1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2021 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include "habanalabs.h" 9 #include "../include/hw_ip/mmu/mmu_general.h" 10 11 #include <linux/pci.h> 12 #include <linux/uaccess.h> 13 #include <linux/vmalloc.h> 14 #include <linux/iommu.h> 15 16 #define MMU_ADDR_BUF_SIZE 40 17 #define MMU_ASID_BUF_SIZE 10 18 #define MMU_KBUF_SIZE (MMU_ADDR_BUF_SIZE + MMU_ASID_BUF_SIZE) 19 #define I2C_MAX_TRANSACTION_LEN 8 20 21 static struct dentry *hl_debug_root; 22 23 static int hl_debugfs_i2c_read(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr, 24 u8 i2c_reg, u8 i2c_len, u64 *val) 25 { 26 struct cpucp_packet pkt; 27 int rc; 28 29 if (!hl_device_operational(hdev, NULL)) 30 return -EBUSY; 31 32 if (i2c_len > I2C_MAX_TRANSACTION_LEN) { 33 dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n", 34 i2c_len, I2C_MAX_TRANSACTION_LEN); 35 return -EINVAL; 36 } 37 38 memset(&pkt, 0, sizeof(pkt)); 39 40 pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_RD << 41 CPUCP_PKT_CTL_OPCODE_SHIFT); 42 pkt.i2c_bus = i2c_bus; 43 pkt.i2c_addr = i2c_addr; 44 pkt.i2c_reg = i2c_reg; 45 pkt.i2c_len = i2c_len; 46 47 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 48 0, val); 49 if (rc) 50 dev_err(hdev->dev, "Failed to read from I2C, error %d\n", rc); 51 52 return rc; 53 } 54 55 static int hl_debugfs_i2c_write(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr, 56 u8 i2c_reg, u8 i2c_len, u64 val) 57 { 58 struct cpucp_packet pkt; 59 int rc; 60 61 if (!hl_device_operational(hdev, NULL)) 62 return -EBUSY; 63 64 if (i2c_len > I2C_MAX_TRANSACTION_LEN) { 65 dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n", 66 i2c_len, I2C_MAX_TRANSACTION_LEN); 67 return -EINVAL; 68 } 69 70 memset(&pkt, 0, sizeof(pkt)); 71 72 pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_WR << 73 CPUCP_PKT_CTL_OPCODE_SHIFT); 74 pkt.i2c_bus = i2c_bus; 75 pkt.i2c_addr = i2c_addr; 76 pkt.i2c_reg = i2c_reg; 77 pkt.i2c_len = i2c_len; 78 pkt.value = cpu_to_le64(val); 79 80 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 81 0, NULL); 82 83 if (rc) 84 dev_err(hdev->dev, "Failed to write to I2C, error %d\n", rc); 85 86 return rc; 87 } 88 89 static void hl_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state) 90 { 91 struct cpucp_packet pkt; 92 int rc; 93 94 if (!hl_device_operational(hdev, NULL)) 95 return; 96 97 memset(&pkt, 0, sizeof(pkt)); 98 99 pkt.ctl = cpu_to_le32(CPUCP_PACKET_LED_SET << 100 CPUCP_PKT_CTL_OPCODE_SHIFT); 101 pkt.led_index = cpu_to_le32(led); 102 pkt.value = cpu_to_le64(state); 103 104 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 105 0, NULL); 106 107 if (rc) 108 dev_err(hdev->dev, "Failed to set LED %d, error %d\n", led, rc); 109 } 110 111 static int command_buffers_show(struct seq_file *s, void *data) 112 { 113 struct hl_debugfs_entry *entry = s->private; 114 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 115 struct hl_cb *cb; 116 bool first = true; 117 118 spin_lock(&dev_entry->cb_spinlock); 119 120 list_for_each_entry(cb, &dev_entry->cb_list, debugfs_list) { 121 if (first) { 122 first = false; 123 seq_puts(s, "\n"); 124 seq_puts(s, " CB ID CTX ID CB size CB RefCnt mmap? CS counter\n"); 125 seq_puts(s, "---------------------------------------------------------------\n"); 126 } 127 seq_printf(s, 128 " %03llu %d 0x%08x %d %d %d\n", 129 