_SO, 2401 SP_NEXT_MME, 2402 SP_DMA_CMDQ, 2403 SP_DMA_CFG_SO, 2404 SP_DMA_QUEUES_OFFSET, 2405 SP_NUM_OF_MME_ENGINES, 2406 SP_SUB_MME_ENG_NUM, 2407 SP_NUM_OF_DMA_ENGINES, 2408 SP_NUM_OF_TPC_ENGINES, 2409 SP_ENGINE_NUM_OF_QUEUES, 2410 SP_ENGINE_NUM_OF_STREAMS, 2411 SP_ENGINE_NUM_OF_FENCES, 2412 SP_FENCE0_CNT_OFFSET, 2413 SP_FENCE0_RDATA_OFFSET, 2414 SP_CP_STS_OFFSET, 2415 SP_NUM_CORES, 2416 2417 SP_MAX 2418 }; 2419 2420 enum hl_sync_engine_type { 2421 ENGINE_TPC, 2422 ENGINE_DMA, 2423 ENGINE_MME, 2424 }; 2425 2426 /** 2427 * struct hl_mon_state_dump - represents a state dump of a single monitor 2428 * @id: monitor id 2429 * @wr_addr_low: address monitor will write to, low bits 2430 * @wr_addr_high: address monitor will write to, high bits 2431 * @wr_data: data monitor will write 2432 * @arm_data: register value containing monitor configuration 2433 * @status: monitor status 2434 */ 2435 struct hl_mon_state_dump { 2436 u32 id; 2437 u32 wr_addr_low; 2438 u32 wr_addr_high; 2439 u32 wr_data; 2440 u32 arm_data; 2441 u32 status; 2442 }; 2443 2444 /** 2445 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry 2446 * @engine_type: type of the engine 2447 * @engine_id: id of the engine 2448 * @sync_id: id of the sync object 2449 */ 2450 struct hl_sync_to_engine_map_entry { 2451 struct hlist_node node; 2452 enum hl_sync_engine_type engine_type; 2453 u32 engine_id; 2454 u32 sync_id; 2455 }; 2456 2457 /** 2458 * struct hl_sync_to_engine_map - maps sync object id to associated engine id 2459 * @tb: hash table containing the mapping, each element is of type 2460 * struct hl_sync_to_engine_map_entry 2461 */ 2462 struct hl_sync_to_engine_map { 2463 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); 2464 }; 2465 2466 /** 2467 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump 2468 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine 2469 * @print_single_monitor: format monitor data as string 2470 * @monitor_valid: return true if given monitor dump is valid 2471 * @print_fences_single_engine: format fences data as string 2472 */ 2473 struct hl_state_dump_specs_funcs { 2474 int (*gen_sync_to_engine_map)(struct hl_device *hdev, 2475 struct hl_sync_to_engine_map *map); 2476 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, 2477 struct hl_device *hdev, 2478 struct hl_mon_state_dump *mon); 2479 int (*monitor_valid)(struct hl_mon_state_dump *mon); 2480 int (*print_fences_single_engine)(struct hl_device *hdev, 2481 u64 base_offset, 2482 u64 status_base_offset, 2483 enum hl_sync_engine_type engine_type, 2484 u32 engine_id, char **buf, 2485 size_t *size, size_t *offset); 2486 }; 2487 2488 /** 2489 * struct hl_state_dump_specs - defines ASIC known hw objects names 2490 * @so_id_to_str_tb: sync objects names index table 2491 * @monitor_id_to_str_tb: monitors names index table 2492 * @funcs: virtual functions used for state dump 2493 * @sync_namager_names: readable names for sync manager if available (ex: N_E) 2494 * @props: pointer to a per asic const props array required for state dump 2495 */ 2496 struct hl_state_dump_specs { 2497 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2498 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2499 struct hl_state_dump_specs_funcs funcs; 2500 const char * const *sync_namager_names; 2501 s64 *props; 2502 }; 2503 2504 2505 /* 2506 * DEVICES 2507 */ 2508 2509 #define HL_STR_MAX 32 2510 2511 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) 2512 2513 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe 2514 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. 2515 */ 2516 #define HL_MAX_MINORS 256 2517 2518 /* 2519 * Registers read & write functions. 2520 */ 2521 2522 u32 hl_rreg(struct hl_device *hdev, u32 reg); 2523 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); 2524 2525 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) 2526 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) 2527 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ 2528 hdev->asic_funcs->rreg(hdev, (reg))) 2529 2530 #define WREG32_P(reg, val, mask) \ 2531 do { \ 2532 u32 tmp_ = RREG32(reg); \ 2533 tmp_ &= (mask); \ 2534 tmp_ |= ((val) & ~(mask)); \ 2535 WREG32(reg, tmp_); \ 2536 } while (0) 2537 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) 2538 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) 2539 2540 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask)) 2541 2542 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask) 2543 2544 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) 2545 2546 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT 2547 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK 2548 #define WREG32_FIELD(reg, offset, field, val) \ 2549 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ 2550 ~REG_FIELD_MASK(reg, field)) | \ 2551 (val) << REG_FIELD_SHIFT(reg, field)) 2552 2553 /* Timeout should be longer when working with simulator but cap the 2554 * increased timeout to some maximum 2555 */ 2556 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ 2557 ({ \ 2558 ktime_t __timeout; \ 2559 u32 __elbi_read; \ 2560 int __rc = 0; \ 2561 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2562 might_sleep_if(sleep_us); \ 2563 for (;;) { \ 2564 if (elbi) { \ 2565 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2566 if (__rc) \ 2567 break; \ 2568 (val) = __elbi_read; \ 2569 } else {\ 2570 (val) = RREG32(lower_32_bits(addr)); \ 2571 } \ 2572 if (cond) \ 2573 break; \ 2574 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2575 if (elbi) { \ 2576 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2577 if (__rc) \ 2578 break; \ 2579 (val) = __elbi_read; \ 2580 } else {\ 2581 (val) = RREG32(lower_32_bits(addr)); \ 2582 } \ 2583 break; \ 2584 } \ 2585 if (sleep_us) \ 2586 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2587 } \ 2588 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ 2589 }) 2590 2591 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ 2592 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) 2593 2594 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ 2595 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) 2596 2597 /* 2598 * poll array of register addresses. 2599 * condition is satisfied if all registers values match the expected value. 2600 * once some register in the array satisfies the condition it will not be polled again, 2601 * this is done both for efficiency and due to some registers are "clear on read". 2602 * TODO: use read from PCI bar in other places in the code (SW-91406) 2603 */ 2604 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2605 timeout_us, elbi) \ 2606 ({ \ 2607 ktime_t __timeout; \ 2608 u64 __elem_bitmask; \ 2609 u32 __read_val; \ 2610 u8 __arr_idx; \ 2611 int __rc = 0; \ 2612 \ 2613 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2614 might_sleep_if(sleep_us); \ 2615 if (arr_size >= 64) \ 2616 __rc = -EINVAL; \ 2617 else \ 2618 __elem_bitmask = BIT_ULL(arr_size) - 1; \ 2619 for (;;) { \ 2620 if (__rc) \ 2621 break; \ 2622 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ 2623 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ 2624 continue; \ 2625 if (elbi) { \ 2626 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ 2627 if (__rc) \ 2628 break; \ 2629 } else { \ 2630 __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \ 2631 } \ 2632 if (__read_val == (expected_val)) \ 2633 __elem_bitmask &= ~BIT_ULL(__arr_idx); \ 2634 } \ 2635 if (__rc || (__elem_bitmask == 0)) \ 2636 break; \ 2637 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ 2638 break; \ 2639 if (sleep_us) \ 2640 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2641 } \ 2642 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ 2643 }) 2644 2645 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2646 timeout_us) \ 2647 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2648 timeout_us, false) 2649 2650 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2651 timeout_us) \ 2652 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2653 timeout_us, true) 2654 2655 /* 2656 * address in this macro points always to a memory location in the 2657 * host's (server's) memory. That location is updated asynchronously 2658 * either by the direct access of the device or by another core. 2659 * 2660 * To work both in LE and BE architectures, we need to distinguish between the 2661 * two states (device or another core updates the memory location). Therefore, 2662 * if mem_written_by_device is true, the host memory being polled will be 2663 * updated directly by the device. If false, the host memory being polled will 2664 * be updated by host CPU. Required so host knows whether or not the memory 2665 * might need to be byte-swapped before returning value to caller. 