1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * Copyright 2016-2022 HabanaLabs, Ltd. 4 * All Rights Reserved. 5 * 6 */ 7 8 #ifndef HABANALABSP_H_ 9 #define HABANALABSP_H_ 10 11 #include "../include/common/cpucp_if.h" 12 #include "../include/common/qman_if.h" 13 #include "../include/hw_ip/mmu/mmu_general.h" 14 #include <uapi/drm/habanalabs_accel.h> 15 16 #include <linux/cdev.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqreturn.h> 19 #include <linux/dma-direction.h> 20 #include <linux/scatterlist.h> 21 #include <linux/hashtable.h> 22 #include <linux/debugfs.h> 23 #include <linux/rwsem.h> 24 #include <linux/eventfd.h> 25 #include <linux/bitfield.h> 26 #include <linux/genalloc.h> 27 #include <linux/sched/signal.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/coresight.h> 30 #include <linux/dma-buf.h> 31 32 #define HL_NAME "habanalabs" 33 34 struct hl_device; 35 struct hl_fpriv; 36 37 /* Use upper bits of mmap offset to store habana driver specific information. 38 * bits[63:59] - Encode mmap type 39 * bits[45:0] - mmap offset value 40 * 41 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 42 * defines are w.r.t to PAGE_SIZE 43 */ 44 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) 45 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) 46 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) 47 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) 48 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) 49 50 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) 51 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) 52 53 #define HL_PENDING_RESET_PER_SEC 10 54 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ 55 #define HL_PENDING_RESET_LONG_SEC 60 56 /* 57 * In device fini, wait 10 minutes for user processes to be terminated after we kill them. 58 * This is needed to prevent situation of clearing resources while user processes are still alive. 59 */ 60 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600 61 62 #define HL_HARD_RESET_MAX_TIMEOUT 120 63 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) 64 65 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ 66 67 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ 68 69 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ 70 71 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ 72 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ 73 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ 74 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ 75 76 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ 77 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ 78 79 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ 80 81 #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */ 82 83 #define HL_INVALID_QUEUE UINT_MAX 84 85 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF 86 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE 87 88 #define HL_STATE_DUMP_HIST_LEN 5 89 90 /* Default value for device reset trigger , an invalid value */ 91 #define HL_RESET_TRIGGER_DEFAULT 0xFF 92 93 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 94 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 95 96 /* Memory */ 97 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 98 99 /* MMU */ 100 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 101 102 /** 103 * enum hl_mmu_page_table_location - mmu page table location 104 * @MMU_DR_PGT: page-table is located on device DRAM. 105 * @MMU_HR_PGT: page-table is located on host memory. 106 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. 107 */ 108 enum hl_mmu_page_table_location { 109 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ 110 MMU_HR_PGT, /* host resident MMU PGT */ 111 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ 112 }; 113 114 /** 115 * enum hl_mmu_enablement - what mmu modules to enable 116 * @MMU_EN_NONE: mmu disabled. 117 * @MMU_EN_ALL: enable all. 118 * @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled. 119 */ 120 enum hl_mmu_enablement { 121 MMU_EN_NONE = 0, 122 MMU_EN_ALL = 1, 123 MMU_EN_PMMU_ONLY = 3, /* N/A for Goya/Gaudi */ 124 }; 125 126 /* 127 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream 128 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream 129 */ 130 #define HL_RSVD_SOBS 2 131 #define HL_RSVD_MONS 1 132 133 /* 134 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream 135 */ 136 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 137 138 #define HL_MAX_SOB_VAL (1 << 15) 139 140 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) 141 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) 142 143 #define HL_PCI_NUM_BARS 6 144 145 /* Completion queue entry relates to completed job */ 146 #define HL_COMPLETION_MODE_JOB 0 147 /* Completion queue entry relates to completed command submission */ 148 #define HL_COMPLETION_MODE_CS 1 149 150 #define HL_MAX_DCORES 8 151 152 /* DMA alloc/free wrappers */ 153 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ 154 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) 155 156 #define hl_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle) \ 157 hl_cpu_accessible_dma_pool_alloc_caller(hdev, size, dma_handle, __func__) 158 159 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ 160 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) 161 162 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ 163 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) 164 165 #define hl_cpu_accessible_dma_pool_free(hdev, size, vaddr) \ 166 hl_cpu_accessible_dma_pool_free_caller(hdev, size, vaddr, __func__) 167 168 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ 169 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) 170 171 /* 172 * Reset Flags 173 * 174 * - HL_DRV_RESET_HARD 175 * If set do hard reset to all engines. If not set reset just 176 * compute/DMA engines. 177 * 178 * - HL_DRV_RESET_FROM_RESET_THR 179 * Set if the caller is the hard-reset thread 180 * 181 * - HL_DRV_RESET_HEARTBEAT 182 * Set if reset is due to heartbeat 183 * 184 * - HL_DRV_RESET_TDR 185 * Set if reset is due to TDR 186 * 187 * - HL_DRV_RESET_DEV_RELEASE 188 * Set if reset is due to device release 189 * 190 * - HL_DRV_RESET_BYPASS_REQ_TO_FW 191 * F/W will perform the reset. No need to ask it to reset the device. This is relevant 192 * only when running with secured f/w 193 * 194 * - HL_DRV_RESET_FW_FATAL_ERR 195 * Set if reset is due to a fatal error from FW 196 * 197 * - HL_DRV_RESET_DELAY 198 * Set if a delay should be added before the reset 199 * 200 * - HL_DRV_RESET_FROM_WD_THR 201 * Set if the caller is the device release watchdog thread 202 */ 203 204 #define HL_DRV_RESET_HARD (1 << 0) 205 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) 206 #define HL_DRV_RESET_HEARTBEAT (1 << 2) 207 #define HL_DRV_RESET_TDR (1 << 3) 208 #define HL_DRV_RESET_DEV_RELEASE (1 << 4) 209 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) 210 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) 211 #define HL_DRV_RESET_DELAY (1 << 7) 212 #define HL_DRV_RESET_FROM_WD_THR (1 << 8) 213 214 /* 215 * Security 216 */ 217 218 #define HL_PB_SHARED 1 219 #define HL_PB_NA 0 220 #define HL_PB_SINGLE_INSTANCE 1 221 #define HL_BLOCK_SIZE 0x1000 222 #define HL_BLOCK_GLBL_ERR_MASK 0xF40 223 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 224 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 225 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 226 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) 227 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) 228 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) 229 230 enum hl_protection_levels { 231 SECURED_LVL, 232 PRIVILEGED_LVL, 233 NON_SECURED_LVL 234 }; 235 236 /** 237 * struct iterate_module_ctx - HW module iterator 238 * @fn: function to apply to each HW module instance 239 * @data: optional internal data to the function iterator 240 * @rc: return code for optional use of iterator/iterator-caller 241 */ 242 struct iterate_module_ctx { 243 /* 244 * callback for the HW module iterator 245 * @hdev: pointer to the habanalabs device structure 246 * @block: block (ASIC specific definition can be dcore/hdcore) 247 * @inst: HW module instance within the block 248 * @offset: current HW module instance offset from the 1-st HW module instance 249 * in the 1-st block 250 * @ctx: the iterator context. 251 */ 252 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, 253 struct iterate_module_ctx *ctx); 254 void *data; 255 int rc; 256 }; 257 258 struct hl_block_glbl_sec { 259 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; 260 }; 261 262 #define HL_MAX_SOBS_PER_MONITOR 8 263 264 /** 265 * struct hl_gen_wait_properties - properties for generating a wait CB 266 * @data: command buffer 267 * @q_idx: queue id is used to extract fence register address 268 * @size: offset in command buffer 269 * @sob_base: SOB base to use in this wait CB 270 * @sob_val: SOB value to wait for 271 * @mon_id: monitor to use in this wait CB 272 * @sob_mask: each bit represents a SOB offset from sob_base to be used 273 */ 274 struct hl_gen_wait_properties { 275 void *data; 276 u32 q_idx; 277 u32 size; 278 u16 sob_base; 279 u16 sob_val; 280 u16 mon_id; 281 u8 sob_mask; 282 }; 283 284 /** 285 * struct pgt_info - MMU hop page info. 286 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and 287 * actual pgts for host resident MMU). 288 * @phys_addr: physical address of the pgt. 289 * @virt_addr: host virtual address of the pgt (see above device/host resident). 290 * @shadow_addr: shadow hop in the host for device resident MMU. 291 * @ctx: pointer to the owner ctx. 292 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically 293 * allocated HOPs (all HOPs but HOP0) 294 * 295 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow 296 * pgts will be stored on host memory) or on host memory (in which case no shadow is required). 297 * 298 * When a new level (hop) is needed during mapping this structure will be used to describe 299 * the newly allocated hop as well as to track number of PTEs in it. 300 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is 301 * freed with its pgt_info structure. 302 */ 303 struct pgt_info { 304 struct hlist_node node; 305 u64 phys_addr; 306 u64 virt_addr; 307 u64 shadow_addr; 308 struct hl_ctx *ctx; 309 int num_of_ptes; 310 }; 311 312 /** 313 * enum hl_pci_match_mode - pci match mode per region 314 * @PCI_ADDRESS_MATCH_MODE: address match mode 315 * @PCI_BAR_MATCH_MODE: bar match mode 316 */ 317 enum hl_pci_match_mode { 318 PCI_ADDRESS_MATCH_MODE, 319 PCI_BAR_MATCH_MODE 320 }; 321 322 /** 323 * enum hl_fw_component - F/W components to read version through registers. 324 * @FW_COMP_BOOT_FIT: boot fit. 325 * @FW_COMP_PREBOOT: preboot. 326 * @FW_COMP_LINUX: linux. 327 */ 328 enum hl_fw_component { 329 FW_COMP_BOOT_FIT, 330 FW_COMP_PREBOOT, 331 FW_COMP_LINUX, 332 }; 333 334 /** 335 * enum hl_fw_types - F/W types present in the system 336 * @FW_TYPE_NONE: no FW component indication 337 * @FW_TYPE_LINUX: Linux image for device CPU 338 * @FW_TYPE_BOOT_CPU: Boot image for device CPU 339 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system 340 * (preboot, ppboot etc...) 341 * @FW_TYPE_ALL_TYPES: Mask for all types 342 */ 343 enum hl_fw_types { 344 FW_TYPE_NONE = 0x0, 345 FW_TYPE_LINUX = 0x1, 346 FW_TYPE_BOOT_CPU = 0x2, 347 FW_TYPE_PREBOOT_CPU = 0x4, 348 FW_TYPE_ALL_TYPES = 349 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) 350 }; 351 352 /** 353 * enum hl_queue_type - Supported QUEUE types. 354 * @QUEUE_TYPE_NA: queue is not available. 355 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the 356 * host. 357 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's 358 * memories and/or operates the compute engines. 359 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. 360 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion 361 * notifications are sent by H/W. 362 */ 363 enum hl_queue_type { 364 QUEUE_TYPE_NA, 365 QUEUE_TYPE_EXT, 366 QUEUE_TYPE_INT, 367 QUEUE_TYPE_CPU, 368 QUEUE_TYPE_HW 369 }; 370 371 enum hl_cs_type { 372 CS_TYPE_DEFAULT, 373 CS_TYPE_SIGNAL, 374 CS_TYPE_WAIT, 375 CS_TYPE_COLLECTIVE_WAIT, 376 CS_RESERVE_SIGNALS, 377 CS_UNRESERVE_SIGNALS, 378 CS_TYPE_ENGINE_CORE, 379 CS_TYPE_FLUSH_PCI_HBW_WRITES, 380 }; 381 382 /* 383 * struct hl_inbound_pci_region - inbound region descriptor 384 * @mode: pci match mode for this region 385 * @addr: region target address 386 * @size: region size in bytes 387 * @offset_in_bar: offset within bar (address match mode) 388 * @bar: bar id 389 */ 390 struct hl_inbound_pci_region { 391 enum hl_pci_match_mode mode; 392 u64 addr; 393 u64 size; 394 u64 offset_in_bar; 395 u8 bar; 396 }; 397 398 /* 399 * struct hl_outbound_pci_region - outbound region descriptor 400 * @addr: region target address 401 * @size: region size in bytes 402 */ 403 struct hl_outbound_pci_region { 404 u64 addr; 405 u64 size; 406 }; 407 408 /* 409 * enum queue_cb_alloc_flags - Indicates queue support for CBs that 410 * allocated by Kernel or by User 411 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel 412 * @CB_ALLOC_USER: support only CBs that allocated by User 413 */ 414 enum queue_cb_alloc_flags { 415 CB_ALLOC_KERNEL = 0x1, 416 CB_ALLOC_USER = 0x2 417 }; 418 419 /* 420 * struct hl_hw_sob - H/W SOB info. 421 * @hdev: habanalabs device structure. 422 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. 423 * @sob_id: id of this SOB. 424 * @sob_addr: the sob offset from the base address. 425 * @q_idx: the H/W queue that uses this SOB. 426 * @need_reset: reset indication set when switching to the other sob. 427 */ 428 struct hl_hw_sob { 429 struct hl_device *hdev; 430 struct kref kref; 431 u32 sob_id; 432 u32 sob_addr; 433 u32 q_idx; 434 bool need_reset; 435 }; 436 437 enum hl_collective_mode { 438 HL_COLLECTIVE_NOT_SUPPORTED = 0x0, 439 HL_COLLECTIVE_MASTER = 0x1, 440 HL_COLLECTIVE_SLAVE = 0x2 441 }; 442 443 /** 444 * struct hw_queue_properties - queue information. 445 * @type: queue type. 446 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB 447 * that allocated by the Kernel driver and therefore, 448 * a CB handle can be provided for jobs on this queue. 449 * Otherwise, a CB address must be provided. 450 * @collective_mode: collective mode of current queue 451 * @driver_only: true if only the driver is allowed to send a job to this queue, 452 * false otherwise. 453 * @binned: True if the queue is binned out and should not be used 454 * @supports_sync_stream: True if queue supports sync stream 455 */ 456 struct hw_queue_properties { 457 enum hl_queue_type type; 458 enum queue_cb_alloc_flags cb_alloc_flags; 459 enum hl_collective_mode collective_mode; 460 u8 driver_only; 461 u8 binned; 462 u8 supports_sync_stream; 463 }; 464 465 /** 466 * enum vm_type - virtual memory mapping request information. 467 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. 468 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. 469 */ 470 enum vm_type { 471 VM_TYPE_USERPTR = 0x1, 472 VM_TYPE_PHYS_PACK = 0x2 473 }; 474 475 /** 476 * enum mmu_op_flags - mmu operation relevant information. 477 * @MMU_OP_USERPTR: operation on user memory (host resident). 478 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). 479 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. 480 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. 481 */ 482 enum mmu_op_flags { 483 MMU_OP_USERPTR = 0x1, 484 MMU_OP_PHYS_PACK = 0x2, 485 MMU_OP_CLEAR_MEMCACHE = 0x4, 486 MMU_OP_SKIP_LOW_CACHE_INV = 0x8, 487 }; 488 489 490 /** 491 * enum hl_device_hw_state - H/W device state. use this to understand whether 492 * to do reset before hw_init or not 493 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset 494 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute 495 * hw_init 496 */ 497 enum hl_device_hw_state { 498 HL_DEVICE_HW_STATE_CLEAN = 0, 499 HL_DEVICE_HW_STATE_DIRTY 500 }; 501 502 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 503 504 /** 505 * struct hl_mmu_properties - ASIC specific MMU address translation properties. 506 * @start_addr: virtual start address of the memory region. 507 * @end_addr: virtual end address of the memory region. 508 * @hop_shifts: array holds HOPs shifts. 509 * @hop_masks: array holds HOPs masks. 510 * @last_mask: mask to get the bit indicating this is the last hop. 511 * @pgt_size: size for page tables. 512 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs 513 * supporting multiple page size). 514 * @page_size: default page size used to allocate memory. 515 * @num_hops: The amount of hops supported by the translation table. 516 * @hop_table_size: HOP table size. 517 * @hop0_tables_total_size: total size for all HOP0 tables. 518 * @host_resident: Should the MMU page table reside in host memory or in the 519 * device DRAM. 520 */ 521 struct hl_mmu_properties { 522 u64 start_addr; 523 u64 end_addr; 524 u64 hop_shifts[MMU_HOP_MAX]; 525 u64 hop_masks[MMU_HOP_MAX]; 526 u64 last_mask; 527 u64 pgt_size; 528 u64 supported_pages_mask; 529 u32 page_size; 530 u32 num_hops; 531 u32 hop_table_size; 532 u32 hop0_tables_total_size; 533 u8 host_resident; 534 }; 535 536 /** 537 * struct hl_hints_range - hint addresses reserved va range. 538 * @start_addr: start address of the va range. 539 * @end_addr: end address of the va range. 540 */ 541 struct hl_hints_range { 542 u64 start_addr; 543 u64 end_addr; 544 }; 545 546 /** 547 * struct asic_fixed_properties - ASIC specific immutable properties. 548 * @hw_queues_props: H/W queues properties. 549 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. 550 * available sensors. 551 * @uboot_ver: F/W U-boot version. 552 * @preboot_ver: F/W Preboot version. 553 * @dmmu: DRAM MMU address translation properties. 554 * @pmmu: PCI (host) MMU address translation properties. 555 * @pmmu_huge: PCI (host) MMU address translation properties for memory 556 * allocated with huge pages. 557 * @hints_dram_reserved_va_range: dram hint addresses reserved range. 558 * @hints_host_reserved_va_range: host hint addresses reserved range. 559 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved 560 * range. 561 * @sram_base_address: SRAM physical start address. 562 * @sram_end_address: SRAM physical end address. 563 * @sram_user_base_address - SRAM physical start address for user access. 564 * @dram_base_address: DRAM physical start address. 565 * @dram_end_address: DRAM physical end address. 566 * @dram_user_base_address: DRAM physical start address for user access. 567 * @dram_size: DRAM total size. 568 * @dram_pci_bar_size: size of PCI bar towards DRAM. 569 * @max_power_default: max power of the device after reset. 570 * @dc_power_default: power consumed by the device in mode idle. 571 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page 572 * fault. 573 * @pcie_dbi_base_address: Base address of the PCIE_DBI block. 574 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. 575 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. 576 * @mmu_dram_default_page_addr: DRAM default page physical address. 577 * @tpc_enabled_mask: which TPCs are enabled. 578 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. 579 * @dram_enabled_mask: which DRAMs are enabled. 580 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. 581 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used 582 * for hints validity check. 583 * @cfg_base_address: config space base address. 