1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #define pr_fmt(fmt)			"habanalabs: " fmt
9 
10 #include <uapi/drm/habanalabs_accel.h>
11 #include "habanalabs.h"
12 
13 #include <linux/pci.h>
14 #include <linux/hwmon.h>
15 #include <linux/vmalloc.h>
16 
17 #include <trace/events/habanalabs.h>
18 
19 #define HL_RESET_DELAY_USEC			10000	/* 10ms */
20 
21 #define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC	5
22 
23 enum dma_alloc_type {
24 	DMA_ALLOC_COHERENT,
25 	DMA_ALLOC_POOL,
26 };
27 
28 #define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788
29 
30 /*
31  * hl_set_dram_bar- sets the bar to allow later access to address
32  *
33  * @hdev: pointer to habanalabs device structure.
34  * @addr: the address the caller wants to access.
35  * @region: the PCI region.
36  * @new_bar_region_base: the new BAR region base address.
37  *
38  * @return: the old BAR base address on success, U64_MAX for failure.
39  *	    The caller should set it back to the old address after use.
40  *
41  * In case the bar space does not cover the whole address space,
42  * the bar base address should be set to allow access to a given address.
43  * This function can be called also if the bar doesn't need to be set,
44  * in that case it just won't change the base.
45  */
46 static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region,
47 				u64 *new_bar_region_base)
48 {
49 	struct asic_fixed_properties *prop = &hdev->asic_prop;
50 	u64 bar_base_addr, old_base;
51 
52 	if (is_power_of_2(prop->dram_pci_bar_size))
53 		bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
54 	else
55 		bar_base_addr = DIV_ROUND_DOWN_ULL(addr, prop->dram_pci_bar_size) *
56 				prop->dram_pci_bar_size;
57 
58 	old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);
59 
60 	/* in case of success we need to update the new BAR base */
61 	if ((old_base != U64_MAX) && new_bar_region_base)
62 		*new_bar_region_base = bar_base_addr;
63 
64 	return old_base;
65 }
66 
67 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
68 	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar)
69 {
70 	struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
71 	u64 old_base = 0, rc, bar_region_base = region->region_base;
72 	void __iomem *acc_addr;
73 
74 	if (set_dram_bar) {
75 		old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base);
76 		if (old_base == U64_MAX)
77 			return -EIO;
78 	}
79 
80 	acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
81 			(addr - bar_region_base);
82 
83 	switch (acc_type) {
84 	case DEBUGFS_READ8:
85 		*val = readb(acc_addr);
86 		break;
87 	case DEBUGFS_WRITE8:
88 		writeb(*val, acc_addr);
89 		break;
90 	case DEBUGFS_READ32:
91 		*val = readl(acc_addr);
92 		break;
93 	case DEBUGFS_WRITE32:
94 		writel(*val, acc_addr);
95 		break;
96 	case DEBUGFS_READ64:
97 		*val = readq(acc_addr);
98 		break;
99 	case DEBUGFS_WRITE64:
100 		writeq(*val, acc_addr);
101 		break;
102 	}
103 
104 	if (set_dram_bar) {
105 		rc = hl_set_dram_bar(hdev, old_base, region, NULL);
106 		if (rc == U64_MAX)
107 			return -EIO;
108 	}
109 
110 	return 0;
111 }
112 
113 static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
114 					gfp_t flag, enum dma_alloc_type alloc_type,
115 					const char *caller)
116 {
117 	void *ptr = NULL;
118 
119 	switch (alloc_type) {
120 	case DMA_ALLOC_COHERENT:
121 		ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag);
122 		break;
123 	case DMA_ALLOC_POOL:
124 		ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle);
125 		break;
126 	}
127 
128 	if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr))
129 		trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size,
130 						caller);
131 
132 	return ptr;
133 }
134 
135 static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr,
136 					dma_addr_t dma_handle, enum dma_alloc_type alloc_type,
137 					const char *caller)
138 {
139 	/* this is needed to avoid warning on using freed pointer */
140 	u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr;
141 
142 	switch (alloc_type) {
143 	case DMA_ALLOC_COHERENT:
144 		hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle);
145 		break;
146 	case DMA_ALLOC_POOL:
147 		hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle);
148 		break;
149 	}
150 
151 	trace_habanalabs_dma_free(hdev->dev, store_cpu_addr, dma_handle, size, caller);
152 }
153 
154 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
155 					gfp_t flag, const char *caller)
156 {
157 	return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller);
158 }
159 
160 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
161 					dma_addr_t dma_handle, const char *caller)
162 {
163 	hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller);
164 }
165 
166 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
167 					dma_addr_t *dma_handle, const char *caller)
168 {
169 	return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller);
170 }
171 
172 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
173 					const char *caller)
174 {
175 	hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller);
176 }
177 
178 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle)
179 {
180 	return hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
181 }
182 
183 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr)
184 {
185 	hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, vaddr);
186 }
187 
188 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
189 {
190 	struct asic_fixed_properties *prop = &hdev->asic_prop;
191 	struct scatterlist *sg;
192 	int rc, i;
193 
194 	rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
195 	if (rc)
196 		return rc;
197 
198 	/* Shift to the device's base physical address of host memory if necessary */
199 	if (prop->device_dma_offset_for_host_access)
200 		for_each_sgtable_dma_sg(sgt, sg, i)
201 			sg->dma_address += prop->device_dma_offset_for_host_access;
202 
203 	return 0;
204 }
205 
206 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
207 {
208 	struct asic_fixed_properties *prop = &hdev->asic_prop;
209 	struct scatterlist *sg;
210 	int i;
211 
212 	/* Cancel the device's base physical address of host memory if necessary */
213 	if (prop->device_dma_offset_for_host_access)
214 		for_each_sgtable_dma_sg(sgt, sg, i)
215 			sg->dma_address -= prop->device_dma_offset_for_host_access;
216 
217 	dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
218 }
219 
220 /*
221  * hl_access_cfg_region - access the config region
222  *
223  * @hdev: pointer to habanalabs device structure
224  * @addr: the address to access
225  * @val: the value to write from or read to
226  * @acc_type: the type of access (read/write 64/32)
227  */
228 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
229 	enum debugfs_access_type acc_type)
230 {
231 	struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
232 	u32 val_h, val_l;
233 
234 	if (!IS_ALIGNED(addr, sizeof(u32))) {
235 		dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
236 		return -EINVAL;
237 	}
238 
239 	switch (acc_type) {
240 	case DEBUGFS_READ32:
241 		*val = RREG32(addr - cfg_region->region_base);
242 		break;
243 	case DEBUGFS_WRITE32:
244 		WREG32(addr - cfg_region->region_base, *val);
245 		break;
246 	case DEBUGFS_READ64:
247 		val_l = RREG32(addr - cfg_region->region_base);
248 		val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);
249 
250 		*val = (((u64) val_h) << 32) | val_l;
251 		break;
252 	case DEBUGFS_WRITE64:
253 		WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
254 		WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
255 		break;
256 	default:
257 		dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
258 		return -EOPNOTSUPP;
259 	}
260 
261 	return 0;
262 }
263 
264 /*
265  * hl_access_dev_mem - access device memory
266  *
267  * @hdev: pointer to habanalabs device structure
268  * @region_type: the type of the region the address belongs to
269  * @addr: the address to access
270  * @val: the value to write from or read to
271  * @acc_type: the type of access (r/w, 32/64)
272  */
273 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
274 			u64 addr, u64 *val, enum debugfs_access_type acc_type)
275 {
276 	switch (region_type) {
277 	case PCI_REGION_CFG:
278 		return hl_access_cfg_region(hdev, addr, val, acc_type);
279 	case PCI_REGION_SRAM:
280 	case PCI_REGION_DRAM:
281 		return hl_access_sram_dram_region(hdev, addr, val, acc_type,
282 				region_type, (region_type == PCI_REGION_DRAM));
283 	default:
284 		return -EFAULT;
285 	}
286 
287 	return 0;
288 }
289 
290 void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...)
291 {
292 	va_list args;
293 	int str_size;
294 
295 	va_start(args, fmt);
296 	/* Calculate formatted string length. Assuming each string is null terminated, hence
297 	 * increment result by 1
298 	 */
299 	str_size = vsnprintf(NULL, 0, fmt, args) + 1;
300 	va_end(args);
301 
302 	if ((e->actual_size + str_size) < e->allocated_buf_size) {
303 		va_start(args, fmt);
304 		vsnprintf(e->buf + e->actual_size, str_size, fmt, args);
305 		va_end(args);
306 	}
307 
308 	/* Need to update the size even when not updating destination buffer to get the exact size
309 	 * of all input strings
310 	 */
311 	e->actual_size += str_size;
312 }
313 
314 enum hl_device_status hl_device_status(struct hl_device *hdev)
315 {
316 	enum hl_device_status status;
317 
318 	if (hdev->reset_info.in_reset) {
319 		if (hdev->reset_info.in_compute_reset)
320 			status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE;
321 		else
322 			status = HL_DEVICE_STATUS_IN_RESET;
323 	} else if (hdev->reset_info.needs_reset) {
324 		status = HL_DEVICE_STATUS_NEEDS_RESET;
325 	} else if (hdev->disabled) {
326 		status = HL_DEVICE_STATUS_MALFUNCTION;
327 	} else if (!hdev->init_done) {
328 		status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
329 	} else {
330 		status = HL_DEVICE_STATUS_OPERATIONAL;
331 	}
332 
333 	return status;
334 }
335 
336 bool hl_device_operational(struct hl_device *hdev,
337 		enum hl_device_status *status)
338 {
339 	enum hl_device_status current_status;
340 
341 	current_status = hl_device_status(hdev);
342 	if (status)
343 		*status = current_status;
344 
345 	switch (current_status) {
346 	case HL_DEVICE_STATUS_IN_RESET:
347 	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
348 	case HL_DEVICE_STATUS_MALFUNCTION:
349 	case HL_DEVICE_STATUS_NEEDS_RESET:
350 		return false;
351 	case HL_DEVICE_STATUS_OPERATIONAL:
352 	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
353 	default:
354 		return true;
355 	}
356 }
357 
358 bool hl_ctrl_device_operational(struct hl_device *hdev,
359 		enum hl_device_status *status)
360 {
361 	enum hl_device_status current_status;
362 
363 	current_status = hl_device_status(hdev);
364 	if (status)
365 		*status = current_status;
366 
367 	switch (current_status) {
368 	case HL_DEVICE_STATUS_MALFUNCTION:
369 		return false;
370 	case HL_DEVICE_STATUS_IN_RESET:
371 	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
372 	case HL_DEVICE_STATUS_NEEDS_RESET:
373 	case HL_DEVICE_STATUS_OPERATIONAL:
374 	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
375 	default:
376 		return true;
377 	}
378 }
379 
380 static void print_idle_status_mask(struct hl_device *hdev, const char *message,
381 					u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])
382 {
383 	if (idle_mask[3])
384 		dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx_%016llx)\n",
385 			message, idle_mask[3], idle_mask[2], idle_mask[1], idle_mask[0]);
386 	else if (idle_mask[2])
387 		dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx)\n",
388 			message, idle_mask[2], idle_mask[1], idle_mask[0]);
389 	else if (idle_mask[1])
390 		dev_err(hdev->dev, "%s (mask %#llx_%016llx)\n",
391 			message, idle_mask[1], idle_mask[0]);
392 	else
393 		dev_err(hdev->dev, "%s (mask %#llx)\n", message, idle_mask[0]);
394 }
395 
396 static void hpriv_release(struct kref *ref)
397 {
398 	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
399 	bool reset_device, device_is_idle = true;
400 	struct hl_fpriv *hpriv;
401 	struct hl_device *hdev;
402 
403 	hpriv = container_of(ref, struct hl_fpriv, refcount);
404 
405 	hdev = hpriv->hdev;
406 
407 	hdev->asic_funcs->send_device_activity(hdev, false);
408 
409 	put_pid(hpriv->taskpid);
410 
411 	hl_debugfs_remove_file(hpriv);
412 
413 	mutex_destroy(&hpriv->ctx_lock);
414 	mutex_destroy(&hpriv->restore_phase_mutex);
415 
416 	/* There should be no memory buffers at this point and handles IDR can be destroyed */
417 	hl_mem_mgr_idr_destroy(&hpriv->mem_mgr);
418 
419 	/* Device should be reset if reset-upon-device-release is enabled, or if there is a pending
420 	 * reset that waits for device release.