cb->buf->handle, cb->ctx->asid, cb->size, 130 kref_read(&cb->buf->refcount), 131 atomic_read(&cb->buf->mmap), atomic_read(&cb->cs_cnt)); 132 } 133 134 spin_unlock(&dev_entry->cb_spinlock); 135 136 if (!first) 137 seq_puts(s, "\n"); 138 139 return 0; 140 } 141 142 static int command_submission_show(struct seq_file *s, void *data) 143 { 144 struct hl_debugfs_entry *entry = s->private; 145 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 146 struct hl_cs *cs; 147 bool first = true; 148 149 spin_lock(&dev_entry->cs_spinlock); 150 151 list_for_each_entry(cs, &dev_entry->cs_list, debugfs_list) { 152 if (first) { 153 first = false; 154 seq_puts(s, "\n"); 155 seq_puts(s, " CS ID CS TYPE CTX ASID CS RefCnt Submitted Completed\n"); 156 seq_puts(s, "----------------------------------------------------------------\n"); 157 } 158 seq_printf(s, 159 " %llu %d %d %d %d %d\n", 160 cs->sequence, cs->type, cs->ctx->asid, 161 kref_read(&cs->refcount), 162 cs->submitted, cs->completed); 163 } 164 165 spin_unlock(&dev_entry->cs_spinlock); 166 167 if (!first) 168 seq_puts(s, "\n"); 169 170 return 0; 171 } 172 173 static int command_submission_jobs_show(struct seq_file *s, void *data) 174 { 175 struct hl_debugfs_entry *entry = s->private; 176 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 177 struct hl_cs_job *job; 178 bool first = true; 179 180 spin_lock(&dev_entry->cs_job_spinlock); 181 182 list_for_each_entry(job, &dev_entry->cs_job_list, debugfs_list) { 183 if (first) { 184 first = false; 185 seq_puts(s, "\n"); 186 seq_puts(s, " JOB ID CS ID CS TYPE CTX ASID JOB RefCnt H/W Queue\n"); 187 seq_puts(s, "---------------------------------------------------------------\n"); 188 } 189 if (job->cs) 190 seq_printf(s, 191 " %02d %llu %d %d %d %d\n", 192 job->id, job->cs->sequence, job->cs->type, 193 job->cs->ctx->asid, kref_read(&job->refcount), 194 job->hw_queue_id); 195 else 196 seq_printf(s, 197 " %02d 0 0 %d %d %d\n", 198 job->id, HL_KERNEL_ASID_ID, 199 kref_read(&job->refcount), job->hw_queue_id); 200 } 201 202 spin_unlock(&dev_entry->cs_job_spinlock); 203 204 if (!first) 205 seq_puts(s, "\n"); 206 207 return 0; 208 } 209 210 static int userptr_show(struct seq_file *s, void *data) 211 { 212 struct hl_debugfs_entry *entry = s->private; 213 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 214 struct hl_userptr *userptr; 215 char dma_dir[4][30] = {"DMA_BIDIRECTIONAL", "DMA_TO_DEVICE", 216 "DMA_FROM_DEVICE", "DMA_NONE"}; 217 bool first = true; 218 219 spin_lock(&dev_entry->userptr_spinlock); 220 221 list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) { 222 if (first) { 223 first = false; 224 seq_puts(s, "\n"); 225 seq_puts(s, " pid user virtual address size dma dir\n"); 226 seq_puts(s, "----------------------------------------------------------\n"); 227 } 228 seq_printf(s, " %-7d 0x%-14llx %-10llu %-30s\n", 229 userptr->pid, userptr->addr, userptr->size, 230 dma_dir[userptr->dir]); 231 } 232 233 spin_unlock(&dev_entry->userptr_spinlock); 234 235 if (!first) 236 seq_puts(s, "\n"); 237 238 return 0; 239 } 240 241 static int vm_show(struct seq_file *s, void *data) 242 { 243 struct hl_debugfs_entry *entry = s->private; 244 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 245 struct hl_vm_hw_block_list_node *lnode; 246 struct hl_ctx *ctx; 247 struct hl_vm *vm; 248 struct hl_vm_hash_node *hnode; 249 struct