584 * @mmu_cache_mng_addr: address of the MMU cache. 585 * @mmu_cache_mng_size: size of the MMU cache. 586 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses 587 * to enable the device to access them. 588 * @host_base_address: host physical start address for host DMA from device 589 * @host_end_address: host physical end address for host DMA from device 590 * @max_freq_value: current max clk frequency. 591 * @clk_pll_index: clock PLL index that specify which PLL determines the clock 592 * we display to the user 593 * @mmu_pgt_size: MMU page tables total size. 594 * @mmu_pte_size: PTE size in MMU page tables. 595 * @mmu_hop_table_size: MMU hop table size. 596 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. 597 * @dram_page_size: page size for MMU DRAM allocation. 598 * @cfg_size: configuration space size on SRAM. 599 * @sram_size: total size of SRAM. 600 * @max_asid: maximum number of open contexts (ASIDs). 601 * @num_of_events: number of possible internal H/W IRQs. 602 * @psoc_pci_pll_nr: PCI PLL NR value. 603 * @psoc_pci_pll_nf: PCI PLL NF value. 604 * @psoc_pci_pll_od: PCI PLL OD value. 605 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. 606 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. 607 * @high_pll: high PLL frequency used by the device. 608 * @cb_pool_cb_cnt: number of CBs in the CB pool. 609 * @cb_pool_cb_size: size of each CB in the CB pool. 610 * @decoder_enabled_mask: which decoders are enabled. 611 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 612 * means binned (at most one binned decoder per dcore). 613 * @edma_enabled_mask: which EDMAs are enabled. 614 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means 615 * binned (at most one binned DMA). 616 * @max_pending_cs: maximum of concurrent pending command submissions 617 * @max_queues: maximum amount of queues in the system 618 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu 619 * capabilities reported by FW, bit description 620 * can be found in CPU_BOOT_DEV_STS0 621 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu 622 * capabilities reported by FW, bit description 623 * can be found in CPU_BOOT_DEV_STS1 624 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security 625 * status reported by FW, bit description can be 626 * found in CPU_BOOT_DEV_STS0 627 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security 628 * status reported by FW, bit description can be 629 * found in CPU_BOOT_DEV_STS1 630 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security 631 * status reported by FW, bit description can be 632 * found in CPU_BOOT_DEV_STS0 633 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security 634 * status reported by FW, bit description can be 635 * found in CPU_BOOT_DEV_STS1 636 * @max_dec: maximum number of decoders 637 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) 638 * 1- enabled, 0- isolated. 639 * @faulty_dram_cluster_map: mask of faulty DRAM cluster. 640 * 1- faulty cluster, 0- good cluster. 641 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) 642 * 1- enabled, 0- isolated. 643 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for 644 * which the property supports_user_set_page_size is true 645 * (i.e. the DRAM supports multiple page sizes), otherwise 646 * it will shall be equal to dram_page_size. 647 * @num_engine_cores: number of engine cpu cores 648 * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is 649 * not supported. 650 * @collective_first_sob: first sync object available for collective use 651 * @collective_first_mon: first monitor available for collective use 652 * @sync_stream_first_sob: first sync object available for sync stream use 653 * @sync_stream_first_mon: first monitor available for sync stream use 654 * @first_available_user_sob: first sob available for the user 655 * @first_available_user_mon: first monitor available for the user 656 * @first_available_user_interrupt: first available interrupt reserved for the user 657 * @first_available_cq: first available CQ for the user. 658 * @user_interrupt_count: number of user interrupts. 659 * @user_dec_intr_count: number of decoder interrupts exposed to user. 660 * @cache_line_size: device cache line size. 661 * @server_type: Server type that the ASIC is currently installed in. 662 * The value is according to enum hl_server_type in uapi file. 663 * @completion_queues_count: number of completion queues. 664 * @completion_mode: 0 - job based completion, 1 - cs based completion 665 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works 666 * in Master/Slave mode 667 * @fw_security_enabled: true if security measures are enabled in firmware, 668 * false otherwise 669 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from 670 * BOOT_DEV_STS0 671 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from 672 * BOOT_DEV_STS1 673 * @dram_supports_virtual_memory: is there an MMU towards the DRAM 674 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow 675 * @num_functional_hbms: number of functional HBMs in each DCORE. 676 * @hints_range_reservation: device support hint addresses range reservation. 677 * @iatu_done_by_fw: true if iATU configuration is being done by FW. 678 * @dynamic_fw_load: is dynamic FW load is supported. 679 * @gic_interrupts_enable: true if FW is not blocking GIC controller, 680 * false otherwise. 681 * @use_get_power_for_reset_history: To support backward compatibility for Goya 682 * and Gaudi 683 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. 684 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is 685 * initiated by user or TDR. This is only true 686 * in inference ASICs, as there is no real-world 687 * use-case of doing soft-reset in training (due 688 * to the fact that training runs on multiple 689 * devices) 690 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. 691 * @set_max_power_on_device_init: true if need to set max power in F/W on device init. 692 * @supports_user_set_page_size: true if user can set the allocation page size. 693 * @dma_mask: the dma mask to be set for this device 694 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. 695 */ 696 struct asic_fixed_properties { 697 struct hw_queue_properties *hw_queues_props; 698 struct cpucp_info cpucp_info; 699 char uboot_ver[VERSION_MAX_LEN]; 700 char preboot_ver[VERSION_MAX_LEN]; 701 struct hl_mmu_properties dmmu; 702 struct hl_mmu_properties pmmu; 703 struct hl_mmu_properties pmmu_huge; 704 struct hl_hints_range hints_dram_reserved_va_range; 705 struct hl_hints_range hints_host_reserved_va_range; 706 struct hl_hints_range hints_host_hpage_reserved_va_range; 707 u64 sram_base_address; 708 u64 sram_end_address; 709 u64 sram_user_base_address; 710 u64 dram_base_address; 711 u64 dram_end_address; 712 u64 dram_user_base_address; 713 u64 dram_size; 714 u64 dram_pci_bar_size; 715 u64 max_power_default; 716 u64 dc_power_default; 717 u64 dram_size_for_default_page_mapping; 718 u64 pcie_dbi_base_address; 719 u64 pcie_aux_dbi_reg_addr; 720 u64 mmu_pgt_addr; 721 u64 mmu_dram_default_page_addr; 722 u64 tpc_enabled_mask; 723 u64 tpc_binning_mask; 724 u64 dram_enabled_mask; 725 u64 dram_binning_mask; 726 u64 dram_hints_align_mask; 727 u64 cfg_base_address; 728 u64 mmu_cache_mng_addr; 729 u64 mmu_cache_mng_size; 730 u64 device_dma_offset_for_host_access; 731 u64 host_base_address; 732 u64 host_end_address; 733 u64 max_freq_value; 734 u32 clk_pll_index; 735 u32 mmu_pgt_size; 736 u32 mmu_pte_size; 737 u32 mmu_hop_table_size; 738 u32 mmu_hop0_tables_total_size; 739 u32 dram_page_size; 740 u32 cfg_size; 741 u32 sram_size; 742 u32 max_asid; 743 u32 num_of_events; 744 u32 psoc_pci_pll_nr; 745 u32 psoc_pci_pll_nf; 746 u32 psoc_pci_pll_od; 747 u32 psoc_pci_pll_div_factor; 748 u32 psoc_timestamp_frequency; 749 u32 high_pll; 750 u32 cb_pool_cb_cnt; 751 u32 cb_pool_cb_size; 752 u32 decoder_enabled_mask; 753 u32 decoder_binning_mask; 754 u32 edma_enabled_mask; 755 u32 edma_binning_mask; 756 u32 max_pending_cs; 757 u32 max_queues; 758 u32 fw_preboot_cpu_boot_dev_sts0; 759 u32 fw_preboot_cpu_boot_dev_sts1; 760 u32 fw_bootfit_cpu_boot_dev_sts0; 761 u32 fw_bootfit_cpu_boot_dev_sts1; 762 u32 fw_app_cpu_boot_dev_sts0; 763 u32 fw_app_cpu_boot_dev_sts1; 764 u32 max_dec; 765 u32 hmmu_hif_enabled_mask; 766 u32 faulty_dram_cluster_map; 767 u32 xbar_edge_enabled_mask; 768 u32 device_mem_alloc_default_page_size; 769 u32 num_engine_cores; 770 u32 hbw_flush_reg; 771 u16 collective_first_sob; 772 u16 collective_first_mon; 773 u16 sync_stream_first_sob; 774 u16 sync_stream_first_mon; 775 u16 first_available_user_sob[HL_MAX_DCORES]; 776 u16 first_available_user_mon[HL_MAX_DCORES]; 777 u16 first_available_user_interrupt; 778 u16 first_available_cq[HL_MAX_DCORES]; 779 u16 user_interrupt_count; 780 u16 user_dec_intr_count; 781 u16 cache_line_size; 782 u16 server_type; 783 u8 completion_queues_count; 784 u8 completion_mode; 785 u8 mme_master_slave_mode; 786 u8 fw_security_enabled; 787 u8 fw_cpu_boot_dev_sts0_valid; 788 u8 fw_cpu_boot_dev_sts1_valid; 789 u8 dram_supports_virtual_memory; 790 u8 hard_reset_done_by_fw; 791 u8 num_functional_hbms; 792 u8 hints_range_reservation; 793 u8 iatu_done_by_fw; 794 u8 dynamic_fw_load; 795 u8 gic_interrupts_enable; 796 u8 use_get_power_for_reset_history; 797 u8 supports_compute_reset; 798 u8 allow_inference_soft_reset; 799 u8 configurable_stop_on_err; 800 u8 set_max_power_on_device_init; 801 u8 supports_user_set_page_size; 802 u8 dma_mask; 803 u8 supports_advanced_cpucp_rc; 804 }; 805 806 /** 807 * struct hl_fence - software synchronization primitive 808 * @completion: fence is implemented using completion 809 * @refcount: refcount for this fence 810 * @cs_sequence: sequence of the corresponding command submission 811 * @stream_master_qid_map: streams masters QID bitmap to represent all streams 812 * masters QIDs that multi cs is waiting on 813 * @error: mark this fence with error 814 * @timestamp: timestamp upon completion 815 * @mcs_handling_done: indicates that corresponding command submission has 816 * finished msc handling, this does not mean it was part 817 * of the mcs 818 */ 819 struct hl_fence { 820 struct completion completion; 821 struct kref refcount; 822 u64 cs_sequence; 823 u32 stream_master_qid_map; 824 int error; 825 ktime_t timestamp; 826 u8 mcs_handling_done; 827 }; 828 829 /** 830 * struct hl_cs_compl - command submission completion object. 831 * @base_fence: hl fence object. 832 * @lock: spinlock to protect fence. 833 * @hdev: habanalabs device structure. 834 * @hw_sob: the H/W SOB used in this signal/wait CS. 835 * @encaps_sig_hdl: encaps signals handler. 836 * @cs_seq: command submission sequence number. 837 * @type: type of the CS - signal/wait. 838 * @sob_val: the SOB value that is used in this signal/wait CS. 839 * @sob_group: the SOB group that is used in this collective wait CS. 840 * @encaps_signals: indication whether it's a completion object of cs with 841 * encaps signals or not. 842 */ 843 struct hl_cs_compl { 844 struct hl_fence base_fence; 845 spinlock_t lock; 846 struct hl_device *hdev; 847 struct hl_hw_sob *hw_sob; 848 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 849 u64 cs_seq; 850 enum hl_cs_type type; 851 u16 sob_val; 852 u16 sob_group; 853 bool encaps_signals; 854 }; 855 856 /* 857 * Command Buffers 858 */ 859 860 /** 861 * struct hl_ts_buff - describes a timestamp buffer. 862 * @kernel_buff_address: Holds the internal buffer's kernel virtual address. 863 * @user_buff_address: Holds the user buffer's kernel virtual address. 864 * @kernel_buff_size: Holds the internal kernel buffer size. 865 */ 866 struct hl_ts_buff { 867 void *kernel_buff_address; 868 void *user_buff_address; 869 u32 kernel_buff_size; 870 }; 871 872 struct hl_mmap_mem_buf; 873 874 /** 875 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. 876 * @dev: back pointer to the owning device 877 * @lock: protects handles 878 * @handles: an idr holding all active handles to the memory buffers in the system. 879 */ 880 struct hl_mem_mgr { 881 struct device *dev; 882 spinlock_t lock; 883 struct idr handles; 884 }; 885 886 /** 887 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior 888 * @topic: string identifier used for logging 889 * @mem_id: memory type identifier, embedded in the handle and used to identify 890 * the memory type by handle. 891 * @alloc: callback executed on buffer allocation, shall allocate the memory, 892 * set it under buffer private, and set mappable size. 893 * @mmap: callback executed on mmap, must map the buffer to vma 894 * @release: callback executed on release, must free the resources used by the buffer 895 */ 896 struct hl_mmap_mem_buf_behavior { 897 const char *topic; 898 u64 mem_id; 899 900 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); 901 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); 902 void (*release)(struct hl_mmap_mem_buf *buf); 903 }; 904 905 /** 906 * struct hl_mmap_mem_buf - describes a single unified memory buffer 907 * @behavior: buffer behavior 908 * @mmg: back pointer to the unified memory manager 909 * @refcount: reference counter for buffer users 910 * @private: pointer to buffer behavior private data 911 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now 912 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, 913 * may change at runtime. 914 * @mappable_size: the original mappable size of the buffer, does not change after 915 * the allocation. 916 * @handle: the buffer id in mmg handles store 917 */ 918 struct hl_mmap_mem_buf { 919 struct hl_mmap_mem_buf_behavior *behavior; 920 struct hl_mem_mgr *mmg; 921 struct kref refcount; 922 void *private; 923 atomic_t mmap; 924 u64 real_mapped_size; 925 u64 mappable_size; 926 u64 handle; 927 }; 928 929 /** 930 * struct hl_cb - describes a Command Buffer. 931 * @hdev: pointer to device this CB belongs to. 932 * @ctx: pointer to the CB owner's context. 933 * @buf: back pointer to the parent mappable memory buffer 934 * @debugfs_list: node in debugfs list of command buffers. 935 * @pool_list: node in pool list of command buffers. 936 * @kernel_address: Holds the CB's kernel virtual address. 937 * @virtual_addr: Holds the CB's virtual address. 938 * @bus_address: Holds the CB's DMA address. 939 * @size: holds the CB's size. 940 * @roundup_size: holds the cb size after roundup to page size. 941 * @cs_cnt: holds number of CS that this CB participates in. 942 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed. 943 * @is_pool: true if CB was acquired from the pool, false otherwise. 944 * @is_internal: internally allocated 945 * @is_mmu_mapped: true if the CB is mapped to the device's MMU. 946 */ 947 struct hl_cb { 948 struct hl_device *hdev; 949 struct hl_ctx *ctx; 950 struct hl_mmap_mem_buf *buf; 951 struct list_head debugfs_list; 952 struct list_head pool_list; 953 void *kernel_address; 954 u64 virtual_addr; 955 dma_addr_t bus_address; 956 u32 size; 957 u32 roundup_size; 958 atomic_t cs_cnt; 959 atomic_t is_handle_destroyed; 960 u8 is_pool; 961 u8 is_internal; 962 u8 is_mmu_mapped; 963 }; 964 965 966 /* 967 * QUEUES 968 */ 969 970 struct hl_cs_job; 971 972 /* Queue length of external and HW queues */ 973 #define HL_QUEUE_LENGTH 4096 974 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) 975 976 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) 977 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" 978 #endif 979 980 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ 981 #define HL_CQ_LENGTH HL_QUEUE_LENGTH 982 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) 983 984 /* Must be power of 2 */ 985 #define HL_EQ_LENGTH 64 986 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) 987 988 /* Host <-> CPU-CP shared memory size */ 989 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M 990 991 /** 992 * struct hl_sync_stream_properties - 993 * describes a H/W queue sync stream properties 994 * @hw_sob: array of the used H/W SOBs by this H/W queue. 995 * @next_sob_val: the next value to use for the currently used SOB. 996 * @base_sob_id: the base SOB id of the SOBs used by this queue. 997 * @base_mon_id: the base MON id of the MONs used by this queue. 998 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue 999 * in order to sync with all slave queues. 1000 * @collective_slave_mon_id: the MON id used by this slave queue in order to 1001 * sync with its master queue. 1002 * @collective_sob_id: current SOB id used by this collective slave queue 1003 * to signal its collective master queue upon completion. 1004 * @curr_sob_offset: the id offset to the currently used SOB from the 1005 * HL_RSVD_SOBS that are being used by this queue. 1006 */ 1007 struct hl_sync_stream_properties { 1008 struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; 1009 u16 next_sob_val; 1010 u16 base_sob_id; 1011 u16 base_mon_id; 1012 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; 1013 u16 collective_slave_mon_id; 1014 u16 collective_sob_id; 1015 u8 curr_sob_offset; 1016 }; 1017 1018 /** 1019 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals 1020 * handlers manager 1021 * @lock: protects handles. 1022 * @handles: an idr to hold all encapsulated signals handles. 1023 */ 1024 struct hl_encaps_signals_mgr { 1025 spinlock_t lock; 1026 struct idr handles; 1027 }; 1028 1029 /** 1030 * struct hl_hw_queue - describes a H/W transport queue. 1031 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. 1032 * @sync_stream_prop: sync stream queue properties 1033 * @queue_type: type of queue. 1034 * @collective_mode: collective mode of current queue 1035 * @kernel_address: holds the queue's kernel virtual address. 1036 * @bus_address: holds the queue's DMA address. 1037 * @pi: holds the queue's pi value. 1038 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). 1039 * @hw_queue_id: the id of the H/W queue. 1040 * @cq_id: the id for the corresponding CQ for this H/W queue. 1041 * @msi_vec: the IRQ number of the H/W queue. 1042 * @int_queue_len: length of internal queue (number of entries). 1043 * @valid: is the queue valid (we have array of 32 queues, not all of them 1044 * exist). 