421 	 */
422 	reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active;
423 
424 	/* Check the device idle status and reset if not idle.
425 	 * Skip it if already in reset, or if device is going to be reset in any case.
426 	 */
427 	if (!hdev->reset_info.in_reset && !reset_device && hdev->pdev && !hdev->pldm)
428 		device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask,
429 							HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL);
430 	if (!device_is_idle) {
431 		print_idle_status_mask(hdev, "device is not idle after user context is closed",
432 					idle_mask);
433 		reset_device = true;
434 	}
435 
436 	/* We need to remove the user from the list to make sure the reset process won't
437 	 * try to kill the user process. Because, if we got here, it means there are no
438 	 * more driver/device resources that the user process is occupying so there is
439 	 * no need to kill it
440 	 *
441 	 * However, we can't set the compute_ctx to NULL at this stage. This is to prevent
442 	 * a race between the release and opening the device again. We don't want to let
443 	 * a user open the device while there a reset is about to happen.
444 	 */
445 	mutex_lock(&hdev->fpriv_list_lock);
446 	list_del(&hpriv->dev_node);
447 	mutex_unlock(&hdev->fpriv_list_lock);
448 
449 	if (reset_device) {
450 		hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
451 	} else {
452 		/* Scrubbing is handled within hl_device_reset(), so here need to do it directly */
453 		int rc = hdev->asic_funcs->scrub_device_mem(hdev);
454 
455 		if (rc)
456 			dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc);
457 	}
458 
459 	/* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
460 	 * thread, we don't care because the in_reset is marked so if a user will try to open
461 	 * the device it will fail on that, even if compute_ctx is false.
462 	 */
463 	mutex_lock(&hdev->fpriv_list_lock);
464 	hdev->is_compute_ctx_active = false;
465 	mutex_unlock(&hdev->fpriv_list_lock);
466 
467 	hdev->compute_ctx_in_release = 0;
468 
469 	/* release the eventfd */
470 	if (hpriv->notifier_event.eventfd)
471 		eventfd_ctx_put(hpriv->notifier_event.eventfd);
472 
473 	mutex_destroy(&hpriv->notifier_event.lock);
474 
475 	kfree(hpriv);
476 }
477 
478 void hl_hpriv_get(struct hl_fpriv *hpriv)
479 {
480 	kref_get(&hpriv->refcount);
481 }
482 
483 int hl_hpriv_put(struct hl_fpriv *hpriv)
484 {
485 	return kref_put(&hpriv->refcount, hpriv_release);
486 }
487 
488 static void print_device_in_use_info(struct hl_device *hdev, const char *message)
489 {
490 	u32 active_cs_num, dmabuf_export_cnt;
491 	bool unknown_reason = true;
492 	char buf[128];
493 	size_t size;
494 	int offset;
495 
496 	size = sizeof(buf);
497 	offset = 0;
498 
499 	active_cs_num = hl_get_active_cs_num(hdev);
500 	if (active_cs_num) {
501 		unknown_reason = false;
502 		offset += scnprintf(buf + offset, size - offset, " [%u active CS]", active_cs_num);
503 	}
504 
505 	dmabuf_export_cnt = atomic_read(&hdev->dmabuf_export_cnt);
506 	if (dmabuf_export_cnt) {
507 		unknown_reason = false;
508 		offset += scnprintf(buf + offset, size - offset, " [%u exported dma-buf]",
509 					dmabuf_export_cnt);
510 	}
511 
512 	if (unknown_reason)
513 		scnprintf(buf + offset, size - offset, " [unknown reason]");
514 
515 	dev_notice(hdev->dev, "%s%s\n", message, buf);
516 }
517 
518 /*
519  * hl_device_release - release function for habanalabs device
520  *
521  * @inode: pointer to inode structure
522  * @filp: pointer to file structure
523  *
524  * Called when process closes an habanalabs device
525  */
526 static int hl_device_release(struct inode *inode, struct file *filp)
527 {
528 	struct hl_fpriv *hpriv = filp->private_data;
529 	struct hl_device *hdev = hpriv->hdev;
530 
531 	filp->private_data = NULL;
532 
533 	if (!hdev) {
534 		pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
535 		put_pid(hpriv->taskpid);
536 		return 0;
537 	}
538 
539 	hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
540 
541 	/* Memory buffers might be still in use at this point and thus the handles IDR destruction
542 	 * is postponed to hpriv_release().
543 	 */
544 	hl_mem_mgr_fini(&hpriv->mem_mgr);
545 
546 	hdev->compute_ctx_in_release = 1;
547 
548 	if (!hl_hpriv_put(hpriv)) {
549 		print_device_in_use_info(hdev, "User process closed FD but device still in use");
550 		hl_device_reset(hdev, HL_DRV_RESET_HARD);
551 	}
552 
553 	hdev->last_open_session_duration_jif = jiffies - hdev->last_successful_open_jif;
554 
555 	return 0;
556 }
557 
558 static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
559 {
560 	struct hl_fpriv *hpriv = filp->private_data;
561 	struct hl_device *hdev = hpriv->hdev;
562 
563 	filp->private_data = NULL;
564 
565 	if (!hdev) {
566 		pr_err("Closing FD after device was removed\n");
567 		goto out;
568 	}
569 
570 	mutex_lock(&hdev->fpriv_ctrl_list_lock);
571 	list_del(&hpriv->dev_node);
572 	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
573 out:
574 	/* release the eventfd */
575 	if (hpriv->notifier_event.eventfd)
576 		eventfd_ctx_put(hpriv->notifier_event.eventfd);
577 
578 	mutex_destroy(&hpriv->notifier_event.lock);
579 	put_pid(hpriv->taskpid);
580 
581 	kfree(hpriv);
582 
583 	return 0;
584 }
585 
586 /*
587  * hl_mmap - mmap function for habanalabs device
588  *
589  * @*filp: pointer to file structure
590  * @*vma: pointer to vm_area_struct of the process
591  *
592  * Called when process does an mmap on habanalabs device. Call the relevant mmap
593  * function at the end of the common code.
594  */
595 static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
596 {
597 	struct hl_fpriv *hpriv = filp->private_data;
598 	struct hl_device *hdev = hpriv->hdev;
599 	unsigned long vm_pgoff;
600 
601 	if (!hdev) {
602 		pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
603 		return -ENODEV;
604 	}
605 
606 	vm_pgoff = vma->vm_pgoff;
607 
608 	switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
609 	case HL_MMAP_TYPE_BLOCK:
610 		vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
611 		return hl_hw_block_mmap(hpriv, vma);
612 
613 	case HL_MMAP_TYPE_CB:
614 	case HL_MMAP_TYPE_TS_BUFF:
615 		return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
616 	}
617 	return -EINVAL;
618 }
619 
620 static const struct file_operations hl_ops = {
621 	.owner = THIS_MODULE,
622 	.open = hl_device_open,
623 	.release = hl_device_release,
624 	.mmap = hl_mmap,
625 	.unlocked_ioctl = hl_ioctl,
626 	.compat_ioctl = hl_ioctl
627 };
628 
629 static const struct file_operations hl_ctrl_ops = {
630 	.owner = THIS_MODULE,
631 	.open = hl_device_open_ctrl,
632 	.release = hl_device_release_ctrl,
633 	.unlocked_ioctl = hl_ioctl_control,
634 	.compat_ioctl = hl_ioctl_control
635 };
636 
637 static void device_release_func(struct device *dev)
638 {
639 	kfree(dev);
640 }
641 
642 /*
643  * device_init_cdev - Initialize cdev and device for habanalabs device
644  *
645  * @hdev: pointer to habanalabs device structure
646  * @class: pointer to the class object of the device
647  * @minor: minor number of the specific device
648  * @fpos: file operations to install for this device
649  * @name: name of the device as it will appear in the filesystem
650  * @cdev: pointer to the char device object that will be initialized
651  * @dev: pointer to the device object that will be initialized
652  *
653  * Initialize a cdev and a Linux device for habanalabs's device.
654  */
655 static int device_init_cdev(struct hl_device *hdev, struct class *class,
656 				int minor, const struct file_operations *fops,
657 				char *name, struct cdev *cdev,
658 				struct device **dev)
659 {
660 	cdev_init(cdev, fops);
661 	cdev->owner = THIS_MODULE;
662 
663 	*dev = kzalloc(sizeof(**dev), GFP_KERNEL);
664 	if (!*dev)
665 		return -ENOMEM;
666 
667 	device_initialize(*dev);
668 	(*dev)->devt = MKDEV(hdev->major, minor);
669 	(*dev)->class = class;
670 	(*dev)->release = device_release_func;
671 	dev_set_drvdata(*dev, hdev);
672 	dev_set_name(*dev, "%s", name);
673 
674 	return 0;
675 }
676 
677 static int device_cdev_sysfs_add(struct hl_device *hdev)
678 {
679 	int rc;
680 
681 	rc = cdev_device_add(&hdev->cdev, hdev->dev);
682 	if (rc) {
683 		dev_err(hdev->dev,
684 			"failed to add a char device to the system\n");
685 		return rc;
686 	}
687 
688 	rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
689 	if (rc) {
690 		dev_err(hdev->dev,
691 			"failed to add a control char device to the system\n");
692 		goto delete_cdev_device;
693 	}
694 
695 	/* hl_sysfs_init() must be done after adding the device to the system */
696 	rc = hl_sysfs_init(hdev);
697 	if (rc) {
698 		dev_err(hdev->dev, "failed to initialize sysfs\n");
699 		goto delete_ctrl_cdev_device;
700 	}
701 
702 	hdev->cdev_sysfs_created = true;
703 
704 	return 0;
705 
706 delete_ctrl_cdev_device:
707 	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
708 delete_cdev_device:
709 	cdev_device_del(&hdev->cdev, hdev->dev);
710 	return rc;
711 }
712 
713 static void device_cdev_sysfs_del(struct hl_device *hdev)
714 {
715 	if (!hdev->cdev_sysfs_created)
716 		goto put_devices;
717 
718 	hl_sysfs_fini(hdev);
719 	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
720 	cdev_device_del(&hdev->cdev, hdev->dev);
721 
722 put_devices:
723 	put_device(hdev->dev);
724 	put_device(hdev->dev_ctrl);
725 }
726 
727 static void device_hard_reset_pending(struct work_struct *work)
728 {
729 	struct hl_device_reset_work *device_reset_work =
730 		container_of(work, struct hl_device_reset_work, reset_work.work);
731 	struct hl_device *hdev = device_reset_work->hdev;
732 	u32 flags;
733 	int rc;
734 
735 	flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;
736 
737 	rc = hl_device_reset(hdev, flags);
738 
739 	if ((rc == -EBUSY) && !hdev->device_fini_pending) {
740 		struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
741 
742 		if (ctx) {
743 			/* The read refcount value should subtracted by one, because the read is
744 			 * protected with hl_get_compute_ctx().