2666 */ 2667 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ 2668 mem_written_by_device) \ 2669 ({ \ 2670 ktime_t __timeout; \ 2671 \ 2672 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2673 might_sleep_if(sleep_us); \ 2674 for (;;) { \ 2675 /* Verify we read updates done by other cores or by device */ \ 2676 mb(); \ 2677 (val) = *((u32 *)(addr)); \ 2678 if (mem_written_by_device) \ 2679 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2680 if (cond) \ 2681 break; \ 2682 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2683 (val) = *((u32 *)(addr)); \ 2684 if (mem_written_by_device) \ 2685 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2686 break; \ 2687 } \ 2688 if (sleep_us) \ 2689 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2690 } \ 2691 (cond) ? 0 : -ETIMEDOUT; \ 2692 }) 2693 2694 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ 2695 ({ \ 2696 struct user_mapped_block *p = blk; \ 2697 \ 2698 p->address = base; \ 2699 p->size = sz; \ 2700 }) 2701 2702 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \ 2703 ({ \ 2704 usr_intr.hdev = hdev; \ 2705 usr_intr.interrupt_id = intr_id; \ 2706 usr_intr.type = intr_type; \ 2707 INIT_LIST_HEAD(&usr_intr.wait_list_head); \ 2708 spin_lock_init(&usr_intr.wait_list_lock); \ 2709 }) 2710 2711 struct hwmon_chip_info; 2712 2713 /** 2714 * struct hl_device_reset_work - reset work wrapper. 2715 * @reset_work: reset work to be done. 2716 * @hdev: habanalabs device structure. 2717 * @flags: reset flags. 2718 */ 2719 struct hl_device_reset_work { 2720 struct delayed_work reset_work; 2721 struct hl_device *hdev; 2722 u32 flags; 2723 }; 2724 2725 /** 2726 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident 2727 * page-table internal information. 2728 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for 2729 * allocating hops. 2730 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. 2731 */ 2732 struct hl_mmu_hr_priv { 2733 struct gen_pool *mmu_pgt_pool; 2734 struct pgt_info *mmu_asid_hop0; 2735 }; 2736 2737 /** 2738 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident 2739 * page-table internal information. 2740 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. 2741 * @mmu_shadow_hop0: shadow array of hop0 tables. 2742 */ 2743 struct hl_mmu_dr_priv { 2744 struct gen_pool *mmu_pgt_pool; 2745 void *mmu_shadow_hop0; 2746 }; 2747 2748 /** 2749 * struct hl_mmu_priv - used for holding per-device mmu internal information. 2750 * @dr: information on the device-resident MMU, when exists. 2751 * @hr: information on the host-resident MMU, when exists. 2752 */ 2753 struct hl_mmu_priv { 2754 struct hl_mmu_dr_priv dr; 2755 struct hl_mmu_hr_priv hr; 2756 }; 2757 2758 /** 2759 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry 2760 * that was created in order to translate a virtual address to a 2761 * physical one. 2762 * @hop_addr: The address of the hop. 2763 * @hop_pte_addr: The address of the hop entry. 2764 * @hop_pte_val: The value in the hop entry. 2765 */ 2766 struct hl_mmu_per_hop_info { 2767 u64 hop_addr; 2768 u64 hop_pte_addr; 2769 u64 hop_pte_val; 2770 }; 2771 2772 /** 2773 * struct hl_mmu_hop_info - A structure describing the TLB hops and their 2774 * hop-entries that were created in order to translate a virtual address to a 2775 * physical one. 2776 * @scrambled_vaddr: The value of the virtual address after scrambling. This 2777 * address replaces the original virtual-address when mapped 2778 * in the MMU tables. 2779 * @unscrambled_paddr: The un-scrambled physical address. 2780 * @hop_info: Array holding the per-hop information used for the translation. 2781 * @used_hops: The number of hops used for the translation. 2782 * @range_type: virtual address range type. 2783 */ 2784 struct hl_mmu_hop_info { 2785 u64 scrambled_vaddr; 2786 u64 unscrambled_paddr; 2787 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; 2788 u32 used_hops; 2789 enum hl_va_range_type range_type; 2790 }; 2791 2792 /** 2793 * struct hl_hr_mmu_funcs - Device related host resident MMU functions. 2794 * @get_hop0_pgt_info: get page table info structure for HOP0. 2795 * @get_pgt_info: get page table info structure for HOP other than HOP0. 2796 * @add_pgt_info: add page table info structure to hash. 2797 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. 2798 */ 2799 struct hl_hr_mmu_funcs { 2800 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); 2801 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); 2802 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); 2803 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, 2804 struct hl_mmu_hop_info *hops, 2805 u64 virt_addr, bool *is_huge); 2806 }; 2807 2808 /** 2809 * struct hl_mmu_funcs - Device related MMU functions. 2810 * @init: initialize the MMU module. 2811 * @fini: release the MMU module. 2812 * @ctx_init: Initialize a context for using the MMU module. 2813 * @ctx_fini: disable a ctx from using the mmu module. 2814 * @map: maps a virtual address to physical address for a context. 2815 * @unmap: unmap a virtual address of a context. 2816 * @flush: flush all writes from all cores to reach device MMU. 2817 * @swap_out: marks all mapping of the given context as swapped out. 2818 * @swap_in: marks all mapping of the given context as swapped in. 2819 * @get_tlb_info: returns the list of hops and hop-entries used that were 2820 * created in order to translate the giver virtual address to a 2821 * physical one. 2822 * @hr_funcs: functions specific to host resident MMU. 2823 */ 2824 struct hl_mmu_funcs { 2825 int (*init)(struct hl_device *hdev); 2826 void (*fini)(struct hl_device *hdev); 2827 int (*ctx_init)(struct hl_ctx *ctx); 2828 void (*ctx_fini)(struct hl_ctx *ctx); 2829 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, 2830 bool is_dram_addr); 2831 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); 2832 void (*flush)(struct hl_ctx *ctx); 2833 void (*swap_out)(struct hl_ctx *ctx); 2834 void (*swap_in)(struct hl_ctx *ctx); 2835 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); 2836 struct hl_hr_mmu_funcs hr_funcs; 2837 }; 2838 2839 /** 2840 * struct hl_prefetch_work - prefetch work structure handler 2841 * @prefetch_work: actual work struct. 2842 * @ctx: compute context. 2843 * @va: virtual address to pre-fetch. 2844 * @size: pre-fetch size. 2845 * @flags: operation flags. 2846 * @asid: ASID for maintenance operation. 2847 */ 2848 struct hl_prefetch_work { 2849 struct work_struct prefetch_work; 2850 struct hl_ctx *ctx; 2851 u64 va; 2852 u64 size; 2853 u32 flags; 2854 u32 asid; 2855 }; 2856 2857 /* 2858 * number of user contexts allowed to call wait_for_multi_cs ioctl in 2859 * parallel 2860 */ 2861 #define MULTI_CS_MAX_USER_CTX 2 2862 2863 /** 2864 * struct multi_cs_completion - multi CS wait completion. 2865 * @completion: completion of any of the CS in the list 2866 * @lock: spinlock for the completion structure 2867 * @timestamp: timestamp for the multi-CS completion 2868 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS 2869 * is waiting 2870 * @used: 1 if in use, otherwise 0 2871 */ 2872 struct multi_cs_completion { 2873 struct completion completion; 2874 spinlock_t lock; 2875 s64 timestamp; 2876 u32 stream_master_qid_map; 2877 u8 used; 2878 }; 2879 2880 /** 2881 * struct multi_cs_data - internal data for multi CS call 2882 * @ctx: pointer to the context structure 2883 * @fence_arr: array of fences of all CSs 2884 * @seq_arr: array of CS sequence numbers 2885 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete 2886 * @timestamp: timestamp of first completed CS 2887 * @wait_status: wait for CS status 2888 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) 2889 * @arr_len: fence_arr and seq_arr array length 2890 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) 2891 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. 