xref: /openbmc/linux/drivers/accel/habanalabs/common/habanalabs.h (revision 25ebbc57ca56df3cf9149e9da6b1d3169c8487db)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * Copyright 2016-2022 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10 
11 #include "../include/common/cpucp_if.h"
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/drm/habanalabs_accel.h>
15 
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/rwsem.h>
24 #include <linux/eventfd.h>
25 #include <linux/bitfield.h>
26 #include <linux/genalloc.h>
27 #include <linux/sched/signal.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/coresight.h>
30 #include <linux/dma-buf.h>
31 
32 #include "security.h"
33 
34 #define HL_NAME				"habanalabs"
35 
36 struct hl_device;
37 struct hl_fpriv;
38 
39 /* Use upper bits of mmap offset to store habana driver specific information.
40  * bits[63:59] - Encode mmap type
41  * bits[45:0]  - mmap offset value
42  *
43  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
44  *  defines are w.r.t to PAGE_SIZE
45  */
46 #define HL_MMAP_TYPE_SHIFT		(59 - PAGE_SHIFT)
47 #define HL_MMAP_TYPE_MASK		(0x1full << HL_MMAP_TYPE_SHIFT)
48 #define HL_MMAP_TYPE_TS_BUFF		(0x10ull << HL_MMAP_TYPE_SHIFT)
49 #define HL_MMAP_TYPE_BLOCK		(0x4ull << HL_MMAP_TYPE_SHIFT)
50 #define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)
51 
52 #define HL_MMAP_OFFSET_VALUE_MASK	(0x1FFFFFFFFFFFull >> PAGE_SHIFT)
53 #define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)
54 
55 #define HL_PENDING_RESET_PER_SEC		10
56 #define HL_PENDING_RESET_MAX_TRIALS		60 /* 10 minutes */
57 #define HL_PENDING_RESET_LONG_SEC		60
58 /*
59  * In device fini, wait 10 minutes for user processes to be terminated after we kill them.
60  * This is needed to prevent situation of clearing resources while user processes are still alive.
61  */
62 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI	600
63 
64 #define HL_HARD_RESET_MAX_TIMEOUT	120
65 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT	(HL_HARD_RESET_MAX_TIMEOUT * 3)
66 
67 #define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
68 
69 #define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
70 
71 #define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
72 
73 #define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
74 #define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
75 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC	10000000 /* 10s */
76 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
77 
78 #define HL_FW_STATUS_POLL_INTERVAL_USEC		10000 /* 10ms */
79 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC	1000000 /* 1s */
80 
81 #define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
82 
83 #define HL_SIM_MAX_TIMEOUT_US		100000000 /* 100s */
84 
85 #define HL_INVALID_QUEUE		UINT_MAX
86 
87 #define HL_COMMON_USER_CQ_INTERRUPT_ID	0xFFF
88 #define HL_COMMON_DEC_INTERRUPT_ID	0xFFE
89 
90 #define HL_STATE_DUMP_HIST_LEN		5
91 
92 /* Default value for device reset trigger , an invalid value */
93 #define HL_RESET_TRIGGER_DEFAULT	0xFF
94 
95 #define OBJ_NAMES_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
96 #define SYNC_TO_ENGINE_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
97 
98 /* Memory */
99 #define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
100 
101 /* MMU */
102 #define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
103 
104 /**
105  * enum hl_mmu_page_table_location - mmu page table location
106  * @MMU_DR_PGT: page-table is located on device DRAM.
107  * @MMU_HR_PGT: page-table is located on host memory.
108  * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
109  */
110 enum hl_mmu_page_table_location {
111 	MMU_DR_PGT = 0,		/* device-dram-resident MMU PGT */
112 	MMU_HR_PGT,		/* host resident MMU PGT */
113 	MMU_NUM_PGT_LOCATIONS	/* num of PGT locations */
114 };
115 
116 /**
117  * enum hl_mmu_enablement - what mmu modules to enable
118  * @MMU_EN_NONE: mmu disabled.
119  * @MMU_EN_ALL: enable all.
120  * @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled.
121  */
122 enum hl_mmu_enablement {
123 	MMU_EN_NONE = 0,
124 	MMU_EN_ALL = 1,
125 	MMU_EN_PMMU_ONLY = 3,	/* N/A for Goya/Gaudi */
126 };
127 
128 /*
129  * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
130  * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
131  */
132 #define HL_RSVD_SOBS			2
133 #define HL_RSVD_MONS			1
134 
135 /*
136  * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
137  */
138 #define HL_COLLECTIVE_RSVD_MSTR_MONS	2
139 
140 #define HL_MAX_SOB_VAL			(1 << 15)
141 
142 #define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
143 #define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))
144 
145 #define HL_PCI_NUM_BARS			6
146 
147 /* Completion queue entry relates to completed job */
148 #define HL_COMPLETION_MODE_JOB		0
149 /* Completion queue entry relates to completed command submission */
150 #define HL_COMPLETION_MODE_CS		1
151 
152 #define HL_MAX_DCORES			8
153 
154 /* DMA alloc/free wrappers */
155 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
156 	hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
157 
158 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
159 	hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
160 
161 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
162 	hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
163 
164 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
165 	hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
166 
167 /*
168  * Reset Flags
169  *
170  * - HL_DRV_RESET_HARD
171  *       If set do hard reset to all engines. If not set reset just
172  *       compute/DMA engines.
173  *
174  * - HL_DRV_RESET_FROM_RESET_THR
175  *       Set if the caller is the hard-reset thread
176  *
177  * - HL_DRV_RESET_HEARTBEAT
178  *       Set if reset is due to heartbeat
179  *
180  * - HL_DRV_RESET_TDR
181  *       Set if reset is due to TDR
182  *
183  * - HL_DRV_RESET_DEV_RELEASE
184  *       Set if reset is due to device release
185  *
186  * - HL_DRV_RESET_BYPASS_REQ_TO_FW
187  *       F/W will perform the reset. No need to ask it to reset the device. This is relevant
188  *       only when running with secured f/w
189  *
190  * - HL_DRV_RESET_FW_FATAL_ERR
191  *       Set if reset is due to a fatal error from FW
192  *
193  * - HL_DRV_RESET_DELAY
194  *       Set if a delay should be added before the reset
195  *
196  * - HL_DRV_RESET_FROM_WD_THR
197  *       Set if the caller is the device release watchdog thread
198  */
199 
200 #define HL_DRV_RESET_HARD		(1 << 0)
201 #define HL_DRV_RESET_FROM_RESET_THR	(1 << 1)
202 #define HL_DRV_RESET_HEARTBEAT		(1 << 2)
203 #define HL_DRV_RESET_TDR		(1 << 3)
204 #define HL_DRV_RESET_DEV_RELEASE	(1 << 4)
205 #define HL_DRV_RESET_BYPASS_REQ_TO_FW	(1 << 5)
206 #define HL_DRV_RESET_FW_FATAL_ERR	(1 << 6)
207 #define HL_DRV_RESET_DELAY		(1 << 7)
208 #define HL_DRV_RESET_FROM_WD_THR	(1 << 8)
209 
210 /*
211  * Security
212  */
213 
214 #define HL_PB_SHARED		1
215 #define HL_PB_NA		0
216 #define HL_PB_SINGLE_INSTANCE	1
217 #define HL_BLOCK_SIZE		0x1000
218 #define HL_BLOCK_GLBL_ERR_MASK	0xF40
219 #define HL_BLOCK_GLBL_ERR_ADDR	0xF44
220 #define HL_BLOCK_GLBL_ERR_CAUSE	0xF48
221 #define HL_BLOCK_GLBL_SEC_OFFS	0xF80
222 #define HL_BLOCK_GLBL_SEC_SIZE	(HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
223 #define HL_BLOCK_GLBL_SEC_LEN	(HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
224 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
225 
226 enum hl_protection_levels {
227 	SECURED_LVL,
228 	PRIVILEGED_LVL,
229 	NON_SECURED_LVL
230 };
231 
232 /**
233  * struct iterate_module_ctx - HW module iterator
234  * @fn: function to apply to each HW module instance
235  * @data: optional internal data to the function iterator
236  * @rc: return code for optional use of iterator/iterator-caller
237  */
238 struct iterate_module_ctx {
239 	/*
240 	 * callback for the HW module iterator
241 	 * @hdev: pointer to the habanalabs device structure
242 	 * @block: block (ASIC specific definition can be dcore/hdcore)
243 	 * @inst: HW module instance within the block
244 	 * @offset: current HW module instance offset from the 1-st HW module instance
245 	 *          in the 1-st block
246 	 * @ctx: the iterator context.
247 	 */
248 	void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
249 			struct iterate_module_ctx *ctx);
250 	void *data;
251 	int rc;
252 };
253 
254 struct hl_block_glbl_sec {
255 	u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
256 };
257 
258 #define HL_MAX_SOBS_PER_MONITOR	8
259 
260 /**
261  * struct hl_gen_wait_properties - properties for generating a wait CB
262  * @data: command buffer
263  * @q_idx: queue id is used to extract fence register address
264  * @size: offset in command buffer
265  * @sob_base: SOB base to use in this wait CB
266  * @sob_val: SOB value to wait for
267  * @mon_id: monitor to use in this wait CB
268  * @sob_mask: each bit represents a SOB offset from sob_base to be used
269  */
270 struct hl_gen_wait_properties {
271 	void	*data;
272 	u32	q_idx;
273 	u32	size;
274 	u16	sob_base;
275 	u16	sob_val;
276 	u16	mon_id;
277 	u8	sob_mask;
278 };
279 
280 /**
281  * struct pgt_info - MMU hop page info.
282  * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
283  *        actual pgts for host resident MMU).
284  * @phys_addr: physical address of the pgt.
285  * @virt_addr: host virtual address of the pgt (see above device/host resident).
286  * @shadow_addr: shadow hop in the host for device resident MMU.
287  * @ctx: pointer to the owner ctx.
288  * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
289  *               allocated HOPs (all HOPs but HOP0)
290  *
291  * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
292  * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
293  *
294  * When a new level (hop) is needed during mapping this structure will be used to describe
295  * the newly allocated hop as well as to track number of PTEs in it.
296  * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
297  * freed with its pgt_info structure.
298  */
299 struct pgt_info {
300 	struct hlist_node	node;
301 	u64			phys_addr;
302 	u64			virt_addr;
303 	u64			shadow_addr;
304 	struct hl_ctx		*ctx;
305 	int			num_of_ptes;
306 };
307 
308 /**
309  * enum hl_pci_match_mode - pci match mode per region
310  * @PCI_ADDRESS_MATCH_MODE: address match mode
311  * @PCI_BAR_MATCH_MODE: bar match mode
312  */
313 enum hl_pci_match_mode {
314 	PCI_ADDRESS_MATCH_MODE,
315 	PCI_BAR_MATCH_MODE
316 };
317 
318 /**
319  * enum hl_fw_component - F/W components to read version through registers.
320  * @FW_COMP_BOOT_FIT: boot fit.
321  * @FW_COMP_PREBOOT: preboot.
322  * @FW_COMP_LINUX: linux.
323  */
324 enum hl_fw_component {
325 	FW_COMP_BOOT_FIT,
326 	FW_COMP_PREBOOT,
327 	FW_COMP_LINUX,
328 };
329 
330 /**
331  * enum hl_fw_types - F/W types present in the system
332  * @FW_TYPE_NONE: no FW component indication
333  * @FW_TYPE_LINUX: Linux image for device CPU
334  * @FW_TYPE_BOOT_CPU: Boot image for device CPU
335  * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
336  *                       (preboot, ppboot etc...)
337  * @FW_TYPE_ALL_TYPES: Mask for all types
338  */
339 enum hl_fw_types {
340 	FW_TYPE_NONE = 0x0,
341 	FW_TYPE_LINUX = 0x1,
342 	FW_TYPE_BOOT_CPU = 0x2,
343 	FW_TYPE_PREBOOT_CPU = 0x4,
344 	FW_TYPE_ALL_TYPES =
345 		(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
346 };
347 
348 /**
349  * enum hl_queue_type - Supported QUEUE types.
350  * @QUEUE_TYPE_NA: queue is not available.
351  * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
352  *                  host.
353  * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
354  *			memories and/or operates the compute engines.
355  * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
356  * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
357  *                 notifications are sent by H/W.
358  */
359 enum hl_queue_type {
360 	QUEUE_TYPE_NA,
361 	QUEUE_TYPE_EXT,
362 	QUEUE_TYPE_INT,
363 	QUEUE_TYPE_CPU,
364 	QUEUE_TYPE_HW
365 };
366 
367 enum hl_cs_type {
368 	CS_TYPE_DEFAULT,
369 	CS_TYPE_SIGNAL,
370 	CS_TYPE_WAIT,
371 	CS_TYPE_COLLECTIVE_WAIT,
372 	CS_RESERVE_SIGNALS,
373 	CS_UNRESERVE_SIGNALS,
374 	CS_TYPE_ENGINE_CORE,
375 	CS_TYPE_FLUSH_PCI_HBW_WRITES,
376 };
377 
378 /*
379  * struct hl_inbound_pci_region - inbound region descriptor
380  * @mode: pci match mode for this region
381  * @addr: region target address
382  * @size: region size in bytes
383  * @offset_in_bar: offset within bar (address match mode)
384  * @bar: bar id
385  */
386 struct hl_inbound_pci_region {
387 	enum hl_pci_match_mode	mode;
388 	u64			addr;
389 	u64			size;
390 	u64			offset_in_bar;
391 	u8			bar;
392 };
393 
394 /*
395  * struct hl_outbound_pci_region - outbound region descriptor
396  * @addr: region target address
397  * @size: region size in bytes
398  */
399 struct hl_outbound_pci_region {
400 	u64	addr;
401 	u64	size;
402 };
403 
404 /*
405  * enum queue_cb_alloc_flags - Indicates queue support for CBs that
406  * allocated by Kernel or by User
407  * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
408  * @CB_ALLOC_USER: support only CBs that allocated by User
409  */
410 enum queue_cb_alloc_flags {
411 	CB_ALLOC_KERNEL = 0x1,
412 	CB_ALLOC_USER   = 0x2
413 };
414 
415 /*
416  * struct hl_hw_sob - H/W SOB info.
417  * @hdev: habanalabs device structure.
418  * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
419  * @sob_id: id of this SOB.
420  * @sob_addr: the sob offset from the base address.
421  * @q_idx: the H/W queue that uses this SOB.
422  * @need_reset: reset indication set when switching to the other sob.
423  */
424 struct hl_hw_sob {
425 	struct hl_device	*hdev;
426 	struct kref		kref;
427 	u32			sob_id;
428 	u32			sob_addr;
429 	u32			q_idx;
430 	bool			need_reset;
431 };
432 
433 enum hl_collective_mode {
434 	HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
435 	HL_COLLECTIVE_MASTER = 0x1,
436 	HL_COLLECTIVE_SLAVE = 0x2
437 };
438 
439 /**
440  * struct hw_queue_properties - queue information.
441  * @type: queue type.
442  * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
443  *                  that allocated by the Kernel driver and therefore,
444  *                  a CB handle can be provided for jobs on this queue.
445  *                  Otherwise, a CB address must be provided.
446  * @collective_mode: collective mode of current queue
447  * @driver_only: true if only the driver is allowed to send a job to this queue,
448  *               false otherwise.
449  * @binned: True if the queue is binned out and should not be used
450  * @supports_sync_stream: True if queue supports sync stream
451  */
452 struct hw_queue_properties {
453 	enum hl_queue_type		type;
454 	enum queue_cb_alloc_flags	cb_alloc_flags;
455 	enum hl_collective_mode		collective_mode;
456 	u8				driver_only;
457 	u8				binned;
458 	u8				supports_sync_stream;
459 };
460 
461 /**
462  * enum vm_type - virtual memory mapping request information.
463  * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
464  * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
465  */
466 enum vm_type {
467 	VM_TYPE_USERPTR = 0x1,
468 	VM_TYPE_PHYS_PACK = 0x2
469 };
470 
471 /**
472  * enum mmu_op_flags - mmu operation relevant information.
473  * @MMU_OP_USERPTR: operation on user memory (host resident).
474  * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
475  * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
476  * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
477  */
478 enum mmu_op_flags {
479 	MMU_OP_USERPTR = 0x1,
480 	MMU_OP_PHYS_PACK = 0x2,
481 	MMU_OP_CLEAR_MEMCACHE = 0x4,
482 	MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
483 };
484 
485 
486 /**
487  * enum hl_device_hw_state - H/W device state. use this to understand whether
488  *                           to do reset before hw_init or not
489  * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
490  * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
491  *                            hw_init
492  */
493 enum hl_device_hw_state {
494 	HL_DEVICE_HW_STATE_CLEAN = 0,
495 	HL_DEVICE_HW_STATE_DIRTY
496 };
497 
498 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
499 
500 /**
501  * struct hl_mmu_properties - ASIC specific MMU address translation properties.
502  * @start_addr: virtual start address of the memory region.
503  * @end_addr: virtual end address of the memory region.
504  * @hop_shifts: array holds HOPs shifts.
505  * @hop_masks: array holds HOPs masks.
506  * @last_mask: mask to get the bit indicating this is the last hop.
507  * @pgt_size: size for page tables.
508  * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
509  *                        supporting multiple page size).
510  * @page_size: default page size used to allocate memory.
511  * @num_hops: The amount of hops supported by the translation table.
512  * @hop_table_size: HOP table size.
513  * @hop0_tables_total_size: total size for all HOP0 tables.
514  * @host_resident: Should the MMU page table reside in host memory or in the
515  *                 device DRAM.
516  */
517 struct hl_mmu_properties {
518 	u64	start_addr;
519 	u64	end_addr;
520 	u64	hop_shifts[MMU_HOP_MAX];
521 	u64	hop_masks[MMU_HOP_MAX];
522 	u64	last_mask;
523 	u64	pgt_size;
524 	u64	supported_pages_mask;
525 	u32	page_size;
526 	u32	num_hops;
527 	u32	hop_table_size;
528 	u32	hop0_tables_total_size;
529 	u8	host_resident;
530 };
531 
532 /**
533  * struct hl_hints_range - hint addresses reserved va range.
534  * @start_addr: start address of the va range.
535  * @end_addr: end address of the va range.
536  */
537 struct hl_hints_range {
538 	u64 start_addr;
539 	u64 end_addr;
540 };
541 
542 /**
543  * struct asic_fixed_properties - ASIC specific immutable properties.
544  * @hw_queues_props: H/W queues properties.
545  * @special_blocks: points to an array containing special blocks info.
546  * @skip_special_blocks_cfg: special blocks skip configs.
547  * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
548  *		available sensors.
549  * @uboot_ver: F/W U-boot version.
550  * @preboot_ver: F/W Preboot version.
551  * @dmmu: DRAM MMU address translation properties.
552  * @pmmu: PCI (host) MMU address translation properties.
553  * @pmmu_huge: PCI (host) MMU address translation properties for memory
554  *              allocated with huge pages.
555  * @hints_dram_reserved_va_range: dram hint addresses reserved range.
556  * @hints_host_reserved_va_range: host hint addresses reserved range.
557  * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
558  *                                      range.
559  * @sram_base_address: SRAM physical start address.
560  * @sram_end_address: SRAM physical end address.
561  * @sram_user_base_address - SRAM physical start address for user access.
562  * @dram_base_address: DRAM physical start address.