745 			 */
746 			dev_info(hdev->dev,
747 				"Could not reset device (compute_ctx refcount %u). will try again in %u seconds",
748 				kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC);
749 			hl_ctx_put(ctx);
750 		} else {
751 			dev_info(hdev->dev, "Could not reset device. will try again in %u seconds",
752 				HL_PENDING_RESET_PER_SEC);
753 		}
754 
755 		queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work,
756 					msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
757 	}
758 }
759 
760 static void device_release_watchdog_func(struct work_struct *work)
761 {
762 	struct hl_device_reset_work *watchdog_work =
763 			container_of(work, struct hl_device_reset_work, reset_work.work);
764 	struct hl_device *hdev = watchdog_work->hdev;
765 	u32 flags;
766 
767 	dev_dbg(hdev->dev, "Device wasn't released in time. Initiate hard-reset.\n");
768 
769 	flags = watchdog_work->flags | HL_DRV_RESET_HARD | HL_DRV_RESET_FROM_WD_THR;
770 
771 	hl_device_reset(hdev, flags);
772 }
773 
774 /*
775  * device_early_init - do some early initialization for the habanalabs device
776  *
777  * @hdev: pointer to habanalabs device structure
778  *
779  * Install the relevant function pointers and call the early_init function,
780  * if such a function exists
781  */
782 static int device_early_init(struct hl_device *hdev)
783 {
784 	int i, rc;
785 	char workq_name[32];
786 
787 	switch (hdev->asic_type) {
788 	case ASIC_GOYA:
789 		goya_set_asic_funcs(hdev);
790 		strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
791 		break;
792 	case ASIC_GAUDI:
793 		gaudi_set_asic_funcs(hdev);
794 		strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
795 		break;
796 	case ASIC_GAUDI_SEC:
797 		gaudi_set_asic_funcs(hdev);
798 		strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
799 		break;
800 	case ASIC_GAUDI2:
801 		gaudi2_set_asic_funcs(hdev);
802 		strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name));
803 		break;
804 	case ASIC_GAUDI2B:
805 		gaudi2_set_asic_funcs(hdev);
806 		strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name));
807 		break;
808 		break;
809 	default:
810 		dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
811 			hdev->asic_type);
812 		return -EINVAL;
813 	}
814 
815 	rc = hdev->asic_funcs->early_init(hdev);
816 	if (rc)
817 		return rc;
818 
819 	rc = hl_asid_init(hdev);
820 	if (rc)
821 		goto early_fini;
822 
823 	if (hdev->asic_prop.completion_queues_count) {
824 		hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
825 				sizeof(struct workqueue_struct *),
826 				GFP_KERNEL);
827 		if (!hdev->cq_wq) {
828 			rc = -ENOMEM;
829 			goto asid_fini;
830 		}
831 	}
832 
833 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
834 		snprintf(workq_name, 32, "hl%u-free-jobs-%u", hdev->cdev_idx, (u32) i);
835 		hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
836 		if (hdev->cq_wq[i] == NULL) {
837 			dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
838 			rc = -ENOMEM;
839 			goto free_cq_wq;
840 		}
841 	}
842 
843 	snprintf(workq_name, 32, "hl%u-events", hdev->cdev_idx);
844 	hdev->eq_wq = create_singlethread_workqueue(workq_name);
845 	if (hdev->eq_wq == NULL) {
846 		dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
847 		rc = -ENOMEM;
848 		goto free_cq_wq;
849 	}
850 
851 	snprintf(workq_name, 32, "hl%u-cs-completions", hdev->cdev_idx);
852 	hdev->cs_cmplt_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
853 	if (!hdev->cs_cmplt_wq) {
854 		dev_err(hdev->dev,
855 			"Failed to allocate CS completions workqueue\n");
856 		rc = -ENOMEM;
857 		goto free_eq_wq;
858 	}
859 
860 	snprintf(workq_name, 32, "hl%u-ts-free-obj", hdev->cdev_idx);
861 	hdev->ts_free_obj_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
862 	if (!hdev->ts_free_obj_wq) {
863 		dev_err(hdev->dev,
864 			"Failed to allocate Timestamp registration free workqueue\n");
865 		rc = -ENOMEM;
866 		goto free_cs_cmplt_wq;
867 	}
868 
869 	snprintf(workq_name, 32, "hl%u-prefetch", hdev->cdev_idx);
870 	hdev->prefetch_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
871 	if (!hdev->prefetch_wq) {
872 		dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
873 		rc = -ENOMEM;
874 		goto free_ts_free_wq;
875 	}
876 
877 	hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL);
878 	if (!hdev->hl_chip_info) {
879 		rc = -ENOMEM;
880 		goto free_prefetch_wq;
881 	}
882 
883 	rc = hl_mmu_if_set_funcs(hdev);
884 	if (rc)
885 		goto free_chip_info;
886 
887 	hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);
888 
889 	snprintf(workq_name, 32, "hl%u_device_reset", hdev->cdev_idx);
890 	hdev->reset_wq = create_singlethread_workqueue(workq_name);
891 	if (!hdev->reset_wq) {
892 		rc = -ENOMEM;
893 		dev_err(hdev->dev, "Failed to create device reset WQ\n");
894 		goto free_cb_mgr;
895 	}
896 
897 	INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending);
898 	hdev->device_reset_work.hdev = hdev;
899 	hdev->device_fini_pending = 0;
900 
901 	INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work,
902 				device_release_watchdog_func);
903 	hdev->device_release_watchdog_work.hdev = hdev;
904 
905 	mutex_init(&hdev->send_cpu_message_lock);
906 	mutex_init(&hdev->debug_lock);
907 	INIT_LIST_HEAD(&hdev->cs_mirror_list);
908 	spin_lock_init(&hdev->cs_mirror_lock);
909 	spin_lock_init(&hdev->reset_info.lock);
910 	INIT_LIST_HEAD(&hdev->fpriv_list);
911 	INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
912 	mutex_init(&hdev->fpriv_list_lock);
913 	mutex_init(&hdev->fpriv_ctrl_list_lock);
914 	mutex_init(&hdev->clk_throttling.lock);
915 
916 	return 0;
917 
918 free_cb_mgr:
919 	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
920 	hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
921 free_chip_info:
922 	kfree(hdev->hl_chip_info);
923 free_prefetch_wq:
924 	destroy_workqueue(hdev->prefetch_wq);
925 free_ts_free_wq:
926 	destroy_workqueue(hdev->ts_free_obj_wq);
927 free_cs_cmplt_wq:
928 	destroy_workqueue(hdev->cs_cmplt_wq);
929 free_eq_wq:
930 	destroy_workqueue(hdev->eq_wq);
931 free_cq_wq:
932 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
933 		if (hdev->cq_wq[i])
934 			destroy_workqueue(hdev->cq_wq[i]);
935 	kfree(hdev->cq_wq);
936 asid_fini:
937 	hl_asid_fini(hdev);
938 early_fini:
939 	if (hdev->asic_funcs->early_fini)
940 		hdev->asic_funcs->early_fini(hdev);
941 
942 	return rc;
943 }
944 
945 /*
946  * device_early_fini - finalize all that was done in device_early_init
947  *
948  * @hdev: pointer to habanalabs device structure
949  *
950  */
951 static void device_early_fini(struct hl_device *hdev)
952 {
953 	int i;
954 
955 	mutex_destroy(&hdev->debug_lock);
956 	mutex_destroy(&hdev->send_cpu_message_lock);
957 
958 	mutex_destroy(&hdev->fpriv_list_lock);
959 	mutex_destroy(&hdev->fpriv_ctrl_list_lock);
960 
961 	mutex_destroy(&hdev->clk_throttling.lock);
962 
963 	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
964 	hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
965 
966 	kfree(hdev->hl_chip_info);
967 
968 	destroy_workqueue(hdev->prefetch_wq);
969 	destroy_workqueue(hdev->ts_free_obj_wq);
970 	destroy_workqueue(hdev->cs_cmplt_wq);
971 	destroy_workqueue(hdev->eq_wq);
972 	destroy_workqueue(hdev->reset_wq);
973 
974 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
975 		destroy_workqueue(hdev->cq_wq[i]);
976 	kfree(hdev->cq_wq);
977 
978 	hl_asid_fini(hdev);
979 
980 	if (hdev->asic_funcs->early_fini)
981 		hdev->asic_funcs->early_fini(hdev);
982 }
983 
984 static void hl_device_heartbeat(struct work_struct *work)
985 {
986 	struct hl_device *hdev = container_of(work, struct hl_device,
987 						work_heartbeat.work);
988 	struct hl_info_fw_err_info info = {0};
989 	u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
990 
991 	if (!hl_device_operational(hdev, NULL))
992 		goto reschedule;
993 
994 	if (!hdev->asic_funcs->send_heartbeat(hdev))
995 		goto reschedule;
996 
997 	if (hl_device_operational(hdev, NULL))
998 		dev_err(hdev->dev, "Device heartbeat failed!\n");
999 
1000 	info.err_type = HL_INFO_FW_HEARTBEAT_ERR;
1001 	info.event_mask = &event_mask;
1002 	hl_handle_fw_err(hdev, &info);
1003 	hl_device_cond_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT, event_mask);
1004 
1005 	return;
1006 
1007 reschedule:
1008 	/*
1009 	 * prev_reset_trigger tracks consecutive fatal h/w errors until first
1010 	 * heartbeat immediately post reset.
1011 	 * If control reached here, then at least one heartbeat work has been
1012 	 * scheduled since last reset/init cycle.
1013 	 * So if the device is not already in reset cycle, reset the flag
1014 	 * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
1015 	 * status for at least one heartbeat. From this point driver restarts
1016 	 * tracking future consecutive fatal errors.