1045 * @supports_sync_stream: True if queue supports sync stream 1046 */ 1047 struct hl_hw_queue { 1048 struct hl_cs_job **shadow_queue; 1049 struct hl_sync_stream_properties sync_stream_prop; 1050 enum hl_queue_type queue_type; 1051 enum hl_collective_mode collective_mode; 1052 void *kernel_address; 1053 dma_addr_t bus_address; 1054 u32 pi; 1055 atomic_t ci; 1056 u32 hw_queue_id; 1057 u32 cq_id; 1058 u32 msi_vec; 1059 u16 int_queue_len; 1060 u8 valid; 1061 u8 supports_sync_stream; 1062 }; 1063 1064 /** 1065 * struct hl_cq - describes a completion queue 1066 * @hdev: pointer to the device structure 1067 * @kernel_address: holds the queue's kernel virtual address 1068 * @bus_address: holds the queue's DMA address 1069 * @cq_idx: completion queue index in array 1070 * @hw_queue_id: the id of the matching H/W queue 1071 * @ci: ci inside the queue 1072 * @pi: pi inside the queue 1073 * @free_slots_cnt: counter of free slots in queue 1074 */ 1075 struct hl_cq { 1076 struct hl_device *hdev; 1077 void *kernel_address; 1078 dma_addr_t bus_address; 1079 u32 cq_idx; 1080 u32 hw_queue_id; 1081 u32 ci; 1082 u32 pi; 1083 atomic_t free_slots_cnt; 1084 }; 1085 1086 /** 1087 * struct hl_user_interrupt - holds user interrupt information 1088 * @hdev: pointer to the device structure 1089 * @wait_list_head: head to the list of user threads pending on this interrupt 1090 * @wait_list_lock: protects wait_list_head 1091 * @interrupt_id: msix interrupt id 1092 * @is_decoder: whether this entry represents a decoder interrupt 1093 */ 1094 struct hl_user_interrupt { 1095 struct hl_device *hdev; 1096 struct list_head wait_list_head; 1097 spinlock_t wait_list_lock; 1098 u32 interrupt_id; 1099 bool is_decoder; 1100 }; 1101 1102 /** 1103 * struct timestamp_reg_free_node - holds the timestamp registration free objects node 1104 * @free_objects_node: node in the list free_obj_jobs 1105 * @cq_cb: pointer to cq command buffer to be freed 1106 * @buf: pointer to timestamp buffer to be freed 1107 */ 1108 struct timestamp_reg_free_node { 1109 struct list_head free_objects_node; 1110 struct hl_cb *cq_cb; 1111 struct hl_mmap_mem_buf *buf; 1112 }; 1113 1114 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job 1115 * the job will be to pass over the free_obj_jobs list and put refcount to objects 1116 * in each node of the list 1117 * @free_obj: workqueue object to free timestamp registration node objects 1118 * @hdev: pointer to the device structure 1119 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) 1120 */ 1121 struct timestamp_reg_work_obj { 1122 struct work_struct free_obj; 1123 struct hl_device *hdev; 1124 struct list_head *free_obj_head; 1125 }; 1126 1127 /* struct timestamp_reg_info - holds the timestamp registration related data. 1128 * @buf: pointer to the timestamp buffer which include both user/kernel buffers. 1129 * relevant only when doing timestamps records registration. 1130 * @cq_cb: pointer to CQ counter CB. 1131 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp 1132 * relevant only when doing timestamps records 1133 * registration. 1134 * @in_use: indicates if the node already in use. relevant only when doing 1135 * timestamps records registration, since in this case the driver 1136 * will have it's own buffer which serve as a records pool instead of 1137 * allocating records dynamically. 1138 */ 1139 struct timestamp_reg_info { 1140 struct hl_mmap_mem_buf *buf; 1141 struct hl_cb *cq_cb; 1142 u64 *timestamp_kernel_addr; 1143 u8 in_use; 1144 }; 1145 1146 /** 1147 * struct hl_user_pending_interrupt - holds a context to a user thread 1148 * pending on an interrupt 1149 * @ts_reg_info: holds the timestamps registration nodes info 1150 * @wait_list_node: node in the list of user threads pending on an interrupt 1151 * @fence: hl fence object for interrupt completion 1152 * @cq_target_value: CQ target value 1153 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt 1154 * handler for target value comparison 1155 */ 1156 struct hl_user_pending_interrupt { 1157 struct timestamp_reg_info ts_reg_info; 1158 struct list_head wait_list_node; 1159 struct hl_fence fence; 1160 u64 cq_target_value; 1161 u64 *cq_kernel_addr; 1162 }; 1163 1164 /** 1165 * struct hl_eq - describes the event queue (single one per device) 1166 * @hdev: pointer to the device structure 1167 * @kernel_address: holds the queue's kernel virtual address 1168 * @bus_address: holds the queue's DMA address 1169 * @ci: ci inside the queue 1170 * @prev_eqe_index: the index of the previous event queue entry. The index of 1171 * the current entry's index must be +1 of the previous one. 1172 * @check_eqe_index: do we need to check the index of the current entry vs. the 1173 * previous one. This is for backward compatibility with older 1174 * firmwares 1175 */ 1176 struct hl_eq { 1177 struct hl_device *hdev; 1178 void *kernel_address; 1179 dma_addr_t bus_address; 1180 u32 ci; 1181 u32 prev_eqe_index; 1182 bool check_eqe_index; 1183 }; 1184 1185 /** 1186 * struct hl_dec - describes a decoder sw instance. 1187 * @hdev: pointer to the device structure. 1188 * @completion_abnrm_work: workqueue object to run when decoder generates an error interrupt 1189 * @core_id: ID of the decoder. 1190 * @base_addr: base address of the decoder. 1191 */ 1192 struct hl_dec { 1193 struct hl_device *hdev; 1194 struct work_struct completion_abnrm_work; 1195 u32 core_id; 1196 u32 base_addr; 1197 }; 1198 1199 /** 1200 * enum hl_asic_type - supported ASIC types. 1201 * @ASIC_INVALID: Invalid ASIC type. 1202 * @ASIC_GOYA: Goya device (HL-1000). 1203 * @ASIC_GAUDI: Gaudi device (HL-2000). 1204 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). 1205 * @ASIC_GAUDI2: Gaudi2 device. 1206 * @ASIC_GAUDI2B: Gaudi2B device. 1207 */ 1208 enum hl_asic_type { 1209 ASIC_INVALID, 1210 ASIC_GOYA, 1211 ASIC_GAUDI, 1212 ASIC_GAUDI_SEC, 1213 ASIC_GAUDI2, 1214 ASIC_GAUDI2B, 1215 }; 1216 1217 struct hl_cs_parser; 1218 1219 /** 1220 * enum hl_pm_mng_profile - power management profile. 1221 * @PM_AUTO: internal clock is set by the Linux driver. 1222 * @PM_MANUAL: internal clock is set by the user. 1223 * @PM_LAST: last power management type. 1224 */ 1225 enum hl_pm_mng_profile { 1226 PM_AUTO = 1, 1227 PM_MANUAL, 1228 PM_LAST 1229 }; 1230 1231 /** 1232 * enum hl_pll_frequency - PLL frequency. 1233 * @PLL_HIGH: high frequency. 1234 * @PLL_LOW: low frequency. 1235 * @PLL_LAST: last frequency values that were configured by the user. 1236 */ 1237 enum hl_pll_frequency { 1238 PLL_HIGH = 1, 1239 PLL_LOW, 1240 PLL_LAST 1241 }; 1242 1243 #define PLL_REF_CLK 50 1244 1245 enum div_select_defs { 1246 DIV_SEL_REF_CLK = 0, 1247 DIV_SEL_PLL_CLK = 1, 1248 DIV_SEL_DIVIDED_REF = 2, 1249 DIV_SEL_DIVIDED_PLL = 3, 1250 }; 1251 1252 enum debugfs_access_type { 1253 DEBUGFS_READ8, 1254 DEBUGFS_WRITE8, 1255 DEBUGFS_READ32, 1256 DEBUGFS_WRITE32, 1257 DEBUGFS_READ64, 1258 DEBUGFS_WRITE64, 1259 }; 1260 1261 enum pci_region { 1262 PCI_REGION_CFG, 1263 PCI_REGION_SRAM, 1264 PCI_REGION_DRAM, 1265 PCI_REGION_SP_SRAM, 1266 PCI_REGION_NUMBER, 1267 }; 1268 1269 /** 1270 * struct pci_mem_region - describe memory region in a PCI bar 1271 * @region_base: region base address 1272 * @region_size: region size 1273 * @bar_size: size of the BAR 1274 * @offset_in_bar: region offset into the bar 1275 * @bar_id: bar ID of the region 1276 * @used: if used 1, otherwise 0 1277 */ 1278 struct pci_mem_region { 1279 u64 region_base; 1280 u64 region_size; 1281 u64 bar_size; 1282 u64 offset_in_bar; 1283 u8 bar_id; 1284 u8 used; 1285 }; 1286 1287 /** 1288 * struct static_fw_load_mgr - static FW load manager 1289 * @preboot_version_max_off: max offset to preboot version 1290 * @boot_fit_version_max_off: max offset to boot fit version 1291 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages 1292 * @cpu_cmd_status_to_host_reg: register address for CPU command status response 1293 * @cpu_boot_status_reg: boot status register 1294 * @cpu_boot_dev_status0_reg: boot device status register 0 1295 * @cpu_boot_dev_status1_reg: boot device status register 1 1296 * @boot_err0_reg: boot error register 0 1297 * @boot_err1_reg: boot error register 1 1298 * @preboot_version_offset_reg: SRAM offset to preboot version register 1299 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register 1300 * @sram_offset_mask: mask for getting offset into the SRAM 1301 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg 1302 */ 1303 struct static_fw_load_mgr { 1304 u64 preboot_version_max_off; 1305 u64 boot_fit_version_max_off; 1306 u32 kmd_msg_to_cpu_reg; 1307 u32 cpu_cmd_status_to_host_reg; 1308 u32 cpu_boot_status_reg; 1309 u32 cpu_boot_dev_status0_reg; 1310 u32 cpu_boot_dev_status1_reg; 1311 u32 boot_err0_reg; 1312 u32 boot_err1_reg; 1313 u32 preboot_version_offset_reg; 1314 u32 boot_fit_version_offset_reg; 1315 u32 sram_offset_mask; 1316 u32 cpu_reset_wait_msec; 1317 }; 1318 1319 /** 1320 * struct fw_response - FW response to LKD command 1321 * @ram_offset: descriptor offset into the RAM 1322 * @ram_type: RAM type containing the descriptor (SRAM/DRAM) 1323 * @status: command status 1324 */ 1325 struct fw_response { 1326 u32 ram_offset; 1327 u8 ram_type; 1328 u8 status; 1329 }; 1330 1331 /** 1332 * struct dynamic_fw_load_mgr - dynamic FW load manager 1333 * @response: FW to LKD response 1334 * @comm_desc: the communication descriptor with FW 1335 * @image_region: region to copy the FW image to 1336 * @fw_image_size: size of FW image to load 1337 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond 1338 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used 1339 */ 1340 struct dynamic_fw_load_mgr { 1341 struct fw_response response; 1342 struct lkd_fw_comms_desc comm_desc; 1343 struct pci_mem_region *image_region; 1344 size_t fw_image_size; 1345 u32 wait_for_bl_timeout; 1346 bool fw_desc_valid; 1347 }; 1348 1349 /** 1350 * struct pre_fw_load_props - needed properties for pre-FW load 1351 * @cpu_boot_status_reg: cpu_boot_status register address 1352 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address 1353 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address 1354 * @boot_err0_reg: boot_err0 register address 1355 * @boot_err1_reg: boot_err1 register address 1356 * @wait_for_preboot_timeout: timeout to poll for preboot ready 1357 */ 1358 struct pre_fw_load_props { 1359 u32 cpu_boot_status_reg; 1360 u32 sts_boot_dev_sts0_reg; 1361 u32 sts_boot_dev_sts1_reg; 1362 u32 boot_err0_reg; 1363 u32 boot_err1_reg; 1364 u32 wait_for_preboot_timeout; 1365 }; 1366 1367 /** 1368 * struct fw_image_props - properties of FW image 1369 * @image_name: name of the image 1370 * @src_off: offset in src FW to copy from 1371 * @copy_size: amount of bytes to copy (0 to copy the whole binary) 1372 */ 1373 struct fw_image_props { 1374 char *image_name; 1375 u32 src_off; 1376 u32 copy_size; 1377 }; 1378 1379 /** 1380 * struct fw_load_mgr - manager FW loading process 1381 * @dynamic_loader: specific structure for dynamic load 1382 * @static_loader: specific structure for static load 1383 * @pre_fw_load_props: parameter for pre FW load 1384 * @boot_fit_img: boot fit image properties 1385 * @linux_img: linux image properties 1386 * @cpu_timeout: CPU response timeout in usec 1387 * @boot_fit_timeout: Boot fit load timeout in usec 1388 * @skip_bmc: should BMC be skipped 1389 * @sram_bar_id: SRAM bar ID 1390 * @dram_bar_id: DRAM bar ID 1391 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded 1392 * component. values are set according to enum hl_fw_types. 1393 */ 1394 struct fw_load_mgr { 1395 union { 1396 struct dynamic_fw_load_mgr dynamic_loader; 1397 struct static_fw_load_mgr static_loader; 1398 }; 1399 struct pre_fw_load_props pre_fw_load; 1400 struct fw_image_props boot_fit_img; 1401 struct fw_image_props linux_img; 1402 u32 cpu_timeout; 1403 u32 boot_fit_timeout; 1404 u8 skip_bmc; 1405 u8 sram_bar_id; 1406 u8 dram_bar_id; 1407 u8 fw_comp_loaded; 1408 }; 1409 1410 struct hl_cs; 1411 1412 /** 1413 * struct engines_data - asic engines data 1414 * @buf: buffer for engines data in ascii 1415 * @actual_size: actual size of data that was written by the driver to the allocated buffer 1416 * @allocated_buf_size: total size of allocated buffer 1417 */ 1418 struct engines_data { 1419 char *buf; 1420 int actual_size; 1421 u32 allocated_buf_size; 1422 }; 1423 1424 /** 1425 * struct hl_asic_funcs - ASIC specific functions that are can be called from 1426 * common code. 1427 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. 1428 * @early_fini: tears down what was done in early_init. 1429 * @late_init: sets up late driver/hw state (post hw_init) - Optional. 1430 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. 1431 * @sw_init: sets up driver state, does not configure H/W. 1432 * @sw_fini: tears down driver state, does not configure H/W. 1433 * @hw_init: sets up the H/W state. 1434 * @hw_fini: tears down the H/W state. 1435 * @halt_engines: halt engines, needed for reset sequence. This also disables 1436 * interrupts from the device. Should be called before 1437 * hw_fini and before CS rollback. 1438 * @suspend: handles IP specific H/W or SW changes for suspend. 1439 * @resume: handles IP specific H/W or SW changes for resume. 1440 * @mmap: maps a memory. 1441 * @ring_doorbell: increment PI on a given QMAN. 1442 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific 1443 * function because the PQs are located in different memory areas 1444 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of 1445 * writing the PQE must match the destination memory area 1446 * properties. 1447 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling 1448 * dma_alloc_coherent(). This is ASIC function because 1449 * its implementation is not trivial when the driver 1450 * is loaded in simulation mode (not upstreamed). 1451 * @asic_dma_free_coherent: Free coherent DMA memory by calling 1452 * dma_free_coherent(). This is ASIC function because 1453 * its implementation is not trivial when the driver 1454 * is loaded in simulation mode (not upstreamed). 1455 * @scrub_device_mem: Scrub the entire SRAM and DRAM. 1456 * @scrub_device_dram: Scrub the dram memory of the device. 1457 * @get_int_queue_base: get the internal queue base address. 1458 * @test_queues: run simple test on all queues for sanity check. 1459 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. 1460 * size of allocation is HL_DMA_POOL_BLK_SIZE. 1461 * @asic_dma_pool_free: free small DMA allocation from pool. 1462 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. 1463 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. 1464 * @asic_dma_unmap_single: unmap a single DMA buffer 1465 * @asic_dma_map_single: map a single buffer to a DMA 1466 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table. 1467 * @cs_parser: parse Command Submission. 1468 * @asic_dma_map_sgtable: DMA map scatter-gather table. 1469 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. 1470 * @update_eq_ci: update event queue CI. 1471 * @context_switch: called upon ASID context switch. 1472 * @restore_phase_topology: clear all SOBs amd MONs. 1473 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's 1474 * internal memory via DMA engine. 1475 * @add_device_attr: add ASIC specific device attributes. 1476 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. 1477 * @get_events_stat: retrieve event queue entries histogram. 1478 * @read_pte: read MMU page table entry from DRAM. 1479 * @write_pte: write MMU page table entry to DRAM. 1480 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft 1481 * (L1 only) or hard (L0 & L1) flush. 1482 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. 1483 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. 1484 * @send_heartbeat: send is-alive packet to CPU-CP and verify response. 1485 * @debug_coresight: perform certain actions on Coresight for debugging. 1486 * @is_device_idle: return true if device is idle, false otherwise. 1487 * @compute_reset_late_init: perform certain actions needed after a compute reset 1488 * @hw_queues_lock: acquire H/W queues lock. 1489 * @hw_queues_unlock: release H/W queues lock. 1490 * @get_pci_id: retrieve PCI ID. 1491 * @get_eeprom_data: retrieve EEPROM data from F/W. 1492 * @get_monitor_dump: retrieve monitor registers dump from F/W. 1493 * @send_cpu_message: send message to F/W. If the message is timedout, the 1494 * driver will eventually reset the device. The timeout can 1495 * be determined by the calling function or it can be 0 and 1496 * then the timeout is the default timeout for the specific 1497 * ASIC 1498 * @get_hw_state: retrieve the H/W state 1499 * @pci_bars_map: Map PCI BARs. 1500 * @init_iatu: Initialize the iATU unit inside the PCI controller. 1501 * @rreg: Read a register. Needed for simulator support. 1502 * @wreg: Write a register. Needed for simulator support. 1503 * @halt_coresight: stop the ETF and ETR traces. 1504 * @ctx_init: context dependent initialization. 1505 * @ctx_fini: context dependent cleanup. 1506 * @pre_schedule_cs: Perform pre-CS-scheduling operations. 1507 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. 1508 * @load_firmware_to_device: load the firmware to the device's memory 1509 * @load_boot_fit_to_device: load boot fit to device's memory 1510 * @get_signal_cb_size: Get signal CB size. 1511 * @get_wait_cb_size: Get wait CB size. 1512 * @gen_signal_cb: Generate a signal CB. 1513 * @gen_wait_cb: Generate a wait CB. 1514 * @reset_sob: Reset a SOB. 1515 * @reset_sob_group: Reset SOB group 1516 * @get_device_time: Get the device time. 1517 * @pb_print_security_errors: print security errors according block and cause 1518 * @collective_wait_init_cs: Generate collective master/slave packets 1519 * and place them in the relevant cs jobs 1520 * @collective_wait_create_jobs: allocate collective wait cs jobs 1521 * @get_dec_base_addr: get the base address of a given decoder. 1522 * @scramble_addr: Routine to scramble the address prior of mapping it 1523 * in the MMU. 1524 * @descramble_addr: Routine to de-scramble the address prior of 1525 * showing it to users. 1526 * @ack_protection_bits_errors: ack and dump all security violations 1527 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. 1528 * also returns the size of the block if caller supplies 1529 * a valid pointer for it 1530 * @hw_block_mmap: mmap a HW block with a given id. 1531 * @enable_events_from_fw: send interrupt to firmware to notify them the 1532 * driver is ready to receive asynchronous events. This 1533 * function should be called during the first init and 1534 * after every hard-reset of the device 1535 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. 1536 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event 1537 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to 1538 * generic f/w compatible PLL Indexes 1539 * @init_firmware_preload_params: initialize pre FW-load parameters. 1540 * @init_firmware_loader: initialize data for FW loader. 1541 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling 1542 * @state_dump_init: initialize constants required for state dump 1543 * @get_sob_addr: get SOB base address offset. 1544 * @set_pci_memory_regions: setting properties of PCI memory regions 1545 * @get_stream_master_qid_arr: get pointer to stream masters QID array 1546 * @check_if_razwi_happened: check if there was a razwi due to RR violation. 1547 * @access_dev_mem: access device memory 1548 * @set_dram_bar_base: set the base of the DRAM BAR 1549 * @set_engine_cores: set a config command to engine cores 1550 * @send_device_activity: indication to FW about device availability 1551 * @set_dram_properties: set DRAM related properties. 1552 * @set_binning_masks: set binning/enable masks for all relevant components. 