563  * @dram_end_address: DRAM physical end address.
564  * @dram_user_base_address: DRAM physical start address for user access.
565  * @dram_size: DRAM total size.
566  * @dram_pci_bar_size: size of PCI bar towards DRAM.
567  * @max_power_default: max power of the device after reset.
568  * @dc_power_default: power consumed by the device in mode idle.
569  * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
570  *                                      fault.
571  * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
572  * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
573  * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
574  * @mmu_dram_default_page_addr: DRAM default page physical address.
575  * @tpc_enabled_mask: which TPCs are enabled.
576  * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
577  * @dram_enabled_mask: which DRAMs are enabled.
578  * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
579  * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
580  *                  for hints validity check.
581  * @cfg_base_address: config space base address.
582  * @mmu_cache_mng_addr: address of the MMU cache.
583  * @mmu_cache_mng_size: size of the MMU cache.
584  * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
585  *                                     to enable the device to access them.
586  * @host_base_address: host physical start address for host DMA from device
587  * @host_end_address: host physical end address for host DMA from device
588  * @max_freq_value: current max clk frequency.
589  * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
590  *                                  in order to raise events toward FW.
591  * @clk_pll_index: clock PLL index that specify which PLL determines the clock
592  *                 we display to the user
593  * @mmu_pgt_size: MMU page tables total size.
594  * @mmu_pte_size: PTE size in MMU page tables.
595  * @mmu_hop_table_size: MMU hop table size.
596  * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
597  * @dram_page_size: page size for MMU DRAM allocation.
598  * @cfg_size: configuration space size on SRAM.
599  * @sram_size: total size of SRAM.
600  * @max_asid: maximum number of open contexts (ASIDs).
601  * @num_of_events: number of possible internal H/W IRQs.
602  * @psoc_pci_pll_nr: PCI PLL NR value.
603  * @psoc_pci_pll_nf: PCI PLL NF value.
604  * @psoc_pci_pll_od: PCI PLL OD value.
605  * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
606  * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
607  * @high_pll: high PLL frequency used by the device.
608  * @cb_pool_cb_cnt: number of CBs in the CB pool.
609  * @cb_pool_cb_size: size of each CB in the CB pool.
610  * @decoder_enabled_mask: which decoders are enabled.
611  * @decoder_binning_mask: which decoders are binned, 0 means usable and 1
612  *                        means binned (at most one binned decoder per dcore).
613  * @edma_enabled_mask: which EDMAs are enabled.
614  * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
615  *                     binned (at most one binned DMA).
616  * @max_pending_cs: maximum of concurrent pending command submissions
617  * @max_queues: maximum amount of queues in the system
618  * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
619  *                                capabilities reported by FW, bit description
620  *                                can be found in CPU_BOOT_DEV_STS0
621  * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
622  *                                capabilities reported by FW, bit description
623  *                                can be found in CPU_BOOT_DEV_STS1
624  * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
625  *                                status reported by FW, bit description can be
626  *                                found in CPU_BOOT_DEV_STS0
627  * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
628  *                                status reported by FW, bit description can be
629  *                                found in CPU_BOOT_DEV_STS1
630  * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
631  *                            status reported by FW, bit description can be
632  *                            found in CPU_BOOT_DEV_STS0
633  * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
634  *                            status reported by FW, bit description can be
635  *                            found in CPU_BOOT_DEV_STS1
636  * @max_dec: maximum number of decoders
637  * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
638  *                         1- enabled, 0- isolated.
639  * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
640  *                         1- faulty cluster, 0- good cluster.
641  * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
642  *                          1- enabled, 0- isolated.
643  * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
644  *                                      which the property supports_user_set_page_size is true
645  *                                      (i.e. the DRAM supports multiple page sizes), otherwise
646  *                                      it will shall  be equal to dram_page_size.
647  * @num_engine_cores: number of engine cpu cores
648  * @num_of_special_blocks: special_blocks array size.
649  * @glbl_err_cause_num: global err cause number.
650  * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is
651  *                 not supported.
652  * @collective_first_sob: first sync object available for collective use
653  * @collective_first_mon: first monitor available for collective use
654  * @sync_stream_first_sob: first sync object available for sync stream use
655  * @sync_stream_first_mon: first monitor available for sync stream use
656  * @first_available_user_sob: first sob available for the user
657  * @first_available_user_mon: first monitor available for the user
658  * @first_available_user_interrupt: first available interrupt reserved for the user
659  * @first_available_cq: first available CQ for the user.
660  * @user_interrupt_count: number of user interrupts.
661  * @user_dec_intr_count: number of decoder interrupts exposed to user.
662  * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
663  * @cache_line_size: device cache line size.
664  * @server_type: Server type that the ASIC is currently installed in.
665  *               The value is according to enum hl_server_type in uapi file.
666  * @completion_queues_count: number of completion queues.
667  * @completion_mode: 0 - job based completion, 1 - cs based completion
668  * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
669  *                         in Master/Slave mode
670  * @fw_security_enabled: true if security measures are enabled in firmware,
671  *                       false otherwise
672  * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
673  *                              BOOT_DEV_STS0
674  * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
675  *                              BOOT_DEV_STS1
676  * @dram_supports_virtual_memory: is there an MMU towards the DRAM
677  * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
678  * @num_functional_hbms: number of functional HBMs in each DCORE.
679  * @hints_range_reservation: device support hint addresses range reservation.
680  * @iatu_done_by_fw: true if iATU configuration is being done by FW.
681  * @dynamic_fw_load: is dynamic FW load is supported.
682  * @gic_interrupts_enable: true if FW is not blocking GIC controller,
683  *                         false otherwise.
684  * @use_get_power_for_reset_history: To support backward compatibility for Goya
685  *                                   and Gaudi
686  * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
687  * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
688  *                              initiated by user or TDR. This is only true
689  *                              in inference ASICs, as there is no real-world
690  *                              use-case of doing soft-reset in training (due
691  *                              to the fact that training runs on multiple
692  *                              devices)
693  * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
694  * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
695  * @supports_user_set_page_size: true if user can set the allocation page size.
696  * @dma_mask: the dma mask to be set for this device
697  * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
698  */
699 struct asic_fixed_properties {
700 	struct hw_queue_properties	*hw_queues_props;
701 	struct hl_special_block_info	*special_blocks;
702 	struct hl_skip_blocks_cfg	skip_special_blocks_cfg;
703 	struct cpucp_info		cpucp_info;
704 	char				uboot_ver[VERSION_MAX_LEN];
705 	char				preboot_ver[VERSION_MAX_LEN];
706 	struct hl_mmu_properties	dmmu;
707 	struct hl_mmu_properties	pmmu;
708 	struct hl_mmu_properties	pmmu_huge;
709 	struct hl_hints_range		hints_dram_reserved_va_range;
710 	struct hl_hints_range		hints_host_reserved_va_range;
711 	struct hl_hints_range		hints_host_hpage_reserved_va_range;
712 	u64				sram_base_address;
713 	u64				sram_end_address;
714 	u64				sram_user_base_address;
715 	u64				dram_base_address;
716 	u64				dram_end_address;
717 	u64				dram_user_base_address;
718 	u64				dram_size;
719 	u64				dram_pci_bar_size;
720 	u64				max_power_default;
721 	u64				dc_power_default;
722 	u64				dram_size_for_default_page_mapping;
723 	u64				pcie_dbi_base_address;
724 	u64				pcie_aux_dbi_reg_addr;
725 	u64				mmu_pgt_addr;
726 	u64				mmu_dram_default_page_addr;
727 	u64				tpc_enabled_mask;
728 	u64				tpc_binning_mask;
729 	u64				dram_enabled_mask;
730 	u64				dram_binning_mask;
731 	u64				dram_hints_align_mask;
732 	u64				cfg_base_address;
733 	u64				mmu_cache_mng_addr;
734 	u64				mmu_cache_mng_size;
735 	u64				device_dma_offset_for_host_access;
736 	u64				host_base_address;
737 	u64				host_end_address;
738 	u64				max_freq_value;
739 	u64				engine_core_interrupt_reg_addr;
740 	u32				clk_pll_index;
741 	u32				mmu_pgt_size;
742 	u32				mmu_pte_size;
743 	u32				mmu_hop_table_size;
744 	u32				mmu_hop0_tables_total_size;
745 	u32				dram_page_size;
746 	u32				cfg_size;
747 	u32				sram_size;
748 	u32				max_asid;
749 	u32				num_of_events;
750 	u32				psoc_pci_pll_nr;
751 	u32				psoc_pci_pll_nf;
752 	u32				psoc_pci_pll_od;
753 	u32				psoc_pci_pll_div_factor;
754 	u32				psoc_timestamp_frequency;
755 	u32				high_pll;
756 	u32				cb_pool_cb_cnt;
757 	u32				cb_pool_cb_size;
758 	u32				decoder_enabled_mask;
759 	u32				decoder_binning_mask;
760 	u32				edma_enabled_mask;
761 	u32				edma_binning_mask;
762 	u32				max_pending_cs;
763 	u32				max_queues;
764 	u32				fw_preboot_cpu_boot_dev_sts0;
765 	u32				fw_preboot_cpu_boot_dev_sts1;
766 	u32				fw_bootfit_cpu_boot_dev_sts0;
767 	u32				fw_bootfit_cpu_boot_dev_sts1;
768 	u32				fw_app_cpu_boot_dev_sts0;
769 	u32				fw_app_cpu_boot_dev_sts1;
770 	u32				max_dec;
771 	u32				hmmu_hif_enabled_mask;
772 	u32				faulty_dram_cluster_map;
773 	u32				xbar_edge_enabled_mask;
774 	u32				device_mem_alloc_default_page_size;
775 	u32				num_engine_cores;
776 	u32				num_of_special_blocks;
777 	u32				glbl_err_cause_num;
778 	u32				hbw_flush_reg;
779 	u16				collective_first_sob;
780 	u16				collective_first_mon;
781 	u16				sync_stream_first_sob;
782 	u16				sync_stream_first_mon;
783 	u16				first_available_user_sob[HL_MAX_DCORES];
784 	u16				first_available_user_mon[HL_MAX_DCORES];
785 	u16				first_available_user_interrupt;
786 	u16				first_available_cq[HL_MAX_DCORES];
787 	u16				user_interrupt_count;
788 	u16				user_dec_intr_count;
789 	u16				tpc_interrupt_id;
790 	u16				cache_line_size;
791 	u16				server_type;
792 	u8				completion_queues_count;
793 	u8				completion_mode;
794 	u8				mme_master_slave_mode;
795 	u8				fw_security_enabled;
796 	u8				fw_cpu_boot_dev_sts0_valid;
797 	u8				fw_cpu_boot_dev_sts1_valid;
798 	u8				dram_supports_virtual_memory;
799 	u8				hard_reset_done_by_fw;
800 	u8				num_functional_hbms;
801 	u8				hints_range_reservation;
802 	u8				iatu_done_by_fw;
803 	u8				dynamic_fw_load;
804 	u8				gic_interrupts_enable;
805 	u8				use_get_power_for_reset_history;
806 	u8				supports_compute_reset;
807 	u8				allow_inference_soft_reset;
808 	u8				configurable_stop_on_err;
809 	u8				set_max_power_on_device_init;
810 	u8				supports_user_set_page_size;
811 	u8				dma_mask;
812 	u8				supports_advanced_cpucp_rc;
813 };
814 
815 /**
816  * struct hl_fence - software synchronization primitive
817  * @completion: fence is implemented using completion
818  * @refcount: refcount for this fence
819  * @cs_sequence: sequence of the corresponding command submission
820  * @stream_master_qid_map: streams masters QID bitmap to represent all streams
821  *                         masters QIDs that multi cs is waiting on
822  * @error: mark this fence with error
823  * @timestamp: timestamp upon completion
824  * @mcs_handling_done: indicates that corresponding command submission has
825  *                     finished msc handling, this does not mean it was part
826  *                     of the mcs
827  */
828 struct hl_fence {
829 	struct completion	completion;
830 	struct kref		refcount;
831 	u64			cs_sequence;
832 	u32			stream_master_qid_map;
833 	int			error;
834 	ktime_t			timestamp;
835 	u8			mcs_handling_done;
836 };
837 
838 /**
839  * struct hl_cs_compl - command submission completion object.
840  * @base_fence: hl fence object.
841  * @lock: spinlock to protect fence.
842  * @hdev: habanalabs device structure.
843  * @hw_sob: the H/W SOB used in this signal/wait CS.
844  * @encaps_sig_hdl: encaps signals handler.
845  * @cs_seq: command submission sequence number.
846  * @type: type of the CS - signal/wait.
847  * @sob_val: the SOB value that is used in this signal/wait CS.
848  * @sob_group: the SOB group that is used in this collective wait CS.
849  * @encaps_signals: indication whether it's a completion object of cs with
850  * encaps signals or not.
851  */
852 struct hl_cs_compl {
853 	struct hl_fence		base_fence;
854 	spinlock_t		lock;
855 	struct hl_device	*hdev;
856 	struct hl_hw_sob	*hw_sob;
857 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
858 	u64			cs_seq;
859 	enum hl_cs_type		type;
860 	u16			sob_val;
861 	u16			sob_group;
862 	bool			encaps_signals;
863 };
864 
865 /*
866  * Command Buffers
867  */
868 
869 /**
870  * struct hl_ts_buff - describes a timestamp buffer.
871  * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
872  * @user_buff_address: Holds the user buffer's kernel virtual address.
873  * @kernel_buff_size: Holds the internal kernel buffer size.
874  */
875 struct hl_ts_buff {
876 	void			*kernel_buff_address;
877 	void			*user_buff_address;
878 	u32			kernel_buff_size;
879 };
880 
881 struct hl_mmap_mem_buf;
882 
883 /**
884  * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
885  * @dev: back pointer to the owning device
886  * @lock: protects handles
887  * @handles: an idr holding all active handles to the memory buffers in the system.
888  */
889 struct hl_mem_mgr {
890 	struct device *dev;
891 	spinlock_t lock;
892 	struct idr handles;
893 };
894 
895 /**
896  * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
897  * @topic: string identifier used for logging
898  * @mem_id: memory type identifier, embedded in the handle and used to identify
899  *          the memory type by handle.
900  * @alloc: callback executed on buffer allocation, shall allocate the memory,
901  *         set it under buffer private, and set mappable size.
902  * @mmap: callback executed on mmap, must map the buffer to vma
903  * @release: callback executed on release, must free the resources used by the buffer
904  */
905 struct hl_mmap_mem_buf_behavior {
906 	const char *topic;
907 	u64 mem_id;
908 
909 	int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
910 	int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
911 	void (*release)(struct hl_mmap_mem_buf *buf);
912 };
913 
914 /**
915  * struct hl_mmap_mem_buf - describes a single unified memory buffer
916  * @behavior: buffer behavior
917  * @mmg: back pointer to the unified memory manager
918  * @refcount: reference counter for buffer users
919  * @private: pointer to buffer behavior private data
920  * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
921  * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
922  *                   may change at runtime.
923  * @mappable_size: the original mappable size of the buffer, does not change after
924  *                 the allocation.
925  * @handle: the buffer id in mmg handles store
926  */
927 struct hl_mmap_mem_buf {
928 	struct hl_mmap_mem_buf_behavior *behavior;
929 	struct hl_mem_mgr *mmg;
930 	struct kref refcount;
931 	void *private;
932 	atomic_t mmap;
933 	u64 real_mapped_size;
934 	u64 mappable_size;
935 	u64 handle;
936 };
937 
938 /**
939  * struct hl_cb - describes a Command Buffer.
940  * @hdev: pointer to device this CB belongs to.
941  * @ctx: pointer to the CB owner's context.
942  * @buf: back pointer to the parent mappable memory buffer
943  * @debugfs_list: node in debugfs list of command buffers.
944  * @pool_list: node in pool list of command buffers.
945  * @kernel_address: Holds the CB's kernel virtual address.
946  * @virtual_addr: Holds the CB's virtual address.
947  * @bus_address: Holds the CB's DMA address.
948  * @size: holds the CB's size.
949  * @roundup_size: holds the cb size after roundup to page size.
950  * @cs_cnt: holds number of CS that this CB participates in.
951  * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
952  * @is_pool: true if CB was acquired from the pool, false otherwise.
953  * @is_internal: internally allocated
954  * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
955  */
956 struct hl_cb {
957 	struct hl_device	*hdev;
958 	struct hl_ctx		*ctx;
959 	struct hl_mmap_mem_buf	*buf;
960 	struct list_head	debugfs_list;
961 	struct list_head	pool_list;
962 	void			*kernel_address;
963 	u64			virtual_addr;
964 	dma_addr_t		bus_address;
965 	u32			size;
966 	u32			roundup_size;
967 	atomic_t		cs_cnt;
968 	atomic_t		is_handle_destroyed;
969 	u8			is_pool;
970 	u8			is_internal;
971 	u8			is_mmu_mapped;
972 };
973 
974 
975 /*
976  * QUEUES
977  */
978 
979 struct hl_cs_job;
980 
981 /* Queue length of external and HW queues */
982 #define HL_QUEUE_LENGTH			4096
983 #define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
984 
985 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
986 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
987 #endif
988 
989 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
990 #define HL_CQ_LENGTH			HL_QUEUE_LENGTH
991 #define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
992 
993 /* Must be power of 2 */
994 #define HL_EQ_LENGTH			64
995 #define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
996 
997 /* Host <-> CPU-CP shared memory size */
998 #define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
999 
1000 /**
1001  * struct hl_sync_stream_properties -
1002  *     describes a H/W queue sync stream properties
1003  * @hw_sob: array of the used H/W SOBs by this H/W queue.
1004  * @next_sob_val: the next value to use for the currently used SOB.
1005  * @base_sob_id: the base SOB id of the SOBs used by this queue.
1006  * @base_mon_id: the base MON id of the MONs used by this queue.
1007  * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
1008  *                          in order to sync with all slave queues.
1009  * @collective_slave_mon_id: the MON id used by this slave queue in order to
1010  *                           sync with its master queue.
1011  * @collective_sob_id: current SOB id used by this collective slave queue
1012  *                     to signal its collective master queue upon completion.
1013  * @curr_sob_offset: the id offset to the currently used SOB from the
1014  *                   HL_RSVD_SOBS that are being used by this queue.
1015  */
1016 struct hl_sync_stream_properties {
1017 	struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
1018 	u16		next_sob_val;
1019 	u16		base_sob_id;
1020 	u16		base_mon_id;
1021 	u16		collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
1022 	u16		collective_slave_mon_id;
1023 	u16		collective_sob_id;
1024 	u8		curr_sob_offset;
1025 };
1026 
1027 /**
1028  * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1029  * handlers manager
1030  * @lock: protects handles.
1031  * @handles: an idr to hold all encapsulated signals handles.
1032  */
1033 struct hl_encaps_signals_mgr {
1034 	spinlock_t		lock;
1035 	struct idr		handles;
1036 };
1037 
1038 /**
1039  * struct hl_hw_queue - describes a H/W transport queue.
1040  * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1041  * @sync_stream_prop: sync stream queue properties
1042  * @queue_type: type of queue.
1043  * @collective_mode: collective mode of current queue
1044  * @kernel_address: holds the queue's kernel virtual address.
1045  * @bus_address: holds the queue's DMA address.
1046  * @pi: holds the queue's pi value.