1017 	 */
1018 	if (!hdev->reset_info.in_reset)
1019 		hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1020 
1021 	schedule_delayed_work(&hdev->work_heartbeat,
1022 			usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1023 }
1024 
1025 /*
1026  * device_late_init - do late stuff initialization for the habanalabs device
1027  *
1028  * @hdev: pointer to habanalabs device structure
1029  *
1030  * Do stuff that either needs the device H/W queues to be active or needs
1031  * to happen after all the rest of the initialization is finished
1032  */
1033 static int device_late_init(struct hl_device *hdev)
1034 {
1035 	int rc;
1036 
1037 	if (hdev->asic_funcs->late_init) {
1038 		rc = hdev->asic_funcs->late_init(hdev);
1039 		if (rc) {
1040 			dev_err(hdev->dev,
1041 				"failed late initialization for the H/W\n");
1042 			return rc;
1043 		}
1044 	}
1045 
1046 	hdev->high_pll = hdev->asic_prop.high_pll;
1047 
1048 	if (hdev->heartbeat) {
1049 		INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
1050 		schedule_delayed_work(&hdev->work_heartbeat,
1051 				usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1052 	}
1053 
1054 	hdev->late_init_done = true;
1055 
1056 	return 0;
1057 }
1058 
1059 /*
1060  * device_late_fini - finalize all that was done in device_late_init
1061  *
1062  * @hdev: pointer to habanalabs device structure
1063  *
1064  */
1065 static void device_late_fini(struct hl_device *hdev)
1066 {
1067 	if (!hdev->late_init_done)
1068 		return;
1069 
1070 	if (hdev->heartbeat)
1071 		cancel_delayed_work_sync(&hdev->work_heartbeat);
1072 
1073 	if (hdev->asic_funcs->late_fini)
1074 		hdev->asic_funcs->late_fini(hdev);
1075 
1076 	hdev->late_init_done = false;
1077 }
1078 
1079 int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
1080 {
1081 	u64 max_power, curr_power, dc_power, dividend, divisor;
1082 	int rc;
1083 
1084 	max_power = hdev->max_power;
1085 	dc_power = hdev->asic_prop.dc_power_default;
1086 	divisor = max_power - dc_power;
1087 	if (!divisor) {
1088 		dev_warn(hdev->dev, "device utilization is not supported\n");
1089 		return -EOPNOTSUPP;
1090 	}
1091 	rc = hl_fw_cpucp_power_get(hdev, &curr_power);
1092 
1093 	if (rc)
1094 		return rc;
1095 
1096 	curr_power = clamp(curr_power, dc_power, max_power);
1097 
1098 	dividend = (curr_power - dc_power) * 100;
1099 	*utilization = (u32) div_u64(dividend, divisor);
1100 
1101 	return 0;
1102 }
1103 
1104 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
1105 {
1106 	int rc = 0;
1107 
1108 	mutex_lock(&hdev->debug_lock);
1109 
1110 	if (!enable) {
1111 		if (!hdev->in_debug) {
1112 			dev_err(hdev->dev,
1113 				"Failed to disable debug mode because device was not in debug mode\n");
1114 			rc = -EFAULT;
1115 			goto out;
1116 		}
1117 
1118 		if (!hdev->reset_info.hard_reset_pending)
1119 			hdev->asic_funcs->halt_coresight(hdev, ctx);
1120 
1121 		hdev->in_debug = 0;
1122 
1123 		goto out;
1124 	}
1125 
1126 	if (hdev->in_debug) {
1127 		dev_err(hdev->dev,
1128 			"Failed to enable debug mode because device is already in debug mode\n");
1129 		rc = -EFAULT;
1130 		goto out;
1131 	}
1132 
1133 	hdev->in_debug = 1;
1134 
1135 out:
1136 	mutex_unlock(&hdev->debug_lock);
1137 
1138 	return rc;
1139 }
1140 
1141 static void take_release_locks(struct hl_device *hdev)
1142 {
1143 	/* Flush anyone that is inside the critical section of enqueue
1144 	 * jobs to the H/W
1145 	 */
1146 	hdev->asic_funcs->hw_queues_lock(hdev);
1147 	hdev->asic_funcs->hw_queues_unlock(hdev);
1148 
1149 	/* Flush processes that are sending message to CPU */
1150 	mutex_lock(&hdev->send_cpu_message_lock);
1151 	mutex_unlock(&hdev->send_cpu_message_lock);
1152 
1153 	/* Flush anyone that is inside device open */
1154 	mutex_lock(&hdev->fpriv_list_lock);
1155 	mutex_unlock(&hdev->fpriv_list_lock);
1156 	mutex_lock(&hdev->fpriv_ctrl_list_lock);
1157 	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
1158 }
1159 
1160 static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
1161 				bool skip_wq_flush)
1162 {
1163 	if (hard_reset)
1164 		device_late_fini(hdev);
1165 
1166 	/*
1167 	 * Halt the engines and disable interrupts so we won't get any more
1168 	 * completions from H/W and we won't have any accesses from the
1169 	 * H/W to the host machine
1170 	 */
1171 	hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);
1172 
1173 	/* Go over all the queues, release all CS and their jobs */
1174 	hl_cs_rollback_all(hdev, skip_wq_flush);
1175 
1176 	/* flush the MMU prefetch workqueue */
1177 	flush_workqueue(hdev->prefetch_wq);
1178 
1179 	/* Release all pending user interrupts, each pending user interrupt
1180 	 * holds a reference to user context
1181 	 */
1182 	hl_release_pending_user_interrupts(hdev);
1183 }
1184 
1185 /*
1186  * hl_device_suspend - initiate device suspend
1187  *
1188  * @hdev: pointer to habanalabs device structure
1189  *
1190  * Puts the hw in the suspend state (all asics).
1191  * Returns 0 for success or an error on failure.
1192  * Called at driver suspend.
1193  */
1194 int hl_device_suspend(struct hl_device *hdev)
1195 {
1196 	int rc;
1197 
1198 	pci_save_state(hdev->pdev);
1199 
1200 	/* Block future CS/VM/JOB completion operations */
1201 	spin_lock(&hdev->reset_info.lock);
1202 	if (hdev->reset_info.in_reset) {
1203 		spin_unlock(&hdev->reset_info.lock);
1204 		dev_err(hdev->dev, "Can't suspend while in reset\n");
1205 		return -EIO;
1206 	}
1207 	hdev->reset_info.in_reset = 1;
1208 	spin_unlock(&hdev->reset_info.lock);
1209 
1210 	/* This blocks all other stuff that is not blocked by in_reset */
1211 	hdev->disabled = true;
1212 
1213 	take_release_locks(hdev);
1214 
1215 	rc = hdev->asic_funcs->suspend(hdev);
1216 	if (rc)
1217 		dev_err(hdev->dev,
1218 			"Failed to disable PCI access of device CPU\n");
1219 
1220 	/* Shut down the device */
1221 	pci_disable_device(hdev->pdev);
1222 	pci_set_power_state(hdev->pdev, PCI_D3hot);
1223 
1224 	return 0;
1225 }
1226 
1227 /*
1228  * hl_device_resume - initiate device resume
1229  *
1230  * @hdev: pointer to habanalabs device structure
1231  *
1232  * Bring the hw back to operating state (all asics).
1233  * Returns 0 for success or an error on failure.
1234  * Called at driver resume.
1235  */
1236 int hl_device_resume(struct hl_device *hdev)
1237 {
1238 	int rc;
1239 
1240 	pci_set_power_state(hdev->pdev, PCI_D0);
1241 	pci_restore_state(hdev->pdev);
1242 	rc = pci_enable_device_mem(hdev->pdev);
1243 	if (rc) {
1244 		dev_err(hdev->dev,
1245 			"Failed to enable PCI device in resume\n");
1246 		return rc;
1247 	}
1248 
1249 	pci_set_master(hdev->pdev);
1250 
1251 	rc = hdev->asic_funcs->resume(hdev);
1252 	if (rc) {
1253 		dev_err(hdev->dev, "Failed to resume device after suspend\n");
1254 		goto disable_device;
1255 	}
1256 
1257 
1258 	/* 'in_reset' was set to true during suspend, now we must clear it in order
1259 	 * for hard reset to be performed
1260 	 */
1261 	spin_lock(&hdev->reset_info.lock);
1262 	hdev->reset_info.in_reset = 0;
1263 	spin_unlock(&hdev->reset_info.lock);
1264 
1265 	rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
1266 	if (rc) {
1267 		dev_err(hdev->dev, "Failed to reset device during resume\n");
1268 		goto disable_device;
1269 	}
1270 
1271 	return 0;
1272 
1273 disable_device:
1274 	pci_clear_master(hdev->pdev);
1275 	pci_disable_device(hdev->pdev);
1276 
1277 	return rc;
1278 }
1279 
1280 static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
1281 {
1282 	struct task_struct *task = NULL;
1283 	struct list_head *fd_list;
1284 	struct hl_fpriv	*hpriv;
1285 	struct mutex *fd_lock;
1286 	u32 pending_cnt;
1287 
1288 	fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1289 	fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1290 
1291 	/* Giving time for user to close FD, and for processes that are inside
1292 	 * hl_device_open to finish
1293 	 */
1294 	if (!list_empty(fd_list))
1295 		ssleep(1);
1296 
1297 	if (timeout) {
1298 		pending_cnt = timeout;
1299 	} else {
1300 		if (hdev->process_kill_trial_cnt) {
1301 			/* Processes have been already killed */
1302 			pending_cnt = 1;
1303 			goto wait_for_processes;
1304 		} else {
1305 			/* Wait a small period after process kill */
1306 			pending_cnt = HL_PENDING_RESET_PER_SEC;
1307 		}
1308 	}
1309 
1310 	mutex_lock(fd_lock);
1311 
1312 	/* This section must be protected because we are dereferencing
1313 	 * pointers that are freed if the process exits
1314 	 */
1315 	list_for_each_entry(hpriv, fd_list, dev_node) {
1316 		task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
1317 		if (task) {
1318 			dev_info(hdev->dev, "Killing user process pid=%d\n",
1319 				task_pid_nr(task));
1320 			send_sig(SIGKILL, task, 1);
1321 			usleep_range(1000, 10000);
1322 
1323 			put_task_struct(task);
1324 		} else {
1325 			/*
1326 			 * If we got here, it means that process was killed from outside the driver
1327 			 * right after it started looping on fd_list and before get_pid_task, thus
1328 			 * we don't need to kill it.
1329 			 */
1330 			dev_dbg(hdev->dev,
1331 				"Can't get task struct for user process, assuming process was killed from outside the driver\n");
1332 		}
1333 	}
1334 
1335 	mutex_unlock(fd_lock);
1336 
1337 	/*
1338 	 * We killed the open users, but that doesn't mean they are closed.
1339 	 * It could be that they are running a long cleanup phase in the driver
1340 	 * e.g. MMU unmappings, or running other long teardown flow even before
1341 	 * our cleanup.
1342 	 * Therefore we need to wait again to make sure they are closed before
1343 	 * continuing with the reset.
1344 	 */
1345 
1346 wait_for_processes:
1347 	while ((!list_empty(fd_list)) && (pending_cnt)) {
1348 		dev_dbg(hdev->dev,
1349 			"Waiting for all unmap operations to finish before hard reset\n");
1350 
1351 		pending_cnt--;
1352 
1353 		ssleep(1);
1354 	}
1355 
1356 	/* All processes exited successfully */
1357 	if (list_empty(fd_list))
1358 		return 0;
1359 
1360 	/* Give up waiting for processes to exit */
1361 	if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
1362 		return -ETIME;
1363 
1364 	hdev->process_kill_trial_cnt++;
1365 
1366 	return -EBUSY;
1367 }
1368 
1369 static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
1370 {
1371 	struct list_head *fd_list;
1372 	struct hl_fpriv *hpriv;
1373 	struct mutex *fd_lock;
1374 
1375 	fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1376 	fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1377 
1378 	mutex_lock(fd_lock);
1379 	list_for_each_entry(hpriv, fd_list, dev_node)
1380 		hpriv->hdev = NULL;
1381 	mutex_unlock(fd_lock);
1382 }
1383 
1384 static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
1385 {
1386 	u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1387 
1388 	/* No consecutive mechanism when user context exists */
1389 	if (hdev->is_compute_ctx_active)
1390 		return;
1391 
1392 	/*
1393 	 * 'reset cause' is being updated here, because getting here
1394 	 * means that it's the 1st time and the last time we're here
1395 	 * ('in_reset' makes sure of it). This makes sure that
1396 	 * 'reset_cause' will continue holding its 1st recorded reason!