1553 */ 1554 struct hl_asic_funcs { 1555 int (*early_init)(struct hl_device *hdev); 1556 int (*early_fini)(struct hl_device *hdev); 1557 int (*late_init)(struct hl_device *hdev); 1558 void (*late_fini)(struct hl_device *hdev); 1559 int (*sw_init)(struct hl_device *hdev); 1560 int (*sw_fini)(struct hl_device *hdev); 1561 int (*hw_init)(struct hl_device *hdev); 1562 void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1563 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1564 int (*suspend)(struct hl_device *hdev); 1565 int (*resume)(struct hl_device *hdev); 1566 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1567 void *cpu_addr, dma_addr_t dma_addr, size_t size); 1568 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); 1569 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, 1570 struct hl_bd *bd); 1571 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, 1572 dma_addr_t *dma_handle, gfp_t flag); 1573 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, 1574 void *cpu_addr, dma_addr_t dma_handle); 1575 int (*scrub_device_mem)(struct hl_device *hdev); 1576 int (*scrub_device_dram)(struct hl_device *hdev, u64 val); 1577 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, 1578 dma_addr_t *dma_handle, u16 *queue_len); 1579 int (*test_queues)(struct hl_device *hdev); 1580 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, 1581 gfp_t mem_flags, dma_addr_t *dma_handle); 1582 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, 1583 dma_addr_t dma_addr); 1584 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, 1585 size_t size, dma_addr_t *dma_handle); 1586 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, 1587 size_t size, void *vaddr); 1588 void (*asic_dma_unmap_single)(struct hl_device *hdev, 1589 dma_addr_t dma_addr, int len, 1590 enum dma_data_direction dir); 1591 dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev, 1592 void *addr, int len, 1593 enum dma_data_direction dir); 1594 void (*hl_dma_unmap_sgtable)(struct hl_device *hdev, 1595 struct sg_table *sgt, 1596 enum dma_data_direction dir); 1597 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); 1598 int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1599 enum dma_data_direction dir); 1600 void (*add_end_of_cb_packets)(struct hl_device *hdev, 1601 void *kernel_address, u32 len, 1602 u32 original_len, 1603 u64 cq_addr, u32 cq_val, u32 msix_num, 1604 bool eb); 1605 void (*update_eq_ci)(struct hl_device *hdev, u32 val); 1606 int (*context_switch)(struct hl_device *hdev, u32 asid); 1607 void (*restore_phase_topology)(struct hl_device *hdev); 1608 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, 1609 void *blob_addr); 1610 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, 1611 struct attribute_group *dev_vrm_attr_grp); 1612 void (*handle_eqe)(struct hl_device *hdev, 1613 struct hl_eq_entry *eq_entry); 1614 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, 1615 u32 *size); 1616 u64 (*read_pte)(struct hl_device *hdev, u64 addr); 1617 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); 1618 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, 1619 u32 flags); 1620 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, 1621 u32 flags, u32 asid, u64 va, u64 size); 1622 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 1623 int (*send_heartbeat)(struct hl_device *hdev); 1624 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); 1625 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, 1626 struct engines_data *e); 1627 int (*compute_reset_late_init)(struct hl_device *hdev); 1628 void (*hw_queues_lock)(struct hl_device *hdev); 1629 void (*hw_queues_unlock)(struct hl_device *hdev); 1630 u32 (*get_pci_id)(struct hl_device *hdev); 1631 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); 1632 int (*get_monitor_dump)(struct hl_device *hdev, void *data); 1633 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, 1634 u16 len, u32 timeout, u64 *result); 1635 int (*pci_bars_map)(struct hl_device *hdev); 1636 int (*init_iatu)(struct hl_device *hdev); 1637 u32 (*rreg)(struct hl_device *hdev, u32 reg); 1638 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); 1639 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); 1640 int (*ctx_init)(struct hl_ctx *ctx); 1641 void (*ctx_fini)(struct hl_ctx *ctx); 1642 int (*pre_schedule_cs)(struct hl_cs *cs); 1643 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); 1644 int (*load_firmware_to_device)(struct hl_device *hdev); 1645 int (*load_boot_fit_to_device)(struct hl_device *hdev); 1646 u32 (*get_signal_cb_size)(struct hl_device *hdev); 1647 u32 (*get_wait_cb_size)(struct hl_device *hdev); 1648 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, 1649 u32 size, bool eb); 1650 u32 (*gen_wait_cb)(struct hl_device *hdev, 1651 struct hl_gen_wait_properties *prop); 1652 void (*reset_sob)(struct hl_device *hdev, void *data); 1653 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); 1654 u64 (*get_device_time)(struct hl_device *hdev); 1655 void (*pb_print_security_errors)(struct hl_device *hdev, 1656 u32 block_addr, u32 cause, u32 offended_addr); 1657 int (*collective_wait_init_cs)(struct hl_cs *cs); 1658 int (*collective_wait_create_jobs)(struct hl_device *hdev, 1659 struct hl_ctx *ctx, struct hl_cs *cs, 1660 u32 wait_queue_id, u32 collective_engine_id, 1661 u32 encaps_signal_offset); 1662 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); 1663 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); 1664 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); 1665 void (*ack_protection_bits_errors)(struct hl_device *hdev); 1666 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, 1667 u32 *block_size, u32 *block_id); 1668 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1669 u32 block_id, u32 block_size); 1670 void (*enable_events_from_fw)(struct hl_device *hdev); 1671 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); 1672 void (*get_msi_info)(__le32 *table); 1673 int (*map_pll_idx_to_fw_idx)(u32 pll_idx); 1674 void (*init_firmware_preload_params)(struct hl_device *hdev); 1675 void (*init_firmware_loader)(struct hl_device *hdev); 1676 void (*init_cpu_scrambler_dram)(struct hl_device *hdev); 1677 void (*state_dump_init)(struct hl_device *hdev); 1678 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); 1679 void (*set_pci_memory_regions)(struct hl_device *hdev); 1680 u32* (*get_stream_master_qid_arr)(void); 1681 void (*check_if_razwi_happened)(struct hl_device *hdev); 1682 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 1683 u32 page_size, u32 *real_page_size, bool is_dram_addr); 1684 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, 1685 u64 addr, u64 *val, enum debugfs_access_type acc_type); 1686 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); 1687 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, 1688 u32 num_cores, u32 core_command); 1689 int (*send_device_activity)(struct hl_device *hdev, bool open); 1690 int (*set_dram_properties)(struct hl_device *hdev); 1691 int (*set_binning_masks)(struct hl_device *hdev); 1692 }; 1693 1694 1695 /* 1696 * CONTEXTS 1697 */ 1698 1699 #define HL_KERNEL_ASID_ID 0 1700 1701 /** 1702 * enum hl_va_range_type - virtual address range type. 1703 * @HL_VA_RANGE_TYPE_HOST: range type of host pages 1704 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages 1705 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages 1706 */ 1707 enum hl_va_range_type { 1708 HL_VA_RANGE_TYPE_HOST, 1709 HL_VA_RANGE_TYPE_HOST_HUGE, 1710 HL_VA_RANGE_TYPE_DRAM, 1711 HL_VA_RANGE_TYPE_MAX 1712 }; 1713 1714 /** 1715 * struct hl_va_range - virtual addresses range. 1716 * @lock: protects the virtual addresses list. 1717 * @list: list of virtual addresses blocks available for mappings. 1718 * @start_addr: range start address. 1719 * @end_addr: range end address. 1720 * @page_size: page size of this va range. 1721 */ 1722 struct hl_va_range { 1723 struct mutex lock; 1724 struct list_head list; 1725 u64 start_addr; 1726 u64 end_addr; 1727 u32 page_size; 1728 }; 1729 1730 /** 1731 * struct hl_cs_counters_atomic - command submission counters 1732 * @out_of_mem_drop_cnt: dropped due to memory allocation issue 1733 * @parsing_drop_cnt: dropped due to error in packet parsing 1734 * @queue_full_drop_cnt: dropped due to queue full 1735 * @device_in_reset_drop_cnt: dropped due to device in reset 1736 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight 1737 * @validation_drop_cnt: dropped due to error in validation 1738 */ 1739 struct hl_cs_counters_atomic { 1740 atomic64_t out_of_mem_drop_cnt; 1741 atomic64_t parsing_drop_cnt; 1742 atomic64_t queue_full_drop_cnt; 1743 atomic64_t device_in_reset_drop_cnt; 1744 atomic64_t max_cs_in_flight_drop_cnt; 1745 atomic64_t validation_drop_cnt; 1746 }; 1747 1748 /** 1749 * struct hl_dmabuf_priv - a dma-buf private object. 1750 * @dmabuf: pointer to dma-buf object. 1751 * @ctx: pointer to the dma-buf owner's context. 1752 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported 1753 * where virtual memory is supported. 1754 * @memhash_hnode: pointer to the memhash node. this object holds the export count. 1755 * @device_address: physical address of the device's memory. Relevant only 1756 * if phys_pg_pack is NULL (dma-buf was exported from address). 1757 * The total size can be taken from the dmabuf object. 1758 */ 1759 struct hl_dmabuf_priv { 1760 struct dma_buf *dmabuf; 1761 struct hl_ctx *ctx; 1762 struct hl_vm_phys_pg_pack *phys_pg_pack; 1763 struct hl_vm_hash_node *memhash_hnode; 1764 uint64_t device_address; 1765 }; 1766 1767 #define HL_CS_OUTCOME_HISTORY_LEN 256 1768 1769 /** 1770 * struct hl_cs_outcome - represents a single completed CS outcome 1771 * @list_link: link to either container's used list or free list 1772 * @map_link: list to the container hash map 1773 * @ts: completion ts 1774 * @seq: the original cs sequence 1775 * @error: error code cs completed with, if any 1776 */ 1777 struct hl_cs_outcome { 1778 struct list_head list_link; 1779 struct hlist_node map_link; 1780 ktime_t ts; 1781 u64 seq; 1782 int error; 1783 }; 1784 1785 /** 1786 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes 1787 * @outcome_map: index of completed CS searchable by sequence number 1788 * @used_list: list of outcome objects currently in use 1789 * @free_list: list of outcome objects currently not in use 1790 * @nodes_pool: a static pool of pre-allocated outcome objects 1791 * @db_lock: any operation on the store must take this lock 1792 */ 1793 struct hl_cs_outcome_store { 1794 DECLARE_HASHTABLE(outcome_map, 8); 1795 struct list_head used_list; 1796 struct list_head free_list; 1797 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; 1798 spinlock_t db_lock; 1799 }; 1800 1801 /** 1802 * struct hl_ctx - user/kernel context. 1803 * @mem_hash: holds mapping from virtual address to virtual memory area 1804 * descriptor (hl_vm_phys_pg_list or hl_userptr). 1805 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. 1806 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from 1807 * MMU-hop-page physical address to its host-resident 1808 * pgt_info structure. 1809 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). 1810 * @hdev: pointer to the device structure. 1811 * @refcount: reference counter for the context. Context is released only when 1812 * this hits 0l. It is incremented on CS and CS_WAIT. 1813 * @cs_pending: array of hl fence objects representing pending CS. 1814 * @outcome_store: storage data structure used to remember outcomes of completed 1815 * command submissions for a long time after CS id wraparound. 1816 * @va_range: holds available virtual addresses for host and dram mappings. 1817 * @mem_hash_lock: protects the mem_hash. 1818 * @hw_block_list_lock: protects the HW block memory list. 1819 * @debugfs_list: node in debugfs list of contexts. 1820 * @hw_block_mem_list: list of HW block virtual mapped addresses. 1821 * @cs_counters: context command submission counters. 1822 * @cb_va_pool: device VA pool for command buffers which are mapped to the 1823 * device's MMU. 1824 * @sig_mgr: encaps signals handle manager. 1825 * @cb_va_pool_base: the base address for the device VA pool 1826 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed 1827 * to user so user could inquire about CS. It is used as 1828 * index to cs_pending array. 1829 * @dram_default_hops: array that holds all hops addresses needed for default 1830 * DRAM mapping. 1831 * @cs_lock: spinlock to protect cs_sequence. 1832 * @dram_phys_mem: amount of used physical DRAM memory by this context. 1833 * @thread_ctx_switch_token: token to prevent multiple threads of the same 1834 * context from running the context switch phase. 1835 * Only a single thread should run it. 1836 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run 1837 * the context switch phase from moving to their 1838 * execution phase before the context switch phase 1839 * has finished. 1840 * @asid: context's unique address space ID in the device's MMU. 1841 * @handle: context's opaque handle for user 1842 */ 1843 struct hl_ctx { 1844 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); 1845 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); 1846 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); 1847 struct hl_fpriv *hpriv; 1848 struct hl_device *hdev; 1849 struct kref refcount; 1850 struct hl_fence **cs_pending; 1851 struct hl_cs_outcome_store outcome_store; 1852 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; 1853 struct mutex mem_hash_lock; 1854 struct mutex hw_block_list_lock; 1855 struct list_head debugfs_list; 1856 struct list_head hw_block_mem_list; 1857 struct hl_cs_counters_atomic cs_counters; 1858 struct gen_pool *cb_va_pool; 1859 struct hl_encaps_signals_mgr sig_mgr; 1860 u64 cb_va_pool_base; 1861 u64 cs_sequence; 1862 u64 *dram_default_hops; 1863 spinlock_t cs_lock; 1864 atomic64_t dram_phys_mem; 1865 atomic_t thread_ctx_switch_token; 1866 u32 thread_ctx_switch_wait_token; 1867 u32 asid; 1868 u32 handle; 1869 }; 1870 1871 /** 1872 * struct hl_ctx_mgr - for handling multiple contexts. 1873 * @lock: protects ctx_handles. 1874 * @handles: idr to hold all ctx handles. 1875 */ 1876 struct hl_ctx_mgr { 1877 struct mutex lock; 1878 struct idr handles; 1879 }; 1880 1881 1882 /* 1883 * COMMAND SUBMISSIONS 1884 */ 1885 1886 /** 1887 * struct hl_userptr - memory mapping chunk information 1888 * @vm_type: type of the VM. 1889 * @job_node: linked-list node for hanging the object on the Job's list. 1890 * @pages: pointer to struct page array 1891 * @npages: size of @pages array 1892 * @sgt: pointer to the scatter-gather table that holds the pages. 1893 * @dir: for DMA unmapping, the direction must be supplied, so save it. 1894 * @debugfs_list: node in debugfs list of command submissions. 1895 * @pid: the pid of the user process owning the memory 1896 * @addr: user-space virtual address of the start of the memory area. 1897 * @size: size of the memory area to pin & map. 1898 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. 1899 */ 1900 struct hl_userptr { 1901 enum vm_type vm_type; /* must be first */ 1902 struct list_head job_node; 1903 struct page **pages; 1904 unsigned int npages; 1905 struct sg_table *sgt; 1906 enum dma_data_direction dir; 1907 struct list_head debugfs_list; 1908 pid_t pid; 1909 u64 addr; 1910 u64 size; 1911 u8 dma_mapped; 1912 }; 1913 1914 /** 1915 * struct hl_cs - command submission. 1916 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. 1917 * @ctx: the context this CS belongs to. 1918 * @job_list: list of the CS's jobs in the various queues. 1919 * @job_lock: spinlock for the CS's jobs list. Needed for free_job. 1920 * @refcount: reference counter for usage of the CS. 1921 * @fence: pointer to the fence object of this CS. 1922 * @signal_fence: pointer to the fence object of the signal CS (used by wait 1923 * CS only). 1924 * @finish_work: workqueue object to run when CS is completed by H/W. 1925 * @work_tdr: delayed work node for TDR. 1926 * @mirror_node : node in device mirror list of command submissions. 1927 * @staged_cs_node: node in the staged cs list. 1928 * @debugfs_list: node in debugfs list of command submissions. 1929 * @encaps_sig_hdl: holds the encaps signals handle. 1930 * @sequence: the sequence number of this CS. 1931 * @staged_sequence: the sequence of the staged submission this CS is part of, 1932 * relevant only if staged_cs is set. 1933 * @timeout_jiffies: cs timeout in jiffies. 1934 * @submission_time_jiffies: submission time of the cs 1935 * @type: CS_TYPE_*. 1936 * @jobs_cnt: counter of submitted jobs on all queues. 1937 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. 1938 * @sob_addr_offset: sob offset from the configuration base address. 1939 * @initial_sob_count: count of completed signals in SOB before current submission of signal or 1940 * cs with encaps signals. 1941 * @submitted: true if CS was submitted to H/W. 1942 * @completed: true if CS was completed by device. 1943 * @timedout : true if CS was timedout. 1944 * @tdr_active: true if TDR was activated for this CS (to prevent 1945 * double TDR activation). 1946 * @aborted: true if CS was aborted due to some device error. 1947 * @timestamp: true if a timestamp must be captured upon completion. 1948 * @staged_last: true if this is the last staged CS and needs completion. 1949 * @staged_first: true if this is the first staged CS and we need to receive 1950 * timeout for this CS. 1951 * @staged_cs: true if this CS is part of a staged submission. 1952 * @skip_reset_on_timeout: true if we shall not reset the device in case 1953 * timeout occurs (debug scenario). 1954 * @encaps_signals: true if this CS has encaps reserved signals. 1955 */ 1956 struct hl_cs { 1957 u16 *jobs_in_queue_cnt; 1958 struct hl_ctx *ctx; 1959 struct list_head job_list; 1960 spinlock_t job_lock; 1961 struct kref refcount; 1962 struct hl_fence *fence; 1963 struct hl_fence *signal_fence; 1964 struct work_struct finish_work; 1965 struct delayed_work work_tdr; 1966 struct list_head mirror_node; 1967 struct list_head staged_cs_node; 1968 struct list_head debugfs_list; 1969 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 1970 u64 sequence; 1971 u64 staged_sequence; 1972 u64 timeout_jiffies; 1973 u64 submission_time_jiffies; 1974 enum hl_cs_type type; 1975 u32 jobs_cnt; 1976 u32 encaps_sig_hdl_id; 1977 u32 sob_addr_offset; 1978 u16 initial_sob_count; 1979 u8 submitted; 1980 u8 completed; 1981 u8 timedout; 1982 u8 tdr_active; 1983 u8 aborted; 1984 u8 timestamp; 1985 u8 staged_last; 1986 u8 staged_first; 1987 u8 staged_cs; 1988 u8 skip_reset_on_timeout; 1989 u8 encaps_signals; 1990 }; 1991 1992 /** 1993 * struct hl_cs_job - command submission job. 1994 * @cs_node: the node to hang on the CS jobs list. 1995 * @cs: the CS this job belongs to. 1996 * @user_cb: the CB we got from the user. 1997 * @patched_cb: in case of patching, this is internal CB which is submitted on 1998 * the queue instead of the CB we got from the IOCTL. 1999 * @finish_work: workqueue object to run when job is completed. 2000 * @userptr_list: linked-list of userptr mappings that belong to this job and 2001 * wait for completion. 2002 * @debugfs_list: node in debugfs list of command submission jobs. 2003 * @refcount: reference counter for usage of the CS job. 2004 * @queue_type: the type of the H/W queue this job is submitted to. 2005 * @id: the id of this job inside a CS. 2006 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2007 * @user_cb_size: the actual size of the CB we got from the user. 2008 * @job_cb_size: the actual size of the CB that we put on the queue. 2009 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user 2010 * to wait on part of the reserved signals. 2011 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2012 * handle to a kernel-allocated CB object, false 2013 * otherwise (SRAM/DRAM/host address). 2014 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2015 * info is needed later, when adding the 2xMSG_PROT at the 2016 * end of the JOB, to know which barriers to put in the 2017 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2018 * have streams so the engine can't be busy by another 2019 * stream. 