1047  * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1048  * @hw_queue_id: the id of the H/W queue.
1049  * @cq_id: the id for the corresponding CQ for this H/W queue.
1050  * @msi_vec: the IRQ number of the H/W queue.
1051  * @int_queue_len: length of internal queue (number of entries).
1052  * @valid: is the queue valid (we have array of 32 queues, not all of them
1053  *         exist).
1054  * @supports_sync_stream: True if queue supports sync stream
1055  */
1056 struct hl_hw_queue {
1057 	struct hl_cs_job			**shadow_queue;
1058 	struct hl_sync_stream_properties	sync_stream_prop;
1059 	enum hl_queue_type			queue_type;
1060 	enum hl_collective_mode			collective_mode;
1061 	void					*kernel_address;
1062 	dma_addr_t				bus_address;
1063 	u32					pi;
1064 	atomic_t				ci;
1065 	u32					hw_queue_id;
1066 	u32					cq_id;
1067 	u32					msi_vec;
1068 	u16					int_queue_len;
1069 	u8					valid;
1070 	u8					supports_sync_stream;
1071 };
1072 
1073 /**
1074  * struct hl_cq - describes a completion queue
1075  * @hdev: pointer to the device structure
1076  * @kernel_address: holds the queue's kernel virtual address
1077  * @bus_address: holds the queue's DMA address
1078  * @cq_idx: completion queue index in array
1079  * @hw_queue_id: the id of the matching H/W queue
1080  * @ci: ci inside the queue
1081  * @pi: pi inside the queue
1082  * @free_slots_cnt: counter of free slots in queue
1083  */
1084 struct hl_cq {
1085 	struct hl_device	*hdev;
1086 	void			*kernel_address;
1087 	dma_addr_t		bus_address;
1088 	u32			cq_idx;
1089 	u32			hw_queue_id;
1090 	u32			ci;
1091 	u32			pi;
1092 	atomic_t		free_slots_cnt;
1093 };
1094 
1095 enum hl_user_interrupt_type {
1096 	HL_USR_INTERRUPT_CQ = 0,
1097 	HL_USR_INTERRUPT_DECODER,
1098 	HL_USR_INTERRUPT_TPC
1099 };
1100 
1101 /**
1102  * struct hl_user_interrupt - holds user interrupt information
1103  * @hdev: pointer to the device structure
1104  * @type: user interrupt type
1105  * @wait_list_head: head to the list of user threads pending on this interrupt
1106  * @wait_list_lock: protects wait_list_head
1107  * @timestamp: last timestamp taken upon interrupt
1108  * @interrupt_id: msix interrupt id
1109  */
1110 struct hl_user_interrupt {
1111 	struct hl_device		*hdev;
1112 	enum hl_user_interrupt_type	type;
1113 	struct list_head		wait_list_head;
1114 	spinlock_t			wait_list_lock;
1115 	ktime_t				timestamp;
1116 	u32				interrupt_id;
1117 };
1118 
1119 /**
1120  * struct timestamp_reg_free_node - holds the timestamp registration free objects node
1121  * @free_objects_node: node in the list free_obj_jobs
1122  * @cq_cb: pointer to cq command buffer to be freed
1123  * @buf: pointer to timestamp buffer to be freed
1124  */
1125 struct timestamp_reg_free_node {
1126 	struct list_head	free_objects_node;
1127 	struct hl_cb		*cq_cb;
1128 	struct hl_mmap_mem_buf	*buf;
1129 };
1130 
1131 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1132  * the job will be to pass over the free_obj_jobs list and put refcount to objects
1133  * in each node of the list
1134  * @free_obj: workqueue object to free timestamp registration node objects
1135  * @hdev: pointer to the device structure
1136  * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1137  */
1138 struct timestamp_reg_work_obj {
1139 	struct work_struct	free_obj;
1140 	struct hl_device	*hdev;
1141 	struct list_head	*free_obj_head;
1142 };
1143 
1144 /* struct timestamp_reg_info - holds the timestamp registration related data.
1145  * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1146  *       relevant only when doing timestamps records registration.
1147  * @cq_cb: pointer to CQ counter CB.
1148  * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1149  *                         relevant only when doing timestamps records
1150  *                         registration.
1151  * @in_use: indicates if the node already in use. relevant only when doing
1152  *          timestamps records registration, since in this case the driver
1153  *          will have it's own buffer which serve as a records pool instead of
1154  *          allocating records dynamically.
1155  */
1156 struct timestamp_reg_info {
1157 	struct hl_mmap_mem_buf	*buf;
1158 	struct hl_cb		*cq_cb;
1159 	u64			*timestamp_kernel_addr;
1160 	u8			in_use;
1161 };
1162 
1163 /**
1164  * struct hl_user_pending_interrupt - holds a context to a user thread
1165  *                                    pending on an interrupt
1166  * @ts_reg_info: holds the timestamps registration nodes info
1167  * @wait_list_node: node in the list of user threads pending on an interrupt
1168  * @fence: hl fence object for interrupt completion
1169  * @cq_target_value: CQ target value
1170  * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1171  *                  handler for target value comparison
1172  */
1173 struct hl_user_pending_interrupt {
1174 	struct timestamp_reg_info	ts_reg_info;
1175 	struct list_head		wait_list_node;
1176 	struct hl_fence			fence;
1177 	u64				cq_target_value;
1178 	u64				*cq_kernel_addr;
1179 };
1180 
1181 /**
1182  * struct hl_eq - describes the event queue (single one per device)
1183  * @hdev: pointer to the device structure
1184  * @kernel_address: holds the queue's kernel virtual address
1185  * @bus_address: holds the queue's DMA address
1186  * @ci: ci inside the queue
1187  * @prev_eqe_index: the index of the previous event queue entry. The index of
1188  *                  the current entry's index must be +1 of the previous one.
1189  * @check_eqe_index: do we need to check the index of the current entry vs. the
1190  *                   previous one. This is for backward compatibility with older
1191  *                   firmwares
1192  */
1193 struct hl_eq {
1194 	struct hl_device	*hdev;
1195 	void			*kernel_address;
1196 	dma_addr_t		bus_address;
1197 	u32			ci;
1198 	u32			prev_eqe_index;
1199 	bool			check_eqe_index;
1200 };
1201 
1202 /**
1203  * struct hl_dec - describes a decoder sw instance.
1204  * @hdev: pointer to the device structure.
1205  * @completion_abnrm_work: workqueue object to run when decoder generates an error interrupt
1206  * @core_id: ID of the decoder.
1207  * @base_addr: base address of the decoder.
1208  */
1209 struct hl_dec {
1210 	struct hl_device		*hdev;
1211 	struct work_struct		completion_abnrm_work;
1212 	u32				core_id;
1213 	u32				base_addr;
1214 };
1215 
1216 /**
1217  * enum hl_asic_type - supported ASIC types.
1218  * @ASIC_INVALID: Invalid ASIC type.
1219  * @ASIC_GOYA: Goya device (HL-1000).
1220  * @ASIC_GAUDI: Gaudi device (HL-2000).
1221  * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1222  * @ASIC_GAUDI2: Gaudi2 device.
1223  * @ASIC_GAUDI2B: Gaudi2B device.
1224  */
1225 enum hl_asic_type {
1226 	ASIC_INVALID,
1227 	ASIC_GOYA,
1228 	ASIC_GAUDI,
1229 	ASIC_GAUDI_SEC,
1230 	ASIC_GAUDI2,
1231 	ASIC_GAUDI2B,
1232 };
1233 
1234 struct hl_cs_parser;
1235 
1236 /**
1237  * enum hl_pm_mng_profile - power management profile.
1238  * @PM_AUTO: internal clock is set by the Linux driver.
1239  * @PM_MANUAL: internal clock is set by the user.
1240  * @PM_LAST: last power management type.
1241  */
1242 enum hl_pm_mng_profile {
1243 	PM_AUTO = 1,
1244 	PM_MANUAL,
1245 	PM_LAST
1246 };
1247 
1248 /**
1249  * enum hl_pll_frequency - PLL frequency.
1250  * @PLL_HIGH: high frequency.
1251  * @PLL_LOW: low frequency.
1252  * @PLL_LAST: last frequency values that were configured by the user.
1253  */
1254 enum hl_pll_frequency {
1255 	PLL_HIGH = 1,
1256 	PLL_LOW,
1257 	PLL_LAST
1258 };
1259 
1260 #define PLL_REF_CLK 50
1261 
1262 enum div_select_defs {
1263 	DIV_SEL_REF_CLK = 0,
1264 	DIV_SEL_PLL_CLK = 1,
1265 	DIV_SEL_DIVIDED_REF = 2,
1266 	DIV_SEL_DIVIDED_PLL = 3,
1267 };
1268 
1269 enum debugfs_access_type {
1270 	DEBUGFS_READ8,
1271 	DEBUGFS_WRITE8,
1272 	DEBUGFS_READ32,
1273 	DEBUGFS_WRITE32,
1274 	DEBUGFS_READ64,
1275 	DEBUGFS_WRITE64,
1276 };
1277 
1278 enum pci_region {
1279 	PCI_REGION_CFG,
1280 	PCI_REGION_SRAM,
1281 	PCI_REGION_DRAM,
1282 	PCI_REGION_SP_SRAM,
1283 	PCI_REGION_NUMBER,
1284 };
1285 
1286 /**
1287  * struct pci_mem_region - describe memory region in a PCI bar
1288  * @region_base: region base address
1289  * @region_size: region size
1290  * @bar_size: size of the BAR
1291  * @offset_in_bar: region offset into the bar
1292  * @bar_id: bar ID of the region
1293  * @used: if used 1, otherwise 0
1294  */
1295 struct pci_mem_region {
1296 	u64 region_base;
1297 	u64 region_size;
1298 	u64 bar_size;
1299 	u64 offset_in_bar;
1300 	u8 bar_id;
1301 	u8 used;
1302 };
1303 
1304 /**
1305  * struct static_fw_load_mgr - static FW load manager
1306  * @preboot_version_max_off: max offset to preboot version
1307  * @boot_fit_version_max_off: max offset to boot fit version
1308  * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1309  * @cpu_cmd_status_to_host_reg: register address for CPU command status response
1310  * @cpu_boot_status_reg: boot status register
1311  * @cpu_boot_dev_status0_reg: boot device status register 0
1312  * @cpu_boot_dev_status1_reg: boot device status register 1
1313  * @boot_err0_reg: boot error register 0
1314  * @boot_err1_reg: boot error register 1
1315  * @preboot_version_offset_reg: SRAM offset to preboot version register
1316  * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1317  * @sram_offset_mask: mask for getting offset into the SRAM
1318  * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1319  */
1320 struct static_fw_load_mgr {
1321 	u64 preboot_version_max_off;
1322 	u64 boot_fit_version_max_off;
1323 	u32 kmd_msg_to_cpu_reg;
1324 	u32 cpu_cmd_status_to_host_reg;
1325 	u32 cpu_boot_status_reg;
1326 	u32 cpu_boot_dev_status0_reg;
1327 	u32 cpu_boot_dev_status1_reg;
1328 	u32 boot_err0_reg;
1329 	u32 boot_err1_reg;
1330 	u32 preboot_version_offset_reg;
1331 	u32 boot_fit_version_offset_reg;
1332 	u32 sram_offset_mask;
1333 	u32 cpu_reset_wait_msec;
1334 };
1335 
1336 /**
1337  * struct fw_response - FW response to LKD command
1338  * @ram_offset: descriptor offset into the RAM
1339  * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1340  * @status: command status
1341  */
1342 struct fw_response {
1343 	u32 ram_offset;
1344 	u8 ram_type;
1345 	u8 status;
1346 };
1347 
1348 /**
1349  * struct dynamic_fw_load_mgr - dynamic FW load manager
1350  * @response: FW to LKD response
1351  * @comm_desc: the communication descriptor with FW
1352  * @image_region: region to copy the FW image to
1353  * @fw_image_size: size of FW image to load
1354  * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1355  * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1356  */
1357 struct dynamic_fw_load_mgr {
1358 	struct fw_response response;
1359 	struct lkd_fw_comms_desc comm_desc;
1360 	struct pci_mem_region *image_region;
1361 	size_t fw_image_size;
1362 	u32 wait_for_bl_timeout;
1363 	bool fw_desc_valid;
1364 };
1365 
1366 /**
1367  * struct pre_fw_load_props - needed properties for pre-FW load
1368  * @cpu_boot_status_reg: cpu_boot_status register address
1369  * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1370  * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1371  * @boot_err0_reg: boot_err0 register address
1372  * @boot_err1_reg: boot_err1 register address
1373  * @wait_for_preboot_timeout: timeout to poll for preboot ready
1374  */
1375 struct pre_fw_load_props {
1376 	u32 cpu_boot_status_reg;
1377 	u32 sts_boot_dev_sts0_reg;
1378 	u32 sts_boot_dev_sts1_reg;
1379 	u32 boot_err0_reg;
1380 	u32 boot_err1_reg;
1381 	u32 wait_for_preboot_timeout;
1382 };
1383 
1384 /**
1385  * struct fw_image_props - properties of FW image
1386  * @image_name: name of the image
1387  * @src_off: offset in src FW to copy from
1388  * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1389  */
1390 struct fw_image_props {
1391 	char *image_name;
1392 	u32 src_off;
1393 	u32 copy_size;
1394 };
1395 
1396 /**
1397  * struct fw_load_mgr - manager FW loading process
1398  * @dynamic_loader: specific structure for dynamic load
1399  * @static_loader: specific structure for static load
1400  * @pre_fw_load_props: parameter for pre FW load
1401  * @boot_fit_img: boot fit image properties
1402  * @linux_img: linux image properties
1403  * @cpu_timeout: CPU response timeout in usec
1404  * @boot_fit_timeout: Boot fit load timeout in usec
1405  * @skip_bmc: should BMC be skipped
1406  * @sram_bar_id: SRAM bar ID
1407  * @dram_bar_id: DRAM bar ID
1408  * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1409  *                  component. values are set according to enum hl_fw_types.
1410  */
1411 struct fw_load_mgr {
1412 	union {
1413 		struct dynamic_fw_load_mgr dynamic_loader;
1414 		struct static_fw_load_mgr static_loader;
1415 	};
1416 	struct pre_fw_load_props pre_fw_load;
1417 	struct fw_image_props boot_fit_img;
1418 	struct fw_image_props linux_img;
1419 	u32 cpu_timeout;
1420 	u32 boot_fit_timeout;
1421 	u8 skip_bmc;
1422 	u8 sram_bar_id;
1423 	u8 dram_bar_id;
1424 	u8 fw_comp_loaded;
1425 };
1426 
1427 struct hl_cs;
1428 
1429 /**
1430  * struct engines_data - asic engines data
1431  * @buf: buffer for engines data in ascii
1432  * @actual_size: actual size of data that was written by the driver to the allocated buffer
1433  * @allocated_buf_size: total size of allocated buffer
1434  */
1435 struct engines_data {
1436 	char *buf;
1437 	int actual_size;
1438 	u32 allocated_buf_size;
1439 };
1440 
1441 /**
1442  * struct hl_asic_funcs - ASIC specific functions that are can be called from
1443  *                        common code.
1444  * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1445  * @early_fini: tears down what was done in early_init.
1446  * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1447  * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1448  * @sw_init: sets up driver state, does not configure H/W.
1449  * @sw_fini: tears down driver state, does not configure H/W.
1450  * @hw_init: sets up the H/W state.
1451  * @hw_fini: tears down the H/W state.
1452  * @halt_engines: halt engines, needed for reset sequence. This also disables
1453  *                interrupts from the device. Should be called before
1454  *                hw_fini and before CS rollback.
1455  * @suspend: handles IP specific H/W or SW changes for suspend.
1456  * @resume: handles IP specific H/W or SW changes for resume.
1457  * @mmap: maps a memory.
1458  * @ring_doorbell: increment PI on a given QMAN.
1459  * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1460  *             function because the PQs are located in different memory areas
1461  *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1462  *             writing the PQE must match the destination memory area
1463  *             properties.
1464  * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1465  *                           dma_alloc_coherent(). This is ASIC function because
1466  *                           its implementation is not trivial when the driver
1467  *                           is loaded in simulation mode (not upstreamed).
1468  * @asic_dma_free_coherent:  Free coherent DMA memory by calling
1469  *                           dma_free_coherent(). This is ASIC function because
1470  *                           its implementation is not trivial when the driver
1471  *                           is loaded in simulation mode (not upstreamed).
1472  * @scrub_device_mem: Scrub the entire SRAM and DRAM.
1473  * @scrub_device_dram: Scrub the dram memory of the device.
1474  * @get_int_queue_base: get the internal queue base address.
1475  * @test_queues: run simple test on all queues for sanity check.
1476  * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1477  *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
1478  * @asic_dma_pool_free: free small DMA allocation from pool.
1479  * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1480  * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1481  * @asic_dma_unmap_single: unmap a single DMA buffer
1482  * @asic_dma_map_single: map a single buffer to a DMA
1483  * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
1484  * @cs_parser: parse Command Submission.
1485  * @asic_dma_map_sgtable: DMA map scatter-gather table.
1486  * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1487  * @update_eq_ci: update event queue CI.
1488  * @context_switch: called upon ASID context switch.
1489  * @restore_phase_topology: clear all SOBs amd MONs.
1490  * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1491  *                    internal memory via DMA engine.
1492  * @add_device_attr: add ASIC specific device attributes.
1493  * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1494  * @get_events_stat: retrieve event queue entries histogram.
1495  * @read_pte: read MMU page table entry from DRAM.
1496  * @write_pte: write MMU page table entry to DRAM.
1497  * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1498  *                        (L1 only) or hard (L0 & L1) flush.
1499  * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1500  * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1501  * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1502  * @debug_coresight: perform certain actions on Coresight for debugging.
1503  * @is_device_idle: return true if device is idle, false otherwise.
1504  * @compute_reset_late_init: perform certain actions needed after a compute reset
1505  * @hw_queues_lock: acquire H/W queues lock.
1506  * @hw_queues_unlock: release H/W queues lock.
1507  * @get_pci_id: retrieve PCI ID.
1508  * @get_eeprom_data: retrieve EEPROM data from F/W.
1509  * @get_monitor_dump: retrieve monitor registers dump from F/W.
1510  * @send_cpu_message: send message to F/W. If the message is timedout, the
1511  *                    driver will eventually reset the device. The timeout can
1512  *                    be determined by the calling function or it can be 0 and
1513  *                    then the timeout is the default timeout for the specific
1514  *                    ASIC
1515  * @get_hw_state: retrieve the H/W state
1516  * @pci_bars_map: Map PCI BARs.
1517  * @init_iatu: Initialize the iATU unit inside the PCI controller.
1518  * @rreg: Read a register. Needed for simulator support.
1519  * @wreg: Write a register. Needed for simulator support.
1520  * @halt_coresight: stop the ETF and ETR traces.
1521  * @ctx_init: context dependent initialization.
1522  * @ctx_fini: context dependent cleanup.
1523  * @pre_schedule_cs: Perform pre-CS-scheduling operations.
1524  * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1525  * @load_firmware_to_device: load the firmware to the device's memory
1526  * @load_boot_fit_to_device: load boot fit to device's memory
1527  * @get_signal_cb_size: Get signal CB size.
1528  * @get_wait_cb_size: Get wait CB size.