1397 	 */
1398 	if (flags & HL_DRV_RESET_HEARTBEAT) {
1399 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
1400 		cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
1401 	} else if (flags & HL_DRV_RESET_TDR) {
1402 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
1403 		cur_reset_trigger = HL_DRV_RESET_TDR;
1404 	} else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
1405 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1406 		cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
1407 	} else {
1408 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1409 	}
1410 
1411 	/*
1412 	 * If reset cause is same twice, then reset_trigger_repeated
1413 	 * is set and if this reset is due to a fatal FW error
1414 	 * device is set to an unstable state.
1415 	 */
1416 	if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
1417 		hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
1418 		hdev->reset_info.reset_trigger_repeated = 0;
1419 	} else {
1420 		hdev->reset_info.reset_trigger_repeated = 1;
1421 	}
1422 
1423 	/* If reset is due to heartbeat, device CPU is no responsive in
1424 	 * which case no point sending PCI disable message to it.
1425 	 *
1426 	 * If F/W is performing the reset, no need to send it a message to disable
1427 	 * PCI access
1428 	 */
1429 	if ((flags & HL_DRV_RESET_HARD) &&
1430 			!(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
1431 		/* Disable PCI access from device F/W so he won't send
1432 		 * us additional interrupts. We disable MSI/MSI-X at
1433 		 * the halt_engines function and we can't have the F/W
1434 		 * sending us interrupts after that. We need to disable
1435 		 * the access here because if the device is marked
1436 		 * disable, the message won't be send. Also, in case
1437 		 * of heartbeat, the device CPU is marked as disable
1438 		 * so this message won't be sent
1439 		 */
1440 		if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0))
1441 			dev_warn(hdev->dev,
1442 				"Failed to disable FW's PCI access\n");
1443 	}
1444 }
1445 
1446 /*
1447  * hl_device_reset - reset the device
1448  *
1449  * @hdev: pointer to habanalabs device structure
1450  * @flags: reset flags.
1451  *
1452  * Block future CS and wait for pending CS to be enqueued
1453  * Call ASIC H/W fini
1454  * Flush all completions
1455  * Re-initialize all internal data structures
1456  * Call ASIC H/W init, late_init
1457  * Test queues
1458  * Enable device
1459  *
1460  * Returns 0 for success or an error on failure.
1461  */
1462 int hl_device_reset(struct hl_device *hdev, u32 flags)
1463 {
1464 	bool hard_reset, from_hard_reset_thread, fw_reset, reset_upon_device_release,
1465 		schedule_hard_reset = false, delay_reset, from_dev_release, from_watchdog_thread;
1466 	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
1467 	struct hl_ctx *ctx;
1468 	int i, rc, hw_fini_rc;
1469 
1470 	if (!hdev->init_done) {
1471 		dev_err(hdev->dev, "Can't reset before initialization is done\n");
1472 		return 0;
1473 	}
1474 
1475 	hard_reset = !!(flags & HL_DRV_RESET_HARD);
1476 	from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
1477 	fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
1478 	from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE);
1479 	delay_reset = !!(flags & HL_DRV_RESET_DELAY);
1480 	from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR);
1481 	reset_upon_device_release = hdev->reset_upon_device_release && from_dev_release;
1482 
1483 	if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) {
1484 		dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n");
1485 		return 0;
1486 	}
1487 
1488 	if (!hard_reset && !hdev->asic_prop.supports_compute_reset) {
1489 		dev_dbg(hdev->dev, "asic doesn't support compute reset - do hard-reset instead\n");
1490 		hard_reset = true;
1491 	}
1492 
1493 	if (reset_upon_device_release) {
1494 		if (hard_reset) {
1495 			dev_crit(hdev->dev,
1496 				"Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
1497 			return -EINVAL;
1498 		}
1499 
1500 		goto do_reset;
1501 	}
1502 
1503 	if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
1504 		dev_dbg(hdev->dev,
1505 			"asic doesn't allow inference soft reset - do hard-reset instead\n");
1506 		hard_reset = true;
1507 	}
1508 
1509 do_reset:
1510 	/* Re-entry of reset thread */
1511 	if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
1512 		goto kill_processes;
1513 
1514 	/*
1515 	 * Prevent concurrency in this function - only one reset should be
1516 	 * done at any given time. We need to perform this only if we didn't
1517 	 * get here from a dedicated hard reset thread.
1518 	 */
1519 	if (!from_hard_reset_thread) {
1520 		/* Block future CS/VM/JOB completion operations */
1521 		spin_lock(&hdev->reset_info.lock);
1522 		if (hdev->reset_info.in_reset) {
1523 			/* We allow scheduling of a hard reset only during a compute reset */
1524 			if (hard_reset && hdev->reset_info.in_compute_reset)
1525 				hdev->reset_info.hard_reset_schedule_flags = flags;
1526 			spin_unlock(&hdev->reset_info.lock);
1527 			return 0;
1528 		}
1529 
1530 		/* This still allows the completion of some KDMA ops
1531 		 * Update this before in_reset because in_compute_reset implies we are in reset
1532 		 */
1533 		hdev->reset_info.in_compute_reset = !hard_reset;
1534 
1535 		hdev->reset_info.in_reset = 1;
1536 
1537 		spin_unlock(&hdev->reset_info.lock);
1538 
1539 		/* Cancel the device release watchdog work if required.
1540 		 * In case of reset-upon-device-release while the release watchdog work is
1541 		 * scheduled due to a hard-reset, do hard-reset instead of compute-reset.
1542 		 */
1543 		if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) {
1544 			struct hl_device_reset_work *watchdog_work =
1545 					&hdev->device_release_watchdog_work;
1546 
1547 			hdev->reset_info.watchdog_active = 0;
1548 			if (!from_watchdog_thread)
1549 				cancel_delayed_work_sync(&watchdog_work->reset_work);
1550 
1551 			if (from_dev_release && (watchdog_work->flags & HL_DRV_RESET_HARD)) {
1552 				hdev->reset_info.in_compute_reset = 0;
1553 				flags |= HL_DRV_RESET_HARD;
1554 				flags &= ~HL_DRV_RESET_DEV_RELEASE;
1555 				hard_reset = true;
1556 			}
1557 		}
1558 
1559 		if (delay_reset)
1560 			usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);
1561 
1562 escalate_reset_flow:
1563 		handle_reset_trigger(hdev, flags);
1564 
1565 		/* This also blocks future CS/VM/JOB completion operations */
1566 		hdev->disabled = true;
1567 
1568 		take_release_locks(hdev);
1569 
1570 		if (hard_reset)
1571 			dev_info(hdev->dev, "Going to reset device\n");
1572 		else if (reset_upon_device_release)
1573 			dev_dbg(hdev->dev, "Going to reset device after release by user\n");
1574 		else
1575 			dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
1576 	}
1577 
1578 	if ((hard_reset) && (!from_hard_reset_thread)) {
1579 		hdev->reset_info.hard_reset_pending = true;
1580 
1581 		hdev->process_kill_trial_cnt = 0;
1582 
1583 		hdev->device_reset_work.flags = flags;
1584 
1585 		/*
1586 		 * Because the reset function can't run from heartbeat work,
1587 		 * we need to call the reset function from a dedicated work.
1588 		 */
1589 		queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0);
1590 
1591 		return 0;
1592 	}
1593 
1594 	cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release);
1595 
1596 kill_processes:
1597 	if (hard_reset) {
1598 		/* Kill processes here after CS rollback. This is because the
1599 		 * process can't really exit until all its CSs are done, which
1600 		 * is what we do in cs rollback
1601 		 */
1602 		rc = device_kill_open_processes(hdev, 0, false);
1603 
1604 		if (rc == -EBUSY) {
1605 			if (hdev->device_fini_pending) {
1606 				dev_crit(hdev->dev,
1607 					"%s Failed to kill all open processes, stopping hard reset\n",
1608 					dev_name(&(hdev)->pdev->dev));
1609 				goto out_err;
1610 			}
1611 
1612 			/* signal reset thread to reschedule */
1613 			return rc;
1614 		}
1615 
1616 		if (rc) {
1617 			dev_crit(hdev->dev,
1618 				"%s Failed to kill all open processes, stopping hard reset\n",
1619 				dev_name(&(hdev)->pdev->dev));
1620 			goto out_err;
1621 		}
1622 
1623 		/* Flush the Event queue workers to make sure no other thread is
1624 		 * reading or writing to registers during the reset
1625 		 */
1626 		flush_workqueue(hdev->eq_wq);
1627 	}
1628 
1629 	/* Reset the H/W. It will be in idle state after this returns */
1630 	hw_fini_rc = hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);
1631 
1632 	if (hard_reset) {
1633 		hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
1634 
1635 		/* Release kernel context */
1636 		if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
1637 			hdev->kernel_ctx = NULL;
1638 
1639 		hl_vm_fini(hdev);
1640 		hl_mmu_fini(hdev);
1641 		hl_eq_reset(hdev, &hdev->event_queue);
1642 	}
1643 
1644 	/* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
1645 	hl_hw_queue_reset(hdev, hard_reset);
1646 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1647 		hl_cq_reset(hdev, &hdev->completion_queue[i]);
1648 
1649 	/* Make sure the context switch phase will run again */
1650 	ctx = hl_get_compute_ctx(hdev);
1651 	if (ctx) {
1652 		atomic_set(&ctx->thread_ctx_switch_token, 1);
1653 		ctx->thread_ctx_switch_wait_token = 0;
1654 		hl_ctx_put(ctx);
1655 	}
1656 
1657 	if (hw_fini_rc) {
1658 		rc = hw_fini_rc;
1659 		goto out_err;
1660 	}
1661 	/* Finished tear-down, starting to re-initialize */
1662 
1663 	if (hard_reset) {
1664 		hdev->device_cpu_disabled = false;
1665 		hdev->reset_info.hard_reset_pending = false;
1666 
1667 		if (hdev->reset_info.reset_trigger_repeated &&
1668 				(hdev->reset_info.prev_reset_trigger ==
1669 						HL_DRV_RESET_FW_FATAL_ERR)) {
1670 			/* if there 2 back to back resets from FW,
1671 			 * ensure driver puts the driver in a unusable state
1672 			 */
1673 			dev_crit(hdev->dev,
1674 				"%s Consecutive FW fatal errors received, stopping hard reset\n",
1675 				dev_name(&(hdev)->pdev->dev));
1676 			rc = -EIO;
1677 			goto out_err;
1678 		}
1679 
1680 		if (hdev->kernel_ctx) {
1681 			dev_crit(hdev->dev,
1682 				"%s kernel ctx was alive during hard reset, something is terribly wrong\n",
1683 				dev_name(&(hdev)->pdev->dev));
1684 			rc = -EBUSY;
1685 			goto out_err;
1686 		}
1687 
1688 		rc = hl_mmu_init(hdev);
1689 		if (rc) {
1690 			dev_err(hdev->dev,
1691 				"Failed to initialize MMU S/W after hard reset\n");
1692 			goto out_err;
1693 		}
1694 
1695 		/* Allocate the kernel context */
1696 		hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
1697 						GFP_KERNEL);
1698 		if (!hdev->kernel_ctx) {
1699 			rc = -ENOMEM;
1700 			hl_mmu_fini(hdev);
1701 			goto out_err;
1702 		}
1703 
1704 		hdev->is_compute_ctx_active = false;
1705 
1706 		rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
1707 		if (rc) {
1708 			dev_err(hdev->dev,
1709 				"failed to init kernel ctx in hard reset\n");
1710 			kfree(hdev->kernel_ctx);
1711 			hdev->kernel_ctx = NULL;
1712 			hl_mmu_fini(hdev);
1713 			goto out_err;
1714 		}
1715 	}
1716 
1717 	/* Device is now enabled as part of the initialization requires
1718 	 * communication with the device firmware to get information that
1719 	 * is required for the initialization itself
1720 	 */
1721 	hdev->disabled = false;
1722 
1723 	/* F/W security enabled indication might be updated after hard-reset */
1724 	if (hard_reset) {
1725 		rc = hl_fw_read_preboot_status(hdev);
1726 		if (rc)
1727 			goto out_err;
1728 	}
1729 
1730 	rc = hdev->asic_funcs->hw_init(hdev);
1731 	if (rc) {
1732 		dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
1733 		goto out_err;
1734 	}
1735 
1736 	/* If device is not idle fail the reset process */
1737 	if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
1738 						HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
1739 		print_idle_status_mask(hdev, "device is not idle after reset", idle_mask);
1740 		rc = -EIO;
1741 		goto out_err;
1742 	}
1743 
1744 	/* Check that the communication with the device is working */
1745 	rc = hdev->asic_funcs->test_queues(hdev);
1746 	if (rc) {
1747 		dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
1748 		goto out_err;
1749 	}
1750 
1751 	if (hard_reset) {
1752 		rc = device_late_init(hdev);
1753 		if (rc) {
1754 			dev_err(hdev->dev, "Failed late init after hard reset\n");
1755 			goto out_err;
1756 		}
1757 
1758 		rc = hl_vm_init(hdev);
1759 		if (rc) {
1760 			dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
1761 			goto out_err;
1762 		}
1763 
1764 		if (!hdev->asic_prop.fw_security_enabled)
1765 			hl_fw_set_max_power(hdev);
1766 	} else {
1767 		rc = hdev->asic_funcs->compute_reset_late_init(hdev);
1768 		if (rc) {
1769 			if (reset_upon_device_release)
1770 				dev_err(hdev->dev,
1771 					"Failed late init in reset after device release\n");
1772 			else
1773 				dev_err(hdev->dev, "Failed late init after compute reset\n");
1774 			goto out_err;
1775 		}
1776 	}
1777 
1778 	rc = hdev->asic_funcs->scrub_device_mem(hdev);
1779 	if (rc) {
1780 		dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc);
1781 		goto out_err;
1782 	}
1783 
1784 	spin_lock(&hdev->reset_info.lock);
1785 	hdev->reset_info.in_compute_reset = 0;
1786 
1787 	/* Schedule hard reset only if requested and if not already in hard reset.