2020 */ 2021 struct hl_cs_job { 2022 struct list_head cs_node; 2023 struct hl_cs *cs; 2024 struct hl_cb *user_cb; 2025 struct hl_cb *patched_cb; 2026 struct work_struct finish_work; 2027 struct list_head userptr_list; 2028 struct list_head debugfs_list; 2029 struct kref refcount; 2030 enum hl_queue_type queue_type; 2031 u32 id; 2032 u32 hw_queue_id; 2033 u32 user_cb_size; 2034 u32 job_cb_size; 2035 u32 encaps_sig_wait_offset; 2036 u8 is_kernel_allocated_cb; 2037 u8 contains_dma_pkt; 2038 }; 2039 2040 /** 2041 * struct hl_cs_parser - command submission parser properties. 2042 * @user_cb: the CB we got from the user. 2043 * @patched_cb: in case of patching, this is internal CB which is submitted on 2044 * the queue instead of the CB we got from the IOCTL. 2045 * @job_userptr_list: linked-list of userptr mappings that belong to the related 2046 * job and wait for completion. 2047 * @cs_sequence: the sequence number of the related CS. 2048 * @queue_type: the type of the H/W queue this job is submitted to. 2049 * @ctx_id: the ID of the context the related CS belongs to. 2050 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2051 * @user_cb_size: the actual size of the CB we got from the user. 2052 * @patched_cb_size: the size of the CB after parsing. 2053 * @job_id: the id of the related job inside the related CS. 2054 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2055 * handle to a kernel-allocated CB object, false 2056 * otherwise (SRAM/DRAM/host address). 2057 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2058 * info is needed later, when adding the 2xMSG_PROT at the 2059 * end of the JOB, to know which barriers to put in the 2060 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2061 * have streams so the engine can't be busy by another 2062 * stream. 2063 * @completion: true if we need completion for this CS. 2064 */ 2065 struct hl_cs_parser { 2066 struct hl_cb *user_cb; 2067 struct hl_cb *patched_cb; 2068 struct list_head *job_userptr_list; 2069 u64 cs_sequence; 2070 enum hl_queue_type queue_type; 2071 u32 ctx_id; 2072 u32 hw_queue_id; 2073 u32 user_cb_size; 2074 u32 patched_cb_size; 2075 u8 job_id; 2076 u8 is_kernel_allocated_cb; 2077 u8 contains_dma_pkt; 2078 u8 completion; 2079 }; 2080 2081 /* 2082 * MEMORY STRUCTURE 2083 */ 2084 2085 /** 2086 * struct hl_vm_hash_node - hash element from virtual address to virtual 2087 * memory area descriptor (hl_vm_phys_pg_list or 2088 * hl_userptr). 2089 * @node: node to hang on the hash table in context object. 2090 * @vaddr: key virtual address. 2091 * @handle: memory handle for device memory allocation. 2092 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). 2093 * @export_cnt: number of exports from within the VA block. 2094 */ 2095 struct hl_vm_hash_node { 2096 struct hlist_node node; 2097 u64 vaddr; 2098 u64 handle; 2099 void *ptr; 2100 int export_cnt; 2101 }; 2102 2103 /** 2104 * struct hl_vm_hw_block_list_node - list element from user virtual address to 2105 * HW block id. 2106 * @node: node to hang on the list in context object. 2107 * @ctx: the context this node belongs to. 2108 * @vaddr: virtual address of the HW block. 2109 * @block_size: size of the block. 2110 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. 2111 * @id: HW block id (handle). 2112 */ 2113 struct hl_vm_hw_block_list_node { 2114 struct list_head node; 2115 struct hl_ctx *ctx; 2116 unsigned long vaddr; 2117 u32 block_size; 2118 u32 mapped_size; 2119 u32 id; 2120 }; 2121 2122 /** 2123 * struct hl_vm_phys_pg_pack - physical page pack. 2124 * @vm_type: describes the type of the virtual area descriptor. 2125 * @pages: the physical page array. 2126 * @npages: num physical pages in the pack. 2127 * @total_size: total size of all the pages in this list. 2128 * @exported_size: buffer exported size. 2129 * @node: used to attach to deletion list that is used when all the allocations are cleared 2130 * at the teardown of the context. 2131 * @mapping_cnt: number of shared mappings. 2132 * @asid: the context related to this list. 2133 * @page_size: size of each page in the pack. 2134 * @flags: HL_MEM_* flags related to this list. 2135 * @handle: the provided handle related to this list. 2136 * @offset: offset from the first page. 2137 * @contiguous: is contiguous physical memory. 2138 * @created_from_userptr: is product of host virtual address. 2139 */ 2140 struct hl_vm_phys_pg_pack { 2141 enum vm_type vm_type; /* must be first */ 2142 u64 *pages; 2143 u64 npages; 2144 u64 total_size; 2145 u64 exported_size; 2146 struct list_head node; 2147 atomic_t mapping_cnt; 2148 u32 asid; 2149 u32 page_size; 2150 u32 flags; 2151 u32 handle; 2152 u32 offset; 2153 u8 contiguous; 2154 u8 created_from_userptr; 2155 }; 2156 2157 /** 2158 * struct hl_vm_va_block - virtual range block information. 2159 * @node: node to hang on the virtual range list in context object. 2160 * @start: virtual range start address. 2161 * @end: virtual range end address. 2162 * @size: virtual range size. 2163 */ 2164 struct hl_vm_va_block { 2165 struct list_head node; 2166 u64 start; 2167 u64 end; 2168 u64 size; 2169 }; 2170 2171 /** 2172 * struct hl_vm - virtual memory manager for MMU. 2173 * @dram_pg_pool: pool for DRAM physical pages of 2MB. 2174 * @dram_pg_pool_refcount: reference counter for the pool usage. 2175 * @idr_lock: protects the phys_pg_list_handles. 2176 * @phys_pg_pack_handles: idr to hold all device allocations handles. 2177 * @init_done: whether initialization was done. We need this because VM 2178 * initialization might be skipped during device initialization. 2179 */ 2180 struct hl_vm { 2181 struct gen_pool *dram_pg_pool; 2182 struct kref dram_pg_pool_refcount; 2183 spinlock_t idr_lock; 2184 struct idr phys_pg_pack_handles; 2185 u8 init_done; 2186 }; 2187 2188 2189 /* 2190 * DEBUG, PROFILING STRUCTURE 2191 */ 2192 2193 /** 2194 * struct hl_debug_params - Coresight debug parameters. 2195 * @input: pointer to component specific input parameters. 2196 * @output: pointer to component specific output parameters. 2197 * @output_size: size of output buffer. 2198 * @reg_idx: relevant register ID. 2199 * @op: component operation to execute. 2200 * @enable: true if to enable component debugging, false otherwise. 2201 */ 2202 struct hl_debug_params { 2203 void *input; 2204 void *output; 2205 u32 output_size; 2206 u32 reg_idx; 2207 u32 op; 2208 bool enable; 2209 }; 2210 2211 /** 2212 * struct hl_notifier_event - holds the notifier data structure 2213 * @eventfd: the event file descriptor to raise the notifications 2214 * @lock: mutex lock to protect the notifier data flows 2215 * @events_mask: indicates the bitmap events 2216 */ 2217 struct hl_notifier_event { 2218 struct eventfd_ctx *eventfd; 2219 struct mutex lock; 2220 u64 events_mask; 2221 }; 2222 2223 /* 2224 * FILE PRIVATE STRUCTURE 2225 */ 2226 2227 /** 2228 * struct hl_fpriv - process information stored in FD private data. 2229 * @hdev: habanalabs device structure. 2230 * @filp: pointer to the given file structure. 2231 * @taskpid: current process ID. 2232 * @ctx: current executing context. TODO: remove for multiple ctx per process 2233 * @ctx_mgr: context manager to handle multiple context for this FD. 2234 * @mem_mgr: manager descriptor for memory exportable via mmap 2235 * @notifier_event: notifier eventfd towards user process 2236 * @debugfs_list: list of relevant ASIC debugfs. 2237 * @dev_node: node in the device list of file private data 2238 * @refcount: number of related contexts. 2239 * @restore_phase_mutex: lock for context switch and restore phase. 2240 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple 2241 * ctx per process. 2242 */ 2243 struct hl_fpriv { 2244 struct hl_device *hdev; 2245 struct file *filp; 2246 struct pid *taskpid; 2247 struct hl_ctx *ctx; 2248 struct hl_ctx_mgr ctx_mgr; 2249 struct hl_mem_mgr mem_mgr; 2250 struct hl_notifier_event notifier_event; 2251 struct list_head debugfs_list; 2252 struct list_head dev_node; 2253 struct kref refcount; 2254 struct mutex restore_phase_mutex; 2255 struct mutex ctx_lock; 2256 }; 2257 2258 2259 /* 2260 * DebugFS 2261 */ 2262 2263 /** 2264 * struct hl_info_list - debugfs file ops. 2265 * @name: file name. 2266 * @show: function to output information. 2267 * @write: function to write to the file. 2268 */ 2269 struct hl_info_list { 2270 const char *name; 2271 int (*show)(struct seq_file *s, void *data); 2272 ssize_t (*write)(struct file *file, const char __user *buf, 2273 size_t count, loff_t *f_pos); 2274 }; 2275 2276 /** 2277 * struct hl_debugfs_entry - debugfs dentry wrapper. 2278 * @info_ent: dentry related ops. 2279 * @dev_entry: ASIC specific debugfs manager. 2280 */ 2281 struct hl_debugfs_entry { 2282 const struct hl_info_list *info_ent; 2283 struct hl_dbg_device_entry *dev_entry; 2284 }; 2285 2286 /** 2287 * struct hl_dbg_device_entry - ASIC specific debugfs manager. 2288 * @root: root dentry. 2289 * @hdev: habanalabs device structure. 2290 * @entry_arr: array of available hl_debugfs_entry. 2291 * @file_list: list of available debugfs files. 2292 * @file_mutex: protects file_list. 2293 * @cb_list: list of available CBs. 2294 * @cb_spinlock: protects cb_list. 2295 * @cs_list: list of available CSs. 2296 * @cs_spinlock: protects cs_list. 2297 * @cs_job_list: list of available CB jobs. 2298 * @cs_job_spinlock: protects cs_job_list. 2299 * @userptr_list: list of available userptrs (virtual memory chunk descriptor). 2300 * @userptr_spinlock: protects userptr_list. 2301 * @ctx_mem_hash_list: list of available contexts with MMU mappings. 2302 * @ctx_mem_hash_spinlock: protects cb_list. 2303 * @data_dma_blob_desc: data DMA descriptor of blob. 2304 * @mon_dump_blob_desc: monitor dump descriptor of blob. 2305 * @state_dump: data of the system states in case of a bad cs. 2306 * @state_dump_sem: protects state_dump. 2307 * @addr: next address to read/write from/to in read/write32. 2308 * @mmu_addr: next virtual address to translate to physical address in mmu_show. 2309 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. 2310 * @userptr_lookup: the target user ptr to look up for on demand. 2311 * @mmu_asid: ASID to use while translating in mmu_show. 2312 * @state_dump_head: index of the latest state dump 2313 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. 2314 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. 2315 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. 2316 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. 2317 */ 2318 struct hl_dbg_device_entry { 2319 struct dentry *root; 2320 struct hl_device *hdev; 2321 struct hl_debugfs_entry *entry_arr; 2322 struct list_head file_list; 2323 struct mutex file_mutex; 2324 struct list_head cb_list; 2325 spinlock_t cb_spinlock; 2326 struct list_head cs_list; 2327 spinlock_t cs_spinlock; 2328 struct list_head cs_job_list; 2329 spinlock_t cs_job_spinlock; 2330 struct list_head userptr_list; 2331 spinlock_t userptr_spinlock; 2332 struct list_head ctx_mem_hash_list; 2333 spinlock_t ctx_mem_hash_spinlock; 2334 struct debugfs_blob_wrapper data_dma_blob_desc; 2335 struct debugfs_blob_wrapper mon_dump_blob_desc; 2336 char *state_dump[HL_STATE_DUMP_HIST_LEN]; 2337 struct rw_semaphore state_dump_sem; 2338 u64 addr; 2339 u64 mmu_addr; 2340 u64 mmu_cap_mask; 2341 u64 userptr_lookup; 2342 u32 mmu_asid; 2343 u32 state_dump_head; 2344 u8 i2c_bus; 2345 u8 i2c_addr; 2346 u8 i2c_reg; 2347 u8 i2c_len; 2348 }; 2349 2350 /** 2351 * struct hl_hw_obj_name_entry - single hw object name, member of 2352 * hl_state_dump_specs 2353 * @node: link to the containing hash table 2354 * @name: hw object name 2355 * @id: object identifier 2356 */ 2357 struct hl_hw_obj_name_entry { 2358 struct hlist_node node; 2359 const char *name; 2360 u32 id; 2361 }; 2362 2363 enum hl_state_dump_specs_props { 2364 SP_SYNC_OBJ_BASE_ADDR, 2365 SP_NEXT_SYNC_OBJ_ADDR, 2366 SP_SYNC_OBJ_AMOUNT, 2367 SP_MON_OBJ_WR_ADDR_LOW, 2368 SP_MON_OBJ_WR_ADDR_HIGH, 2369 SP_MON_OBJ_WR_DATA, 2370 SP_MON_OBJ_ARM_DATA, 2371 SP_MON_OBJ_STATUS, 2372 SP_MONITORS_AMOUNT, 2373 SP_TPC0_CMDQ, 2374 SP_TPC0_CFG_SO, 2375 SP_NEXT_TPC, 2376 SP_MME_CMDQ, 2377 SP_MME_CFG_SO, 2378 SP_NEXT_MME, 2379 SP_DMA_CMDQ, 2380 SP_DMA_CFG_SO, 2381 SP_DMA_QUEUES_OFFSET, 2382 SP_NUM_OF_MME_ENGINES, 2383 SP_SUB_MME_ENG_NUM, 2384 SP_NUM_OF_DMA_ENGINES, 2385 SP_NUM_OF_TPC_ENGINES, 2386 SP_ENGINE_NUM_OF_QUEUES, 2387 SP_ENGINE_NUM_OF_STREAMS, 2388 SP_ENGINE_NUM_OF_FENCES, 2389 SP_FENCE0_CNT_OFFSET, 2390 SP_FENCE0_RDATA_OFFSET, 2391 SP_CP_STS_OFFSET, 2392 SP_NUM_CORES, 2393 2394 SP_MAX 2395 }; 2396 2397 enum hl_sync_engine_type { 2398 ENGINE_TPC, 2399 ENGINE_DMA, 2400 ENGINE_MME, 2401 }; 2402 2403 /** 2404 * struct hl_mon_state_dump - represents a state dump of a single monitor 2405 * @id: monitor id 2406 * @wr_addr_low: address monitor will write to, low bits 2407 * @wr_addr_high: address monitor will write to, high bits 2408 * @wr_data: data monitor will write 2409 * @arm_data: register value containing monitor configuration 2410 * @status: monitor status 2411 */ 2412 struct hl_mon_state_dump { 2413 u32 id; 2414 u32 wr_addr_low; 2415 u32 wr_addr_high; 2416 u32 wr_data; 2417 u32 arm_data; 2418 u32 status; 2419 }; 2420 2421 /** 2422 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry 2423 * @engine_type: type of the engine 2424 * @engine_id: id of the engine 2425 * @sync_id: id of the sync object 2426 */ 2427 struct hl_sync_to_engine_map_entry { 2428 struct hlist_node node; 2429 enum hl_sync_engine_type engine_type; 2430 u32 engine_id; 2431 u32 sync_id; 2432 }; 2433 2434 /** 2435 * struct hl_sync_to_engine_map - maps sync object id to associated engine id 2436 * @tb: hash table containing the mapping, each element is of type 2437 * struct hl_sync_to_engine_map_entry 2438 */ 2439 struct hl_sync_to_engine_map { 2440 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); 2441 }; 2442 2443 /** 2444 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump 2445 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine 2446 * @print_single_monitor: format monitor data as string 2447 * @monitor_valid: return true if given monitor dump is valid 2448 * @print_fences_single_engine: format fences data as string 2449 */ 2450 struct hl_state_dump_specs_funcs { 2451 int (*gen_sync_to_engine_map)(struct hl_device *hdev, 2452 struct hl_sync_to_engine_map *map); 2453 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, 2454 struct hl_device *hdev, 2455 struct hl_mon_state_dump *mon); 2456 int (*monitor_valid)(struct hl_mon_state_dump *mon); 2457 int (*print_fences_single_engine)(struct hl_device *hdev, 2458 u64 base_offset, 2459 u64 status_base_offset, 2460 enum hl_sync_engine_type engine_type, 2461 u32 engine_id, char **buf, 2462 size_t *size, size_t *offset); 2463 }; 2464 2465 /** 2466 * struct hl_state_dump_specs - defines ASIC known hw objects names 2467 * @so_id_to_str_tb: sync objects names index table 2468 * @monitor_id_to_str_tb: monitors names index table 2469 * @funcs: virtual functions used for state dump 2470 * @sync_namager_names: readable names for sync manager if available (ex: N_E) 2471 * @props: pointer to a per asic const props array required for state dump 2472 */ 2473 struct hl_state_dump_specs { 2474 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2475 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2476 struct hl_state_dump_specs_funcs funcs; 2477 const char * const *sync_namager_names; 2478 s64 *props; 2479 }; 2480 2481 2482 /* 2483 * DEVICES 2484 */ 2485 2486 #define HL_STR_MAX 32 2487 2488 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) 2489 2490 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe 2491 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. 2492 */ 2493 #define HL_MAX_MINORS 256 2494 2495 /* 2496 * Registers read & write functions. 2497 */ 2498 2499 u32 hl_rreg(struct hl_device *hdev, u32 reg); 2500 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); 2501 2502 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) 2503 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) 2504 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ 2505 hdev->asic_funcs->rreg(hdev, (reg))) 2506 2507 #define WREG32_P(reg, val, mask) \ 2508 do { \ 2509 u32 tmp_ = RREG32(reg); \ 2510 tmp_ &= (mask); \ 2511 tmp_ |= ((val) & ~(mask)); \ 2512 WREG32(reg, tmp_); \ 2513 } while (0) 2514 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) 2515 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) 2516 2517 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask)) 2518 2519 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask) 2520 2521 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) 2522 2523 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT 2524 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK 2525 #define WREG32_FIELD(reg, offset, field, val) \ 2526 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ 2527 ~REG_FIELD_MASK(reg, field)) | \ 2528 (val) << REG_FIELD_SHIFT(reg, field)) 2529 2530 /* Timeout should be longer when working with simulator but cap the 2531 * increased timeout to some maximum 2532 */ 2533 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ 2534 ({ \ 2535 ktime_t __timeout; \ 2536 u32 __elbi_read; \ 2537 int __rc = 0; \ 2538 if (hdev->pdev) \ 2539 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2540 else \ 2541 __timeout = ktime_add_us(ktime_get(),\ 2542 min((u64)(timeout_us * 10), \ 2543 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2544 might_sleep_if(sleep_us); \ 2545 for (;;) { \ 2546 if (elbi) { \ 2547 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2548 if (__rc) \ 2549 break; \ 2550 (val) = __elbi_read; \ 2551 } else {\ 2552 (val) = RREG32(lower_32_bits(addr)); \ 2553 } \ 2554 if (cond) \ 2555 break; \ 2556 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2557 if (elbi) { \ 2558 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2559 if (__rc) \ 2560 break; \ 2561 (val) = __elbi_read; \ 2562 } else {\ 2563 (val) = RREG32(lower_32_bits(addr)); \ 2564 } \ 2565 break; \ 2566 } \ 2567 if (sleep_us) \ 2568 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2569 } \ 2570 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ 2571 }) 2572 2573 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ 2574 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) 2575 2576 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ 2577 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) 2578 2579 /* 2580 * poll array of register addresses. 2581 * condition is satisfied if all registers values match the expected value. 2582 * once some register in the array satisfies the condition it will not be polled again, 2583 * this is done both for efficiency and due to some registers are "clear on read". 