1529  * @gen_signal_cb: Generate a signal CB.
1530  * @gen_wait_cb: Generate a wait CB.
1531  * @reset_sob: Reset a SOB.
1532  * @reset_sob_group: Reset SOB group
1533  * @get_device_time: Get the device time.
1534  * @pb_print_security_errors: print security errors according block and cause
1535  * @collective_wait_init_cs: Generate collective master/slave packets
1536  *                           and place them in the relevant cs jobs
1537  * @collective_wait_create_jobs: allocate collective wait cs jobs
1538  * @get_dec_base_addr: get the base address of a given decoder.
1539  * @scramble_addr: Routine to scramble the address prior of mapping it
1540  *                 in the MMU.
1541  * @descramble_addr: Routine to de-scramble the address prior of
1542  *                   showing it to users.
1543  * @ack_protection_bits_errors: ack and dump all security violations
1544  * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1545  *                   also returns the size of the block if caller supplies
1546  *                   a valid pointer for it
1547  * @hw_block_mmap: mmap a HW block with a given id.
1548  * @enable_events_from_fw: send interrupt to firmware to notify them the
1549  *                         driver is ready to receive asynchronous events. This
1550  *                         function should be called during the first init and
1551  *                         after every hard-reset of the device
1552  * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1553  * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1554  * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1555  *                         generic f/w compatible PLL Indexes
1556  * @init_firmware_preload_params: initialize pre FW-load parameters.
1557  * @init_firmware_loader: initialize data for FW loader.
1558  * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1559  * @state_dump_init: initialize constants required for state dump
1560  * @get_sob_addr: get SOB base address offset.
1561  * @set_pci_memory_regions: setting properties of PCI memory regions
1562  * @get_stream_master_qid_arr: get pointer to stream masters QID array
1563  * @check_if_razwi_happened: check if there was a razwi due to RR violation.
1564  * @access_dev_mem: access device memory
1565  * @set_dram_bar_base: set the base of the DRAM BAR
1566  * @set_engine_cores: set a config command to engine cores
1567  * @send_device_activity: indication to FW about device availability
1568  * @set_dram_properties: set DRAM related properties.
1569  * @set_binning_masks: set binning/enable masks for all relevant components.
1570  */
1571 struct hl_asic_funcs {
1572 	int (*early_init)(struct hl_device *hdev);
1573 	int (*early_fini)(struct hl_device *hdev);
1574 	int (*late_init)(struct hl_device *hdev);
1575 	void (*late_fini)(struct hl_device *hdev);
1576 	int (*sw_init)(struct hl_device *hdev);
1577 	int (*sw_fini)(struct hl_device *hdev);
1578 	int (*hw_init)(struct hl_device *hdev);
1579 	int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1580 	void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1581 	int (*suspend)(struct hl_device *hdev);
1582 	int (*resume)(struct hl_device *hdev);
1583 	int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1584 			void *cpu_addr, dma_addr_t dma_addr, size_t size);
1585 	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1586 	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1587 			struct hl_bd *bd);
1588 	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1589 					dma_addr_t *dma_handle, gfp_t flag);
1590 	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1591 					void *cpu_addr, dma_addr_t dma_handle);
1592 	int (*scrub_device_mem)(struct hl_device *hdev);
1593 	int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1594 	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1595 				dma_addr_t *dma_handle, u16 *queue_len);
1596 	int (*test_queues)(struct hl_device *hdev);
1597 	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1598 				gfp_t mem_flags, dma_addr_t *dma_handle);
1599 	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1600 				dma_addr_t dma_addr);
1601 	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1602 				size_t size, dma_addr_t *dma_handle);
1603 	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1604 				size_t size, void *vaddr);
1605 	void (*asic_dma_unmap_single)(struct hl_device *hdev,
1606 				dma_addr_t dma_addr, int len,
1607 				enum dma_data_direction dir);
1608 	dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev,
1609 				void *addr, int len,
1610 				enum dma_data_direction dir);
1611 	void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
1612 				struct sg_table *sgt,
1613 				enum dma_data_direction dir);
1614 	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1615 	int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1616 				enum dma_data_direction dir);
1617 	void (*add_end_of_cb_packets)(struct hl_device *hdev,
1618 					void *kernel_address, u32 len,
1619 					u32 original_len,
1620 					u64 cq_addr, u32 cq_val, u32 msix_num,
1621 					bool eb);
1622 	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1623 	int (*context_switch)(struct hl_device *hdev, u32 asid);
1624 	void (*restore_phase_topology)(struct hl_device *hdev);
1625 	int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1626 				void *blob_addr);
1627 	void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1628 				struct attribute_group *dev_vrm_attr_grp);
1629 	void (*handle_eqe)(struct hl_device *hdev,
1630 				struct hl_eq_entry *eq_entry);
1631 	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1632 				u32 *size);
1633 	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1634 	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1635 	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1636 					u32 flags);
1637 	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1638 				u32 flags, u32 asid, u64 va, u64 size);
1639 	int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1640 	int (*send_heartbeat)(struct hl_device *hdev);
1641 	int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1642 	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1643 				struct engines_data *e);
1644 	int (*compute_reset_late_init)(struct hl_device *hdev);
1645 	void (*hw_queues_lock)(struct hl_device *hdev);
1646 	void (*hw_queues_unlock)(struct hl_device *hdev);
1647 	u32 (*get_pci_id)(struct hl_device *hdev);
1648 	int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1649 	int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1650 	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1651 				u16 len, u32 timeout, u64 *result);
1652 	int (*pci_bars_map)(struct hl_device *hdev);
1653 	int (*init_iatu)(struct hl_device *hdev);
1654 	u32 (*rreg)(struct hl_device *hdev, u32 reg);
1655 	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1656 	void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1657 	int (*ctx_init)(struct hl_ctx *ctx);
1658 	void (*ctx_fini)(struct hl_ctx *ctx);
1659 	int (*pre_schedule_cs)(struct hl_cs *cs);
1660 	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1661 	int (*load_firmware_to_device)(struct hl_device *hdev);
1662 	int (*load_boot_fit_to_device)(struct hl_device *hdev);
1663 	u32 (*get_signal_cb_size)(struct hl_device *hdev);
1664 	u32 (*get_wait_cb_size)(struct hl_device *hdev);
1665 	u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1666 			u32 size, bool eb);
1667 	u32 (*gen_wait_cb)(struct hl_device *hdev,
1668 			struct hl_gen_wait_properties *prop);
1669 	void (*reset_sob)(struct hl_device *hdev, void *data);
1670 	void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1671 	u64 (*get_device_time)(struct hl_device *hdev);
1672 	void (*pb_print_security_errors)(struct hl_device *hdev,
1673 			u32 block_addr, u32 cause, u32 offended_addr);
1674 	int (*collective_wait_init_cs)(struct hl_cs *cs);
1675 	int (*collective_wait_create_jobs)(struct hl_device *hdev,
1676 			struct hl_ctx *ctx, struct hl_cs *cs,
1677 			u32 wait_queue_id, u32 collective_engine_id,
1678 			u32 encaps_signal_offset);
1679 	u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1680 	u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1681 	u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1682 	void (*ack_protection_bits_errors)(struct hl_device *hdev);
1683 	int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1684 				u32 *block_size, u32 *block_id);
1685 	int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1686 			u32 block_id, u32 block_size);
1687 	void (*enable_events_from_fw)(struct hl_device *hdev);
1688 	int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1689 	void (*get_msi_info)(__le32 *table);
1690 	int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1691 	void (*init_firmware_preload_params)(struct hl_device *hdev);
1692 	void (*init_firmware_loader)(struct hl_device *hdev);
1693 	void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1694 	void (*state_dump_init)(struct hl_device *hdev);
1695 	u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1696 	void (*set_pci_memory_regions)(struct hl_device *hdev);
1697 	u32* (*get_stream_master_qid_arr)(void);
1698 	void (*check_if_razwi_happened)(struct hl_device *hdev);
1699 	int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1700 					u32 page_size, u32 *real_page_size, bool is_dram_addr);
1701 	int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1702 				u64 addr, u64 *val, enum debugfs_access_type acc_type);
1703 	u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1704 	int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1705 					u32 num_cores, u32 core_command);
1706 	int (*send_device_activity)(struct hl_device *hdev, bool open);
1707 	int (*set_dram_properties)(struct hl_device *hdev);
1708 	int (*set_binning_masks)(struct hl_device *hdev);
1709 };
1710 
1711 
1712 /*
1713  * CONTEXTS
1714  */
1715 
1716 #define HL_KERNEL_ASID_ID	0
1717 
1718 /**
1719  * enum hl_va_range_type - virtual address range type.
1720  * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1721  * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1722  * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1723  */
1724 enum hl_va_range_type {
1725 	HL_VA_RANGE_TYPE_HOST,
1726 	HL_VA_RANGE_TYPE_HOST_HUGE,
1727 	HL_VA_RANGE_TYPE_DRAM,
1728 	HL_VA_RANGE_TYPE_MAX
1729 };
1730 
1731 /**
1732  * struct hl_va_range - virtual addresses range.
1733  * @lock: protects the virtual addresses list.
1734  * @list: list of virtual addresses blocks available for mappings.
1735  * @start_addr: range start address.
1736  * @end_addr: range end address.
1737  * @page_size: page size of this va range.
1738  */
1739 struct hl_va_range {
1740 	struct mutex		lock;
1741 	struct list_head	list;
1742 	u64			start_addr;
1743 	u64			end_addr;
1744 	u32			page_size;
1745 };
1746 
1747 /**
1748  * struct hl_cs_counters_atomic - command submission counters
1749  * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1750  * @parsing_drop_cnt: dropped due to error in packet parsing
1751  * @queue_full_drop_cnt: dropped due to queue full
1752  * @device_in_reset_drop_cnt: dropped due to device in reset
1753  * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1754  * @validation_drop_cnt: dropped due to error in validation
1755  */
1756 struct hl_cs_counters_atomic {
1757 	atomic64_t out_of_mem_drop_cnt;
1758 	atomic64_t parsing_drop_cnt;
1759 	atomic64_t queue_full_drop_cnt;
1760 	atomic64_t device_in_reset_drop_cnt;
1761 	atomic64_t max_cs_in_flight_drop_cnt;
1762 	atomic64_t validation_drop_cnt;
1763 };
1764 
1765 /**
1766  * struct hl_dmabuf_priv - a dma-buf private object.
1767  * @dmabuf: pointer to dma-buf object.
1768  * @ctx: pointer to the dma-buf owner's context.
1769  * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported
1770  *                where virtual memory is supported.
1771  * @memhash_hnode: pointer to the memhash node. this object holds the export count.
1772  * @device_address: physical address of the device's memory. Relevant only
1773  *                  if phys_pg_pack is NULL (dma-buf was exported from address).
1774  *                  The total size can be taken from the dmabuf object.
1775  */
1776 struct hl_dmabuf_priv {
1777 	struct dma_buf			*dmabuf;
1778 	struct hl_ctx			*ctx;
1779 	struct hl_vm_phys_pg_pack	*phys_pg_pack;
1780 	struct hl_vm_hash_node		*memhash_hnode;
1781 	uint64_t			device_address;
1782 };
1783 
1784 #define HL_CS_OUTCOME_HISTORY_LEN 256
1785 
1786 /**
1787  * struct hl_cs_outcome - represents a single completed CS outcome
1788  * @list_link: link to either container's used list or free list
1789  * @map_link: list to the container hash map
1790  * @ts: completion ts
1791  * @seq: the original cs sequence
1792  * @error: error code cs completed with, if any
1793  */
1794 struct hl_cs_outcome {
1795 	struct list_head list_link;
1796 	struct hlist_node map_link;
1797 	ktime_t ts;
1798 	u64 seq;
1799 	int error;
1800 };
1801 
1802 /**
1803  * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1804  * @outcome_map: index of completed CS searchable by sequence number
1805  * @used_list: list of outcome objects currently in use
1806  * @free_list: list of outcome objects currently not in use
1807  * @nodes_pool: a static pool of pre-allocated outcome objects
1808  * @db_lock: any operation on the store must take this lock
1809  */
1810 struct hl_cs_outcome_store {
1811 	DECLARE_HASHTABLE(outcome_map, 8);
1812 	struct list_head used_list;
1813 	struct list_head free_list;
1814 	struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1815 	spinlock_t db_lock;
1816 };
1817 
1818 /**
1819  * struct hl_ctx - user/kernel context.
1820  * @mem_hash: holds mapping from virtual address to virtual memory area
1821  *		descriptor (hl_vm_phys_pg_list or hl_userptr).
1822  * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1823  * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1824  *                    MMU-hop-page physical address to its host-resident
1825  *                    pgt_info structure.
1826  * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1827  * @hdev: pointer to the device structure.
1828  * @refcount: reference counter for the context. Context is released only when
1829  *		this hits 0l. It is incremented on CS and CS_WAIT.
1830  * @cs_pending: array of hl fence objects representing pending CS.
1831  * @outcome_store: storage data structure used to remember outcomes of completed
1832  *                 command submissions for a long time after CS id wraparound.
1833  * @va_range: holds available virtual addresses for host and dram mappings.
1834  * @mem_hash_lock: protects the mem_hash.
1835  * @hw_block_list_lock: protects the HW block memory list.
1836  * @debugfs_list: node in debugfs list of contexts.
1837  * @hw_block_mem_list: list of HW block virtual mapped addresses.
1838  * @cs_counters: context command submission counters.
1839  * @cb_va_pool: device VA pool for command buffers which are mapped to the
1840  *              device's MMU.
1841  * @sig_mgr: encaps signals handle manager.
1842  * @cb_va_pool_base: the base address for the device VA pool
1843  * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1844  *			to user so user could inquire about CS. It is used as
1845  *			index to cs_pending array.
1846  * @dram_default_hops: array that holds all hops addresses needed for default
1847  *                     DRAM mapping.
1848  * @cs_lock: spinlock to protect cs_sequence.
1849  * @dram_phys_mem: amount of used physical DRAM memory by this context.
1850  * @thread_ctx_switch_token: token to prevent multiple threads of the same
1851  *				context	from running the context switch phase.
1852  *				Only a single thread should run it.
1853  * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1854  *				the context switch phase from moving to their
1855  *				execution phase before the context switch phase
1856  *				has finished.
1857  * @asid: context's unique address space ID in the device's MMU.
1858  * @handle: context's opaque handle for user
1859  */
1860 struct hl_ctx {
1861 	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1862 	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1863 	DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1864 	struct hl_fpriv			*hpriv;
1865 	struct hl_device		*hdev;
1866 	struct kref			refcount;
1867 	struct hl_fence			**cs_pending;
1868 	struct hl_cs_outcome_store	outcome_store;
1869 	struct hl_va_range		*va_range[HL_VA_RANGE_TYPE_MAX];
1870 	struct mutex			mem_hash_lock;
1871 	struct mutex			hw_block_list_lock;
1872 	struct list_head		debugfs_list;
1873 	struct list_head		hw_block_mem_list;
1874 	struct hl_cs_counters_atomic	cs_counters;
1875 	struct gen_pool			*cb_va_pool;
1876 	struct hl_encaps_signals_mgr	sig_mgr;
1877 	u64				cb_va_pool_base;
1878 	u64				cs_sequence;
1879 	u64				*dram_default_hops;
1880 	spinlock_t			cs_lock;
1881 	atomic64_t			dram_phys_mem;
1882 	atomic_t			thread_ctx_switch_token;
1883 	u32				thread_ctx_switch_wait_token;
1884 	u32				asid;
1885 	u32				handle;
1886 };
1887 
1888 /**
1889  * struct hl_ctx_mgr - for handling multiple contexts.
1890  * @lock: protects ctx_handles.
1891  * @handles: idr to hold all ctx handles.
1892  */
1893 struct hl_ctx_mgr {
1894 	struct mutex	lock;
1895 	struct idr	handles;
1896 };
1897 
1898 
1899 /*
1900  * COMMAND SUBMISSIONS
1901  */
1902 
1903 /**
1904  * struct hl_userptr - memory mapping chunk information
1905  * @vm_type: type of the VM.
1906  * @job_node: linked-list node for hanging the object on the Job's list.
1907  * @pages: pointer to struct page array
1908  * @npages: size of @pages array
1909  * @sgt: pointer to the scatter-gather table that holds the pages.
1910  * @dir: for DMA unmapping, the direction must be supplied, so save it.
1911  * @debugfs_list: node in debugfs list of command submissions.
1912  * @pid: the pid of the user process owning the memory
1913  * @addr: user-space virtual address of the start of the memory area.
1914  * @size: size of the memory area to pin & map.
1915  * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1916  */
1917 struct hl_userptr {
1918 	enum vm_type		vm_type; /* must be first */
1919 	struct list_head	job_node;
1920 	struct page		**pages;
1921 	unsigned int		npages;
1922 	struct sg_table		*sgt;
1923 	enum dma_data_direction dir;
1924 	struct list_head	debugfs_list;
1925 	pid_t			pid;
1926 	u64			addr;
1927 	u64			size;
1928 	u8			dma_mapped;
1929 };
1930 
1931 /**
1932  * struct hl_cs - command submission.
1933  * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1934  * @ctx: the context this CS belongs to.
1935  * @job_list: list of the CS's jobs in the various queues.
1936  * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1937  * @refcount: reference counter for usage of the CS.
1938  * @fence: pointer to the fence object of this CS.
1939  * @signal_fence: pointer to the fence object of the signal CS (used by wait
1940  *                CS only).
1941  * @finish_work: workqueue object to run when CS is completed by H/W.
1942  * @work_tdr: delayed work node for TDR.
1943  * @mirror_node : node in device mirror list of command submissions.
1944  * @staged_cs_node: node in the staged cs list.
1945  * @debugfs_list: node in debugfs list of command submissions.
1946  * @encaps_sig_hdl: holds the encaps signals handle.
1947  * @sequence: the sequence number of this CS.
1948  * @staged_sequence: the sequence of the staged submission this CS is part of,
1949  *                   relevant only if staged_cs is set.
1950  * @timeout_jiffies: cs timeout in jiffies.
1951  * @submission_time_jiffies: submission time of the cs
1952  * @type: CS_TYPE_*.
1953  * @jobs_cnt: counter of submitted jobs on all queues.
1954  * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1955  * @completion_timestamp: timestamp of the last completed cs job.
1956  * @sob_addr_offset: sob offset from the configuration base address.
1957  * @initial_sob_count: count of completed signals in SOB before current submission of signal or
1958  *                     cs with encaps signals.
1959  * @submitted: true if CS was submitted to H/W.
1960  * @completed: true if CS was completed by device.
1961  * @timedout : true if CS was timedout.
1962  * @tdr_active: true if TDR was activated for this CS (to prevent
1963  *		double TDR activation).
1964  * @aborted: true if CS was aborted due to some device error.
1965  * @timestamp: true if a timestamp must be captured upon completion.
1966  * @staged_last: true if this is the last staged CS and needs completion.
1967  * @staged_first: true if this is the first staged CS and we need to receive
1968  *                timeout for this CS.
1969  * @staged_cs: true if this CS is part of a staged submission.
1970  * @skip_reset_on_timeout: true if we shall not reset the device in case
1971  *                         timeout occurs (debug scenario).
1972  * @encaps_signals: true if this CS has encaps reserved signals.