2892 */ 2893 struct multi_cs_data { 2894 struct hl_ctx *ctx; 2895 struct hl_fence **fence_arr; 2896 u64 *seq_arr; 2897 s64 timeout_jiffies; 2898 s64 timestamp; 2899 long wait_status; 2900 u32 completion_bitmap; 2901 u8 arr_len; 2902 u8 gone_cs; 2903 u8 update_ts; 2904 }; 2905 2906 /** 2907 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp 2908 * @start: timestamp taken when 'start' event is received in driver 2909 * @end: timestamp taken when 'end' event is received in driver 2910 */ 2911 struct hl_clk_throttle_timestamp { 2912 ktime_t start; 2913 ktime_t end; 2914 }; 2915 2916 /** 2917 * struct hl_clk_throttle - keeps current/last clock throttling timestamps 2918 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER 2919 * index 1 refers to THERMAL 2920 * @lock: protects this structure as it can be accessed from both event queue 2921 * context and info_ioctl context 2922 * @current_reason: bitmask represents the current clk throttling reasons 2923 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load 2924 */ 2925 struct hl_clk_throttle { 2926 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; 2927 struct mutex lock; 2928 u32 current_reason; 2929 u32 aggregated_reason; 2930 }; 2931 2932 /** 2933 * struct user_mapped_block - describes a hw block allowed to be mmapped by user 2934 * @address: physical HW block address 2935 * @size: allowed size for mmap 2936 */ 2937 struct user_mapped_block { 2938 u32 address; 2939 u32 size; 2940 }; 2941 2942 /** 2943 * struct cs_timeout_info - info of last CS timeout occurred. 2944 * @timestamp: CS timeout timestamp. 2945 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, 2946 * so the first (root cause) CS timeout will not be overwritten. 2947 * @seq: CS timeout sequence number. 2948 */ 2949 struct cs_timeout_info { 2950 ktime_t timestamp; 2951 atomic_t write_enable; 2952 u64 seq; 2953 }; 2954 2955 #define MAX_QMAN_STREAMS_INFO 4 2956 #define OPCODE_INFO_MAX_ADDR_SIZE 8 2957 /** 2958 * struct undefined_opcode_info - info about last undefined opcode error 2959 * @timestamp: timestamp of the undefined opcode error 2960 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ 2961 * entries. In case all streams array entries are 2962 * filled with values, it means the execution was in Lower-CP. 2963 * @cq_addr: the address of the current handled command buffer 2964 * @cq_size: the size of the current handled command buffer 2965 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. 2966 * should be equal to 1 in case of undefined opcode 2967 * in Upper-CP (specific stream) and equal to 4 in case 2968 * of undefined opcode in Lower-CP. 2969 * @engine_id: engine-id that the error occurred on 2970 * @stream_id: the stream id the error occurred on. In case the stream equals to 2971 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. 2972 * @write_enable: if set, writing to undefined opcode parameters in the structure 2973 * is enable so the first (root cause) undefined opcode will not be 2974 * overwritten. 2975 */ 2976 struct undefined_opcode_info { 2977 ktime_t timestamp; 2978 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; 2979 u64 cq_addr; 2980 u32 cq_size; 2981 u32 cb_addr_streams_len; 2982 u32 engine_id; 2983 u32 stream_id; 2984 bool write_enable; 2985 }; 2986 2987 /** 2988 * struct page_fault_info - page fault information. 2989 * @page_fault: holds information collected during a page fault. 2990 * @user_mappings: buffer containing user mappings. 2991 * @num_of_user_mappings: number of user mappings. 2992 * @page_fault_detected: if set as 1, then a page-fault was discovered for the 2993 * first time after the driver has finished booting-up. 2994 * Since we're looking for the page-fault's root cause, 2995 * we don't care of the others that might follow it- 2996 * so once changed to 1, it will remain that way. 2997 * @page_fault_info_available: indicates that a page fault info is now available. 2998 */ 2999 struct page_fault_info { 3000 struct hl_page_fault_info page_fault; 3001 struct hl_user_mapping *user_mappings; 3002 u64 num_of_user_mappings; 3003 atomic_t page_fault_detected; 3004 bool page_fault_info_available; 3005 }; 3006 3007 /** 3008 * struct razwi_info - RAZWI information. 3009 * @razwi: holds information collected during a RAZWI 3010 * @razwi_detected: if set as 1, then a RAZWI was discovered for the 3011 * first time after the driver has finished booting-up. 3012 * Since we're looking for the RAZWI's root cause, 3013 * we don't care of the others that might follow it- 3014 * so once changed to 1, it will remain that way. 3015 * @razwi_info_available: indicates that a RAZWI info is now available. 3016 */ 3017 struct razwi_info { 3018 struct hl_info_razwi_event razwi; 3019 atomic_t razwi_detected; 3020 bool razwi_info_available; 3021 }; 3022 3023 /** 3024 * struct hw_err_info - HW error information. 3025 * @event: holds information on the event. 3026 * @event_detected: if set as 1, then a HW event was discovered for the 3027 * first time after the driver has finished booting-up. 3028 * currently we assume that only fatal events (that require hard-reset) are 3029 * reported so we don't care of the others that might follow it. 3030 * so once changed to 1, it will remain that way. 3031 * TODO: support multiple events. 3032 * @event_info_available: indicates that a HW event info is now available. 3033 */ 3034 struct hw_err_info { 3035 struct hl_info_hw_err_event event; 3036 atomic_t event_detected; 3037 bool event_info_available; 3038 }; 3039 3040 /** 3041 * struct fw_err_info - FW error information. 3042 * @event: holds information on the event. 3043 * @event_detected: if set as 1, then a FW event was discovered for the 3044 * first time after the driver has finished booting-up. 3045 * currently we assume that only fatal events (that require hard-reset) are 3046 * reported so we don't care of the others that might follow it. 3047 * so once changed to 1, it will remain that way. 3048 * TODO: support multiple events. 3049 * @event_info_available: indicates that a HW event info is now available. 3050 */ 3051 struct fw_err_info { 3052 struct hl_info_fw_err_event event; 3053 atomic_t event_detected; 3054 bool event_info_available; 3055 }; 3056 3057 /** 3058 * struct hl_error_info - holds information collected during an error. 3059 * @cs_timeout: CS timeout error information. 3060 * @razwi_info: RAZWI information. 3061 * @undef_opcode: undefined opcode information. 3062 * @page_fault_info: page fault information. 3063 * @hw_err: (fatal) hardware error information. 3064 * @fw_err: firmware error information. 3065 */ 3066 struct hl_error_info { 3067 struct cs_timeout_info cs_timeout; 3068 struct razwi_info razwi_info; 3069 struct undefined_opcode_info undef_opcode; 3070 struct page_fault_info page_fault_info; 3071 struct hw_err_info hw_err; 3072 struct fw_err_info fw_err; 3073 }; 3074 3075 /** 3076 * struct hl_reset_info - holds current device reset information. 3077 * @lock: lock to protect critical reset flows. 3078 * @compute_reset_cnt: number of compute resets since the driver was loaded. 3079 * @hard_reset_cnt: number of hard resets since the driver was loaded. 3080 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, 3081 * here we hold the hard reset flags. 3082 * @in_reset: is device in reset flow. 3083 * @in_compute_reset: Device is currently in reset but not in hard-reset. 3084 * @needs_reset: true if reset_on_lockup is false and device should be reset 3085 * due to lockup. 3086 * @hard_reset_pending: is there a hard reset work pending. 3087 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is 3088 * triggered, and cleared after it is shared with preboot. 3089 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden 3090 * with a new value on next reset 3091 * @reset_trigger_repeated: set if device reset is triggered more than once with 3092 * same cause. 3093 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to 3094 * complete instead. 3095 * @watchdog_active: true if a device release watchdog work is scheduled. 3096 */ 3097 struct hl_reset_info { 3098 spinlock_t lock; 3099 u32 compute_reset_cnt; 3100 u32 hard_reset_cnt; 3101 u32 hard_reset_schedule_flags; 3102 u8 in_reset; 3103 u8 in_compute_reset; 3104 u8 needs_reset; 3105 u8 hard_reset_pending; 3106 u8 curr_reset_cause; 3107 u8 prev_reset_trigger; 3108 u8 reset_trigger_repeated; 3109 u8 skip_reset_on_timeout; 3110 u8 watchdog_active; 3111 }; 3112 3113 /** 3114 * struct hl_device - habanalabs device structure. 3115 * @pdev: pointer to PCI device, can be NULL in case of simulator device. 3116 * @pcie_bar_phys: array of available PCIe bars physical addresses. 3117 * (required only for PCI address match mode) 3118 * @pcie_bar: array of available PCIe bars virtual addresses. 3119 * @rmmio: configuration area address on SRAM. 3120 * @hclass: pointer to the habanalabs class. 3121 * @cdev: related char device. 3122 * @cdev_ctrl: char device for control operations only (INFO IOCTL) 3123 * @dev: related kernel basic device structure. 3124 * @dev_ctrl: related kernel device structure for the control device 3125 * @work_heartbeat: delayed work for CPU-CP is-alive check. 