2584 * TODO: use read from PCI bar in other places in the code (SW-91406) 2585 */ 2586 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2587 timeout_us, elbi) \ 2588 ({ \ 2589 ktime_t __timeout; \ 2590 u64 __elem_bitmask; \ 2591 u32 __read_val; \ 2592 u8 __arr_idx; \ 2593 int __rc = 0; \ 2594 \ 2595 if (hdev->pdev) \ 2596 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2597 else \ 2598 __timeout = ktime_add_us(ktime_get(),\ 2599 min(((u64)timeout_us * 10), \ 2600 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2601 \ 2602 might_sleep_if(sleep_us); \ 2603 if (arr_size >= 64) \ 2604 __rc = -EINVAL; \ 2605 else \ 2606 __elem_bitmask = BIT_ULL(arr_size) - 1; \ 2607 for (;;) { \ 2608 if (__rc) \ 2609 break; \ 2610 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ 2611 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ 2612 continue; \ 2613 if (elbi) { \ 2614 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ 2615 if (__rc) \ 2616 break; \ 2617 } else { \ 2618 __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \ 2619 } \ 2620 if (__read_val == (expected_val)) \ 2621 __elem_bitmask &= ~BIT_ULL(__arr_idx); \ 2622 } \ 2623 if (__rc || (__elem_bitmask == 0)) \ 2624 break; \ 2625 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ 2626 break; \ 2627 if (sleep_us) \ 2628 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2629 } \ 2630 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ 2631 }) 2632 2633 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2634 timeout_us) \ 2635 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2636 timeout_us, false) 2637 2638 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2639 timeout_us) \ 2640 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2641 timeout_us, true) 2642 2643 /* 2644 * address in this macro points always to a memory location in the 2645 * host's (server's) memory. That location is updated asynchronously 2646 * either by the direct access of the device or by another core. 2647 * 2648 * To work both in LE and BE architectures, we need to distinguish between the 2649 * two states (device or another core updates the memory location). Therefore, 2650 * if mem_written_by_device is true, the host memory being polled will be 2651 * updated directly by the device. If false, the host memory being polled will 2652 * be updated by host CPU. Required so host knows whether or not the memory 2653 * might need to be byte-swapped before returning value to caller. 2654 */ 2655 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ 2656 mem_written_by_device) \ 2657 ({ \ 2658 ktime_t __timeout; \ 2659 if (hdev->pdev) \ 2660 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2661 else \ 2662 __timeout = ktime_add_us(ktime_get(),\ 2663 min((u64)(timeout_us * 100), \ 2664 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2665 might_sleep_if(sleep_us); \ 2666 for (;;) { \ 2667 /* Verify we read updates done by other cores or by device */ \ 2668 mb(); \ 2669 (val) = *((u32 *)(addr)); \ 2670 if (mem_written_by_device) \ 2671 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2672 if (cond) \ 2673 break; \ 2674 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2675 (val) = *((u32 *)(addr)); \ 2676 if (mem_written_by_device) \ 2677 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2678 break; \ 2679 } \ 2680 if (sleep_us) \ 2681 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2682 } \ 2683 (cond) ? 0 : -ETIMEDOUT; \ 2684 }) 2685 2686 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ 2687 ({ \ 2688 struct user_mapped_block *p = blk; \ 2689 \ 2690 p->address = base; \ 2691 p->size = sz; \ 2692 }) 2693 2694 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, decoder) \ 2695 ({ \ 2696 usr_intr.hdev = hdev; \ 2697 usr_intr.interrupt_id = intr_id; \ 2698 usr_intr.is_decoder = decoder; \ 2699 INIT_LIST_HEAD(&usr_intr.wait_list_head); \ 2700 spin_lock_init(&usr_intr.wait_list_lock); \ 2701 }) 2702 2703 struct hwmon_chip_info; 2704 2705 /** 2706 * struct hl_device_reset_work - reset work wrapper. 2707 * @reset_work: reset work to be done. 2708 * @hdev: habanalabs device structure. 2709 * @flags: reset flags. 2710 */ 2711 struct hl_device_reset_work { 2712 struct delayed_work reset_work; 2713 struct hl_device *hdev; 2714 u32 flags; 2715 }; 2716 2717 /** 2718 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident 2719 * page-table internal information. 2720 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for 2721 * allocating hops. 2722 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. 2723 */ 2724 struct hl_mmu_hr_priv { 2725 struct gen_pool *mmu_pgt_pool; 2726 struct pgt_info *mmu_asid_hop0; 2727 }; 2728 2729 /** 2730 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident 2731 * page-table internal information. 2732 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. 2733 * @mmu_shadow_hop0: shadow array of hop0 tables. 2734 */ 2735 struct hl_mmu_dr_priv { 2736 struct gen_pool *mmu_pgt_pool; 2737 void *mmu_shadow_hop0; 2738 }; 2739 2740 /** 2741 * struct hl_mmu_priv - used for holding per-device mmu internal information. 2742 * @dr: information on the device-resident MMU, when exists. 2743 * @hr: information on the host-resident MMU, when exists. 2744 */ 2745 struct hl_mmu_priv { 2746 struct hl_mmu_dr_priv dr; 2747 struct hl_mmu_hr_priv hr; 2748 }; 2749 2750 /** 2751 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry 2752 * that was created in order to translate a virtual address to a 2753 * physical one. 2754 * @hop_addr: The address of the hop. 2755 * @hop_pte_addr: The address of the hop entry. 2756 * @hop_pte_val: The value in the hop entry. 2757 */ 2758 struct hl_mmu_per_hop_info { 2759 u64 hop_addr; 2760 u64 hop_pte_addr; 2761 u64 hop_pte_val; 2762 }; 2763 2764 /** 2765 * struct hl_mmu_hop_info - A structure describing the TLB hops and their 2766 * hop-entries that were created in order to translate a virtual address to a 2767 * physical one. 2768 * @scrambled_vaddr: The value of the virtual address after scrambling. This 2769 * address replaces the original virtual-address when mapped 2770 * in the MMU tables. 2771 * @unscrambled_paddr: The un-scrambled physical address. 2772 * @hop_info: Array holding the per-hop information used for the translation. 2773 * @used_hops: The number of hops used for the translation. 2774 * @range_type: virtual address range type. 2775 */ 2776 struct hl_mmu_hop_info { 2777 u64 scrambled_vaddr; 2778 u64 unscrambled_paddr; 2779 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; 2780 u32 used_hops; 2781 enum hl_va_range_type range_type; 2782 }; 2783 2784 /** 2785 * struct hl_hr_mmu_funcs - Device related host resident MMU functions. 2786 * @get_hop0_pgt_info: get page table info structure for HOP0. 2787 * @get_pgt_info: get page table info structure for HOP other than HOP0. 2788 * @add_pgt_info: add page table info structure to hash. 2789 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. 2790 */ 2791 struct hl_hr_mmu_funcs { 2792 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); 2793 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); 2794 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); 2795 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, 2796 struct hl_mmu_hop_info *hops, 2797 u64 virt_addr, bool *is_huge); 2798 }; 2799 2800 /** 2801 * struct hl_mmu_funcs - Device related MMU functions. 2802 * @init: initialize the MMU module. 2803 * @fini: release the MMU module. 2804 * @ctx_init: Initialize a context for using the MMU module. 2805 * @ctx_fini: disable a ctx from using the mmu module. 2806 * @map: maps a virtual address to physical address for a context. 2807 * @unmap: unmap a virtual address of a context. 2808 * @flush: flush all writes from all cores to reach device MMU. 2809 * @swap_out: marks all mapping of the given context as swapped out. 2810 * @swap_in: marks all mapping of the given context as swapped in. 2811 * @get_tlb_info: returns the list of hops and hop-entries used that were 2812 * created in order to translate the giver virtual address to a 2813 * physical one. 2814 * @hr_funcs: functions specific to host resident MMU. 2815 */ 2816 struct hl_mmu_funcs { 2817 int (*init)(struct hl_device *hdev); 2818 void (*fini)(struct hl_device *hdev); 2819 int (*ctx_init)(struct hl_ctx *ctx); 2820 void (*ctx_fini)(struct hl_ctx *ctx); 2821 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, 2822 bool is_dram_addr); 2823 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); 2824 void (*flush)(struct hl_ctx *ctx); 2825 void (*swap_out)(struct hl_ctx *ctx); 2826 void (*swap_in)(struct hl_ctx *ctx); 2827 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); 2828 struct hl_hr_mmu_funcs hr_funcs; 2829 }; 2830 2831 /** 2832 * struct hl_prefetch_work - prefetch work structure handler 2833 * @prefetch_work: actual work struct. 2834 * @ctx: compute context. 2835 * @va: virtual address to pre-fetch. 2836 * @size: pre-fetch size. 2837 * @flags: operation flags. 2838 * @asid: ASID for maintenance operation. 2839 */ 2840 struct hl_prefetch_work { 2841 struct work_struct prefetch_work; 2842 struct hl_ctx *ctx; 2843 u64 va; 2844 u64 size; 2845 u32 flags; 2846 u32 asid; 2847 }; 2848 2849 /* 2850 * number of user contexts allowed to call wait_for_multi_cs ioctl in 2851 * parallel 2852 */ 2853 #define MULTI_CS_MAX_USER_CTX 2 2854 2855 /** 2856 * struct multi_cs_completion - multi CS wait completion. 2857 * @completion: completion of any of the CS in the list 2858 * @lock: spinlock for the completion structure 2859 * @timestamp: timestamp for the multi-CS completion 2860 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS 2861 * is waiting 2862 * @used: 1 if in use, otherwise 0 2863 */ 2864 struct multi_cs_completion { 2865 struct completion completion; 2866 spinlock_t lock; 2867 s64 timestamp; 2868 u32 stream_master_qid_map; 2869 u8 used; 2870 }; 2871 2872 /** 2873 * struct multi_cs_data - internal data for multi CS call 2874 * @ctx: pointer to the context structure 2875 * @fence_arr: array of fences of all CSs 2876 * @seq_arr: array of CS sequence numbers 2877 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete 2878 * @timestamp: timestamp of first completed CS 2879 * @wait_status: wait for CS status 2880 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) 2881 * @arr_len: fence_arr and seq_arr array length 2882 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) 2883 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. 2884 */ 2885 struct multi_cs_data { 2886 struct hl_ctx *ctx; 2887 struct hl_fence **fence_arr; 2888 u64 *seq_arr; 2889 s64 timeout_jiffies; 2890 s64 timestamp; 2891 long wait_status; 2892 u32 completion_bitmap; 2893 u8 arr_len; 2894 u8 gone_cs; 2895 u8 update_ts; 2896 }; 2897 2898 /** 2899 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp 2900 * @start: timestamp taken when 'start' event is received in driver 2901 * @end: timestamp taken when 'end' event is received in driver 2902 */ 2903 struct hl_clk_throttle_timestamp { 2904 ktime_t start; 2905 ktime_t end; 2906 }; 2907 2908 /** 2909 * struct hl_clk_throttle - keeps current/last clock throttling timestamps 2910 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER 2911 * index 1 refers to THERMAL 2912 * @lock: protects this structure as it can be accessed from both event queue 2913 * context and info_ioctl context 2914 * @current_reason: bitmask represents the current clk throttling reasons 2915 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load 2916 */ 2917 struct hl_clk_throttle { 2918 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; 2919 struct mutex lock; 2920 u32 current_reason; 2921 u32 aggregated_reason; 2922 }; 2923 2924 /** 2925 * struct user_mapped_block - describes a hw block allowed to be mmapped by user 2926 * @address: physical HW block address 2927 * @size: allowed size for mmap 2928 */ 2929 struct user_mapped_block { 2930 u32 address; 2931 u32 size; 2932 }; 2933 2934 /** 2935 * struct cs_timeout_info - info of last CS timeout occurred. 2936 * @timestamp: CS timeout timestamp. 2937 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, 2938 * so the first (root cause) CS timeout will not be overwritten. 2939 * @seq: CS timeout sequence number. 2940 */ 2941 struct cs_timeout_info { 2942 ktime_t timestamp; 2943 atomic_t write_enable; 2944 u64 seq; 2945 }; 2946 2947 #define MAX_QMAN_STREAMS_INFO 4 2948 #define OPCODE_INFO_MAX_ADDR_SIZE 8 2949 /** 2950 * struct undefined_opcode_info - info about last undefined opcode error 2951 * @timestamp: timestamp of the undefined opcode error 2952 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ 2953 * entries. In case all streams array entries are 2954 * filled with values, it means the execution was in Lower-CP. 2955 * @cq_addr: the address of the current handled command buffer 2956 * @cq_size: the size of the current handled command buffer 2957 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. 2958 * should be equal to 1 incase of undefined opcode 2959 * in Upper-CP (specific stream) and equal to 4 incase 2960 * of undefined opcode in Lower-CP. 2961 * @engine_id: engine-id that the error occurred on 2962 * @stream_id: the stream id the error occurred on. In case the stream equals to 2963 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. 2964 * @write_enable: if set, writing to undefined opcode parameters in the structure 2965 * is enable so the first (root cause) undefined opcode will not be 2966 * overwritten. 2967 */ 2968 struct undefined_opcode_info { 2969 ktime_t timestamp; 2970 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; 2971 u64 cq_addr; 2972 u32 cq_size; 2973 u32 cb_addr_streams_len; 2974 u32 engine_id; 2975 u32 stream_id; 2976 bool write_enable; 2977 }; 2978 2979 /** 2980 * struct page_fault_info - page fault information. 2981 * @page_fault: holds information collected during a page fault. 2982 * @user_mappings: buffer containing user mappings. 2983 * @num_of_user_mappings: number of user mappings. 2984 * @page_fault_detected: if set as 1, then a page-fault was discovered for the 2985 * first time after the driver has finished booting-up. 2986 * Since we're looking for the page-fault's root cause, 2987 * we don't care of the others that might follow it- 2988 * so once changed to 1, it will remain that way. 2989 * @page_fault_info_available: indicates that a page fault info is now available. 2990 */ 2991 struct page_fault_info { 2992 struct hl_page_fault_info page_fault; 2993 struct hl_user_mapping *user_mappings; 2994 u64 num_of_user_mappings; 2995 atomic_t page_fault_detected; 2996 bool page_fault_info_available; 2997 }; 2998 2999 /** 3000 * struct razwi_info - RAZWI information. 3001 * @razwi: holds information collected during a RAZWI 3002 * @razwi_detected: if set as 1, then a RAZWI was discovered for the 3003 * first time after the driver has finished booting-up. 3004 * Since we're looking for the RAZWI's root cause, 3005 * we don't care of the others that might follow it- 3006 * so once changed to 1, it will remain that way. 3007 * @razwi_info_available: indicates that a RAZWI info is now available. 3008 */ 3009 struct razwi_info { 3010 struct hl_info_razwi_event razwi; 3011 atomic_t razwi_detected; 3012 bool razwi_info_available; 3013 }; 3014 3015 /** 3016 * struct hl_error_info - holds information collected during an error. 3017 * @cs_timeout: CS timeout error information. 3018 * @razwi_info: RAZWI information. 3019 * @undef_opcode: undefined opcode information. 3020 * @page_fault_info: page fault information. 3021 */ 3022 struct hl_error_info { 3023 struct cs_timeout_info cs_timeout; 3024 struct razwi_info razwi_info; 3025 struct undefined_opcode_info undef_opcode; 3026 struct page_fault_info page_fault_info; 3027 }; 3028 3029 /** 3030 * struct hl_reset_info - holds current device reset information. 3031 * @lock: lock to protect critical reset flows. 3032 * @compute_reset_cnt: number of compute resets since the driver was loaded. 3033 * @hard_reset_cnt: number of hard resets since the driver was loaded. 3034 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, 3035 * here we hold the hard reset flags. 3036 * @in_reset: is device in reset flow. 3037 * @in_compute_reset: Device is currently in reset but not in hard-reset. 3038 * @needs_reset: true if reset_on_lockup is false and device should be reset 3039 * due to lockup. 3040 * @hard_reset_pending: is there a hard reset work pending. 3041 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is 3042 * triggered, and cleared after it is shared with preboot. 3043 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden 3044 * with a new value on next reset 3045 * @reset_trigger_repeated: set if device reset is triggered more than once with 3046 * same cause. 3047 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to 3048 * complete instead. 3049 * @watchdog_active: true if a device release watchdog work is scheduled. 3050 */ 3051 struct hl_reset_info { 3052 spinlock_t lock; 3053 u32 compute_reset_cnt; 3054 u32 hard_reset_cnt; 3055 u32 hard_reset_schedule_flags; 3056 u8 in_reset; 3057 u8 in_compute_reset; 3058 u8 needs_reset; 3059 u8 hard_reset_pending; 3060 u8 curr_reset_cause; 3061 u8 prev_reset_trigger; 3062 u8 reset_trigger_repeated; 3063 u8 skip_reset_on_timeout; 3064 u8 watchdog_active; 3065 }; 3066 3067 /** 3068 * struct hl_device - habanalabs device structure. 3069 * @pdev: pointer to PCI device, can be NULL in case of simulator device. 3070 * @pcie_bar_phys: array of available PCIe bars physical addresses. 3071 * (required only for PCI address match mode) 3072 * @pcie_bar: array of available PCIe bars virtual addresses. 3073 * @rmmio: configuration area address on SRAM. 3074 * @cdev: related char device. 3075 * @cdev_ctrl: char device for control operations only (INFO IOCTL) 3076 * @dev: related kernel basic device structure. 3077 * @dev_ctrl: related kernel device structure for the control device 3078 * @work_heartbeat: delayed work for CPU-CP is-alive check. 3079 * @device_reset_work: delayed work which performs hard reset 3080 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release 3081 * device upon certain error cases. 3082 * @asic_name: ASIC specific name. 3083 * @asic_type: ASIC specific type. 3084 * @completion_queue: array of hl_cq. 3085 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user 3086 * interrupt, driver will monitor the list of fences 3087 * registered to this interrupt. 3088 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. 3089 * upon any user CQ interrupt, driver will monitor the 3090 * list of fences registered to this common structure. 3091 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. 3092 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to 3093 * outstanding command submissions. 3094 * @cq_wq: work queues of completion queues for executing work in process 3095 * context. 3096 * @eq_wq: work queue of event queue for executing work in process context. 3097 * @cs_cmplt_wq: work queue of CS completions for executing work in process 3098 * context. 3099 * @ts_free_obj_wq: work queue for timestamp registration objects release. 3100 * @prefetch_wq: work queue for MMU pre-fetch operations. 3101 * @reset_wq: work queue for device reset procedure. 3102 * @kernel_ctx: Kernel driver context structure. 3103 * @kernel_queues: array of hl_hw_queue. 3104 * @cs_mirror_list: CS mirror list for TDR. 3105 * @cs_mirror_lock: protects cs_mirror_list. 3106 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. 3107 * @event_queue: event queue for IRQ from CPU-CP. 3108 * @dma_pool: DMA pool for small allocations. 3109 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. 3110 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. 3111 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. 3112 * @asid_bitmap: holds used/available ASIDs. 3113 * @asid_mutex: protects asid_bitmap. 3114 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. 