1973  */
1974 struct hl_cs {
1975 	u16			*jobs_in_queue_cnt;
1976 	struct hl_ctx		*ctx;
1977 	struct list_head	job_list;
1978 	spinlock_t		job_lock;
1979 	struct kref		refcount;
1980 	struct hl_fence		*fence;
1981 	struct hl_fence		*signal_fence;
1982 	struct work_struct	finish_work;
1983 	struct delayed_work	work_tdr;
1984 	struct list_head	mirror_node;
1985 	struct list_head	staged_cs_node;
1986 	struct list_head	debugfs_list;
1987 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1988 	ktime_t			completion_timestamp;
1989 	u64			sequence;
1990 	u64			staged_sequence;
1991 	u64			timeout_jiffies;
1992 	u64			submission_time_jiffies;
1993 	enum hl_cs_type		type;
1994 	u32			jobs_cnt;
1995 	u32			encaps_sig_hdl_id;
1996 	u32			sob_addr_offset;
1997 	u16			initial_sob_count;
1998 	u8			submitted;
1999 	u8			completed;
2000 	u8			timedout;
2001 	u8			tdr_active;
2002 	u8			aborted;
2003 	u8			timestamp;
2004 	u8			staged_last;
2005 	u8			staged_first;
2006 	u8			staged_cs;
2007 	u8			skip_reset_on_timeout;
2008 	u8			encaps_signals;
2009 };
2010 
2011 /**
2012  * struct hl_cs_job - command submission job.
2013  * @cs_node: the node to hang on the CS jobs list.
2014  * @cs: the CS this job belongs to.
2015  * @user_cb: the CB we got from the user.
2016  * @patched_cb: in case of patching, this is internal CB which is submitted on
2017  *		the queue instead of the CB we got from the IOCTL.
2018  * @finish_work: workqueue object to run when job is completed.
2019  * @userptr_list: linked-list of userptr mappings that belong to this job and
2020  *			wait for completion.
2021  * @debugfs_list: node in debugfs list of command submission jobs.
2022  * @refcount: reference counter for usage of the CS job.
2023  * @queue_type: the type of the H/W queue this job is submitted to.
2024  * @timestamp: timestamp upon job completion
2025  * @id: the id of this job inside a CS.
2026  * @hw_queue_id: the id of the H/W queue this job is submitted to.
2027  * @user_cb_size: the actual size of the CB we got from the user.
2028  * @job_cb_size: the actual size of the CB that we put on the queue.
2029  * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
2030  *                          to wait on part of the reserved signals.
2031  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2032  *                          handle to a kernel-allocated CB object, false
2033  *                          otherwise (SRAM/DRAM/host address).
2034  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2035  *                    info is needed later, when adding the 2xMSG_PROT at the
2036  *                    end of the JOB, to know which barriers to put in the
2037  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2038  *                    have streams so the engine can't be busy by another
2039  *                    stream.
2040  */
2041 struct hl_cs_job {
2042 	struct list_head	cs_node;
2043 	struct hl_cs		*cs;
2044 	struct hl_cb		*user_cb;
2045 	struct hl_cb		*patched_cb;
2046 	struct work_struct	finish_work;
2047 	struct list_head	userptr_list;
2048 	struct list_head	debugfs_list;
2049 	struct kref		refcount;
2050 	enum hl_queue_type	queue_type;
2051 	ktime_t			timestamp;
2052 	u32			id;
2053 	u32			hw_queue_id;
2054 	u32			user_cb_size;
2055 	u32			job_cb_size;
2056 	u32			encaps_sig_wait_offset;
2057 	u8			is_kernel_allocated_cb;
2058 	u8			contains_dma_pkt;
2059 };
2060 
2061 /**
2062  * struct hl_cs_parser - command submission parser properties.
2063  * @user_cb: the CB we got from the user.
2064  * @patched_cb: in case of patching, this is internal CB which is submitted on
2065  *		the queue instead of the CB we got from the IOCTL.
2066  * @job_userptr_list: linked-list of userptr mappings that belong to the related
2067  *			job and wait for completion.
2068  * @cs_sequence: the sequence number of the related CS.
2069  * @queue_type: the type of the H/W queue this job is submitted to.
2070  * @ctx_id: the ID of the context the related CS belongs to.
2071  * @hw_queue_id: the id of the H/W queue this job is submitted to.
2072  * @user_cb_size: the actual size of the CB we got from the user.
2073  * @patched_cb_size: the size of the CB after parsing.
2074  * @job_id: the id of the related job inside the related CS.
2075  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2076  *                          handle to a kernel-allocated CB object, false
2077  *                          otherwise (SRAM/DRAM/host address).
2078  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2079  *                    info is needed later, when adding the 2xMSG_PROT at the
2080  *                    end of the JOB, to know which barriers to put in the
2081  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2082  *                    have streams so the engine can't be busy by another
2083  *                    stream.
2084  * @completion: true if we need completion for this CS.
2085  */
2086 struct hl_cs_parser {
2087 	struct hl_cb		*user_cb;
2088 	struct hl_cb		*patched_cb;
2089 	struct list_head	*job_userptr_list;
2090 	u64			cs_sequence;
2091 	enum hl_queue_type	queue_type;
2092 	u32			ctx_id;
2093 	u32			hw_queue_id;
2094 	u32			user_cb_size;
2095 	u32			patched_cb_size;
2096 	u8			job_id;
2097 	u8			is_kernel_allocated_cb;
2098 	u8			contains_dma_pkt;
2099 	u8			completion;
2100 };
2101 
2102 /*
2103  * MEMORY STRUCTURE
2104  */
2105 
2106 /**
2107  * struct hl_vm_hash_node - hash element from virtual address to virtual
2108  *				memory area descriptor (hl_vm_phys_pg_list or
2109  *				hl_userptr).
2110  * @node: node to hang on the hash table in context object.
2111  * @vaddr: key virtual address.
2112  * @handle: memory handle for device memory allocation.
2113  * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2114  * @export_cnt: number of exports from within the VA block.
2115  */
2116 struct hl_vm_hash_node {
2117 	struct hlist_node	node;
2118 	u64			vaddr;
2119 	u64			handle;
2120 	void			*ptr;
2121 	int			export_cnt;
2122 };
2123 
2124 /**
2125  * struct hl_vm_hw_block_list_node - list element from user virtual address to
2126  *				HW block id.
2127  * @node: node to hang on the list in context object.
2128  * @ctx: the context this node belongs to.
2129  * @vaddr: virtual address of the HW block.
2130  * @block_size: size of the block.
2131  * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2132  * @id: HW block id (handle).
2133  */
2134 struct hl_vm_hw_block_list_node {
2135 	struct list_head	node;
2136 	struct hl_ctx		*ctx;
2137 	unsigned long		vaddr;
2138 	u32			block_size;
2139 	u32			mapped_size;
2140 	u32			id;
2141 };
2142 
2143 /**
2144  * struct hl_vm_phys_pg_pack - physical page pack.
2145  * @vm_type: describes the type of the virtual area descriptor.
2146  * @pages: the physical page array.
2147  * @npages: num physical pages in the pack.
2148  * @total_size: total size of all the pages in this list.
2149  * @exported_size: buffer exported size.
2150  * @node: used to attach to deletion list that is used when all the allocations are cleared
2151  *        at the teardown of the context.
2152  * @mapping_cnt: number of shared mappings.
2153  * @asid: the context related to this list.
2154  * @page_size: size of each page in the pack.
2155  * @flags: HL_MEM_* flags related to this list.
2156  * @handle: the provided handle related to this list.
2157  * @offset: offset from the first page.
2158  * @contiguous: is contiguous physical memory.
2159  * @created_from_userptr: is product of host virtual address.
2160  */
2161 struct hl_vm_phys_pg_pack {
2162 	enum vm_type		vm_type; /* must be first */
2163 	u64			*pages;
2164 	u64			npages;
2165 	u64			total_size;
2166 	u64			exported_size;
2167 	struct list_head	node;
2168 	atomic_t		mapping_cnt;
2169 	u32			asid;
2170 	u32			page_size;
2171 	u32			flags;
2172 	u32			handle;
2173 	u32			offset;
2174 	u8			contiguous;
2175 	u8			created_from_userptr;
2176 };
2177 
2178 /**
2179  * struct hl_vm_va_block - virtual range block information.
2180  * @node: node to hang on the virtual range list in context object.
2181  * @start: virtual range start address.
2182  * @end: virtual range end address.
2183  * @size: virtual range size.
2184  */
2185 struct hl_vm_va_block {
2186 	struct list_head	node;
2187 	u64			start;
2188 	u64			end;
2189 	u64			size;
2190 };
2191 
2192 /**
2193  * struct hl_vm - virtual memory manager for MMU.
2194  * @dram_pg_pool: pool for DRAM physical pages of 2MB.
2195  * @dram_pg_pool_refcount: reference counter for the pool usage.
2196  * @idr_lock: protects the phys_pg_list_handles.
2197  * @phys_pg_pack_handles: idr to hold all device allocations handles.
2198  * @init_done: whether initialization was done. We need this because VM
2199  *		initialization might be skipped during device initialization.
2200  */
2201 struct hl_vm {
2202 	struct gen_pool		*dram_pg_pool;
2203 	struct kref		dram_pg_pool_refcount;
2204 	spinlock_t		idr_lock;
2205 	struct idr		phys_pg_pack_handles;
2206 	u8			init_done;
2207 };
2208 
2209 
2210 /*
2211  * DEBUG, PROFILING STRUCTURE
2212  */
2213 
2214 /**
2215  * struct hl_debug_params - Coresight debug parameters.
2216  * @input: pointer to component specific input parameters.
2217  * @output: pointer to component specific output parameters.
2218  * @output_size: size of output buffer.
2219  * @reg_idx: relevant register ID.
2220  * @op: component operation to execute.
2221  * @enable: true if to enable component debugging, false otherwise.
2222  */
2223 struct hl_debug_params {
2224 	void *input;
2225 	void *output;
2226 	u32 output_size;
2227 	u32 reg_idx;
2228 	u32 op;
2229 	bool enable;
2230 };
2231 
2232 /**
2233  * struct hl_notifier_event - holds the notifier data structure
2234  * @eventfd: the event file descriptor to raise the notifications
2235  * @lock: mutex lock to protect the notifier data flows
2236  * @events_mask: indicates the bitmap events
2237  */
2238 struct hl_notifier_event {
2239 	struct eventfd_ctx	*eventfd;
2240 	struct mutex		lock;
2241 	u64			events_mask;
2242 };
2243 
2244 /*
2245  * FILE PRIVATE STRUCTURE
2246  */
2247 
2248 /**
2249  * struct hl_fpriv - process information stored in FD private data.
2250  * @hdev: habanalabs device structure.
2251  * @filp: pointer to the given file structure.
2252  * @taskpid: current process ID.
2253  * @ctx: current executing context. TODO: remove for multiple ctx per process
2254  * @ctx_mgr: context manager to handle multiple context for this FD.
2255  * @mem_mgr: manager descriptor for memory exportable via mmap
2256  * @notifier_event: notifier eventfd towards user process
2257  * @debugfs_list: list of relevant ASIC debugfs.
2258  * @dev_node: node in the device list of file private data
2259  * @refcount: number of related contexts.
2260  * @restore_phase_mutex: lock for context switch and restore phase.
2261  * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2262  *            ctx per process.
2263  */
2264 struct hl_fpriv {
2265 	struct hl_device		*hdev;
2266 	struct file			*filp;
2267 	struct pid			*taskpid;
2268 	struct hl_ctx			*ctx;
2269 	struct hl_ctx_mgr		ctx_mgr;
2270 	struct hl_mem_mgr		mem_mgr;
2271 	struct hl_notifier_event	notifier_event;
2272 	struct list_head		debugfs_list;
2273 	struct list_head		dev_node;
2274 	struct kref			refcount;
2275 	struct mutex			restore_phase_mutex;
2276 	struct mutex			ctx_lock;
2277 };
2278 
2279 
2280 /*
2281  * DebugFS
2282  */
2283 
2284 /**
2285  * struct hl_info_list - debugfs file ops.
2286  * @name: file name.
2287  * @show: function to output information.
2288  * @write: function to write to the file.
2289  */
2290 struct hl_info_list {
2291 	const char	*name;
2292 	int		(*show)(struct seq_file *s, void *data);
2293 	ssize_t		(*write)(struct file *file, const char __user *buf,
2294 				size_t count, loff_t *f_pos);
2295 };
2296 
2297 /**
2298  * struct hl_debugfs_entry - debugfs dentry wrapper.
2299  * @info_ent: dentry related ops.
2300  * @dev_entry: ASIC specific debugfs manager.
2301  */
2302 struct hl_debugfs_entry {
2303 	const struct hl_info_list	*info_ent;
2304 	struct hl_dbg_device_entry	*dev_entry;
2305 };
2306 
2307 /**
2308  * struct hl_dbg_device_entry - ASIC specific debugfs manager.
2309  * @root: root dentry.
2310  * @hdev: habanalabs device structure.
2311  * @entry_arr: array of available hl_debugfs_entry.
2312  * @file_list: list of available debugfs files.
2313  * @file_mutex: protects file_list.
2314  * @cb_list: list of available CBs.
2315  * @cb_spinlock: protects cb_list.
2316  * @cs_list: list of available CSs.
2317  * @cs_spinlock: protects cs_list.
2318  * @cs_job_list: list of available CB jobs.
2319  * @cs_job_spinlock: protects cs_job_list.
2320  * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2321  * @userptr_spinlock: protects userptr_list.
2322  * @ctx_mem_hash_list: list of available contexts with MMU mappings.
2323  * @ctx_mem_hash_spinlock: protects cb_list.
2324  * @data_dma_blob_desc: data DMA descriptor of blob.
2325  * @mon_dump_blob_desc: monitor dump descriptor of blob.
2326  * @state_dump: data of the system states in case of a bad cs.
2327  * @state_dump_sem: protects state_dump.
2328  * @addr: next address to read/write from/to in read/write32.
2329  * @mmu_addr: next virtual address to translate to physical address in mmu_show.
2330  * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2331  * @userptr_lookup: the target user ptr to look up for on demand.
2332  * @mmu_asid: ASID to use while translating in mmu_show.
2333  * @state_dump_head: index of the latest state dump
2334  * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2335  * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2336  * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2337  * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2338  */
2339 struct hl_dbg_device_entry {
2340 	struct dentry			*root;
2341 	struct hl_device		*hdev;
2342 	struct hl_debugfs_entry		*entry_arr;
2343 	struct list_head		file_list;
2344 	struct mutex			file_mutex;
2345 	struct list_head		cb_list;
2346 	spinlock_t			cb_spinlock;
2347 	struct list_head		cs_list;
2348 	spinlock_t			cs_spinlock;
2349 	struct list_head		cs_job_list;
2350 	spinlock_t			cs_job_spinlock;
2351 	struct list_head		userptr_list;
2352 	spinlock_t			userptr_spinlock;
2353 	struct list_head		ctx_mem_hash_list;
2354 	spinlock_t			ctx_mem_hash_spinlock;
2355 	struct debugfs_blob_wrapper	data_dma_blob_desc;
2356 	struct debugfs_blob_wrapper	mon_dump_blob_desc;
2357 	char				*state_dump[HL_STATE_DUMP_HIST_LEN];
2358 	struct rw_semaphore		state_dump_sem;
2359 	u64				addr;
2360 	u64				mmu_addr;
2361 	u64				mmu_cap_mask;
2362 	u64				userptr_lookup;
2363 	u32				mmu_asid;
2364 	u32				state_dump_head;
2365 	u8				i2c_bus;
2366 	u8				i2c_addr;
2367 	u8				i2c_reg;
2368 	u8				i2c_len;
2369 };
2370 
2371 /**
2372  * struct hl_hw_obj_name_entry - single hw object name, member of
2373  * hl_state_dump_specs
2374  * @node: link to the containing hash table
2375  * @name: hw object name
2376  * @id: object identifier
2377  */
2378 struct hl_hw_obj_name_entry {
2379 	struct hlist_node	node;
2380 	const char		*name;
2381 	u32			id;
2382 };
2383 
2384 enum hl_state_dump_specs_props {
2385 	SP_SYNC_OBJ_BASE_ADDR,
2386 	SP_NEXT_SYNC_OBJ_ADDR,
2387 	SP_SYNC_OBJ_AMOUNT,
2388 	SP_MON_OBJ_WR_ADDR_LOW,
2389 	SP_MON_OBJ_WR_ADDR_HIGH,
2390 	SP_MON_OBJ_WR_DATA,
2391 	SP_MON_OBJ_ARM_DATA,
2392 	SP_MON_OBJ_STATUS,
2393 	SP_MONITORS_AMOUNT,
2394 	SP_TPC0_CMDQ,
2395 	SP_TPC0_CFG_SO,
2396 	SP_NEXT_TPC,
2397 	SP_MME_CMDQ,
2398 	SP_MME_CFG_SO,
2399 	SP_NEXT_MME,
2400 	SP_DMA_CMDQ,
2401 	SP_DMA_CFG_SO,
2402 	SP_DMA_QUEUES_OFFSET,
2403 	SP_NUM_OF_MME_ENGINES,
2404 	SP_SUB_MME_ENG_NUM,
2405 	SP_NUM_OF_DMA_ENGINES,
2406 	SP_NUM_OF_TPC_ENGINES,
2407 	SP_ENGINE_NUM_OF_QUEUES,
2408 	SP_ENGINE_NUM_OF_STREAMS,
2409 	SP_ENGINE_NUM_OF_FENCES,
2410 	SP_FENCE0_CNT_OFFSET,
2411 	SP_FENCE0_RDATA_OFFSET,
2412 	SP_CP_STS_OFFSET,
2413 	SP_NUM_CORES,
2414 
2415 	SP_MAX
2416 };
2417 
2418 enum hl_sync_engine_type {
2419 	ENGINE_TPC,
2420 	ENGINE_DMA,
2421 	ENGINE_MME,
2422 };
2423 
2424 /**
2425  * struct hl_mon_state_dump - represents a state dump of a single monitor
2426  * @id: monitor id
2427  * @wr_addr_low: address monitor will write to, low bits
2428  * @wr_addr_high: address monitor will write to, high bits
2429  * @wr_data: data monitor will write
2430  * @arm_data: register value containing monitor configuration
2431  * @status: monitor status
2432  */
2433 struct hl_mon_state_dump {
2434 	u32		id;
2435 	u32		wr_addr_low;
2436 	u32		wr_addr_high;
2437 	u32		wr_data;
2438 	u32		arm_data;
2439 	u32		status;
2440 };
2441 
2442 /**
2443  * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2444  * @engine_type: type of the engine
2445  * @engine_id: id of the engine
2446  * @sync_id: id of the sync object
2447  */
2448 struct hl_sync_to_engine_map_entry {
2449 	struct hlist_node		node;
2450 	enum hl_sync_engine_type	engine_type;
2451 	u32				engine_id;
2452 	u32				sync_id;
2453 };
2454 
2455 /**
2456  * struct hl_sync_to_engine_map - maps sync object id to associated engine id
2457  * @tb: hash table containing the mapping, each element is of type
2458  *      struct hl_sync_to_engine_map_entry
2459  */
2460 struct hl_sync_to_engine_map {
2461 	DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2462 };
2463 
2464 /**
2465  * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2466  * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2467  * @print_single_monitor: format monitor data as string
2468  * @monitor_valid: return true if given monitor dump is valid
2469  * @print_fences_single_engine: format fences data as string
2470  */
2471 struct hl_state_dump_specs_funcs {
2472 	int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2473 				struct hl_sync_to_engine_map *map);
2474 	int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2475 				    struct hl_device *hdev,
2476 				    struct hl_mon_state_dump *mon);
2477 	int (*monitor_valid)(struct hl_mon_state_dump *mon);
2478 	int (*print_fences_single_engine)(struct hl_device *hdev,
2479 					u64 base_offset,
2480 					u64 status_base_offset,
2481 					enum hl_sync_engine_type engine_type,
2482 					u32 engine_id, char **buf,
2483 					size_t *size, size_t *offset);
2484 };
2485 
2486 /**
2487  * struct hl_state_dump_specs - defines ASIC known hw objects names
2488  * @so_id_to_str_tb: sync objects names index table
2489  * @monitor_id_to_str_tb: monitors names index table
2490  * @funcs: virtual functions used for state dump
2491  * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2492  * @props: pointer to a per asic const props array required for state dump
2493  */
2494 struct hl_state_dump_specs {
2495 	DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2496 	DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2497 	struct hl_state_dump_specs_funcs	funcs;
2498 	const char * const			*sync_namager_names;
2499 	s64					*props;
2500 };
2501 
2502 
2503 /*
2504  * DEVICES
2505  */
2506 
2507 #define HL_STR_MAX	32
2508 
2509 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2510 
2511 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2512  * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2513  */
2514 #define HL_MAX_MINORS	256
2515 
2516 /*
2517  * Registers read & write functions.