1788 	 * We keep 'in_reset' enabled, so no other reset can go in during the hard
1789 	 * reset schedule
1790 	 */
1791 	if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
1792 		schedule_hard_reset = true;
1793 	else
1794 		hdev->reset_info.in_reset = 0;
1795 
1796 	spin_unlock(&hdev->reset_info.lock);
1797 
1798 	hdev->reset_info.needs_reset = false;
1799 
1800 	if (hard_reset)
1801 		dev_info(hdev->dev,
1802 			 "Successfully finished resetting the %s device\n",
1803 			 dev_name(&(hdev)->pdev->dev));
1804 	else
1805 		dev_dbg(hdev->dev,
1806 			"Successfully finished resetting the %s device\n",
1807 			dev_name(&(hdev)->pdev->dev));
1808 
1809 	if (hard_reset) {
1810 		hdev->reset_info.hard_reset_cnt++;
1811 
1812 		/* After reset is done, we are ready to receive events from
1813 		 * the F/W. We can't do it before because we will ignore events
1814 		 * and if those events are fatal, we won't know about it and
1815 		 * the device will be operational although it shouldn't be
1816 		 */
1817 		hdev->asic_funcs->enable_events_from_fw(hdev);
1818 	} else {
1819 		if (!reset_upon_device_release)
1820 			hdev->reset_info.compute_reset_cnt++;
1821 
1822 		if (schedule_hard_reset) {
1823 			dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n");
1824 			flags = hdev->reset_info.hard_reset_schedule_flags;
1825 			hdev->reset_info.hard_reset_schedule_flags = 0;
1826 			hdev->disabled = true;
1827 			hard_reset = true;
1828 			handle_reset_trigger(hdev, flags);
1829 			goto escalate_reset_flow;
1830 		}
1831 	}
1832 
1833 	return 0;
1834 
1835 out_err:
1836 	hdev->disabled = true;
1837 
1838 	spin_lock(&hdev->reset_info.lock);
1839 	hdev->reset_info.in_compute_reset = 0;
1840 
1841 	if (hard_reset) {
1842 		dev_err(hdev->dev,
1843 			"%s Failed to reset! Device is NOT usable\n",
1844 			dev_name(&(hdev)->pdev->dev));
1845 		hdev->reset_info.hard_reset_cnt++;
1846 	} else {
1847 		if (reset_upon_device_release) {
1848 			dev_err(hdev->dev, "Failed to reset device after user release\n");
1849 			flags &= ~HL_DRV_RESET_DEV_RELEASE;
1850 		} else {
1851 			dev_err(hdev->dev, "Failed to do compute reset\n");
1852 			hdev->reset_info.compute_reset_cnt++;
1853 		}
1854 
1855 		spin_unlock(&hdev->reset_info.lock);
1856 		flags |= HL_DRV_RESET_HARD;
1857 		hard_reset = true;
1858 		goto escalate_reset_flow;
1859 	}
1860 
1861 	hdev->reset_info.in_reset = 0;
1862 
1863 	spin_unlock(&hdev->reset_info.lock);
1864 
1865 	return rc;
1866 }
1867 
1868 /*
1869  * hl_device_cond_reset() - conditionally reset the device.
1870  * @hdev: pointer to habanalabs device structure.
1871  * @reset_flags: reset flags.
1872  * @event_mask: events to notify user about.
1873  *
1874  * Conditionally reset the device, or alternatively schedule a watchdog work to reset the device
1875  * unless another reset precedes it.
1876  */
1877 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask)
1878 {
1879 	struct hl_ctx *ctx = NULL;
1880 
1881 	/* F/W reset cannot be postponed */
1882 	if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW)
1883 		goto device_reset;
1884 
1885 	/* Device release watchdog is relevant only if user exists and gets a reset notification */
1886 	if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) {
1887 		dev_err(hdev->dev, "Resetting device without a reset indication to user\n");
1888 		goto device_reset;
1889 	}
1890 
1891 	ctx = hl_get_compute_ctx(hdev);
1892 	if (!ctx || !ctx->hpriv->notifier_event.eventfd)
1893 		goto device_reset;
1894 
1895 	/* Schedule the device release watchdog work unless reset is already in progress or if the
1896 	 * work is already scheduled.
1897 	 */
1898 	spin_lock(&hdev->reset_info.lock);
1899 	if (hdev->reset_info.in_reset) {
1900 		spin_unlock(&hdev->reset_info.lock);
1901 		goto device_reset;
1902 	}
1903 
1904 	if (hdev->reset_info.watchdog_active)
1905 		goto out;
1906 
1907 	hdev->device_release_watchdog_work.flags = flags;
1908 	dev_dbg(hdev->dev, "Device is going to be hard-reset in %u sec unless being released\n",
1909 		hdev->device_release_watchdog_timeout_sec);
1910 	schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work,
1911 				msecs_to_jiffies(hdev->device_release_watchdog_timeout_sec * 1000));
1912 	hdev->reset_info.watchdog_active = 1;
1913 out:
1914 	spin_unlock(&hdev->reset_info.lock);
1915 
1916 	hl_notifier_event_send_all(hdev, event_mask);
1917 
1918 	hl_ctx_put(ctx);
1919 
1920 	hl_abort_waitings_for_completion(hdev);
1921 
1922 	return 0;
1923 
1924 device_reset:
1925 	if (event_mask)
1926 		hl_notifier_event_send_all(hdev, event_mask);
1927 	if (ctx)
1928 		hl_ctx_put(ctx);
1929 
1930 	return hl_device_reset(hdev, flags);
1931 }
1932 
1933 static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask)
1934 {
1935 	mutex_lock(&notifier_event->lock);
1936 	notifier_event->events_mask |= event_mask;
1937 
1938 	if (notifier_event->eventfd)
1939 		eventfd_signal(notifier_event->eventfd, 1);
1940 
1941 	mutex_unlock(&notifier_event->lock);
1942 }
1943 
1944 /*
1945  * hl_notifier_event_send_all - notify all user processes via eventfd
1946  *
1947  * @hdev: pointer to habanalabs device structure
1948  * @event_mask: the occurred event/s
1949  * Returns 0 for success or an error on failure.