3115 * @debug_lock: protects critical section of setting debug mode for device 3116 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the 3117 * page tables are per context, the invalidation h/w is per MMU. 3118 * Therefore, we can't allow multiple contexts (we only have two, 3119 * user and kernel) to access the invalidation h/w at the same time. 3120 * In addition, any change to the PGT, modifying the MMU hash or 3121 * walking the PGT requires talking this lock. 3122 * @asic_prop: ASIC specific immutable properties. 3123 * @asic_funcs: ASIC specific functions. 3124 * @asic_specific: ASIC specific information to use only from ASIC files. 3125 * @vm: virtual memory manager for MMU. 3126 * @hwmon_dev: H/W monitor device. 3127 * @hl_chip_info: ASIC's sensors information. 3128 * @device_status_description: device status description. 3129 * @hl_debugfs: device's debugfs manager. 3130 * @cb_pool: list of pre allocated CBs. 3131 * @cb_pool_lock: protects the CB pool. 3132 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. 3133 * @internal_cb_pool_dma_addr: internal command buffer pool dma address. 3134 * @internal_cb_pool: internal command buffer memory pool. 3135 * @internal_cb_va_base: internal cb pool mmu virtual address base 3136 * @fpriv_list: list of file private data structures. Each structure is created 3137 * when a user opens the device 3138 * @fpriv_ctrl_list: list of file private data structures. Each structure is created 3139 * when a user opens the control device 3140 * @fpriv_list_lock: protects the fpriv_list 3141 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list 3142 * @aggregated_cs_counters: aggregated cs counters among all contexts 3143 * @mmu_priv: device-specific MMU data. 3144 * @mmu_func: device-related MMU functions. 3145 * @dec: list of decoder sw instance 3146 * @fw_loader: FW loader manager. 3147 * @pci_mem_region: array of memory regions in the PCI 3148 * @state_dump_specs: constants and dictionaries needed to dump system state. 3149 * @multi_cs_completion: array of multi-CS completion. 3150 * @clk_throttling: holds information about current/previous clock throttling events 3151 * @captured_err_info: holds information about errors. 3152 * @reset_info: holds current device reset information. 3153 * @stream_master_qid_arr: pointer to array with QIDs of master streams. 3154 * @fw_major_version: major version of current loaded preboot. 3155 * @fw_minor_version: minor version of current loaded preboot. 3156 * @dram_used_mem: current DRAM memory consumption. 3157 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram 3158 * @timeout_jiffies: device CS timeout value. 3159 * @max_power: the max power of the device, as configured by the sysadmin. This 3160 * value is saved so in case of hard-reset, the driver will restore 3161 * this value and update the F/W after the re-initialization 3162 * @boot_error_status_mask: contains a mask of the device boot error status. 3163 * Each bit represents a different error, according to 3164 * the defines in hl_boot_if.h. If the bit is cleared, 3165 * the error will be ignored by the driver during 3166 * device initialization. Mainly used to debug and 3167 * workaround firmware bugs 3168 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. 3169 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. 3170 * @last_successful_open_jif: timestamp (jiffies) of the last successful 3171 * device open. 3172 * @last_open_session_duration_jif: duration (jiffies) of the last device open 3173 * session. 3174 * @open_counter: number of successful device open operations. 3175 * @fw_poll_interval_usec: FW status poll interval in usec. 3176 * used for CPU boot status 3177 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. 3178 * used for COMMs protocols cmds(COMMS_STS_*) 3179 * @dram_binning: contains mask of drams that is received from the f/w which indicates which 3180 * drams are binned-out 3181 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which 3182 * tpc engines are binned-out 3183 * @card_type: Various ASICs have several card types. This indicates the card 3184 * type of the current device. 3185 * @major: habanalabs kernel driver major. 3186 * @high_pll: high PLL profile frequency. 3187 * @decoder_binning: contains mask of decoder engines that is received from the f/w which 3188 * indicates which decoder engines are binned-out 3189 * @edma_binning: contains mask of edma engines that is received from the f/w which 3190 * indicates which edma engines are binned-out 3191 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds. 3192 * @rotator_binning: contains mask of rotators engines that is received from the f/w 3193 * which indicates which rotator engines are binned-out(Gaudi3 and above). 3194 * @id: device minor. 3195 * @id_control: minor of the control device. 3196 * @cdev_idx: char device index. Used for setting its name. 3197 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit 3198 * addresses. 3199 * @is_in_dram_scrub: true if dram scrub operation is on going. 3200 * @disabled: is device disabled. 3201 * @late_init_done: is late init stage was done during initialization. 3202 * @hwmon_initialized: is H/W monitor sensors was initialized. 3203 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false 3204 * otherwise. 3205 * @dram_default_page_mapping: is DRAM default page mapping enabled. 3206 * @memory_scrub: true to perform device memory scrub in various locations, 3207 * such as context-switch, context close, page free, etc. 3208 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with 3209 * huge pages. 3210 * @init_done: is the initialization of the device done. 3211 * @device_cpu_disabled: is the device CPU disabled (due to timeouts) 3212 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure 3213 * can be used. This indication is needed because in some ASICs we need to do 3214 * specific operations to enable that infrastructure. 3215 * @cdev_sysfs_created: were char devices and sysfs nodes created. 3216 * @stop_on_err: true if engines should stop on error. 3217 * @supports_sync_stream: is sync stream supported. 3218 * @sync_stream_queue_idx: helper index for sync stream queues initialization. 3219 * @collective_mon_idx: helper index for collective initialization 3220 * @supports_coresight: is CoreSight supported. 3221 * @supports_cb_mapping: is mapping a CB to the device's MMU supported. 3222 * @process_kill_trial_cnt: number of trials reset thread tried killing 3223 * user processes 3224 * @device_fini_pending: true if device_fini was called and might be 3225 * waiting for the reset thread to finish 3226 * @supports_staged_submission: true if staged submissions are supported 3227 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already 3228 * halted. We can't halt it again because the COMMS 3229 * protocol will throw an error. Relevant only for 3230 * cases where Linux was not loaded to device CPU 3231 * @supports_wait_for_multi_cs: true if wait for multi CS is supported 3232 * @is_compute_ctx_active: Whether there is an active compute context executing. 3233 * @compute_ctx_in_release: true if the current compute context is being released. 3234 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. 3235 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the 3236 * device. 3237 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. 3238 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w 3239 * stages and sometimes we want to stop at a certain stage. Used only for testing. 3240 * @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing. 3241 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. 3242 * @pldm: Whether we are running in Palladium environment. Used only for testing. 3243 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from 3244 * the f/w. Used only for testing. 3245 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. 3246 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. 3247 * Used only for testing. 3248 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies 3249 * that the f/w is always alive. Used only for testing. 3250 * @supports_ctx_switch: true if a ctx switch is required upon first submission. 3251 * @support_preboot_binning: true if we support read binning info from preboot. 3252 */ 3253 struct hl_device { 3254 struct pci_dev *pdev; 3255 u64 pcie_bar_phys[HL_PCI_NUM_BARS]; 3256 void __iomem *pcie_bar[HL_PCI_NUM_BARS]; 3257 void __iomem *rmmio; 3258 struct cdev cdev; 3259 struct cdev cdev_ctrl; 3260 struct device *dev; 3261 struct device *dev_ctrl; 3262 struct delayed_work work_heartbeat; 3263 struct hl_device_reset_work device_reset_work; 3264 struct hl_device_reset_work device_release_watchdog_work; 3265 char asic_name[HL_STR_MAX]; 3266 char status[HL_DEV_STS_MAX][HL_STR_MAX]; 3267 enum hl_asic_type asic_type; 3268 struct hl_cq *completion_queue; 3269 struct hl_user_interrupt *user_interrupt; 3270 struct hl_user_interrupt common_user_cq_interrupt; 3271 struct hl_user_interrupt common_decoder_interrupt; 3272 struct hl_cs **shadow_cs_queue; 3273 struct workqueue_struct **cq_wq; 3274 struct workqueue_struct *eq_wq; 3275 struct workqueue_struct *cs_cmplt_wq; 3276 struct workqueue_struct *ts_free_obj_wq; 3277 struct workqueue_struct *prefetch_wq; 3278 struct workqueue_struct *reset_wq; 3279 struct hl_ctx *kernel_ctx; 3280 struct hl_hw_queue *kernel_queues; 3281 struct list_head cs_mirror_list; 3282 spinlock_t cs_mirror_lock; 3283 struct hl_mem_mgr kernel_mem_mgr; 3284 struct hl_eq event_queue; 3285 struct dma_pool *dma_pool; 3286 void *cpu_accessible_dma_mem; 3287 dma_addr_t cpu_accessible_dma_address; 3288 struct gen_pool *cpu_accessible_dma_pool; 3289 unsigned long *asid_bitmap; 3290 struct mutex asid_mutex; 3291 struct mutex send_cpu_message_lock; 3292 struct mutex debug_lock; 3293 struct mutex mmu_lock; 3294 struct asic_fixed_properties asic_prop; 3295 const struct hl_asic_funcs *asic_funcs; 3296 void *asic_specific; 3297 struct hl_vm vm; 3298 struct device *hwmon_dev; 3299 struct hwmon_chip_info *hl_chip_info; 3300 3301 struct hl_dbg_device_entry hl_debugfs; 3302 3303 struct list_head cb_pool; 3304 spinlock_t cb_pool_lock; 3305 3306 void *internal_cb_pool_virt_addr; 3307 dma_addr_t internal_cb_pool_dma_addr; 3308 struct gen_pool *internal_cb_pool; 3309 u64 internal_cb_va_base; 3310 3311 struct list_head fpriv_list; 3312 struct list_head fpriv_ctrl_list; 3313 struct mutex fpriv_list_lock; 3314 struct mutex fpriv_ctrl_list_lock; 3315 3316 struct hl_cs_counters_atomic aggregated_cs_counters; 3317 3318 struct hl_mmu_priv mmu_priv; 3319 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; 3320 3321 struct hl_dec *dec; 3322 3323 struct fw_load_mgr fw_loader; 3324 3325 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; 3326 3327 struct hl_state_dump_specs state_dump_specs; 3328 3329 struct multi_cs_completion multi_cs_completion[ 3330 MULTI_CS_MAX_USER_CTX]; 3331 struct hl_clk_throttle clk_throttling; 3332 struct hl_error_info captured_err_info; 3333 3334 struct hl_reset_info reset_info; 3335 3336 u32 *stream_master_qid_arr; 3337 u32 fw_major_version; 3338 u32 fw_minor_version; 3339 atomic64_t dram_used_mem; 3340 u64 memory_scrub_val; 3341 u64 timeout_jiffies; 3342 u64 max_power; 3343 u64 boot_error_status_mask; 3344 u64 dram_pci_bar_start; 3345 u64 last_successful_open_jif; 3346 u64 last_open_session_duration_jif; 3347 u64 open_counter; 3348 u64 fw_poll_interval_usec; 3349 ktime_t last_successful_open_ktime; 3350 u64 fw_comms_poll_interval_usec; 3351 u64 dram_binning; 3352 u64 tpc_binning; 3353 3354 enum cpucp_card_types card_type; 3355 u32 major; 3356 u32 high_pll; 3357 u32 decoder_binning; 3358 u32 edma_binning; 3359 u32 device_release_watchdog_timeout_sec; 3360 u32 rotator_binning; 3361 u16 id; 3362 u16 id_control; 3363 u16 cdev_idx; 3364 u16 cpu_pci_msb_addr; 3365 u8 is_in_dram_scrub; 3366 u8 disabled; 3367 u8 late_init_done; 3368 u8 hwmon_initialized; 3369 u8 reset_on_lockup; 3370 u8 dram_default_page_mapping; 3371 u8 memory_scrub; 3372 u8 pmmu_huge_range; 3373 u8 init_done; 3374 u8 device_cpu_disabled; 3375 u8 in_debug; 3376 u8 cdev_sysfs_created; 3377 u8 stop_on_err; 3378 u8 supports_sync_stream; 3379 u8 sync_stream_queue_idx; 3380 u8 collective_mon_idx; 3381 u8 supports_coresight; 3382 u8 supports_cb_mapping; 3383 u8 process_kill_trial_cnt; 3384 u8 device_fini_pending; 3385 u8 supports_staged_submission; 3386 u8 device_cpu_is_halted; 3387 u8 supports_wait_for_multi_cs; 3388 u8 stream_master_qid_arr_size; 3389 u8 is_compute_ctx_active; 3390 u8 compute_ctx_in_release; 3391 u8 supports_mmu_prefetch; 3392 u8 reset_upon_device_release; 3393 u8 supports_ctx_switch; 3394 u8 support_preboot_binning; 3395 3396 /* Parameters for bring-up */ 3397 u64 nic_ports_mask; 3398 u64 fw_components; 3399 u8 mmu_enable; 3400 u8 cpu_queues_enable; 3401 u8 pldm; 3402 u8 hard_reset_on_fw_events; 3403 u8 bmc_enable; 3404 u8 reset_on_preboot_fail; 3405 u8 heartbeat; 3406 }; 3407 3408 3409 /** 3410 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure 3411 * @refcount: refcount used to protect removing this id when several 3412 * wait cs are used to wait of the reserved encaps signals. 3413 * @hdev: pointer to habanalabs device structure. 3414 * @hw_sob: pointer to H/W SOB used in the reservation. 3415 * @ctx: pointer to the user's context data structure 3416 * @cs_seq: staged cs sequence which contains encapsulated signals 3417 * @id: idr handler id to be used to fetch the handler info 3418 * @q_idx: stream queue index 3419 * @pre_sob_val: current SOB value before reservation 3420 * @count: signals number 3421 */ 3422 struct hl_cs_encaps_sig_handle { 3423 struct kref refcount; 3424 struct hl_device *hdev; 3425 struct hl_hw_sob *hw_sob; 3426 struct hl_ctx *ctx; 3427 u64 cs_seq; 3428 u32 id; 3429 u32 q_idx; 3430 u32 pre_sob_val; 3431 u32 count; 3432 }; 3433 3434 /* 3435 * IOCTLs 3436 */ 3437 3438 /** 3439 * typedef hl_ioctl_t - typedef for ioctl function in the driver 3440 * @hpriv: pointer to the FD's private data, which contains state of 3441 * user process 3442 * @data: pointer to the input/output arguments structure of the IOCTL 3443 * 3444 * Return: 0 for success, negative value for error 3445 */ 3446 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); 3447 3448 /** 3449 * struct hl_ioctl_desc - describes an IOCTL entry of the driver. 3450 * @cmd: the IOCTL code as created by the kernel macros. 3451 * @func: pointer to the driver's function that should be called for this IOCTL. 3452 */ 3453 struct hl_ioctl_desc { 3454 unsigned int cmd; 3455 hl_ioctl_t *func; 3456 }; 3457 3458 3459 /* 3460 * Kernel module functions that can be accessed by entire module 3461 */ 3462 3463 /** 3464 * hl_get_sg_info() - get number of pages and the DMA address from SG list. 3465 * @sg: the SG list. 3466 * @dma_addr: pointer to DMA address to return. 3467 * 3468 * Calculate the number of consecutive pages described by the SG list. Take the 3469 * offset of the address in the first page, add to it the length and round it up 3470 * to the number of needed pages. 3471 */ 3472 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) 3473 { 3474 *dma_addr = sg_dma_address(sg); 3475 3476 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + 3477 (PAGE_SIZE - 1)) >> PAGE_SHIFT; 3478 } 3479 3480 /** 3481 * hl_mem_area_inside_range() - Checks whether address+size are inside a range. 3482 * @address: The start address of the area we want to validate. 3483 * @size: The size in bytes of the area we want to validate. 3484 * @range_start_address: The start address of the valid range. 3485 * @range_end_address: The end address of the valid range. 3486 * 3487 * Return: true if the area is inside the valid range, false otherwise. 3488 */ 3489 static inline bool hl_mem_area_inside_range(u64 address, u64 size, 3490 u64 range_start_address, u64 range_end_address) 3491 { 3492 u64 end_address = address + size; 3493 3494 if ((address >= range_start_address) && 3495 (end_address <= range_end_address) && 3496 (end_address > address)) 3497 return true; 3498 3499 return false; 3500 } 3501 3502 /** 3503 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. 3504 * @address: The start address of the area we want to validate. 3505 * @size: The size in bytes of the area we want to validate. 3506 * @range_start_address: The start address of the valid range. 3507 * @range_end_address: The end address of the valid range. 3508 * 3509 * Return: true if the area overlaps part or all of the valid range, 3510 * false otherwise. 3511 */ 3512 static inline bool hl_mem_area_crosses_range(u64 address, u32 size, 3513 u64 range_start_address, u64 range_end_address) 3514 { 3515 u64 end_address = address + size - 1; 3516 3517 return ((address <= range_end_address) && (range_start_address <= end_address)); 3518 } 3519 3520 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); 3521 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, 3522 gfp_t flag, const char *caller); 3523 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, 3524 dma_addr_t dma_handle, const char *caller); 3525 void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size, 3526 dma_addr_t *dma_handle, const char *caller); 3527 void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr, 3528 const char *caller); 3529 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, 3530 dma_addr_t *dma_handle, const char *caller); 3531 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, 3532 const char *caller); 3533 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); 3534 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3535 enum dma_data_direction dir); 3536 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, 3537 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar); 3538 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, 3539 enum debugfs_access_type acc_type); 3540 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, 3541 u64 addr, u64 *val, enum debugfs_access_type acc_type); 3542 int hl_device_open(struct inode *inode, struct file *filp); 3543 int hl_device_open_ctrl(struct inode *inode, struct file *filp); 3544 bool hl_device_operational(struct hl_device *hdev, 3545 enum hl_device_status *status); 3546 bool hl_ctrl_device_operational(struct hl_device *hdev, 3547 enum hl_device_status *status); 3548 enum hl_device_status hl_device_status(struct hl_device *hdev); 3549 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); 3550 int hl_hw_queues_create(struct hl_device *hdev); 3551 void hl_hw_queues_destroy(struct hl_device *hdev); 3552 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, 3553 u32 cb_size, u64 cb_ptr); 3554 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, 3555 u32 ctl, u32 len, u64 ptr); 3556 int hl_hw_queue_schedule_cs(struct hl_cs *cs); 3557 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); 3558 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); 3559 void hl_hw_queue_update_ci(struct hl_cs *cs); 3560 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); 3561 3562 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) 3563 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) 3564 3565 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); 3566 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); 3567 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); 3568 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); 3569 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); 3570 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); 3571 irqreturn_t hl_irq_handler_cq(int irq, void *arg); 3572 irqreturn_t hl_irq_handler_eq(int irq, void *arg); 3573 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); 