2518  */
2519 
2520 u32 hl_rreg(struct hl_device *hdev, u32 reg);
2521 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2522 
2523 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2524 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2525 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
2526 			hdev->asic_funcs->rreg(hdev, (reg)))
2527 
2528 #define WREG32_P(reg, val, mask)				\
2529 	do {							\
2530 		u32 tmp_ = RREG32(reg);				\
2531 		tmp_ &= (mask);					\
2532 		tmp_ |= ((val) & ~(mask));			\
2533 		WREG32(reg, tmp_);				\
2534 	} while (0)
2535 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2536 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2537 
2538 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))
2539 
2540 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)
2541 
2542 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2543 
2544 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2545 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2546 #define WREG32_FIELD(reg, offset, field, val)	\
2547 	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2548 				~REG_FIELD_MASK(reg, field)) | \
2549 				(val) << REG_FIELD_SHIFT(reg, field))
2550 
2551 /* Timeout should be longer when working with simulator but cap the
2552  * increased timeout to some maximum
2553  */
2554 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2555 ({ \
2556 	ktime_t __timeout; \
2557 	u32 __elbi_read; \
2558 	int __rc = 0; \
2559 	if (hdev->pdev) \
2560 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2561 	else \
2562 		__timeout = ktime_add_us(ktime_get(),\
2563 				min((u64)(timeout_us * 10), \
2564 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2565 	might_sleep_if(sleep_us); \
2566 	for (;;) { \
2567 		if (elbi) { \
2568 			__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2569 			if (__rc) \
2570 				break; \
2571 			(val) = __elbi_read; \
2572 		} else {\
2573 			(val) = RREG32(lower_32_bits(addr)); \
2574 		} \
2575 		if (cond) \
2576 			break; \
2577 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2578 			if (elbi) { \
2579 				__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2580 				if (__rc) \
2581 					break; \
2582 				(val) = __elbi_read; \
2583 			} else {\
2584 				(val) = RREG32(lower_32_bits(addr)); \
2585 			} \
2586 			break; \
2587 		} \
2588 		if (sleep_us) \
2589 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2590 	} \
2591 	__rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2592 })
2593 
2594 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2595 		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2596 
2597 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2598 		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2599 
2600 /*
2601  * poll array of register addresses.
2602  * condition is satisfied if all registers values match the expected value.
2603  * once some register in the array satisfies the condition it will not be polled again,
2604  * this is done both for efficiency and due to some registers are "clear on read".
2605  * TODO: use read from PCI bar in other places in the code (SW-91406)
2606  */
2607 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2608 						timeout_us, elbi) \
2609 ({ \
2610 	ktime_t __timeout; \
2611 	u64 __elem_bitmask; \
2612 	u32 __read_val;	\
2613 	u8 __arr_idx;	\
2614 	int __rc = 0; \
2615 	\
2616 	if (hdev->pdev) \
2617 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2618 	else \
2619 		__timeout = ktime_add_us(ktime_get(),\
2620 				min(((u64)timeout_us * 10), \
2621 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2622 	\
2623 	might_sleep_if(sleep_us); \
2624 	if (arr_size >= 64) \
2625 		__rc = -EINVAL; \
2626 	else \
2627 		__elem_bitmask = BIT_ULL(arr_size) - 1; \
2628 	for (;;) { \
2629 		if (__rc) \
2630 			break; \
2631 		for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) {	\
2632 			if (!(__elem_bitmask & BIT_ULL(__arr_idx)))	\
2633 				continue;	\
2634 			if (elbi) { \
2635 				__rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2636 				if (__rc) \
2637 					break; \
2638 			} else { \
2639 				__read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
2640 			} \
2641 			if (__read_val == (expected_val))	\
2642 				__elem_bitmask &= ~BIT_ULL(__arr_idx);	\
2643 		}	\
2644 		if (__rc || (__elem_bitmask == 0)) \
2645 			break; \
2646 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2647 			break; \
2648 		if (sleep_us) \
2649 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2650 	} \
2651 	__rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2652 })
2653 
2654 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2655 					timeout_us) \
2656 	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2657 						timeout_us, false)
2658 
2659 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2660 					timeout_us) \
2661 	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2662 						timeout_us, true)
2663 
2664 /*
2665  * address in this macro points always to a memory location in the
2666  * host's (server's) memory. That location is updated asynchronously
2667  * either by the direct access of the device or by another core.
2668  *
2669  * To work both in LE and BE architectures, we need to distinguish between the
2670  * two states (device or another core updates the memory location). Therefore,
2671  * if mem_written_by_device is true, the host memory being polled will be
2672  * updated directly by the device. If false, the host memory being polled will
2673  * be updated by host CPU. Required so host knows whether or not the memory
2674  * might need to be byte-swapped before returning value to caller.
2675  */
2676 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2677 				mem_written_by_device) \
2678 ({ \
2679 	ktime_t __timeout; \
2680 	if (hdev->pdev) \
2681 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2682 	else \
2683 		__timeout = ktime_add_us(ktime_get(),\
2684 				min((u64)(timeout_us * 100), \
2685 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2686 	might_sleep_if(sleep_us); \
2687 	for (;;) { \
2688 		/* Verify we read updates done by other cores or by device */ \
2689 		mb(); \
2690 		(val) = *((u32 *)(addr)); \
2691 		if (mem_written_by_device) \
2692 			(val) = le32_to_cpu(*(__le32 *) &(val)); \
2693 		if (cond) \
2694 			break; \
2695 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2696 			(val) = *((u32 *)(addr)); \
2697 			if (mem_written_by_device) \
2698 				(val) = le32_to_cpu(*(__le32 *) &(val)); \
2699 			break; \
2700 		} \
2701 		if (sleep_us) \
2702 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2703 	} \
2704 	(cond) ? 0 : -ETIMEDOUT; \
2705 })
2706 
2707 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2708 ({ \
2709 	struct user_mapped_block *p = blk; \
2710 \
2711 	p->address = base; \
2712 	p->size = sz; \
2713 })
2714 
2715 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \
2716 ({ \
2717 	usr_intr.hdev = hdev; \
2718 	usr_intr.interrupt_id = intr_id; \
2719 	usr_intr.type = intr_type; \
2720 	INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2721 	spin_lock_init(&usr_intr.wait_list_lock); \
2722 })
2723 
2724 struct hwmon_chip_info;
2725 
2726 /**
2727  * struct hl_device_reset_work - reset work wrapper.
2728  * @reset_work: reset work to be done.
2729  * @hdev: habanalabs device structure.
2730  * @flags: reset flags.
2731  */
2732 struct hl_device_reset_work {
2733 	struct delayed_work	reset_work;
2734 	struct hl_device	*hdev;
2735 	u32			flags;
2736 };
2737 
2738 /**
2739  * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2740  * page-table internal information.
2741  * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2742  *                allocating hops.
2743  * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2744  */
2745 struct hl_mmu_hr_priv {
2746 	struct gen_pool	*mmu_pgt_pool;
2747 	struct pgt_info	*mmu_asid_hop0;
2748 };
2749 
2750 /**
2751  * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2752  * page-table internal information.
2753  * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2754  * @mmu_shadow_hop0: shadow array of hop0 tables.
2755  */
2756 struct hl_mmu_dr_priv {
2757 	struct gen_pool *mmu_pgt_pool;
2758 	void *mmu_shadow_hop0;
2759 };
2760 
2761 /**
2762  * struct hl_mmu_priv - used for holding per-device mmu internal information.
2763  * @dr: information on the device-resident MMU, when exists.
2764  * @hr: information on the host-resident MMU, when exists.
2765  */
2766 struct hl_mmu_priv {
2767 	struct hl_mmu_dr_priv dr;
2768 	struct hl_mmu_hr_priv hr;
2769 };
2770 
2771 /**
2772  * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2773  *                that was created in order to translate a virtual address to a
2774  *                physical one.
2775  * @hop_addr: The address of the hop.
2776  * @hop_pte_addr: The address of the hop entry.
2777  * @hop_pte_val: The value in the hop entry.
2778  */
2779 struct hl_mmu_per_hop_info {
2780 	u64 hop_addr;
2781 	u64 hop_pte_addr;
2782 	u64 hop_pte_val;
2783 };
2784 
2785 /**
2786  * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2787  * hop-entries that were created in order to translate a virtual address to a
2788  * physical one.
2789  * @scrambled_vaddr: The value of the virtual address after scrambling. This
2790  *                   address replaces the original virtual-address when mapped
2791  *                   in the MMU tables.
2792  * @unscrambled_paddr: The un-scrambled physical address.
2793  * @hop_info: Array holding the per-hop information used for the translation.
2794  * @used_hops: The number of hops used for the translation.
2795  * @range_type: virtual address range type.
2796  */
2797 struct hl_mmu_hop_info {
2798 	u64 scrambled_vaddr;
2799 	u64 unscrambled_paddr;
2800 	struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2801 	u32 used_hops;
2802 	enum hl_va_range_type range_type;
2803 };
2804 
2805 /**
2806  * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2807  * @get_hop0_pgt_info: get page table info structure for HOP0.
2808  * @get_pgt_info: get page table info structure for HOP other than HOP0.
2809  * @add_pgt_info: add page table info structure to hash.
2810  * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2811  */
2812 struct hl_hr_mmu_funcs {
2813 	struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2814 	struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2815 	void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2816 	int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2817 								struct hl_mmu_hop_info *hops,
2818 								u64 virt_addr, bool *is_huge);
2819 };
2820 
2821 /**
2822  * struct hl_mmu_funcs - Device related MMU functions.
2823  * @init: initialize the MMU module.
2824  * @fini: release the MMU module.
2825  * @ctx_init: Initialize a context for using the MMU module.
2826  * @ctx_fini: disable a ctx from using the mmu module.
2827  * @map: maps a virtual address to physical address for a context.
2828  * @unmap: unmap a virtual address of a context.
2829  * @flush: flush all writes from all cores to reach device MMU.
2830  * @swap_out: marks all mapping of the given context as swapped out.
2831  * @swap_in: marks all mapping of the given context as swapped in.
2832  * @get_tlb_info: returns the list of hops and hop-entries used that were
2833  *                created in order to translate the giver virtual address to a
2834  *                physical one.
2835  * @hr_funcs: functions specific to host resident MMU.
2836  */
2837 struct hl_mmu_funcs {
2838 	int (*init)(struct hl_device *hdev);
2839 	void (*fini)(struct hl_device *hdev);
2840 	int (*ctx_init)(struct hl_ctx *ctx);
2841 	void (*ctx_fini)(struct hl_ctx *ctx);
2842 	int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2843 				bool is_dram_addr);
2844 	int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2845 	void (*flush)(struct hl_ctx *ctx);
2846 	void (*swap_out)(struct hl_ctx *ctx);
2847 	void (*swap_in)(struct hl_ctx *ctx);
2848 	int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2849 	struct hl_hr_mmu_funcs hr_funcs;
2850 };
2851 
2852 /**
2853  * struct hl_prefetch_work - prefetch work structure handler
2854  * @prefetch_work: actual work struct.
2855  * @ctx: compute context.
2856  * @va: virtual address to pre-fetch.
2857  * @size: pre-fetch size.
2858  * @flags: operation flags.
2859  * @asid: ASID for maintenance operation.
2860  */
2861 struct hl_prefetch_work {
2862 	struct work_struct	prefetch_work;
2863 	struct hl_ctx		*ctx;
2864 	u64			va;
2865 	u64			size;
2866 	u32			flags;
2867 	u32			asid;
2868 };
2869 
2870 /*
2871  * number of user contexts allowed to call wait_for_multi_cs ioctl in
2872  * parallel
2873  */
2874 #define MULTI_CS_MAX_USER_CTX	2
2875 
2876 /**
2877  * struct multi_cs_completion - multi CS wait completion.
2878  * @completion: completion of any of the CS in the list
2879  * @lock: spinlock for the completion structure
2880  * @timestamp: timestamp for the multi-CS completion
2881  * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2882  *                        is waiting
2883  * @used: 1 if in use, otherwise 0
2884  */
2885 struct multi_cs_completion {
2886 	struct completion	completion;
2887 	spinlock_t		lock;
2888 	s64			timestamp;
2889 	u32			stream_master_qid_map;
2890 	u8			used;
2891 };
2892 
2893 /**
2894  * struct multi_cs_data - internal data for multi CS call
2895  * @ctx: pointer to the context structure
2896  * @fence_arr: array of fences of all CSs
2897  * @seq_arr: array of CS sequence numbers
2898  * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2899  * @timestamp: timestamp of first completed CS
2900  * @wait_status: wait for CS status
2901  * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2902  * @arr_len: fence_arr and seq_arr array length
2903  * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2904  * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2905  */
2906 struct multi_cs_data {
2907 	struct hl_ctx	*ctx;
2908 	struct hl_fence	**fence_arr;
2909 	u64		*seq_arr;
2910 	s64		timeout_jiffies;
2911 	s64		timestamp;
2912 	long		wait_status;
2913 	u32		completion_bitmap;
2914 	u8		arr_len;
2915 	u8		gone_cs;
2916 	u8		update_ts;
2917 };
2918 
2919 /**
2920  * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2921  * @start: timestamp taken when 'start' event is received in driver
2922  * @end: timestamp taken when 'end' event is received in driver
2923  */
2924 struct hl_clk_throttle_timestamp {
2925 	ktime_t		start;
2926 	ktime_t		end;
2927 };
2928 
2929 /**
2930  * struct hl_clk_throttle - keeps current/last clock throttling timestamps
2931  * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2932  *             index 1 refers to THERMAL
2933  * @lock: protects this structure as it can be accessed from both event queue
2934  *        context and info_ioctl context
2935  * @current_reason: bitmask represents the current clk throttling reasons
2936  * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2937  */
2938 struct hl_clk_throttle {
2939 	struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
2940 	struct mutex	lock;
2941 	u32		current_reason;
2942 	u32		aggregated_reason;
2943 };
2944 
2945 /**
2946  * struct user_mapped_block - describes a hw block allowed to be mmapped by user
2947  * @address: physical HW block address
2948  * @size: allowed size for mmap
2949  */
2950 struct user_mapped_block {
2951 	u32 address;
2952 	u32 size;
2953 };
2954 
2955 /**
2956  * struct cs_timeout_info - info of last CS timeout occurred.
2957  * @timestamp: CS timeout timestamp.
2958  * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
2959  *                so the first (root cause) CS timeout will not be overwritten.
2960  * @seq: CS timeout sequence number.
2961  */
2962 struct cs_timeout_info {
2963 	ktime_t		timestamp;
2964 	atomic_t	write_enable;
2965 	u64		seq;
2966 };
2967 
2968 #define MAX_QMAN_STREAMS_INFO		4
2969 #define OPCODE_INFO_MAX_ADDR_SIZE	8
2970 /**
2971  * struct undefined_opcode_info - info about last undefined opcode error
2972  * @timestamp: timestamp of the undefined opcode error
2973  * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
2974  *                   entries. In case all streams array entries are
2975  *                   filled with values, it means the execution was in Lower-CP.
2976  * @cq_addr: the address of the current handled command buffer
2977  * @cq_size: the size of the current handled command buffer
2978  * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
2979  *                       should be equal to 1 in case of undefined opcode
2980  *                       in Upper-CP (specific stream) and equal to 4 in case
2981  *                       of undefined opcode in Lower-CP.
2982  * @engine_id: engine-id that the error occurred on
2983  * @stream_id: the stream id the error occurred on. In case the stream equals to
2984  *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
2985  * @write_enable: if set, writing to undefined opcode parameters in the structure
2986  *                 is enable so the first (root cause) undefined opcode will not be
2987  *                 overwritten.
2988  */
2989 struct undefined_opcode_info {
2990 	ktime_t timestamp;
2991 	u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
2992 	u64 cq_addr;
2993 	u32 cq_size;
2994 	u32 cb_addr_streams_len;
2995 	u32 engine_id;
2996 	u32 stream_id;
2997 	bool write_enable;
2998 };
2999 
3000 /**
3001  * struct page_fault_info - page fault information.
3002  * @page_fault: holds information collected during a page fault.
3003  * @user_mappings: buffer containing user mappings.
3004  * @num_of_user_mappings: number of user mappings.
3005  * @page_fault_detected: if set as 1, then a page-fault was discovered for the
3006  *                       first time after the driver has finished booting-up.
3007  *                       Since we're looking for the page-fault's root cause,
3008  *                       we don't care of the others that might follow it-
3009  *                       so once changed to 1, it will remain that way.
3010  * @page_fault_info_available: indicates that a page fault info is now available.
3011  */
3012 struct page_fault_info {
3013 	struct hl_page_fault_info	page_fault;
3014 	struct hl_user_mapping		*user_mappings;
3015 	u64				num_of_user_mappings;
3016 	atomic_t			page_fault_detected;
3017 	bool				page_fault_info_available;
3018 };
3019 
3020 /**
3021  * struct razwi_info - RAZWI information.
3022  * @razwi: holds information collected during a RAZWI
3023  * @razwi_detected: if set as 1, then a RAZWI was discovered for the
3024  *                  first time after the driver has finished booting-up.
3025  *                  Since we're looking for the RAZWI's root cause,
3026  *                  we don't care of the others that might follow it-
3027  *                  so once changed to 1, it will remain that way.
3028  * @razwi_info_available: indicates that a RAZWI info is now available.
3029  */
3030 struct razwi_info {
3031 	struct hl_info_razwi_event	razwi;
3032 	atomic_t			razwi_detected;
3033 	bool				razwi_info_available;
3034 };
3035 
3036 /**
3037  * struct hw_err_info - HW error information.
3038  * @event: holds information on the event.
3039  * @event_detected: if set as 1, then a HW event was discovered for the
3040  *                  first time after the driver has finished booting-up.
3041  *                  currently we assume that only fatal events (that require hard-reset) are
3042  *                  reported so we don't care of the others that might follow it.