1950  */
1951 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask)
1952 {
1953 	struct hl_fpriv	*hpriv;
1954 
1955 	if (!event_mask) {
1956 		dev_warn(hdev->dev, "Skip sending zero event");
1957 		return;
1958 	}
1959 
1960 	mutex_lock(&hdev->fpriv_list_lock);
1961 
1962 	list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
1963 		hl_notifier_event_send(&hpriv->notifier_event, event_mask);
1964 
1965 	mutex_unlock(&hdev->fpriv_list_lock);
1966 
1967 	/* control device */
1968 	mutex_lock(&hdev->fpriv_ctrl_list_lock);
1969 
1970 	list_for_each_entry(hpriv, &hdev->fpriv_ctrl_list, dev_node)
1971 		hl_notifier_event_send(&hpriv->notifier_event, event_mask);
1972 
1973 	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
1974 }
1975 
1976 static int create_cdev(struct hl_device *hdev)
1977 {
1978 	char *name;
1979 	int rc;
1980 
1981 	hdev->cdev_idx = hdev->id / 2;
1982 
1983 	name = kasprintf(GFP_KERNEL, "hl%d", hdev->cdev_idx);
1984 	if (!name) {
1985 		rc = -ENOMEM;
1986 		goto out_err;
1987 	}
1988 
1989 	/* Initialize cdev and device structures */
1990 	rc = device_init_cdev(hdev, hdev->hclass, hdev->id, &hl_ops, name,
1991 				&hdev->cdev, &hdev->dev);
1992 
1993 	kfree(name);
1994 
1995 	if (rc)
1996 		goto out_err;
1997 
1998 	name = kasprintf(GFP_KERNEL, "hl_controlD%d", hdev->cdev_idx);
1999 	if (!name) {
2000 		rc = -ENOMEM;
2001 		goto free_dev;
2002 	}
2003 
2004 	/* Initialize cdev and device structures for control device */
2005 	rc = device_init_cdev(hdev, hdev->hclass, hdev->id_control, &hl_ctrl_ops,
2006 				name, &hdev->cdev_ctrl, &hdev->dev_ctrl);
2007 
2008 	kfree(name);
2009 
2010 	if (rc)
2011 		goto free_dev;
2012 
2013 	return 0;
2014 
2015 free_dev:
2016 	put_device(hdev->dev);
2017 out_err:
2018 	return rc;
2019 }
2020 
2021 /*
2022  * hl_device_init - main initialization function for habanalabs device
2023  *
2024  * @hdev: pointer to habanalabs device structure
2025  *
2026  * Allocate an id for the device, do early initialization and then call the
2027  * ASIC specific initialization functions. Finally, create the cdev and the
2028  * Linux device to expose it to the user
2029  */
2030 int hl_device_init(struct hl_device *hdev)
2031 {
2032 	int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
2033 	bool add_cdev_sysfs_on_err = false;
2034 
2035 	rc = create_cdev(hdev);
2036 	if (rc)
2037 		goto out_disabled;
2038 
2039 	/* Initialize ASIC function pointers and perform early init */
2040 	rc = device_early_init(hdev);
2041 	if (rc)
2042 		goto free_dev;
2043 
2044 	user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
2045 				hdev->asic_prop.user_interrupt_count;
2046 
2047 	if (user_interrupt_cnt) {
2048 		hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt),
2049 						GFP_KERNEL);
2050 		if (!hdev->user_interrupt) {
2051 			rc = -ENOMEM;
2052 			goto early_fini;
2053 		}
2054 	}
2055 
2056 	/*
2057 	 * Start calling ASIC initialization. First S/W then H/W and finally
2058 	 * late init
2059 	 */
2060 	rc = hdev->asic_funcs->sw_init(hdev);
2061 	if (rc)
2062 		goto free_usr_intr_mem;
2063 
2064 
2065 	/* initialize completion structure for multi CS wait */
2066 	hl_multi_cs_completion_init(hdev);
2067 
2068 	/*
2069 	 * Initialize the H/W queues. Must be done before hw_init, because
2070 	 * there the addresses of the kernel queue are being written to the
2071 	 * registers of the device
2072 	 */
2073 	rc = hl_hw_queues_create(hdev);
2074 	if (rc) {
2075 		dev_err(hdev->dev, "failed to initialize kernel queues\n");
2076 		goto sw_fini;
2077 	}
2078 
2079 	cq_cnt = hdev->asic_prop.completion_queues_count;
2080 
2081 	/*
2082 	 * Initialize the completion queues. Must be done before hw_init,
2083 	 * because there the addresses of the completion queues are being
2084 	 * passed as arguments to request_irq
2085 	 */
2086 	if (cq_cnt) {
2087 		hdev->completion_queue = kcalloc(cq_cnt,
2088 				sizeof(*hdev->completion_queue),
2089 				GFP_KERNEL);
2090 
2091 		if (!hdev->completion_queue) {
2092 			dev_err(hdev->dev,
2093 				"failed to allocate completion queues\n");
2094 			rc = -ENOMEM;
2095 			goto hw_queues_destroy;
2096 		}
2097 	}
2098 
2099 	for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
2100 		rc = hl_cq_init(hdev, &hdev->completion_queue[i],
2101 				hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
2102 		if (rc) {
2103 			dev_err(hdev->dev,
2104 				"failed to initialize completion queue\n");
2105 			goto cq_fini;
2106 		}
2107 		hdev->completion_queue[i].cq_idx = i;
2108 	}
2109 
2110 	hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs,
2111 					sizeof(struct hl_cs *), GFP_KERNEL);
2112 	if (!hdev->shadow_cs_queue) {
2113 		rc = -ENOMEM;
2114 		goto cq_fini;
2115 	}
2116 
2117 	/*
2118 	 * Initialize the event queue. Must be done before hw_init,
2119 	 * because there the address of the event queue is being
2120 	 * passed as argument to request_irq
2121 	 */
2122 	rc = hl_eq_init(hdev, &hdev->event_queue);
2123 	if (rc) {
2124 		dev_err(hdev->dev, "failed to initialize event queue\n");
2125 		goto free_shadow_cs_queue;
2126 	}
2127 
2128 	/* MMU S/W must be initialized before kernel context is created */
2129 	rc = hl_mmu_init(hdev);
2130 	if (rc) {
2131 		dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
2132 		goto eq_fini;
2133 	}
2134 
2135 	/* Allocate the kernel context */
2136 	hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
2137 	if (!hdev->kernel_ctx) {
2138 		rc = -ENOMEM;
2139 		goto mmu_fini;
2140 	}
2141 
2142 	hdev->is_compute_ctx_active = false;
2143 
2144 	hdev->asic_funcs->state_dump_init(hdev);
2145 
2146 	hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC;
2147 
2148 	hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL;
2149 	hl_debugfs_add_device(hdev);
2150 
2151 	/* debugfs nodes are created in hl_ctx_init so it must be called after
2152 	 * hl_debugfs_add_device.
2153 	 */
2154 	rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
2155 	if (rc) {
2156 		dev_err(hdev->dev, "failed to initialize kernel context\n");
2157 		kfree(hdev->kernel_ctx);
2158 		goto remove_device_from_debugfs;
2159 	}
2160 
2161 	rc = hl_cb_pool_init(hdev);
2162 	if (rc) {
2163 		dev_err(hdev->dev, "failed to initialize CB pool\n");
2164 		goto release_ctx;
2165 	}
2166 
2167 	rc = hl_dec_init(hdev);
2168 	if (rc) {
2169 		dev_err(hdev->dev, "Failed to initialize the decoder module\n");
2170 		goto cb_pool_fini;
2171 	}
2172 
2173 	/*
2174 	 * From this point, override rc (=0) in case of an error to allow
2175 	 * debugging (by adding char devices and create sysfs nodes as part of
2176 	 * the error flow).
2177 	 */
2178 	add_cdev_sysfs_on_err = true;
2179 
2180 	/* Device is now enabled as part of the initialization requires
2181 	 * communication with the device firmware to get information that
2182 	 * is required for the initialization itself
2183 	 */
2184 	hdev->disabled = false;
2185 
2186 	rc = hdev->asic_funcs->hw_init(hdev);
2187 	if (rc) {
2188 		dev_err(hdev->dev, "failed to initialize the H/W\n");
2189 		rc = 0;
2190 		goto out_disabled;
2191 	}
2192 
2193 	/* Check that the communication with the device is working */
2194 	rc = hdev->asic_funcs->test_queues(hdev);
2195 	if (rc) {
2196 		dev_err(hdev->dev, "Failed to detect if device is alive\n");
2197 		rc = 0;
2198 		goto out_disabled;
2199 	}
2200 
2201 	rc = device_late_init(hdev);
2202 	if (rc) {
2203 		dev_err(hdev->dev, "Failed late initialization\n");
2204 		rc = 0;
2205 		goto out_disabled;
2206 	}
2207 
2208 	dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
2209 		hdev->asic_name,
2210 		hdev->asic_prop.dram_size / SZ_1G);
2211 
2212 	rc = hl_vm_init(hdev);
2213 	if (rc) {
2214 		dev_err(hdev->dev, "Failed to initialize memory module\n");
2215 		rc = 0;
2216 		goto out_disabled;
2217 	}
2218 
2219 	/*
2220 	 * Expose devices and sysfs nodes to user.
2221 	 * From here there is no need to add char devices and create sysfs nodes
2222 	 * in case of an error.
2223 	 */
2224 	add_cdev_sysfs_on_err = false;
2225 	rc = device_cdev_sysfs_add(hdev);
2226 	if (rc) {
2227 		dev_err(hdev->dev,
2228 			"Failed to add char devices and sysfs nodes\n");
2229 		rc = 0;
2230 		goto out_disabled;
2231 	}
2232 
2233 	/* Need to call this again because the max power might change,
2234 	 * depending on card type for certain ASICs
2235 	 */
2236 	if (hdev->asic_prop.set_max_power_on_device_init &&
2237 			!hdev->asic_prop.fw_security_enabled)
2238 		hl_fw_set_max_power(hdev);
2239 
2240 	/*
2241 	 * hl_hwmon_init() must be called after device_late_init(), because only
2242 	 * there we get the information from the device about which
2243 	 * hwmon-related sensors the device supports.
2244 	 * Furthermore, it must be done after adding the device to the system.
2245 	 */
2246 	rc = hl_hwmon_init(hdev);
2247 	if (rc) {
2248 		dev_err(hdev->dev, "Failed to initialize hwmon\n");
2249 		rc = 0;
2250 		goto out_disabled;
2251 	}
2252 
2253 	dev_notice(hdev->dev,
2254 		"Successfully added device %s to habanalabs driver\n",
2255 		dev_name(&(hdev)->pdev->dev));
2256 
2257 	hdev->init_done = true;
2258 
2259 	/* After initialization is done, we are ready to receive events from
2260 	 * the F/W. We can't do it before because we will ignore events and if
2261 	 * those events are fatal, we won't know about it and the device will
2262 	 * be operational although it shouldn't be
2263 	 */
2264 	hdev->asic_funcs->enable_events_from_fw(hdev);
2265 
2266 	return 0;
2267 
2268 cb_pool_fini:
2269 	hl_cb_pool_fini(hdev);
2270 release_ctx:
2271 	if (hl_ctx_put(hdev->kernel_ctx) != 1)
2272 		dev_err(hdev->dev,
2273 			"kernel ctx is still alive on initialization failure\n");
2274 remove_device_from_debugfs:
2275 	hl_debugfs_remove_device(hdev);
2276 mmu_fini:
2277 	hl_mmu_fini(hdev);
2278 eq_fini:
2279 	hl_eq_fini(hdev, &hdev->event_queue);
2280 free_shadow_cs_queue:
2281 	kfree(hdev->shadow_cs_queue);
2282 cq_fini:
2283 	for (i = 0 ; i < cq_ready_cnt ; i++)
2284 		hl_cq_fini(hdev, &hdev->completion_queue[i]);
2285 	kfree(hdev->completion_queue);
2286 hw_queues_destroy:
2287 	hl_hw_queues_destroy(hdev);
2288 sw_fini:
2289 	hdev->asic_funcs->sw_fini(hdev);
2290 free_usr_intr_mem:
2291 	kfree(hdev->user_interrupt);
2292 early_fini:
2293 	device_early_fini(hdev);
2294 free_dev:
2295 	put_device(hdev->dev_ctrl);
2296 	put_device(hdev->dev);
2297 out_disabled:
2298 	hdev->disabled = true;
2299 	if (add_cdev_sysfs_on_err)
2300 		device_cdev_sysfs_add(hdev);
2301 	if (hdev->pdev)
2302 		dev_err(&hdev->pdev->dev,
2303 			"Failed to initialize hl%d. Device %s is NOT usable !\n",
2304 			hdev->cdev_idx, dev_name(&(hdev)->pdev->dev));
2305 	else
2306 		pr_err("Failed to initialize hl%d. Device %s is NOT usable !\n",
2307 			hdev->cdev_idx, dev_name(&(hdev)->pdev->dev));
2308 
2309 	return rc;
2310 }
2311 
2312 /*
2313  * hl_device_fini - main tear-down function for habanalabs device
2314  *
2315  * @hdev: pointer to habanalabs device structure
2316  *
2317  * Destroy the device, call ASIC fini functions and release the id
2318  */
2319 void hl_device_fini(struct hl_device *hdev)
2320 {
2321 	bool device_in_reset;
2322 	ktime_t timeout;