3126 * @device_reset_work: delayed work which performs hard reset 3127 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release 3128 * device upon certain error cases. 3129 * @asic_name: ASIC specific name. 3130 * @asic_type: ASIC specific type. 3131 * @completion_queue: array of hl_cq. 3132 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user 3133 * interrupt, driver will monitor the list of fences 3134 * registered to this interrupt. 3135 * @tpc_interrupt: single TPC interrupt for all TPCs. 3136 * @unexpected_error_interrupt: single interrupt for unexpected user error indication. 3137 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. 3138 * upon any user CQ interrupt, driver will monitor the 3139 * list of fences registered to this common structure. 3140 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. 3141 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to 3142 * outstanding command submissions. 3143 * @cq_wq: work queues of completion queues for executing work in process 3144 * context. 3145 * @eq_wq: work queue of event queue for executing work in process context. 3146 * @cs_cmplt_wq: work queue of CS completions for executing work in process 3147 * context. 3148 * @ts_free_obj_wq: work queue for timestamp registration objects release. 3149 * @prefetch_wq: work queue for MMU pre-fetch operations. 3150 * @reset_wq: work queue for device reset procedure. 3151 * @kernel_ctx: Kernel driver context structure. 3152 * @kernel_queues: array of hl_hw_queue. 3153 * @cs_mirror_list: CS mirror list for TDR. 3154 * @cs_mirror_lock: protects cs_mirror_list. 3155 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. 3156 * @event_queue: event queue for IRQ from CPU-CP. 3157 * @dma_pool: DMA pool for small allocations. 3158 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. 3159 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. 3160 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. 3161 * @asid_bitmap: holds used/available ASIDs. 3162 * @asid_mutex: protects asid_bitmap. 3163 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. 3164 * @debug_lock: protects critical section of setting debug mode for device 3165 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the 3166 * page tables are per context, the invalidation h/w is per MMU. 3167 * Therefore, we can't allow multiple contexts (we only have two, 3168 * user and kernel) to access the invalidation h/w at the same time. 3169 * In addition, any change to the PGT, modifying the MMU hash or 3170 * walking the PGT requires talking this lock. 3171 * @asic_prop: ASIC specific immutable properties. 3172 * @asic_funcs: ASIC specific functions. 3173 * @asic_specific: ASIC specific information to use only from ASIC files. 3174 * @vm: virtual memory manager for MMU. 3175 * @hwmon_dev: H/W monitor device. 3176 * @hl_chip_info: ASIC's sensors information. 3177 * @device_status_description: device status description. 3178 * @hl_debugfs: device's debugfs manager. 3179 * @cb_pool: list of pre allocated CBs. 3180 * @cb_pool_lock: protects the CB pool. 3181 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. 3182 * @internal_cb_pool_dma_addr: internal command buffer pool dma address. 3183 * @internal_cb_pool: internal command buffer memory pool. 3184 * @internal_cb_va_base: internal cb pool mmu virtual address base 3185 * @fpriv_list: list of file private data structures. Each structure is created 3186 * when a user opens the device 3187 * @fpriv_ctrl_list: list of file private data structures. Each structure is created 3188 * when a user opens the control device 3189 * @fpriv_list_lock: protects the fpriv_list 3190 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list 3191 * @aggregated_cs_counters: aggregated cs counters among all contexts 3192 * @mmu_priv: device-specific MMU data. 3193 * @mmu_func: device-related MMU functions. 3194 * @dec: list of decoder sw instance 3195 * @fw_loader: FW loader manager. 3196 * @pci_mem_region: array of memory regions in the PCI 3197 * @state_dump_specs: constants and dictionaries needed to dump system state. 3198 * @multi_cs_completion: array of multi-CS completion. 3199 * @clk_throttling: holds information about current/previous clock throttling events 3200 * @captured_err_info: holds information about errors. 3201 * @reset_info: holds current device reset information. 3202 * @stream_master_qid_arr: pointer to array with QIDs of master streams. 3203 * @fw_inner_major_ver: the major of current loaded preboot inner version. 3204 * @fw_inner_minor_ver: the minor of current loaded preboot inner version. 3205 * @fw_sw_major_ver: the major of current loaded preboot SW version. 3206 * @fw_sw_minor_ver: the minor of current loaded preboot SW version. 3207 * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version. 3208 * @dram_used_mem: current DRAM memory consumption. 3209 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram 3210 * @timeout_jiffies: device CS timeout value. 3211 * @max_power: the max power of the device, as configured by the sysadmin. This 3212 * value is saved so in case of hard-reset, the driver will restore 3213 * this value and update the F/W after the re-initialization 3214 * @boot_error_status_mask: contains a mask of the device boot error status. 3215 * Each bit represents a different error, according to 3216 * the defines in hl_boot_if.h. If the bit is cleared, 3217 * the error will be ignored by the driver during 3218 * device initialization. Mainly used to debug and 3219 * workaround firmware bugs 3220 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. 3221 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. 3222 * @last_successful_open_jif: timestamp (jiffies) of the last successful 3223 * device open. 3224 * @last_open_session_duration_jif: duration (jiffies) of the last device open 3225 * session. 3226 * @open_counter: number of successful device open operations. 3227 * @fw_poll_interval_usec: FW status poll interval in usec. 3228 * used for CPU boot status 3229 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. 3230 * used for COMMs protocols cmds(COMMS_STS_*) 3231 * @dram_binning: contains mask of drams that is received from the f/w which indicates which 3232 * drams are binned-out 3233 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which 3234 * tpc engines are binned-out 3235 * @dmabuf_export_cnt: number of dma-buf exporting. 3236 * @card_type: Various ASICs have several card types. This indicates the card 3237 * type of the current device. 3238 * @major: habanalabs kernel driver major. 3239 * @high_pll: high PLL profile frequency. 3240 * @decoder_binning: contains mask of decoder engines that is received from the f/w which 3241 * indicates which decoder engines are binned-out 3242 * @edma_binning: contains mask of edma engines that is received from the f/w which 3243 * indicates which edma engines are binned-out 3244 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds. 3245 * @rotator_binning: contains mask of rotators engines that is received from the f/w 3246 * which indicates which rotator engines are binned-out(Gaudi3 and above). 3247 * @id: device minor. 3248 * @id_control: minor of the control device. 3249 * @cdev_idx: char device index. Used for setting its name. 3250 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit 3251 * addresses. 3252 * @is_in_dram_scrub: true if dram scrub operation is on going. 3253 * @disabled: is device disabled. 3254 * @late_init_done: is late init stage was done during initialization. 3255 * @hwmon_initialized: is H/W monitor sensors was initialized. 3256 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false 3257 * otherwise. 3258 * @dram_default_page_mapping: is DRAM default page mapping enabled. 3259 * @memory_scrub: true to perform device memory scrub in various locations, 3260 * such as context-switch, context close, page free, etc. 3261 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with 3262 * huge pages. 3263 * @init_done: is the initialization of the device done. 3264 * @device_cpu_disabled: is the device CPU disabled (due to timeouts) 3265 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure 3266 * can be used. This indication is needed because in some ASICs we need to do 3267 * specific operations to enable that infrastructure. 3268 * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created. 3269 * @stop_on_err: true if engines should stop on error. 3270 * @supports_sync_stream: is sync stream supported. 3271 * @sync_stream_queue_idx: helper index for sync stream queues initialization. 