3574 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg); 3575 irqreturn_t hl_irq_handler_default(int irq, void *arg); 3576 u32 hl_cq_inc_ptr(u32 ptr); 3577 3578 int hl_asid_init(struct hl_device *hdev); 3579 void hl_asid_fini(struct hl_device *hdev); 3580 unsigned long hl_asid_alloc(struct hl_device *hdev); 3581 void hl_asid_free(struct hl_device *hdev, unsigned long asid); 3582 3583 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); 3584 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); 3585 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); 3586 void hl_ctx_do_release(struct kref *ref); 3587 void hl_ctx_get(struct hl_ctx *ctx); 3588 int hl_ctx_put(struct hl_ctx *ctx); 3589 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); 3590 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); 3591 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, 3592 struct hl_fence **fence, u32 arr_len); 3593 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); 3594 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); 3595 3596 int hl_device_init(struct hl_device *hdev, struct class *hclass); 3597 void hl_device_fini(struct hl_device *hdev); 3598 int hl_device_suspend(struct hl_device *hdev); 3599 int hl_device_resume(struct hl_device *hdev); 3600 int hl_device_reset(struct hl_device *hdev, u32 flags); 3601 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask); 3602 void hl_hpriv_get(struct hl_fpriv *hpriv); 3603 int hl_hpriv_put(struct hl_fpriv *hpriv); 3604 int hl_device_utilization(struct hl_device *hdev, u32 *utilization); 3605 3606 int hl_build_hwmon_channel_info(struct hl_device *hdev, 3607 struct cpucp_sensor *sensors_arr); 3608 3609 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); 3610 3611 int hl_sysfs_init(struct hl_device *hdev); 3612 void hl_sysfs_fini(struct hl_device *hdev); 3613 3614 int hl_hwmon_init(struct hl_device *hdev); 3615 void hl_hwmon_fini(struct hl_device *hdev); 3616 void hl_hwmon_release_resources(struct hl_device *hdev); 3617 3618 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, 3619 struct hl_ctx *ctx, u32 cb_size, bool internal_cb, 3620 bool map_cb, u64 *handle); 3621 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); 3622 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); 3623 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); 3624 void hl_cb_put(struct hl_cb *cb); 3625 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, 3626 bool internal_cb); 3627 int hl_cb_pool_init(struct hl_device *hdev); 3628 int hl_cb_pool_fini(struct hl_device *hdev); 3629 int hl_cb_va_pool_init(struct hl_ctx *ctx); 3630 void hl_cb_va_pool_fini(struct hl_ctx *ctx); 3631 3632 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); 3633 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 3634 enum hl_queue_type queue_type, bool is_kernel_allocated_cb); 3635 void hl_sob_reset_error(struct kref *ref); 3636 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); 3637 void hl_fence_put(struct hl_fence *fence); 3638 void hl_fences_put(struct hl_fence **fence, int len); 3639 void hl_fence_get(struct hl_fence *fence); 3640 void cs_get(struct hl_cs *cs); 3641 bool cs_needs_completion(struct hl_cs *cs); 3642 bool cs_needs_timeout(struct hl_cs *cs); 3643 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); 3644 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); 3645 void hl_multi_cs_completion_init(struct hl_device *hdev); 3646 3647 void goya_set_asic_funcs(struct hl_device *hdev); 3648 void gaudi_set_asic_funcs(struct hl_device *hdev); 3649 void gaudi2_set_asic_funcs(struct hl_device *hdev); 3650 3651 int hl_vm_ctx_init(struct hl_ctx *ctx); 3652 void hl_vm_ctx_fini(struct hl_ctx *ctx); 3653 3654 int hl_vm_init(struct hl_device *hdev); 3655 void hl_vm_fini(struct hl_device *hdev); 3656 3657 void hl_hw_block_mem_init(struct hl_ctx *ctx); 3658 void hl_hw_block_mem_fini(struct hl_ctx *ctx); 3659 3660 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3661 enum hl_va_range_type type, u64 size, u32 alignment); 3662 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3663 u64 start_addr, u64 size); 3664 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 3665 struct hl_userptr *userptr); 3666 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); 3667 void hl_userptr_delete_list(struct hl_device *hdev, 3668 struct list_head *userptr_list); 3669 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, 3670 struct list_head *userptr_list, 3671 struct hl_userptr **userptr); 3672 3673 int hl_mmu_init(struct hl_device *hdev); 3674 void hl_mmu_fini(struct hl_device *hdev); 3675 int hl_mmu_ctx_init(struct hl_ctx *ctx); 3676 void hl_mmu_ctx_fini(struct hl_ctx *ctx); 3677 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, 3678 u32 page_size, bool flush_pte); 3679 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 3680 u32 page_size, u32 *real_page_size, bool is_dram_addr); 3681 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, 3682 bool flush_pte); 3683 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, 3684 u64 phys_addr, u32 size); 3685 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); 3686 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); 3687 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, 3688 u32 flags, u32 asid, u64 va, u64 size); 3689 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 3690 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); 3691 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 3692 u8 hop_idx, u64 hop_addr, u64 virt_addr); 3693 void hl_mmu_hr_flush(struct hl_ctx *ctx); 3694 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, 3695 u64 pgt_size); 3696 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); 3697 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3698 u32 hop_table_size); 3699 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, 3700 u32 hop_table_size); 3701 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3702 u64 val, u32 hop_table_size); 3703 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3704 u32 hop_table_size); 3705 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3706 u32 hop_table_size); 3707 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); 3708 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, 3709 struct hl_hr_mmu_funcs *hr_func, 3710 u64 curr_pte); 3711 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, 3712 struct hl_hr_mmu_funcs *hr_func, 3713 struct hl_mmu_properties *mmu_prop); 3714 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, 3715 struct hl_mmu_hr_priv *hr_priv, 3716 struct hl_hr_mmu_funcs *hr_func, 3717 struct hl_mmu_properties *mmu_prop, 3718 u64 curr_pte, bool *is_new_hop); 3719 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, 3720 struct hl_hr_mmu_funcs *hr_func); 3721 void hl_mmu_swap_out(struct hl_ctx *ctx); 3722 void hl_mmu_swap_in(struct hl_ctx *ctx); 3723 int hl_mmu_if_set_funcs(struct hl_device *hdev); 3724 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3725 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3726 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); 3727 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 3728 struct hl_mmu_hop_info *hops); 3729 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); 3730 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); 3731 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); 3732 3733 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, 3734 void __iomem *dst, u32 src_offset, u32 size); 3735 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); 3736 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, 3737 u16 len, u32 timeout, u64 *result); 3738 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); 3739 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, 3740 size_t irq_arr_size); 3741 int hl_fw_test_cpu_queue(struct hl_device *hdev); 3742 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, 3743 dma_addr_t *dma_handle); 3744 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, 3745 void *vaddr); 3746 int hl_fw_send_heartbeat(struct hl_device *hdev); 3747 int hl_fw_cpucp_info_get(struct hl_device *hdev, 3748 u32 sts_boot_dev_sts0_reg, 3749 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3750 u32 boot_err1_reg); 3751 int hl_fw_cpucp_handshake(struct hl_device *hdev, 3752 u32 sts_boot_dev_sts0_reg, 3753 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3754 u32 boot_err1_reg); 3755 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); 3756 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); 3757 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, 3758 struct hl_info_pci_counters *counters); 3759 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, 3760 u64 *total_energy); 3761 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, 3762 enum pll_index *pll_index); 3763 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, 3764 u16 *pll_freq_arr); 3765 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); 3766 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); 3767 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); 3768 int hl_fw_init_cpu(struct hl_device *hdev); 3769 int hl_fw_wait_preboot_ready(struct hl_device *hdev); 3770 int hl_fw_read_preboot_status(struct hl_device *hdev); 3771 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, 3772 struct fw_load_mgr *fw_loader, 3773 enum comms_cmd cmd, unsigned int size, 3774 bool wait_ok, u32 timeout); 3775 int hl_fw_dram_replaced_row_get(struct hl_device *hdev, 3776 struct cpucp_hbm_row_info *info); 3777 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); 3778 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); 3779 int hl_fw_send_device_activity(struct hl_device *hdev, bool open); 3780 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], 3781 bool is_wc[3]); 3782 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); 3783 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); 3784 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, 3785 struct hl_inbound_pci_region *pci_region); 3786 int hl_pci_set_outbound_region(struct hl_device *hdev, 3787 struct hl_outbound_pci_region *pci_region); 3788 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); 3789 int hl_pci_init(struct hl_device *hdev); 3790 void hl_pci_fini(struct hl_device *hdev); 3791 3792 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); 3793 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); 3794 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3795 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3796 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3797 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3798 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3799 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3800 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3801 long hl_fw_get_max_power(struct hl_device *hdev); 3802 void hl_fw_set_max_power(struct hl_device *hdev); 3803 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, 3804 u32 nonce); 3805 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3806 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3807 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3808 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3809 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); 3810 void hl_fw_set_pll_profile(struct hl_device *hdev); 3811 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); 3812 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); 3813 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode, 3814 dma_addr_t buff, u32 *size); 3815 3816 void hw_sob_get(struct hl_hw_sob *hw_sob); 3817 void hw_sob_put(struct hl_hw_sob *hw_sob); 3818 void hl_encaps_release_handle_and_put_ctx(struct kref *ref); 3819 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref); 3820 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, 3821 struct hl_cs *cs, struct hl_cs_job *job, 3822 struct hl_cs_compl *cs_cmpl); 3823 3824 int hl_dec_init(struct hl_device *hdev); 3825 void hl_dec_fini(struct hl_device *hdev); 3826 void hl_dec_ctx_fini(struct hl_ctx *ctx); 3827 3828 void hl_release_pending_user_interrupts(struct hl_device *hdev); 3829 void hl_abort_waitings_for_completion(struct hl_device *hdev); 3830 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 3831 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); 3832 3833 int hl_state_dump(struct hl_device *hdev); 3834 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); 3835 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, 3836 struct hl_mon_state_dump *mon); 3837 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); 3838 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, 3839 const char *format, ...); 3840 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); 3841 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); 3842 3843 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); 3844 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg); 3845 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, 3846 void *args); 3847 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, 3848 u64 handle); 3849 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); 3850 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); 3851 struct hl_mmap_mem_buf * 3852 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, 3853 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, 3854 void *args); 3855 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); 3856 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 3857 u8 flags); 3858 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 3859 u8 flags, u64 *event_mask); 3860 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu); 3861 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, 3862 u64 *event_mask); 3863 3864 #ifdef CONFIG_DEBUG_FS 3865 3866 void hl_debugfs_init(void); 3867 void hl_debugfs_fini(void); 3868 void hl_debugfs_add_device(struct hl_device *hdev); 3869 void hl_debugfs_remove_device(struct hl_device *hdev); 3870 void hl_debugfs_add_file(struct hl_fpriv *hpriv); 3871 void hl_debugfs_remove_file(struct hl_fpriv *hpriv); 3872 void hl_debugfs_add_cb(struct hl_cb *cb); 3873 void hl_debugfs_remove_cb(struct hl_cb *cb); 3874 void hl_debugfs_add_cs(struct hl_cs *cs); 3875 void hl_debugfs_remove_cs(struct hl_cs *cs); 3876 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); 3877 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); 3878 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); 3879 void hl_debugfs_remove_userptr(struct hl_device *hdev, 3880 struct hl_userptr *userptr); 3881 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 3882 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 3883 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, 3884 unsigned long length); 3885 3886 #else 3887 3888 static inline void __init hl_debugfs_init(void) 3889 { 3890 } 3891 3892 static inline void hl_debugfs_fini(void) 3893 { 3894 } 3895 3896 static inline void hl_debugfs_add_device(struct hl_device *hdev) 3897 { 3898 } 3899 3900 static inline void hl_debugfs_remove_device(struct hl_device *hdev) 3901 { 3902 } 3903 3904 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) 3905 { 3906 } 3907 3908 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 3909 { 3910 } 3911 3912 static inline void hl_debugfs_add_cb(struct hl_cb *cb) 3913 { 3914 } 3915 3916 static inline void hl_debugfs_remove_cb(struct hl_cb *cb) 3917 { 3918 } 3919 3920 static inline void hl_debugfs_add_cs(struct hl_cs *cs) 3921 { 3922 } 3923 3924 static inline void hl_debugfs_remove_cs(struct hl_cs *cs) 3925 { 3926 } 3927 3928 static inline void hl_debugfs_add_job(struct hl_device *hdev, 3929 struct hl_cs_job *job) 3930 { 3931 } 3932 3933 static inline void hl_debugfs_remove_job(struct hl_device *hdev, 3934 struct hl_cs_job *job) 3935 { 3936 } 3937 3938 static inline void hl_debugfs_add_userptr(struct hl_device *hdev, 3939 struct hl_userptr *userptr) 3940 { 3941 } 3942 3943 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, 3944 struct hl_userptr *userptr) 3945 { 3946 } 3947 3948 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, 3949 struct hl_ctx *ctx) 3950 { 3951 } 3952 3953 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, 3954 struct hl_ctx *ctx) 3955 { 3956 } 3957 3958 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, 3959 char *data, unsigned long length) 3960 { 3961 } 3962 3963 #endif 3964 3965 /* Security */ 3966 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, 3967 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], 3968 int array_size); 3969 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], 3970 int mm_array_size, int offset, const u32 pb_blocks[], 3971 struct hl_block_glbl_sec sgs_array[], int blocks_array_size); 3972 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], 3973 struct hl_block_glbl_sec sgs_array[], u32 block_offset, 3974 int array_size); 3975 void hl_secure_block(struct hl_device *hdev, 3976 struct hl_block_glbl_sec sgs_array[], int array_size); 3977 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 3978 u32 dcore_offset, u32 num_instances, u32 instance_offset, 3979 const u32 pb_blocks[], u32 blocks_array_size, 3980 const u32 *regs_array, u32 regs_array_size, u64 mask); 3981 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 3982 u32 num_instances, u32 instance_offset, 3983 const u32 pb_blocks[], u32 blocks_array_size, 3984 const u32 *regs_array, u32 regs_array_size); 3985 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, 3986 u32 dcore_offset, u32 num_instances, u32 instance_offset, 3987 const u32 pb_blocks[], u32 blocks_array_size, 3988 const struct range *regs_range_array, u32 regs_range_array_size, 3989 u64 mask); 3990 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, 3991 u32 dcore_offset, u32 num_instances, u32 instance_offset, 3992 const u32 pb_blocks[], u32 blocks_array_size, 3993 const struct range *regs_range_array, 3994 u32 regs_range_array_size); 3995 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 3996 u32 num_instances, u32 instance_offset, 3997 const u32 pb_blocks[], u32 blocks_array_size, 3998 const u32 *regs_array, u32 regs_array_size); 3999 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4000 u32 num_instances, u32 instance_offset, 4001 const u32 pb_blocks[], u32 blocks_array_size, 4002 const struct range *regs_range_array, 4003 u32 regs_range_array_size); 4004 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4005 u32 num_instances, u32 instance_offset, 4006 const u32 pb_blocks[], u32 blocks_array_size); 4007 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4008 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4009 const u32 pb_blocks[], u32 blocks_array_size, u64 mask); 4010 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4011 u32 num_instances, u32 instance_offset, 4012 const u32 pb_blocks[], u32 blocks_array_size); 4013 4014 /* IOCTLs */ 4015 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); 4016 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); 4017 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); 4018 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); 4019 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data); 4020 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); 4021 4022 #endif /* HABANALABSP_H_ */ 4023