2323 	u64 reset_sec;
2324 	int i, rc;
2325 
2326 	dev_info(hdev->dev, "Removing device\n");
2327 
2328 	hdev->device_fini_pending = 1;
2329 	flush_delayed_work(&hdev->device_reset_work.reset_work);
2330 
2331 	if (hdev->pldm)
2332 		reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
2333 	else
2334 		reset_sec = HL_HARD_RESET_MAX_TIMEOUT;
2335 
2336 	/*
2337 	 * This function is competing with the reset function, so try to
2338 	 * take the reset atomic and if we are already in middle of reset,
2339 	 * wait until reset function is finished. Reset function is designed
2340 	 * to always finish. However, in Gaudi, because of all the network
2341 	 * ports, the hard reset could take between 10-30 seconds
2342 	 */
2343 
2344 	timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);
2345 
2346 	spin_lock(&hdev->reset_info.lock);
2347 	device_in_reset = !!hdev->reset_info.in_reset;
2348 	if (!device_in_reset)
2349 		hdev->reset_info.in_reset = 1;
2350 	spin_unlock(&hdev->reset_info.lock);
2351 
2352 	while (device_in_reset) {
2353 		usleep_range(50, 200);
2354 
2355 		spin_lock(&hdev->reset_info.lock);
2356 		device_in_reset = !!hdev->reset_info.in_reset;
2357 		if (!device_in_reset)
2358 			hdev->reset_info.in_reset = 1;
2359 		spin_unlock(&hdev->reset_info.lock);
2360 
2361 		if (ktime_compare(ktime_get(), timeout) > 0) {
2362 			dev_crit(hdev->dev,
2363 				"%s Failed to remove device because reset function did not finish\n",
2364 				dev_name(&(hdev)->pdev->dev));
2365 			return;
2366 		}
2367 	}
2368 
2369 	cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work);
2370 
2371 	/* Disable PCI access from device F/W so it won't send us additional
2372 	 * interrupts. We disable MSI/MSI-X at the halt_engines function and we
2373 	 * can't have the F/W sending us interrupts after that. We need to
2374 	 * disable the access here because if the device is marked disable, the
2375 	 * message won't be send. Also, in case of heartbeat, the device CPU is
2376 	 * marked as disable so this message won't be sent
2377 	 */
2378 	hl_fw_send_pci_access_msg(hdev,	CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
2379 
2380 	/* Mark device as disabled */
2381 	hdev->disabled = true;
2382 
2383 	take_release_locks(hdev);
2384 
2385 	hdev->reset_info.hard_reset_pending = true;
2386 
2387 	hl_hwmon_fini(hdev);
2388 
2389 	cleanup_resources(hdev, true, false, false);
2390 
2391 	/* Kill processes here after CS rollback. This is because the process
2392 	 * can't really exit until all its CSs are done, which is what we
2393 	 * do in cs rollback
2394 	 */
2395 	dev_info(hdev->dev,
2396 		"Waiting for all processes to exit (timeout of %u seconds)",
2397 		HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI);
2398 
2399 	hdev->process_kill_trial_cnt = 0;
2400 	rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false);
2401 	if (rc) {
2402 		dev_crit(hdev->dev, "Failed to kill all open processes\n");
2403 		device_disable_open_processes(hdev, false);
2404 	}
2405 
2406 	hdev->process_kill_trial_cnt = 0;
2407 	rc = device_kill_open_processes(hdev, 0, true);
2408 	if (rc) {
2409 		dev_crit(hdev->dev, "Failed to kill all control device open processes\n");
2410 		device_disable_open_processes(hdev, true);
2411 	}
2412 
2413 	hl_cb_pool_fini(hdev);
2414 
2415 	/* Reset the H/W. It will be in idle state after this returns */
2416 	rc = hdev->asic_funcs->hw_fini(hdev, true, false);
2417 	if (rc)
2418 		dev_err(hdev->dev, "hw_fini failed in device fini while removing device %d\n", rc);
2419 
2420 	hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
2421 
2422 	/* Release kernel context */
2423 	if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
2424 		dev_err(hdev->dev, "kernel ctx is still alive\n");
2425 
2426 	hl_debugfs_remove_device(hdev);
2427 
2428 	hl_dec_fini(hdev);
2429 
2430 	hl_vm_fini(hdev);
2431 
2432 	hl_mmu_fini(hdev);
2433 
2434 	vfree(hdev->captured_err_info.page_fault_info.user_mappings);
2435 
2436 	hl_eq_fini(hdev, &hdev->event_queue);
2437 
2438 	kfree(hdev->shadow_cs_queue);
2439 
2440 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
2441 		hl_cq_fini(hdev, &hdev->completion_queue[i]);
2442 	kfree(hdev->completion_queue);
2443 	kfree(hdev->user_interrupt);
2444 
2445 	hl_hw_queues_destroy(hdev);
2446 
2447 	/* Call ASIC S/W finalize function */
2448 	hdev->asic_funcs->sw_fini(hdev);
2449 
2450 	device_early_fini(hdev);
2451 
2452 	/* Hide devices and sysfs nodes from user */
2453 	device_cdev_sysfs_del(hdev);
2454 
2455 	pr_info("removed device successfully\n");
2456 }
2457 
2458 /*
2459  * MMIO register access helper functions.
2460  */
2461 
2462 /*
2463  * hl_rreg - Read an MMIO register
2464  *
2465  * @hdev: pointer to habanalabs device structure
2466  * @reg: MMIO register offset (in bytes)
2467  *
2468  * Returns the value of the MMIO register we are asked to read
2469  *
2470  */
2471 inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
2472 {
2473 	u32 val = readl(hdev->rmmio + reg);
2474 
2475 	if (unlikely(trace_habanalabs_rreg32_enabled()))
2476 		trace_habanalabs_rreg32(hdev->dev, reg, val);
2477 
2478 	return val;
2479 }
2480 
2481 /*
2482  * hl_wreg - Write to an MMIO register
2483  *
2484  * @hdev: pointer to habanalabs device structure
2485  * @reg: MMIO register offset (in bytes)
2486  * @val: 32-bit value
2487  *
2488  * Writes the 32-bit value into the MMIO register
2489  *
2490  */
2491 inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
2492 {
2493 	if (unlikely(trace_habanalabs_wreg32_enabled()))
2494 		trace_habanalabs_wreg32(hdev->dev, reg, val);
2495 
2496 	writel(val, hdev->rmmio + reg);
2497 }
2498 
2499 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2500 			u8 flags)
2501 {
2502 	struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info;
2503 
2504 	if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) {
2505 		dev_err(hdev->dev,
2506 				"Number of possible razwi initiators (%u) exceeded limit (%u)\n",
2507 				num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR);
2508 		return;
2509 	}
2510 
2511 	/* In case it's the first razwi since the device was opened, capture its parameters */
2512 	if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1))
2513 		return;
2514 
2515 	razwi_info->razwi.timestamp = ktime_to_ns(ktime_get());
2516 	razwi_info->razwi.addr = addr;
2517 	razwi_info->razwi.num_of_possible_engines = num_of_engines;
2518 	memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0],
2519 			num_of_engines * sizeof(u16));
2520 	razwi_info->razwi.flags = flags;
2521 
2522 	razwi_info->razwi_info_available = true;
2523 }
2524 
2525 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2526 			u8 flags, u64 *event_mask)
2527 {
2528 	hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags);
2529 
2530 	if (event_mask)
2531 		*event_mask |= HL_NOTIFIER_EVENT_RAZWI;
2532 }
2533 
2534 static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu)
2535 {
2536 	struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2537 	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2538 	struct hl_vm_hash_node *hnode;
2539 	struct hl_userptr *userptr;
2540 	enum vm_type *vm_type;
2541 	struct hl_ctx *ctx;
2542 	u32 map_idx = 0;
2543 	int i;
2544 
2545 	/* Reset previous session count*/
2546 	pgf_info->num_of_user_mappings = 0;
2547 
2548 	ctx = hl_get_compute_ctx(hdev);
2549 	if (!ctx) {
2550 		dev_err(hdev->dev, "Can't get user context for user mappings\n");
2551 		return;
2552 	}
2553 
2554 	mutex_lock(&ctx->mem_hash_lock);
2555 	hash_for_each(ctx->mem_hash, i, hnode, node) {
2556 		vm_type = hnode->ptr;
2557 		if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) ||
2558 				((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu))
2559 			pgf_info->num_of_user_mappings++;
2560 
2561 	}
2562 
2563 	if (!pgf_info->num_of_user_mappings)
2564 		goto finish;
2565 
2566 	/* In case we already allocated in previous session, need to release it before
2567 	 * allocating new buffer.
2568 	 */
2569 	vfree(pgf_info->user_mappings);
2570 	pgf_info->user_mappings =
2571 			vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping));
2572 	if (!pgf_info->user_mappings) {
2573 		pgf_info->num_of_user_mappings = 0;
2574 		goto finish;
2575 	}
2576 
2577 	hash_for_each(ctx->mem_hash, i, hnode, node) {
2578 		vm_type = hnode->ptr;
2579 		if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) {
2580 			userptr = hnode->ptr;
2581 			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2582 			pgf_info->user_mappings[map_idx].size = userptr->size;
2583 			map_idx++;
2584 		} else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) {
2585 			phys_pg_pack = hnode->ptr;
2586 			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2587 			pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size;
2588 			map_idx++;
2589 		}
2590 	}
2591 finish:
2592 	mutex_unlock(&ctx->mem_hash_lock);
2593 	hl_ctx_put(ctx);
2594 }
2595 
2596 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu)
2597 {
2598 	struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2599 
2600 	/* Capture only the first page fault */
2601 	if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1))
2602 		return;
2603 
2604 	pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get());
2605 	pgf_info->page_fault.addr = addr;
2606 	pgf_info->page_fault.engine_id = eng_id;
2607 	hl_capture_user_mappings(hdev, is_pmmu);
2608 
2609 	pgf_info->page_fault_info_available = true;
2610 }
2611 
2612 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
2613 				u64 *event_mask)
2614 {
2615 	hl_capture_page_fault(hdev, addr, eng_id, is_pmmu);
2616 
2617 	if (event_mask)
2618 		*event_mask |=  HL_NOTIFIER_EVENT_PAGE_FAULT;
2619 }
2620 
2621 static void hl_capture_hw_err(struct hl_device *hdev, u16 event_id)
2622 {
2623 	struct hw_err_info *info = &hdev->captured_err_info.hw_err;
2624 
2625 	/* Capture only the first HW err */
2626 	if (atomic_cmpxchg(&info->event_detected, 0, 1))
2627 		return;
2628 
2629 	info->event.timestamp = ktime_to_ns(ktime_get());
2630 	info->event.event_id = event_id;
2631 
2632 	info->event_info_available = true;
2633 }
2634 
2635 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask)
2636 {
2637 	hl_capture_hw_err(hdev, event_id);
2638 
2639 	if (event_mask)
2640 		*event_mask |= HL_NOTIFIER_EVENT_CRITICL_HW_ERR;
2641 }
2642 
2643 static void hl_capture_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *fw_info)
2644 {
2645 	struct fw_err_info *info = &hdev->captured_err_info.fw_err;
2646 
2647 	/* Capture only the first FW error */
2648 	if (atomic_cmpxchg(&info->event_detected, 0, 1))
2649 		return;
2650 
2651 	info->event.timestamp = ktime_to_ns(ktime_get());
2652 	info->event.err_type = fw_info->err_type;
2653 	if (fw_info->err_type == HL_INFO_FW_REPORTED_ERR)
2654 		info->event.event_id = fw_info->event_id;
2655 
2656 	info->event_info_available = true;
2657 }
2658 
2659 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info)
2660 {
2661 	hl_capture_fw_err(hdev, info);
2662 
2663 	if (info->event_mask)
2664 		*info->event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR;
2665 }
2666