3272 * @collective_mon_idx: helper index for collective initialization 3273 * @supports_coresight: is CoreSight supported. 3274 * @supports_cb_mapping: is mapping a CB to the device's MMU supported. 3275 * @process_kill_trial_cnt: number of trials reset thread tried killing 3276 * user processes 3277 * @device_fini_pending: true if device_fini was called and might be 3278 * waiting for the reset thread to finish 3279 * @supports_staged_submission: true if staged submissions are supported 3280 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already 3281 * halted. We can't halt it again because the COMMS 3282 * protocol will throw an error. Relevant only for 3283 * cases where Linux was not loaded to device CPU 3284 * @supports_wait_for_multi_cs: true if wait for multi CS is supported 3285 * @is_compute_ctx_active: Whether there is an active compute context executing. 3286 * @compute_ctx_in_release: true if the current compute context is being released. 3287 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. 3288 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the 3289 * device. 3290 * @supports_ctx_switch: true if a ctx switch is required upon first submission. 3291 * @support_preboot_binning: true if we support read binning info from preboot. 3292 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. 3293 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w 3294 * stages and sometimes we want to stop at a certain stage. Used only for testing. 3295 * @mmu_disable: Disable the device MMU(s). Used only for testing. 3296 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. 3297 * @pldm: Whether we are running in Palladium environment. Used only for testing. 3298 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from 3299 * the f/w. Used only for testing. 3300 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. 3301 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. 3302 * Used only for testing. 3303 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies 3304 * that the f/w is always alive. Used only for testing. 3305 */ 3306 struct hl_device { 3307 struct pci_dev *pdev; 3308 u64 pcie_bar_phys[HL_PCI_NUM_BARS]; 3309 void __iomem *pcie_bar[HL_PCI_NUM_BARS]; 3310 void __iomem *rmmio; 3311 struct class *hclass; 3312 struct cdev cdev; 3313 struct cdev cdev_ctrl; 3314 struct device *dev; 3315 struct device *dev_ctrl; 3316 struct delayed_work work_heartbeat; 3317 struct hl_device_reset_work device_reset_work; 3318 struct hl_device_reset_work device_release_watchdog_work; 3319 char asic_name[HL_STR_MAX]; 3320 char status[HL_DEV_STS_MAX][HL_STR_MAX]; 3321 enum hl_asic_type asic_type; 3322 struct hl_cq *completion_queue; 3323 struct hl_user_interrupt *user_interrupt; 3324 struct hl_user_interrupt tpc_interrupt; 3325 struct hl_user_interrupt unexpected_error_interrupt; 3326 struct hl_user_interrupt common_user_cq_interrupt; 3327 struct hl_user_interrupt common_decoder_interrupt; 3328 struct hl_cs **shadow_cs_queue; 3329 struct workqueue_struct **cq_wq; 3330 struct workqueue_struct *eq_wq; 3331 struct workqueue_struct *cs_cmplt_wq; 3332 struct workqueue_struct *ts_free_obj_wq; 3333 struct workqueue_struct *prefetch_wq; 3334 struct workqueue_struct *reset_wq; 3335 struct hl_ctx *kernel_ctx; 3336 struct hl_hw_queue *kernel_queues; 3337 struct list_head cs_mirror_list; 3338 spinlock_t cs_mirror_lock; 3339 struct hl_mem_mgr kernel_mem_mgr; 3340 struct hl_eq event_queue; 3341 struct dma_pool *dma_pool; 3342 void *cpu_accessible_dma_mem; 3343 dma_addr_t cpu_accessible_dma_address; 3344 struct gen_pool *cpu_accessible_dma_pool; 3345 unsigned long *asid_bitmap; 3346 struct mutex asid_mutex; 3347 struct mutex send_cpu_message_lock; 3348 struct mutex debug_lock; 3349 struct mutex mmu_lock; 3350 struct asic_fixed_properties asic_prop; 3351 const struct hl_asic_funcs *asic_funcs; 3352 void *asic_specific; 3353 struct hl_vm vm; 3354 struct device *hwmon_dev; 3355 struct hwmon_chip_info *hl_chip_info; 3356 3357 struct hl_dbg_device_entry hl_debugfs; 3358 3359 struct list_head cb_pool; 3360 spinlock_t cb_pool_lock; 3361 3362 void *internal_cb_pool_virt_addr; 3363 dma_addr_t internal_cb_pool_dma_addr; 3364 struct gen_pool *internal_cb_pool; 3365 u64 internal_cb_va_base; 3366 3367 struct list_head fpriv_list; 3368 struct list_head fpriv_ctrl_list; 3369 struct mutex fpriv_list_lock; 3370 struct mutex fpriv_ctrl_list_lock; 3371 3372 struct hl_cs_counters_atomic aggregated_cs_counters; 3373 3374 struct hl_mmu_priv mmu_priv; 3375 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; 3376 3377 struct hl_dec *dec; 3378 3379 struct fw_load_mgr fw_loader; 3380 3381 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; 3382 3383 struct hl_state_dump_specs state_dump_specs; 3384 3385 struct multi_cs_completion multi_cs_completion[ 3386 MULTI_CS_MAX_USER_CTX]; 3387 struct hl_clk_throttle clk_throttling; 3388 struct hl_error_info captured_err_info; 3389 3390 struct hl_reset_info reset_info; 3391 3392 u32 *stream_master_qid_arr; 3393 u32 fw_inner_major_ver; 3394 u32 fw_inner_minor_ver; 3395 u32 fw_sw_major_ver; 3396 u32 fw_sw_minor_ver; 3397 u32 fw_sw_sub_minor_ver; 3398 atomic64_t dram_used_mem; 3399 u64 memory_scrub_val; 3400 u64 timeout_jiffies; 3401 u64 max_power; 3402 u64 boot_error_status_mask; 3403 u64 dram_pci_bar_start; 3404 u64 last_successful_open_jif; 3405 u64 last_open_session_duration_jif; 3406 u64 open_counter; 3407 u64 fw_poll_interval_usec; 3408 ktime_t last_successful_open_ktime; 3409 u64 fw_comms_poll_interval_usec; 3410 u64 dram_binning; 3411 u64 tpc_binning; 3412 atomic_t dmabuf_export_cnt; 3413 enum cpucp_card_types card_type; 3414 u32 major; 3415 u32 high_pll; 3416 u32 decoder_binning; 3417 u32 edma_binning; 3418 u32 device_release_watchdog_timeout_sec; 3419 u32 rotator_binning; 3420 u16 id; 3421 u16 id_control; 3422 u16 cdev_idx; 3423 u16 cpu_pci_msb_addr; 3424 u8 is_in_dram_scrub; 3425 u8 disabled; 3426 u8 late_init_done; 3427 u8 hwmon_initialized; 3428 u8 reset_on_lockup; 3429 u8 dram_default_page_mapping; 3430 u8 memory_scrub; 3431 u8 pmmu_huge_range; 3432 u8 init_done; 3433 u8 device_cpu_disabled; 3434 u8 in_debug; 3435 u8 cdev_sysfs_debugfs_created; 3436 u8 stop_on_err; 3437 u8 supports_sync_stream; 3438 u8 sync_stream_queue_idx; 3439 u8 collective_mon_idx; 3440 u8 supports_coresight; 3441 u8 supports_cb_mapping; 3442 u8 process_kill_trial_cnt; 3443 u8 device_fini_pending; 3444 u8 supports_staged_submission; 3445 u8 device_cpu_is_halted; 3446 u8 supports_wait_for_multi_cs; 3447 u8 stream_master_qid_arr_size; 3448 u8 is_compute_ctx_active; 3449 u8 compute_ctx_in_release; 3450 u8 supports_mmu_prefetch; 3451 u8 reset_upon_device_release; 3452 u8 supports_ctx_switch; 3453 u8 support_preboot_binning; 3454 3455 /* Parameters for bring-up to be upstreamed */ 3456 u64 nic_ports_mask; 3457 u64 fw_components; 3458 u8 mmu_disable; 3459 u8 cpu_queues_enable; 3460 u8 pldm; 3461 u8 hard_reset_on_fw_events; 3462 u8 bmc_enable; 3463 u8 reset_on_preboot_fail; 3464 u8 heartbeat; 3465 }; 3466 3467 3468 /** 3469 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure 3470 * @refcount: refcount used to protect removing this id when several 3471 * wait cs are used to wait of the reserved encaps signals. 3472 * @hdev: pointer to habanalabs device structure. 3473 * @hw_sob: pointer to H/W SOB used in the reservation. 3474 * @ctx: pointer to the user's context data structure 3475 * @cs_seq: staged cs sequence which contains encapsulated signals 3476 * @id: idr handler id to be used to fetch the handler info 3477 * @q_idx: stream queue index 3478 * @pre_sob_val: current SOB value before reservation 3479 * @count: signals number 3480 */ 3481 struct hl_cs_encaps_sig_handle { 3482 struct kref refcount; 3483 struct hl_device *hdev; 3484 struct hl_hw_sob *hw_sob; 3485 struct hl_ctx *ctx; 3486 u64 cs_seq; 3487 u32 id; 3488 u32 q_idx; 3489 u32 pre_sob_val; 3490 u32 count; 3491 }; 3492 3493 /** 3494 * struct hl_info_fw_err_info - firmware error information structure 3495 * @err_type: The type of error detected (or reported). 3496 * @event_mask: Pointer to the event mask to be modified with the detected error flag 3497 * (can be NULL) 3498 * @event_id: The id of the event that reported the error 3499 * (applicable when err_type is HL_INFO_FW_REPORTED_ERR). 3500 */ 3501 struct hl_info_fw_err_info { 3502 enum hl_info_fw_err_type err_type; 3503 u64 *event_mask; 3504 u16 event_id; 3505 }; 3506 3507 /* 3508 * IOCTLs 3509 */ 3510 3511 /** 3512 * typedef hl_ioctl_t - typedef for ioctl function in the driver 3513 * @hpriv: pointer to the FD's private data, which contains state of 3514 * user process 3515 * @data: pointer to the input/output arguments structure of the IOCTL 3516 * 3517 * Return: 0 for success, negative value for error 3518 */ 3519 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); 3520 3521 /** 3522 * struct hl_ioctl_desc - describes an IOCTL entry of the driver. 