3043  *                  so once changed to 1, it will remain that way.
3044  *                  TODO: support multiple events.
3045  * @event_info_available: indicates that a HW event info is now available.
3046  */
3047 struct hw_err_info {
3048 	struct hl_info_hw_err_event	event;
3049 	atomic_t			event_detected;
3050 	bool				event_info_available;
3051 };
3052 
3053 /**
3054  * struct fw_err_info - FW error information.
3055  * @event: holds information on the event.
3056  * @event_detected: if set as 1, then a FW event was discovered for the
3057  *                  first time after the driver has finished booting-up.
3058  *                  currently we assume that only fatal events (that require hard-reset) are
3059  *                  reported so we don't care of the others that might follow it.
3060  *                  so once changed to 1, it will remain that way.
3061  *                  TODO: support multiple events.
3062  * @event_info_available: indicates that a HW event info is now available.
3063  */
3064 struct fw_err_info {
3065 	struct hl_info_fw_err_event	event;
3066 	atomic_t			event_detected;
3067 	bool				event_info_available;
3068 };
3069 
3070 /**
3071  * struct hl_error_info - holds information collected during an error.
3072  * @cs_timeout: CS timeout error information.
3073  * @razwi_info: RAZWI information.
3074  * @undef_opcode: undefined opcode information.
3075  * @page_fault_info: page fault information.
3076  * @hw_err: (fatal) hardware error information.
3077  * @fw_err: firmware error information.
3078  */
3079 struct hl_error_info {
3080 	struct cs_timeout_info		cs_timeout;
3081 	struct razwi_info		razwi_info;
3082 	struct undefined_opcode_info	undef_opcode;
3083 	struct page_fault_info		page_fault_info;
3084 	struct hw_err_info		hw_err;
3085 	struct fw_err_info		fw_err;
3086 };
3087 
3088 /**
3089  * struct hl_reset_info - holds current device reset information.
3090  * @lock: lock to protect critical reset flows.
3091  * @compute_reset_cnt: number of compute resets since the driver was loaded.
3092  * @hard_reset_cnt: number of hard resets since the driver was loaded.
3093  * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3094  *                             here we hold the hard reset flags.
3095  * @in_reset: is device in reset flow.
3096  * @in_compute_reset: Device is currently in reset but not in hard-reset.
3097  * @needs_reset: true if reset_on_lockup is false and device should be reset
3098  *               due to lockup.
3099  * @hard_reset_pending: is there a hard reset work pending.
3100  * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3101  *                    triggered, and cleared after it is shared with preboot.
3102  * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3103  *                      with a new value on next reset
3104  * @reset_trigger_repeated: set if device reset is triggered more than once with
3105  *                          same cause.
3106  * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3107  *                         complete instead.
3108  * @watchdog_active: true if a device release watchdog work is scheduled.
3109  */
3110 struct hl_reset_info {
3111 	spinlock_t	lock;
3112 	u32		compute_reset_cnt;
3113 	u32		hard_reset_cnt;
3114 	u32		hard_reset_schedule_flags;
3115 	u8		in_reset;
3116 	u8		in_compute_reset;
3117 	u8		needs_reset;
3118 	u8		hard_reset_pending;
3119 	u8		curr_reset_cause;
3120 	u8		prev_reset_trigger;
3121 	u8		reset_trigger_repeated;
3122 	u8		skip_reset_on_timeout;
3123 	u8		watchdog_active;
3124 };
3125 
3126 /**
3127  * struct hl_device - habanalabs device structure.
3128  * @pdev: pointer to PCI device, can be NULL in case of simulator device.
3129  * @pcie_bar_phys: array of available PCIe bars physical addresses.
3130  *		   (required only for PCI address match mode)
3131  * @pcie_bar: array of available PCIe bars virtual addresses.
3132  * @rmmio: configuration area address on SRAM.
3133  * @hclass: pointer to the habanalabs class.
3134  * @cdev: related char device.
3135  * @cdev_ctrl: char device for control operations only (INFO IOCTL)
3136  * @dev: related kernel basic device structure.
3137  * @dev_ctrl: related kernel device structure for the control device
3138  * @work_heartbeat: delayed work for CPU-CP is-alive check.
3139  * @device_reset_work: delayed work which performs hard reset
3140  * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
3141  *                                device upon certain error cases.
3142  * @asic_name: ASIC specific name.
3143  * @asic_type: ASIC specific type.
3144  * @completion_queue: array of hl_cq.
3145  * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3146  *                  interrupt, driver will monitor the list of fences
3147  *                  registered to this interrupt.
3148  * @tpc_interrupt: single TPC interrupt for all TPCs.
3149  * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3150  *                         upon any user CQ interrupt, driver will monitor the
3151  *                         list of fences registered to this common structure.
3152  * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3153  * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3154  *                   outstanding command submissions.
3155  * @cq_wq: work queues of completion queues for executing work in process
3156  *         context.
3157  * @eq_wq: work queue of event queue for executing work in process context.
3158  * @cs_cmplt_wq: work queue of CS completions for executing work in process
3159  *               context.
3160  * @ts_free_obj_wq: work queue for timestamp registration objects release.
3161  * @prefetch_wq: work queue for MMU pre-fetch operations.
3162  * @reset_wq: work queue for device reset procedure.
3163  * @kernel_ctx: Kernel driver context structure.
3164  * @kernel_queues: array of hl_hw_queue.
3165  * @cs_mirror_list: CS mirror list for TDR.
3166  * @cs_mirror_lock: protects cs_mirror_list.
3167  * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3168  * @event_queue: event queue for IRQ from CPU-CP.
3169  * @dma_pool: DMA pool for small allocations.
3170  * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3171  * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3172  * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3173  * @asid_bitmap: holds used/available ASIDs.
3174  * @asid_mutex: protects asid_bitmap.
3175  * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3176  * @debug_lock: protects critical section of setting debug mode for device
3177  * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3178  *            page tables are per context, the invalidation h/w is per MMU.
3179  *            Therefore, we can't allow multiple contexts (we only have two,
3180  *            user and kernel) to access the invalidation h/w at the same time.
3181  *            In addition, any change to the PGT, modifying the MMU hash or
3182  *            walking the PGT requires talking this lock.
3183  * @asic_prop: ASIC specific immutable properties.
3184  * @asic_funcs: ASIC specific functions.
3185  * @asic_specific: ASIC specific information to use only from ASIC files.
3186  * @vm: virtual memory manager for MMU.
3187  * @hwmon_dev: H/W monitor device.
3188  * @hl_chip_info: ASIC's sensors information.
3189  * @device_status_description: device status description.
3190  * @hl_debugfs: device's debugfs manager.
3191  * @cb_pool: list of pre allocated CBs.
3192  * @cb_pool_lock: protects the CB pool.
3193  * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3194  * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3195  * @internal_cb_pool: internal command buffer memory pool.
3196  * @internal_cb_va_base: internal cb pool mmu virtual address base
3197  * @fpriv_list: list of file private data structures. Each structure is created
3198  *              when a user opens the device
3199  * @fpriv_ctrl_list: list of file private data structures. Each structure is created
3200  *              when a user opens the control device
3201  * @fpriv_list_lock: protects the fpriv_list
3202  * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3203  * @aggregated_cs_counters: aggregated cs counters among all contexts
3204  * @mmu_priv: device-specific MMU data.
3205  * @mmu_func: device-related MMU functions.
3206  * @dec: list of decoder sw instance
3207  * @fw_loader: FW loader manager.
3208  * @pci_mem_region: array of memory regions in the PCI
3209  * @state_dump_specs: constants and dictionaries needed to dump system state.
3210  * @multi_cs_completion: array of multi-CS completion.
3211  * @clk_throttling: holds information about current/previous clock throttling events
3212  * @captured_err_info: holds information about errors.
3213  * @reset_info: holds current device reset information.
3214  * @stream_master_qid_arr: pointer to array with QIDs of master streams.
3215  * @fw_major_version: major version of current loaded preboot.
3216  * @fw_minor_version: minor version of current loaded preboot.
3217  * @dram_used_mem: current DRAM memory consumption.
3218  * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3219  * @timeout_jiffies: device CS timeout value.
3220  * @max_power: the max power of the device, as configured by the sysadmin. This
3221  *             value is saved so in case of hard-reset, the driver will restore
3222  *             this value and update the F/W after the re-initialization
3223  * @boot_error_status_mask: contains a mask of the device boot error status.
3224  *                          Each bit represents a different error, according to
3225  *                          the defines in hl_boot_if.h. If the bit is cleared,
3226  *                          the error will be ignored by the driver during
3227  *                          device initialization. Mainly used to debug and
3228  *                          workaround firmware bugs
3229  * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3230  * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3231  * @last_successful_open_jif: timestamp (jiffies) of the last successful
3232  *                            device open.
3233  * @last_open_session_duration_jif: duration (jiffies) of the last device open
3234  *                                  session.
3235  * @open_counter: number of successful device open operations.
3236  * @fw_poll_interval_usec: FW status poll interval in usec.
3237  *                         used for CPU boot status
3238  * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3239  *                                  used for COMMs protocols cmds(COMMS_STS_*)
3240  * @dram_binning: contains mask of drams that is received from the f/w which indicates which
3241  *                drams are binned-out
3242  * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3243  *               tpc engines are binned-out
3244  * @dmabuf_export_cnt: number of dma-buf exporting.
3245  * @card_type: Various ASICs have several card types. This indicates the card
3246  *             type of the current device.
3247  * @major: habanalabs kernel driver major.
3248  * @high_pll: high PLL profile frequency.
3249  * @decoder_binning: contains mask of decoder engines that is received from the f/w which
3250  *                   indicates which decoder engines are binned-out
3251  * @edma_binning: contains mask of edma engines that is received from the f/w which
3252  *                   indicates which edma engines are binned-out
3253  * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
3254  * @rotator_binning: contains mask of rotators engines that is received from the f/w
3255  *			which indicates which rotator engines are binned-out(Gaudi3 and above).
3256  * @id: device minor.
3257  * @id_control: minor of the control device.
3258  * @cdev_idx: char device index. Used for setting its name.
3259  * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3260  *                    addresses.
3261  * @is_in_dram_scrub: true if dram scrub operation is on going.
3262  * @disabled: is device disabled.
3263  * @late_init_done: is late init stage was done during initialization.
3264  * @hwmon_initialized: is H/W monitor sensors was initialized.
3265  * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3266  *                   otherwise.
3267  * @dram_default_page_mapping: is DRAM default page mapping enabled.
3268  * @memory_scrub: true to perform device memory scrub in various locations,
3269  *                such as context-switch, context close, page free, etc.
3270  * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3271  *                   huge pages.
3272  * @init_done: is the initialization of the device done.
3273  * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3274  * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3275  *            can be used. This indication is needed because in some ASICs we need to do
3276  *            specific operations to enable that infrastructure.
3277  * @cdev_sysfs_created: were char devices and sysfs nodes created.
3278  * @stop_on_err: true if engines should stop on error.
3279  * @supports_sync_stream: is sync stream supported.
3280  * @sync_stream_queue_idx: helper index for sync stream queues initialization.
3281  * @collective_mon_idx: helper index for collective initialization
3282  * @supports_coresight: is CoreSight supported.
3283  * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3284  * @process_kill_trial_cnt: number of trials reset thread tried killing
3285  *                          user processes
3286  * @device_fini_pending: true if device_fini was called and might be
3287  *                       waiting for the reset thread to finish
3288  * @supports_staged_submission: true if staged submissions are supported
3289  * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3290  *                        halted. We can't halt it again because the COMMS
3291  *                        protocol will throw an error. Relevant only for
3292  *                        cases where Linux was not loaded to device CPU
3293  * @supports_wait_for_multi_cs: true if wait for multi CS is supported
3294  * @is_compute_ctx_active: Whether there is an active compute context executing.
3295  * @compute_ctx_in_release: true if the current compute context is being released.
3296  * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3297  * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3298  *                             device.
3299  * @supports_ctx_switch: true if a ctx switch is required upon first submission.
3300  * @support_preboot_binning: true if we support read binning info from preboot.
3301  * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3302  * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3303  *                 stages and sometimes we want to stop at a certain stage. Used only for testing.
3304  * @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing.
3305  * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3306  * @pldm: Whether we are running in Palladium environment. Used only for testing.
3307  * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3308  *                           the f/w. Used only for testing.
3309  * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3310  * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3311  *                         Used only for testing.
3312  * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3313  *             that the f/w is always alive. Used only for testing.
3314  */
3315 struct hl_device {
3316 	struct pci_dev			*pdev;
3317 	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
3318 	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
3319 	void __iomem			*rmmio;
3320 	struct class			*hclass;
3321 	struct cdev			cdev;
3322 	struct cdev			cdev_ctrl;
3323 	struct device			*dev;
3324 	struct device			*dev_ctrl;
3325 	struct delayed_work		work_heartbeat;
3326 	struct hl_device_reset_work	device_reset_work;
3327 	struct hl_device_reset_work	device_release_watchdog_work;
3328 	char				asic_name[HL_STR_MAX];
3329 	char				status[HL_DEV_STS_MAX][HL_STR_MAX];
3330 	enum hl_asic_type		asic_type;
3331 	struct hl_cq			*completion_queue;
3332 	struct hl_user_interrupt	*user_interrupt;
3333 	struct hl_user_interrupt	tpc_interrupt;
3334 	struct hl_user_interrupt	common_user_cq_interrupt;
3335 	struct hl_user_interrupt	common_decoder_interrupt;
3336 	struct hl_cs			**shadow_cs_queue;
3337 	struct workqueue_struct		**cq_wq;
3338 	struct workqueue_struct		*eq_wq;
3339 	struct workqueue_struct		*cs_cmplt_wq;
3340 	struct workqueue_struct		*ts_free_obj_wq;
3341 	struct workqueue_struct		*prefetch_wq;
3342 	struct workqueue_struct		*reset_wq;
3343 	struct hl_ctx			*kernel_ctx;
3344 	struct hl_hw_queue		*kernel_queues;
3345 	struct list_head		cs_mirror_list;
3346 	spinlock_t			cs_mirror_lock;
3347 	struct hl_mem_mgr		kernel_mem_mgr;
3348 	struct hl_eq			event_queue;
3349 	struct dma_pool			*dma_pool;
3350 	void				*cpu_accessible_dma_mem;
3351 	dma_addr_t			cpu_accessible_dma_address;
3352 	struct gen_pool			*cpu_accessible_dma_pool;
3353 	unsigned long			*asid_bitmap;
3354 	struct mutex			asid_mutex;
3355 	struct mutex			send_cpu_message_lock;
3356 	struct mutex			debug_lock;
3357 	struct mutex			mmu_lock;
3358 	struct asic_fixed_properties	asic_prop;
3359 	const struct hl_asic_funcs	*asic_funcs;
3360 	void				*asic_specific;
3361 	struct hl_vm			vm;
3362 	struct device			*hwmon_dev;
3363 	struct hwmon_chip_info		*hl_chip_info;
3364 
3365 	struct hl_dbg_device_entry	hl_debugfs;
3366 
3367 	struct list_head		cb_pool;
3368 	spinlock_t			cb_pool_lock;
3369 
3370 	void				*internal_cb_pool_virt_addr;
3371 	dma_addr_t			internal_cb_pool_dma_addr;
3372 	struct gen_pool			*internal_cb_pool;
3373 	u64				internal_cb_va_base;
3374 
3375 	struct list_head		fpriv_list;
3376 	struct list_head		fpriv_ctrl_list;
3377 	struct mutex			fpriv_list_lock;
3378 	struct mutex			fpriv_ctrl_list_lock;
3379 
3380 	struct hl_cs_counters_atomic	aggregated_cs_counters;
3381 
3382 	struct hl_mmu_priv		mmu_priv;
3383 	struct hl_mmu_funcs		mmu_func[MMU_NUM_PGT_LOCATIONS];
3384 
3385 	struct hl_dec			*dec;
3386 
3387 	struct fw_load_mgr		fw_loader;
3388 
3389 	struct pci_mem_region		pci_mem_region[PCI_REGION_NUMBER];
3390 
3391 	struct hl_state_dump_specs	state_dump_specs;
3392 
3393 	struct multi_cs_completion	multi_cs_completion[
3394 							MULTI_CS_MAX_USER_CTX];
3395 	struct hl_clk_throttle		clk_throttling;
3396 	struct hl_error_info		captured_err_info;
3397 
3398 	struct hl_reset_info		reset_info;
3399 
3400 	u32				*stream_master_qid_arr;
3401 	u32				fw_major_version;
3402 	u32				fw_minor_version;
3403 	atomic64_t			dram_used_mem;
3404 	u64				memory_scrub_val;
3405 	u64				timeout_jiffies;
3406 	u64				max_power;
3407 	u64				boot_error_status_mask;
3408 	u64				dram_pci_bar_start;
3409 	u64				last_successful_open_jif;
3410 	u64				last_open_session_duration_jif;
3411 	u64				open_counter;
3412 	u64				fw_poll_interval_usec;
3413 	ktime_t				last_successful_open_ktime;
3414 	u64				fw_comms_poll_interval_usec;
3415 	u64				dram_binning;
3416 	u64				tpc_binning;
3417 	atomic_t			dmabuf_export_cnt;
3418 	enum cpucp_card_types		card_type;
3419 	u32				major;
3420 	u32				high_pll;
3421 	u32				decoder_binning;
3422 	u32				edma_binning;
3423 	u32				device_release_watchdog_timeout_sec;
3424 	u32				rotator_binning;
3425 	u16				id;
3426 	u16				id_control;
3427 	u16				cdev_idx;
3428 	u16				cpu_pci_msb_addr;
3429 	u8				is_in_dram_scrub;
3430 	u8				disabled;
3431 	u8				late_init_done;
3432 	u8				hwmon_initialized;
3433 	u8				reset_on_lockup;
3434 	u8				dram_default_page_mapping;
3435 	u8				memory_scrub;
3436 	u8				pmmu_huge_range;
3437 	u8				init_done;
3438 	u8				device_cpu_disabled;
3439 	u8				in_debug;
3440 	u8				cdev_sysfs_created;
3441 	u8				stop_on_err;
3442 	u8				supports_sync_stream;
3443 	u8				sync_stream_queue_idx;
3444 	u8				collective_mon_idx;
3445 	u8				supports_coresight;
3446 	u8				supports_cb_mapping;
3447 	u8				process_kill_trial_cnt;
3448 	u8				device_fini_pending;
3449 	u8				supports_staged_submission;
3450 	u8				device_cpu_is_halted;
3451 	u8				supports_wait_for_multi_cs;
3452 	u8				stream_master_qid_arr_size;
3453 	u8				is_compute_ctx_active;
3454 	u8				compute_ctx_in_release;
3455 	u8				supports_mmu_prefetch;
3456 	u8				reset_upon_device_release;
3457 	u8				supports_ctx_switch;
3458 	u8				support_preboot_binning;
3459 
3460 	/* Parameters for bring-up to be upstreamed */
3461 	u64				nic_ports_mask;
3462 	u64				fw_components;
3463 	u8				mmu_enable;
3464 	u8				cpu_queues_enable;
3465 	u8				pldm;
3466 	u8				hard_reset_on_fw_events;
3467 	u8				bmc_enable;
3468 	u8				reset_on_preboot_fail;
3469 	u8				heartbeat;
3470 };
3471 
3472 
3473 /**
3474  * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3475  * @refcount: refcount used to protect removing this id when several
3476  *            wait cs are used to wait of the reserved encaps signals.