3523 * @cmd: the IOCTL code as created by the kernel macros. 3524 * @func: pointer to the driver's function that should be called for this IOCTL. 3525 */ 3526 struct hl_ioctl_desc { 3527 unsigned int cmd; 3528 hl_ioctl_t *func; 3529 }; 3530 3531 static inline bool hl_is_fw_sw_ver_below(struct hl_device *hdev, u32 fw_sw_major, u32 fw_sw_minor) 3532 { 3533 if (hdev->fw_sw_major_ver < fw_sw_major) 3534 return true; 3535 if (hdev->fw_sw_major_ver > fw_sw_major) 3536 return false; 3537 if (hdev->fw_sw_minor_ver < fw_sw_minor) 3538 return true; 3539 return false; 3540 } 3541 3542 /* 3543 * Kernel module functions that can be accessed by entire module 3544 */ 3545 3546 /** 3547 * hl_get_sg_info() - get number of pages and the DMA address from SG list. 3548 * @sg: the SG list. 3549 * @dma_addr: pointer to DMA address to return. 3550 * 3551 * Calculate the number of consecutive pages described by the SG list. Take the 3552 * offset of the address in the first page, add to it the length and round it up 3553 * to the number of needed pages. 3554 */ 3555 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) 3556 { 3557 *dma_addr = sg_dma_address(sg); 3558 3559 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + 3560 (PAGE_SIZE - 1)) >> PAGE_SHIFT; 3561 } 3562 3563 /** 3564 * hl_mem_area_inside_range() - Checks whether address+size are inside a range. 3565 * @address: The start address of the area we want to validate. 3566 * @size: The size in bytes of the area we want to validate. 3567 * @range_start_address: The start address of the valid range. 3568 * @range_end_address: The end address of the valid range. 3569 * 3570 * Return: true if the area is inside the valid range, false otherwise. 3571 */ 3572 static inline bool hl_mem_area_inside_range(u64 address, u64 size, 3573 u64 range_start_address, u64 range_end_address) 3574 { 3575 u64 end_address = address + size; 3576 3577 if ((address >= range_start_address) && 3578 (end_address <= range_end_address) && 3579 (end_address > address)) 3580 return true; 3581 3582 return false; 3583 } 3584 3585 /** 3586 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. 3587 * @address: The start address of the area we want to validate. 3588 * @size: The size in bytes of the area we want to validate. 3589 * @range_start_address: The start address of the valid range. 3590 * @range_end_address: The end address of the valid range. 3591 * 3592 * Return: true if the area overlaps part or all of the valid range, 3593 * false otherwise. 3594 */ 3595 static inline bool hl_mem_area_crosses_range(u64 address, u32 size, 3596 u64 range_start_address, u64 range_end_address) 3597 { 3598 u64 end_address = address + size - 1; 3599 3600 return ((address <= range_end_address) && (range_start_address <= end_address)); 3601 } 3602 3603 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); 3604 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); 3605 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); 3606 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, 3607 gfp_t flag, const char *caller); 3608 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, 3609 dma_addr_t dma_handle, const char *caller); 3610 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, 3611 dma_addr_t *dma_handle, const char *caller); 3612 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, 3613 const char *caller); 3614 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); 3615 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3616 enum dma_data_direction dir); 3617 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, 3618 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar); 3619 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, 3620 enum debugfs_access_type acc_type); 3621 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, 3622 u64 addr, u64 *val, enum debugfs_access_type acc_type); 3623 int hl_device_open(struct inode *inode, struct file *filp); 3624 int hl_device_open_ctrl(struct inode *inode, struct file *filp); 3625 bool hl_device_operational(struct hl_device *hdev, 3626 enum hl_device_status *status); 3627 bool hl_ctrl_device_operational(struct hl_device *hdev, 3628 enum hl_device_status *status); 3629 enum hl_device_status hl_device_status(struct hl_device *hdev); 3630 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); 3631 int hl_hw_queues_create(struct hl_device *hdev); 3632 void hl_hw_queues_destroy(struct hl_device *hdev); 3633 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, 3634 u32 cb_size, u64 cb_ptr); 3635 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, 3636 u32 ctl, u32 len, u64 ptr); 3637 int hl_hw_queue_schedule_cs(struct hl_cs *cs); 3638 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); 3639 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); 3640 void hl_hw_queue_update_ci(struct hl_cs *cs); 3641 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); 3642 3643 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) 3644 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) 3645 3646 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); 3647 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); 3648 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); 3649 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); 3650 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); 3651 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); 3652 irqreturn_t hl_irq_handler_cq(int irq, void *arg); 3653 irqreturn_t hl_irq_handler_eq(int irq, void *arg); 3654 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); 3655 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg); 3656 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg); 3657 u32 hl_cq_inc_ptr(u32 ptr); 3658 3659 int hl_asid_init(struct hl_device *hdev); 3660 void hl_asid_fini(struct hl_device *hdev); 3661 unsigned long hl_asid_alloc(struct hl_device *hdev); 3662 void hl_asid_free(struct hl_device *hdev, unsigned long asid); 3663 3664 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); 3665 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); 3666 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); 3667 void hl_ctx_do_release(struct kref *ref); 3668 void hl_ctx_get(struct hl_ctx *ctx); 3669 int hl_ctx_put(struct hl_ctx *ctx); 3670 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); 3671 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); 3672 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, 3673 struct hl_fence **fence, u32 arr_len); 3674 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); 3675 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); 3676 3677 int hl_device_init(struct hl_device *hdev); 3678 void hl_device_fini(struct hl_device *hdev); 3679 int hl_device_suspend(struct hl_device *hdev); 3680 int hl_device_resume(struct hl_device *hdev); 3681 int hl_device_reset(struct hl_device *hdev, u32 flags); 3682 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask); 3683 void hl_hpriv_get(struct hl_fpriv *hpriv); 3684 int hl_hpriv_put(struct hl_fpriv *hpriv); 3685 int hl_device_utilization(struct hl_device *hdev, u32 *utilization); 3686 3687 int hl_build_hwmon_channel_info(struct hl_device *hdev, 3688 struct cpucp_sensor *sensors_arr); 3689 3690 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); 3691 3692 int hl_sysfs_init(struct hl_device *hdev); 3693 void hl_sysfs_fini(struct hl_device *hdev); 3694 3695 int hl_hwmon_init(struct hl_device *hdev); 3696 void hl_hwmon_fini(struct hl_device *hdev); 3697 void hl_hwmon_release_resources(struct hl_device *hdev); 3698 3699 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, 3700 struct hl_ctx *ctx, u32 cb_size, bool internal_cb, 3701 bool map_cb, u64 *handle); 3702 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); 3703 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); 3704 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); 3705 void hl_cb_put(struct hl_cb *cb); 3706 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, 3707 bool internal_cb); 3708 int hl_cb_pool_init(struct hl_device *hdev); 3709 int hl_cb_pool_fini(struct hl_device *hdev); 3710 int hl_cb_va_pool_init(struct hl_ctx *ctx); 3711 void hl_cb_va_pool_fini(struct hl_ctx *ctx); 3712 3713 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); 3714 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 3715 enum hl_queue_type queue_type, bool is_kernel_allocated_cb); 3716 void hl_sob_reset_error(struct kref *ref); 3717 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); 3718 void hl_fence_put(struct hl_fence *fence); 3719 void hl_fences_put(struct hl_fence **fence, int len); 3720 void hl_fence_get(struct hl_fence *fence); 3721 void cs_get(struct hl_cs *cs); 3722 bool cs_needs_completion(struct hl_cs *cs); 3723 bool cs_needs_timeout(struct hl_cs *cs); 3724 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); 3725 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); 3726 void hl_multi_cs_completion_init(struct hl_device *hdev); 3727 u32 hl_get_active_cs_num(struct hl_device *hdev); 3728 3729 void goya_set_asic_funcs(struct hl_device *hdev); 3730 void gaudi_set_asic_funcs(struct hl_device *hdev); 3731 void gaudi2_set_asic_funcs(struct hl_device *hdev); 3732 3733 int hl_vm_ctx_init(struct hl_ctx *ctx); 3734 void hl_vm_ctx_fini(struct hl_ctx *ctx); 3735 3736 int hl_vm_init(struct hl_device *hdev); 3737 void hl_vm_fini(struct hl_device *hdev); 3738 3739 void hl_hw_block_mem_init(struct hl_ctx *ctx); 3740 void hl_hw_block_mem_fini(struct hl_ctx *ctx); 3741 3742 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3743 enum hl_va_range_type type, u64 size, u32 alignment); 3744 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3745 u64 start_addr, u64 size); 3746 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 3747 struct hl_userptr *userptr); 3748 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); 3749 void hl_userptr_delete_list(struct hl_device *hdev, 3750 struct list_head *userptr_list); 3751 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, 3752 struct list_head *userptr_list, 3753 struct hl_userptr **userptr); 3754 3755 int hl_mmu_init(struct hl_device *hdev); 3756 void hl_mmu_fini(struct hl_device *hdev); 3757 int hl_mmu_ctx_init(struct hl_ctx *ctx); 3758 void hl_mmu_ctx_fini(struct hl_ctx *ctx); 3759 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, 3760 u32 page_size, bool flush_pte); 3761 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 3762 u32 page_size, u32 *real_page_size, bool is_dram_addr); 3763 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, 3764 bool flush_pte); 3765 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, 3766 u64 phys_addr, u32 size); 3767 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); 3768 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); 3769 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, 3770 u32 flags, u32 asid, u64 va, u64 size); 3771 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 3772 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); 3773 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 3774 u8 hop_idx, u64 hop_addr, u64 virt_addr); 3775 void hl_mmu_hr_flush(struct hl_ctx *ctx); 3776 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, 3777 u64 pgt_size); 3778 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); 3779 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3780 u32 hop_table_size); 3781 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, 3782 u32 hop_table_size); 3783 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3784 u64 val, u32 hop_table_size); 3785 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3786 u32 hop_table_size); 3787 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3788 u32 hop_table_size); 3789 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); 3790 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, 3791 struct hl_hr_mmu_funcs *hr_func, 3792 u64 curr_pte); 3793 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, 3794 struct hl_hr_mmu_funcs *hr_func, 3795 struct hl_mmu_properties *mmu_prop); 3796 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, 3797 struct hl_mmu_hr_priv *hr_priv, 3798 struct hl_hr_mmu_funcs *hr_func, 3799 struct hl_mmu_properties *mmu_prop, 3800 u64 curr_pte, bool *is_new_hop); 3801 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, 3802 struct hl_hr_mmu_funcs *hr_func); 3803 int hl_mmu_if_set_funcs(struct hl_device *hdev); 3804 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3805 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3806 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); 3807 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 3808 struct hl_mmu_hop_info *hops); 3809 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); 3810 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); 3811 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); 3812 3813 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, 3814 void __iomem *dst, u32 src_offset, u32 size); 3815 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); 3816 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, 3817 u16 len, u32 timeout, u64 *result); 3818 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); 3819 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, 3820 size_t irq_arr_size); 3821 int hl_fw_test_cpu_queue(struct hl_device *hdev); 3822 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, 3823 dma_addr_t *dma_handle); 3824 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, 3825 void *vaddr); 3826 int hl_fw_send_heartbeat(struct hl_device *hdev); 3827 int hl_fw_cpucp_info_get(struct hl_device *hdev, 3828 u32 sts_boot_dev_sts0_reg, 3829 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3830 u32 boot_err1_reg); 3831 int hl_fw_cpucp_handshake(struct hl_device *hdev, 3832 u32 sts_boot_dev_sts0_reg, 3833 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3834 u32 boot_err1_reg); 3835 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); 3836 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); 3837 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, 3838 struct hl_info_pci_counters *counters); 3839 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, 3840 u64 *total_energy); 3841 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, 3842 enum pll_index *pll_index); 3843 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, 3844 u16 *pll_freq_arr); 3845 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); 3846 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); 3847 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); 3848 int hl_fw_init_cpu(struct hl_device *hdev); 3849 int hl_fw_wait_preboot_ready(struct hl_device *hdev); 3850 int hl_fw_read_preboot_status(struct hl_device *hdev); 3851 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, 3852 struct fw_load_mgr *fw_loader, 3853 enum comms_cmd cmd, unsigned int size, 3854 bool wait_ok, u32 timeout); 3855 int hl_fw_dram_replaced_row_get(struct hl_device *hdev, 3856 struct cpucp_hbm_row_info *info); 3857 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); 3858 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); 3859 int hl_fw_send_device_activity(struct hl_device *hdev, bool open); 3860 int hl_fw_send_soft_reset(struct hl_device *hdev); 3861 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], 3862 bool is_wc[3]); 3863 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); 3864 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); 3865 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, 3866 struct hl_inbound_pci_region *pci_region); 3867 int hl_pci_set_outbound_region(struct hl_device *hdev, 3868 struct hl_outbound_pci_region *pci_region); 3869 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); 3870 int hl_pci_init(struct hl_device *hdev); 3871 void hl_pci_fini(struct hl_device *hdev); 3872 3873 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); 3874 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); 3875 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3876 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3877 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3878 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3879 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3880 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3881 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3882 long hl_fw_get_max_power(struct hl_device *hdev); 3883 void hl_fw_set_max_power(struct hl_device *hdev); 3884 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, 3885 u32 nonce); 3886 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3887 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3888 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3889 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3890 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); 