3477  * @hdev: pointer to habanalabs device structure.
3478  * @hw_sob: pointer to  H/W SOB used in the reservation.
3479  * @ctx: pointer to the user's context data structure
3480  * @cs_seq: staged cs sequence which contains encapsulated signals
3481  * @id: idr handler id to be used to fetch the handler info
3482  * @q_idx: stream queue index
3483  * @pre_sob_val: current SOB value before reservation
3484  * @count: signals number
3485  */
3486 struct hl_cs_encaps_sig_handle {
3487 	struct kref refcount;
3488 	struct hl_device *hdev;
3489 	struct hl_hw_sob *hw_sob;
3490 	struct hl_ctx *ctx;
3491 	u64  cs_seq;
3492 	u32  id;
3493 	u32  q_idx;
3494 	u32  pre_sob_val;
3495 	u32  count;
3496 };
3497 
3498 /**
3499  * struct hl_info_fw_err_info - firmware error information structure
3500  * @err_type: The type of error detected (or reported).
3501  * @event_mask: Pointer to the event mask to be modified with the detected error flag
3502  *              (can be NULL)
3503  * @event_id: The id of the event that reported the error
3504  *            (applicable when err_type is HL_INFO_FW_REPORTED_ERR).
3505  */
3506 struct hl_info_fw_err_info {
3507 	enum hl_info_fw_err_type err_type;
3508 	u64 *event_mask;
3509 	u16 event_id;
3510 };
3511 
3512 /*
3513  * IOCTLs
3514  */
3515 
3516 /**
3517  * typedef hl_ioctl_t - typedef for ioctl function in the driver
3518  * @hpriv: pointer to the FD's private data, which contains state of
3519  *		user process
3520  * @data: pointer to the input/output arguments structure of the IOCTL
3521  *
3522  * Return: 0 for success, negative value for error
3523  */
3524 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3525 
3526 /**
3527  * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3528  * @cmd: the IOCTL code as created by the kernel macros.
3529  * @func: pointer to the driver's function that should be called for this IOCTL.
3530  */
3531 struct hl_ioctl_desc {
3532 	unsigned int cmd;
3533 	hl_ioctl_t *func;
3534 };
3535 
3536 
3537 /*
3538  * Kernel module functions that can be accessed by entire module
3539  */
3540 
3541 /**
3542  * hl_get_sg_info() - get number of pages and the DMA address from SG list.
3543  * @sg: the SG list.
3544  * @dma_addr: pointer to DMA address to return.
3545  *
3546  * Calculate the number of consecutive pages described by the SG list. Take the
3547  * offset of the address in the first page, add to it the length and round it up
3548  * to the number of needed pages.
3549  */
3550 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3551 {
3552 	*dma_addr = sg_dma_address(sg);
3553 
3554 	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3555 			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
3556 }
3557 
3558 /**
3559  * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3560  * @address: The start address of the area we want to validate.
3561  * @size: The size in bytes of the area we want to validate.
3562  * @range_start_address: The start address of the valid range.
3563  * @range_end_address: The end address of the valid range.
3564  *
3565  * Return: true if the area is inside the valid range, false otherwise.
3566  */
3567 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3568 				u64 range_start_address, u64 range_end_address)
3569 {
3570 	u64 end_address = address + size;
3571 
3572 	if ((address >= range_start_address) &&
3573 			(end_address <= range_end_address) &&
3574 			(end_address > address))
3575 		return true;
3576 
3577 	return false;
3578 }
3579 
3580 /**
3581  * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3582  * @address: The start address of the area we want to validate.
3583  * @size: The size in bytes of the area we want to validate.
3584  * @range_start_address: The start address of the valid range.
3585  * @range_end_address: The end address of the valid range.
3586  *
3587  * Return: true if the area overlaps part or all of the valid range,
3588  *		false otherwise.
3589  */
3590 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3591 				u64 range_start_address, u64 range_end_address)
3592 {
3593 	u64 end_address = address + size - 1;
3594 
3595 	return ((address <= range_end_address) && (range_start_address <= end_address));
3596 }
3597 
3598 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3599 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle);
3600 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr);
3601 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3602 					gfp_t flag, const char *caller);
3603 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3604 					dma_addr_t dma_handle, const char *caller);
3605 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3606 					dma_addr_t *dma_handle, const char *caller);
3607 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3608 					const char *caller);
3609 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
3610 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3611 				enum dma_data_direction dir);
3612 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
3613 	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
3614 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3615 	enum debugfs_access_type acc_type);
3616 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3617 			u64 addr, u64 *val, enum debugfs_access_type acc_type);
3618 int hl_device_open(struct inode *inode, struct file *filp);
3619 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3620 bool hl_device_operational(struct hl_device *hdev,
3621 		enum hl_device_status *status);
3622 bool hl_ctrl_device_operational(struct hl_device *hdev,
3623 		enum hl_device_status *status);
3624 enum hl_device_status hl_device_status(struct hl_device *hdev);
3625 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3626 int hl_hw_queues_create(struct hl_device *hdev);
3627 void hl_hw_queues_destroy(struct hl_device *hdev);
3628 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3629 		u32 cb_size, u64 cb_ptr);
3630 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3631 		u32 ctl, u32 len, u64 ptr);
3632 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3633 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3634 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3635 void hl_hw_queue_update_ci(struct hl_cs *cs);
3636 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3637 
3638 #define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
3639 #define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
3640 
3641 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3642 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3643 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3644 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3645 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3646 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3647 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3648 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3649 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3650 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg);
3651 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg);
3652 u32 hl_cq_inc_ptr(u32 ptr);
3653 
3654 int hl_asid_init(struct hl_device *hdev);
3655 void hl_asid_fini(struct hl_device *hdev);
3656 unsigned long hl_asid_alloc(struct hl_device *hdev);
3657 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3658 
3659 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3660 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3661 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3662 void hl_ctx_do_release(struct kref *ref);
3663 void hl_ctx_get(struct hl_ctx *ctx);
3664 int hl_ctx_put(struct hl_ctx *ctx);
3665 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3666 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3667 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3668 				struct hl_fence **fence, u32 arr_len);
3669 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3670 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3671 
3672 int hl_device_init(struct hl_device *hdev);
3673 void hl_device_fini(struct hl_device *hdev);
3674 int hl_device_suspend(struct hl_device *hdev);
3675 int hl_device_resume(struct hl_device *hdev);
3676 int hl_device_reset(struct hl_device *hdev, u32 flags);
3677 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
3678 void hl_hpriv_get(struct hl_fpriv *hpriv);
3679 int hl_hpriv_put(struct hl_fpriv *hpriv);
3680 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3681 
3682 int hl_build_hwmon_channel_info(struct hl_device *hdev,
3683 		struct cpucp_sensor *sensors_arr);
3684 
3685 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3686 
3687 int hl_sysfs_init(struct hl_device *hdev);
3688 void hl_sysfs_fini(struct hl_device *hdev);
3689 
3690 int hl_hwmon_init(struct hl_device *hdev);
3691 void hl_hwmon_fini(struct hl_device *hdev);
3692 void hl_hwmon_release_resources(struct hl_device *hdev);
3693 
3694 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3695 			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3696 			bool map_cb, u64 *handle);
3697 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3698 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3699 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3700 void hl_cb_put(struct hl_cb *cb);
3701 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3702 					bool internal_cb);
3703 int hl_cb_pool_init(struct hl_device *hdev);
3704 int hl_cb_pool_fini(struct hl_device *hdev);
3705 int hl_cb_va_pool_init(struct hl_ctx *ctx);
3706 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3707 
3708 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3709 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3710 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3711 void hl_sob_reset_error(struct kref *ref);
3712 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3713 void hl_fence_put(struct hl_fence *fence);
3714 void hl_fences_put(struct hl_fence **fence, int len);
3715 void hl_fence_get(struct hl_fence *fence);
3716 void cs_get(struct hl_cs *cs);
3717 bool cs_needs_completion(struct hl_cs *cs);
3718 bool cs_needs_timeout(struct hl_cs *cs);
3719 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3720 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3721 void hl_multi_cs_completion_init(struct hl_device *hdev);
3722 u32 hl_get_active_cs_num(struct hl_device *hdev);
3723 
3724 void goya_set_asic_funcs(struct hl_device *hdev);
3725 void gaudi_set_asic_funcs(struct hl_device *hdev);
3726 void gaudi2_set_asic_funcs(struct hl_device *hdev);
3727 
3728 int hl_vm_ctx_init(struct hl_ctx *ctx);
3729 void hl_vm_ctx_fini(struct hl_ctx *ctx);
3730 
3731 int hl_vm_init(struct hl_device *hdev);
3732 void hl_vm_fini(struct hl_device *hdev);
3733 
3734 void hl_hw_block_mem_init(struct hl_ctx *ctx);
3735 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3736 
3737 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3738 		enum hl_va_range_type type, u64 size, u32 alignment);
3739 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3740 		u64 start_addr, u64 size);
3741 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3742 			struct hl_userptr *userptr);
3743 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3744 void hl_userptr_delete_list(struct hl_device *hdev,
3745 				struct list_head *userptr_list);
3746 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3747 				struct list_head *userptr_list,
3748 				struct hl_userptr **userptr);
3749 
3750 int hl_mmu_init(struct hl_device *hdev);
3751 void hl_mmu_fini(struct hl_device *hdev);
3752 int hl_mmu_ctx_init(struct hl_ctx *ctx);
3753 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3754 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3755 		u32 page_size, bool flush_pte);
3756 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3757 				u32 page_size, u32 *real_page_size, bool is_dram_addr);
3758 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3759 		bool flush_pte);
3760 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3761 					u64 phys_addr, u32 size);
3762 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3763 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3764 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3765 					u32 flags, u32 asid, u64 va, u64 size);
3766 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3767 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3768 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3769 					u8 hop_idx, u64 hop_addr, u64 virt_addr);
3770 void hl_mmu_hr_flush(struct hl_ctx *ctx);
3771 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3772 			u64 pgt_size);
3773 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3774 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3775 				u32 hop_table_size);
3776 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3777 							u32 hop_table_size);
3778 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3779 							u64 val, u32 hop_table_size);
3780 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3781 							u32 hop_table_size);
3782 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3783 							u32 hop_table_size);
3784 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3785 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3786 							struct hl_hr_mmu_funcs *hr_func,
3787 							u64 curr_pte);
3788 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3789 							struct hl_hr_mmu_funcs *hr_func,
3790 							struct hl_mmu_properties *mmu_prop);
3791 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3792 							struct hl_mmu_hr_priv *hr_priv,
3793 							struct hl_hr_mmu_funcs *hr_func,
3794 							struct hl_mmu_properties *mmu_prop,
3795 							u64 curr_pte, bool *is_new_hop);
3796 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3797 							struct hl_hr_mmu_funcs *hr_func);
3798 void hl_mmu_swap_out(struct hl_ctx *ctx);
3799 void hl_mmu_swap_in(struct hl_ctx *ctx);
3800 int hl_mmu_if_set_funcs(struct hl_device *hdev);
3801 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3802 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3803 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3804 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3805 			struct hl_mmu_hop_info *hops);
3806 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3807 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3808 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3809 
3810 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3811 				void __iomem *dst, u32 src_offset, u32 size);
3812 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3813 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3814 				u16 len, u32 timeout, u64 *result);
3815 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3816 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3817 		size_t irq_arr_size);
3818 int hl_fw_test_cpu_queue(struct hl_device *hdev);
3819 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3820 						dma_addr_t *dma_handle);
3821 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3822 					void *vaddr);
3823 int hl_fw_send_heartbeat(struct hl_device *hdev);
3824 int hl_fw_cpucp_info_get(struct hl_device *hdev,
3825 				u32 sts_boot_dev_sts0_reg,
3826 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3827 				u32 boot_err1_reg);
3828 int hl_fw_cpucp_handshake(struct hl_device *hdev,
3829 				u32 sts_boot_dev_sts0_reg,
3830 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3831 				u32 boot_err1_reg);
3832 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3833 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3834 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3835 		struct hl_info_pci_counters *counters);
3836 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3837 			u64 *total_energy);
3838 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3839 						enum pll_index *pll_index);
3840 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3841 		u16 *pll_freq_arr);
3842 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3843 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3844 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3845 int hl_fw_init_cpu(struct hl_device *hdev);
3846 int hl_fw_wait_preboot_ready(struct hl_device *hdev);
3847 int hl_fw_read_preboot_status(struct hl_device *hdev);
3848 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3849 				struct fw_load_mgr *fw_loader,
3850 				enum comms_cmd cmd, unsigned int size,
3851 				bool wait_ok, u32 timeout);
3852 int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3853 				struct cpucp_hbm_row_info *info);
3854 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3855 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3856 int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
3857 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3858 			bool is_wc[3]);
3859 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
3860 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
3861 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
3862 		struct hl_inbound_pci_region *pci_region);
3863 int hl_pci_set_outbound_region(struct hl_device *hdev,
3864 		struct hl_outbound_pci_region *pci_region);
3865 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
3866 int hl_pci_init(struct hl_device *hdev);
3867 void hl_pci_fini(struct hl_device *hdev);
3868 
3869 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
3870 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
3871 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3872 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3873 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3874 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3875 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3876 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3877 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3878 long hl_fw_get_max_power(struct hl_device *hdev);
3879 void hl_fw_set_max_power(struct hl_device *hdev);
3880 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3881 				u32 nonce);
3882 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3883 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3884 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3885 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3886 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
3887 void hl_fw_set_pll_profile(struct hl_device *hdev);
3888 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
3889 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
3890 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
3891 						dma_addr_t buff, u32 *size);
3892 
3893 void hw_sob_get(struct hl_hw_sob *hw_sob);
3894 void hw_sob_put(struct hl_hw_sob *hw_sob);
3895 void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
3896 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
3897 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
3898 			struct hl_cs *cs, struct hl_cs_job *job,
3899 			struct hl_cs_compl *cs_cmpl);
3900 
3901 int hl_dec_init(struct hl_device *hdev);
3902 void hl_dec_fini(struct hl_device *hdev);
3903 void hl_dec_ctx_fini(struct hl_ctx *ctx);
3904 
3905 void hl_release_pending_user_interrupts(struct hl_device *hdev);
3906 void hl_abort_waitings_for_completion(struct hl_device *hdev);
3907 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
3908 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
3909 
3910 int hl_state_dump(struct hl_device *hdev);
3911 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
3912 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
3913 					struct hl_mon_state_dump *mon);
3914 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
3915 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
3916 					const char *format, ...);
3917 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
3918 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
3919 
3920 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
3921 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
3922 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
3923 		    void *args);
3924 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
3925 						   u64 handle);
3926 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
3927 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
3928 struct hl_mmap_mem_buf *
3929 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
3930 		      struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
3931 		      void *args);
3932 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
3933 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
3934 			u8 flags);
3935 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
3936 			u8 flags, u64 *event_mask);
3937 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
3938 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
3939 				u64 *event_mask);
3940 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask);
3941 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info);
3942 
3943 #ifdef CONFIG_DEBUG_FS
3944 
3945 void hl_debugfs_init(void);
3946 void hl_debugfs_fini(void);
3947 void hl_debugfs_add_device(struct hl_device *hdev);
3948 void hl_debugfs_remove_device(struct hl_device *hdev);
3949 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
3950 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
3951 void hl_debugfs_add_cb(struct hl_cb *cb);
3952 void hl_debugfs_remove_cb(struct hl_cb *cb);
3953 void hl_debugfs_add_cs(struct hl_cs *cs);
3954 void hl_debugfs_remove_cs(struct hl_cs *cs);
3955 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
3956 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
3957 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
3958 void hl_debugfs_remove_userptr(struct hl_device *hdev,
3959 				struct hl_userptr *userptr);
3960 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3961 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3962 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
3963 					unsigned long length);
3964 
3965 #else
3966 
3967 static inline void __init hl_debugfs_init(void)
3968 {
3969 }
3970 
3971 static inline void hl_debugfs_fini(void)
3972 {
3973 }
3974 
3975 static inline void hl_debugfs_add_device(struct hl_device *hdev)
3976 {
3977 }
3978 
3979 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3980 {
3981 }
3982 
3983 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
3984 {
3985 }
3986 
3987 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
3988 {
3989 }
3990 
3991 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
3992 {
3993 }
3994 
3995 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
3996 {
3997 }
3998 
3999 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
4000 {
4001 }
4002 
4003 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
4004 {
4005 }
4006 
4007 static inline void hl_debugfs_add_job(struct hl_device *hdev,
4008 					struct hl_cs_job *job)
4009 {
4010 }
4011 
4012 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
4013 					struct hl_cs_job *job)
4014 {
4015 }
4016 
4017 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
4018 					struct hl_userptr *userptr)
4019 {
4020 }
4021 
4022 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
4023 					struct hl_userptr *userptr)
4024 {
4025 }
4026 
4027 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
4028 					struct hl_ctx *ctx)
4029 {
4030 }
4031 
4032 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
4033 					struct hl_ctx *ctx)
4034 {
4035 }
4036 
4037 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
4038 					char *data, unsigned long length)
4039 {
4040 }
4041 
4042 #endif
4043 
4044 /* Security */
4045 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
4046 		const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
4047 		int array_size);
4048 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
4049 		int mm_array_size, int offset, const u32 pb_blocks[],
4050 		struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
4051 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
4052 		struct hl_block_glbl_sec sgs_array[], u32 block_offset,
4053 		int array_size);
4054 void hl_secure_block(struct hl_device *hdev,
4055 		struct hl_block_glbl_sec sgs_array[], int array_size);
4056 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4057 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4058 		const u32 pb_blocks[], u32 blocks_array_size,
4059 		const u32 *regs_array, u32 regs_array_size, u64 mask);
4060 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4061 		u32 num_instances, u32 instance_offset,
4062 		const u32 pb_blocks[], u32 blocks_array_size,
4063 		const u32 *regs_array, u32 regs_array_size);
4064 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
4065 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4066 		const u32 pb_blocks[], u32 blocks_array_size,
4067 		const struct range *regs_range_array, u32 regs_range_array_size,
4068 		u64 mask);
4069 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
4070 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4071 		const u32 pb_blocks[], u32 blocks_array_size,
4072 		const struct range *regs_range_array,
4073 		u32 regs_range_array_size);
4074 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4075 		u32 num_instances, u32 instance_offset,
4076 		const u32 pb_blocks[], u32 blocks_array_size,
4077 		const u32 *regs_array, u32 regs_array_size);
4078 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4079 		u32 num_instances, u32 instance_offset,
4080 		const u32 pb_blocks[], u32 blocks_array_size,
4081 		const struct range *regs_range_array,
4082 		u32 regs_range_array_size);
4083 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4084 		u32 num_instances, u32 instance_offset,
4085 		const u32 pb_blocks[], u32 blocks_array_size);
4086 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4087 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4088 		const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
4089 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4090 		u32 num_instances, u32 instance_offset,
4091 		const u32 pb_blocks[], u32 blocks_array_size);
4092 
4093 /* IOCTLs */
4094 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
4095 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
4096 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
4097 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
4098 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
4099 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
4100 
4101 #endif /* HABANALABSP_H_ */
4102