3891 void hl_fw_set_pll_profile(struct hl_device *hdev); 3892 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); 3893 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); 3894 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode, 3895 dma_addr_t buff, u32 *size); 3896 3897 void hw_sob_get(struct hl_hw_sob *hw_sob); 3898 void hw_sob_put(struct hl_hw_sob *hw_sob); 3899 void hl_encaps_release_handle_and_put_ctx(struct kref *ref); 3900 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref); 3901 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, 3902 struct hl_cs *cs, struct hl_cs_job *job, 3903 struct hl_cs_compl *cs_cmpl); 3904 3905 int hl_dec_init(struct hl_device *hdev); 3906 void hl_dec_fini(struct hl_device *hdev); 3907 void hl_dec_ctx_fini(struct hl_ctx *ctx); 3908 3909 void hl_release_pending_user_interrupts(struct hl_device *hdev); 3910 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev); 3911 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 3912 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); 3913 3914 int hl_state_dump(struct hl_device *hdev); 3915 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); 3916 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, 3917 struct hl_mon_state_dump *mon); 3918 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); 3919 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, 3920 const char *format, ...); 3921 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); 3922 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); 3923 3924 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); 3925 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg); 3926 void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg); 3927 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, 3928 void *args); 3929 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, 3930 u64 handle); 3931 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); 3932 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); 3933 struct hl_mmap_mem_buf * 3934 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, 3935 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, 3936 void *args); 3937 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); 3938 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 3939 u8 flags); 3940 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 3941 u8 flags, u64 *event_mask); 3942 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu); 3943 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, 3944 u64 *event_mask); 3945 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask); 3946 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info); 3947 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info); 3948 3949 #ifdef CONFIG_DEBUG_FS 3950 3951 void hl_debugfs_init(void); 3952 void hl_debugfs_fini(void); 3953 int hl_debugfs_device_init(struct hl_device *hdev); 3954 void hl_debugfs_device_fini(struct hl_device *hdev); 3955 void hl_debugfs_add_device(struct hl_device *hdev); 3956 void hl_debugfs_remove_device(struct hl_device *hdev); 3957 void hl_debugfs_add_file(struct hl_fpriv *hpriv); 3958 void hl_debugfs_remove_file(struct hl_fpriv *hpriv); 3959 void hl_debugfs_add_cb(struct hl_cb *cb); 3960 void hl_debugfs_remove_cb(struct hl_cb *cb); 3961 void hl_debugfs_add_cs(struct hl_cs *cs); 3962 void hl_debugfs_remove_cs(struct hl_cs *cs); 3963 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); 3964 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); 3965 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); 3966 void hl_debugfs_remove_userptr(struct hl_device *hdev, 3967 struct hl_userptr *userptr); 3968 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 3969 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 3970 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, 3971 unsigned long length); 3972 3973 #else 3974 3975 static inline void __init hl_debugfs_init(void) 3976 { 3977 } 3978 3979 static inline void hl_debugfs_fini(void) 3980 { 3981 } 3982 3983 static inline int hl_debugfs_device_init(struct hl_device *hdev) 3984 { 3985 return 0; 3986 } 3987 3988 static inline void hl_debugfs_device_fini(struct hl_device *hdev) 3989 { 3990 } 3991 3992 static inline void hl_debugfs_add_device(struct hl_device *hdev) 3993 { 3994 } 3995 3996 static inline void hl_debugfs_remove_device(struct hl_device *hdev) 3997 { 3998 } 3999 4000 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) 4001 { 4002 } 4003 4004 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 4005 { 4006 } 4007 4008 static inline void hl_debugfs_add_cb(struct hl_cb *cb) 4009 { 4010 } 4011 4012 static inline void hl_debugfs_remove_cb(struct hl_cb *cb) 4013 { 4014 } 4015 4016 static inline void hl_debugfs_add_cs(struct hl_cs *cs) 4017 { 4018 } 4019 4020 static inline void hl_debugfs_remove_cs(struct hl_cs *cs) 4021 { 4022 } 4023 4024 static inline void hl_debugfs_add_job(struct hl_device *hdev, 4025 struct hl_cs_job *job) 4026 { 4027 } 4028 4029 static inline void hl_debugfs_remove_job(struct hl_device *hdev, 4030 struct hl_cs_job *job) 4031 { 4032 } 4033 4034 static inline void hl_debugfs_add_userptr(struct hl_device *hdev, 4035 struct hl_userptr *userptr) 4036 { 4037 } 4038 4039 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, 4040 struct hl_userptr *userptr) 4041 { 4042 } 4043 4044 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, 4045 struct hl_ctx *ctx) 4046 { 4047 } 4048 4049 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, 4050 struct hl_ctx *ctx) 4051 { 4052 } 4053 4054 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, 4055 char *data, unsigned long length) 4056 { 4057 } 4058 4059 #endif 4060 4061 /* Security */ 4062 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, 4063 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], 4064 int array_size); 4065 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], 4066 int mm_array_size, int offset, const u32 pb_blocks[], 4067 struct hl_block_glbl_sec sgs_array[], int blocks_array_size); 4068 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], 4069 struct hl_block_glbl_sec sgs_array[], u32 block_offset, 4070 int array_size); 4071 void hl_secure_block(struct hl_device *hdev, 4072 struct hl_block_glbl_sec sgs_array[], int array_size); 4073 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4074 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4075 const u32 pb_blocks[], u32 blocks_array_size, 4076 const u32 *regs_array, u32 regs_array_size, u64 mask); 4077 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4078 u32 num_instances, u32 instance_offset, 4079 const u32 pb_blocks[], u32 blocks_array_size, 4080 const u32 *regs_array, u32 regs_array_size); 4081 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, 4082 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4083 const u32 pb_blocks[], u32 blocks_array_size, 4084 const struct range *regs_range_array, u32 regs_range_array_size, 4085 u64 mask); 4086 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, 4087 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4088 const u32 pb_blocks[], u32 blocks_array_size, 4089 const struct range *regs_range_array, 4090 u32 regs_range_array_size); 4091 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4092 u32 num_instances, u32 instance_offset, 4093 const u32 pb_blocks[], u32 blocks_array_size, 4094 const u32 *regs_array, u32 regs_array_size); 4095 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4096 u32 num_instances, u32 instance_offset, 4097 const u32 pb_blocks[], u32 blocks_array_size, 4098 const struct range *regs_range_array, 4099 u32 regs_range_array_size); 4100 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4101 u32 num_instances, u32 instance_offset, 4102 const u32 pb_blocks[], u32 blocks_array_size); 4103 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4104 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4105 const u32 pb_blocks[], u32 blocks_array_size, u64 mask); 4106 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4107 u32 num_instances, u32 instance_offset, 4108 const u32 pb_blocks[], u32 blocks_array_size); 4109 4110 /* IOCTLs */ 4111 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); 4112 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); 4113 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); 4114 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); 4115 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data); 4116 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); 4117 4118 #endif /* HABANALABSP_H_ */ 4119