hl_userptr *userptr; 250 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 251 struct hl_va_range *va_range; 252 struct hl_vm_va_block *va_block; 253 enum vm_type *vm_type; 254 bool once = true; 255 u64 j; 256 int i; 257 258 if (!dev_entry->hdev->mmu_enable) 259 return 0; 260 261 spin_lock(&dev_entry->ctx_mem_hash_spinlock); 262 263 list_for_each_entry(ctx, &dev_entry->ctx_mem_hash_list, debugfs_list) { 264 once = false; 265 seq_puts(s, "\n\n----------------------------------------------------"); 266 seq_puts(s, "\n----------------------------------------------------\n\n"); 267 seq_printf(s, "ctx asid: %u\n", ctx->asid); 268 269 seq_puts(s, "\nmappings:\n\n"); 270 seq_puts(s, " virtual address size handle\n"); 271 seq_puts(s, "----------------------------------------------------\n"); 272 mutex_lock(&ctx->mem_hash_lock); 273 hash_for_each(ctx->mem_hash, i, hnode, node) { 274 vm_type = hnode->ptr; 275 276 if (*vm_type == VM_TYPE_USERPTR) { 277 userptr = hnode->ptr; 278 seq_printf(s, 279 " 0x%-14llx %-10llu\n", 280 hnode->vaddr, userptr->size); 281 } else { 282 phys_pg_pack = hnode->ptr; 283 seq_printf(s, 284 " 0x%-14llx %-10llu %-4u\n", 285 hnode->vaddr, phys_pg_pack->total_size, 286 phys_pg_pack->handle); 287 } 288 } 289 mutex_unlock(&ctx->mem_hash_lock); 290 291 if (ctx->asid != HL_KERNEL_ASID_ID && 292 !list_empty(&ctx->hw_block_mem_list)) { 293 seq_puts(s, "\nhw_block mappings:\n\n"); 294 seq_puts(s, 295 " virtual address block size mapped size HW block id\n"); 296 seq_puts(s, 297 "---------------------------------------------------------------\n"); 298 mutex_lock(&ctx->hw_block_list_lock); 299 list_for_each_entry(lnode, &ctx->hw_block_mem_list, node) { 300 seq_printf(s, 301 " 0x%-14lx %-6u %-6u %-9u\n", 302 lnode->vaddr, lnode->block_size, lnode->mapped_size, 303 lnode->id); 304 } 305 mutex_unlock(&ctx->hw_block_list_lock); 306 } 307 308 vm = &ctx->hdev->vm; 309 spin_lock(&vm->idr_lock); 310 311 if (!idr_is_empty(&vm->phys_pg_pack_handles)) 312 seq_puts(s, "\n\nallocations:\n"); 313 314 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_pack, i) { 315 if (phys_pg_pack->asid != ctx->asid) 316 continue; 317 318 seq_printf(s, "\nhandle: %u\n", phys_pg_pack->handle); 319 seq_printf(s, "page size: %u\n\n", 320 phys_pg_pack->page_size); 321 seq_puts(s, " physical address\n"); 322 seq_puts(s, "---------------------\n"); 323 for (j = 0 ; j < phys_pg_pack->npages ; j++) { 324 seq_printf(s, " 0x%-14llx\n", 325 phys_pg_pack->pages[j]); 326 } 327 } 328 spin_unlock(&vm->idr_lock); 329 330 } 331 332 spin_unlock(&dev_entry->ctx_mem_hash_spinlock); 333 334 ctx = hl_get_compute_ctx(dev_entry->hdev); 335 if (ctx) { 336 seq_puts(s, "\nVA ranges:\n\n"); 337 for (i = HL_VA_RANGE_TYPE_HOST ; i < HL_VA_RANGE_TYPE_MAX ; ++i) { 338 va_range = ctx->va_range[i]; 339 seq_printf(s, " va_range %d\n", i); 340 seq_puts(s, "---------------------\n"); 341 mutex_lock(&va_range->lock); 342 list_for_each_entry(va_block, &va_range->list, node) { 343 seq_printf(s, "%#16llx - %#16llx (%#llx)\n", 344 va_block->start, va_block->end, 345 va_block->size); 346 } 347 mutex_unlock(&va_range->lock); 348 seq_puts(s, "\n"); 349 } 350 hl_ctx_put(ctx); 351 } 352 353 if (!once) 354 seq_puts(s, "\n"); 355 356 return 0; 357 } 358 359 static int userptr_lookup_show(struct seq_file *s, void *data) 360 { 361 struct hl_debugfs_entry *entry = s->private; 362 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 363 struct scatterlist *sg; 364 struct hl_userptr *userptr; 365 bool first = true; 366 u64 total_npages, npages, sg_start, sg_end; 367 dma_addr_t dma_addr; 368 int i; 369 370 spin_lock(&dev_entry->userptr_spinlock); 371 372 list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) { 373 if (dev_entry->userptr_lookup >= userptr->addr && 374 dev_entry->userptr_lookup < userptr->addr + userptr->size) { 375 total_npages = 0; 376 for_each_sgtable_dma_sg(userptr->sgt, sg, i) { 377 npages = hl_get_sg_info(sg, &dma_addr); 378 sg_start = userptr->addr + 379 total_npages * PAGE_SIZE; 380 sg_end = userptr->addr + 381 (total_npages + npages) * PAGE_SIZE; 382 383 if (dev_entry->userptr_lookup >= sg_start && 384 dev_entry->userptr_lookup < sg_end) { 385 dma_addr += (dev_entry->userptr_lookup - 386 sg_start); 387 if (first) { 388 first = false; 389 seq_puts(s, "\n"); 390 seq_puts(s, " user virtual address dma address pid region start region size\n"); 391 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 392 } 393 seq_printf(s, " 0x%-18llx 0x%-16llx %-8u 0x%-16llx %-12llu\n", 394 dev_entry->userptr_lookup, 395 (u64)dma_addr, userptr->pid, 396 userptr->addr, userptr->size); 397 } 398 total_npages += npages; 399 } 400 } 401 } 402 403 spin_unlock(&dev_entry->userptr_spinlock); 404 405 if (!first) 406 seq_puts(s, "\n"); 407 408 return 0; 409 } 410 411 static ssize_t userptr_lookup_write(struct file *file, const char __user *buf, 412 size_t count, loff_t *f_pos) 413 { 414 struct seq_file *s = file->private_data; 415 struct hl_debugfs_entry *entry = s->private; 416 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 417 ssize_t rc; 418 u64 value; 419 420 rc = kstrtoull_from_user(buf, count, 16, &value); 421 if (rc) 422 return rc; 423 424 dev_entry->userptr_lookup = value; 425 426 return count; 427 } 428 429 static int mmu_show(struct seq_file *s, void *data) 430 { 431 struct hl_debugfs_entry *entry = s->private; 432 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 433 struct hl_device *hdev = dev_entry->hdev; 434 struct hl_ctx *ctx; 435 struct hl_mmu_hop_info hops_info = {0}; 436 u64 virt_addr = dev_entry->mmu_addr, phys_addr; 437 int i; 438 439 if (!hdev->mmu_enable) 440 return 0; 441 442 if (dev_entry->mmu_asid == HL_KERNEL_ASID_ID) 443 ctx = hdev->kernel_ctx; 444 else 445 ctx = hl_get_compute_ctx(hdev); 446 447 if (!ctx) { 448 dev_err(hdev->dev, "no ctx available\n"); 449 return 0; 450 } 451 452 if (hl_mmu_get_tlb_info(ctx, virt_addr, &hops_info)) { 453 dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", 454 virt_addr); 455 goto put_ctx; 456 } 457 458 hl_mmu_va_to_pa(ctx, virt_addr, &phys_addr); 459 460 if (hops_info.scrambled_vaddr && 461 (dev_entry->mmu_addr != hops_info.scrambled_vaddr)) 462 seq_printf(s, 463 "asid: %u, virt_addr: 0x%llx, scrambled virt_addr: 0x%llx,\nphys_addr: 0x%llx, scrambled_phys_addr: 0x%llx\n", 464 dev_entry->mmu_asid, dev_entry->mmu_addr, 465 hops_info.scrambled_vaddr, 466 hops_info.unscrambled_paddr, phys_addr); 467 else 468 seq_printf(s, 469 "asid: %u, virt_addr: 0x%llx, phys_addr: 0x%llx\n", 470 dev_entry->mmu_asid, dev_entry->mmu_addr, phys_addr); 471 472 for (i = 0 ; i < hops_info.used_hops ; i++) { 473 seq_printf(s, "hop%d_addr: 0x%llx\n", 474 i, hops_info.hop_info[i].hop_addr); 475 seq_printf(s, "hop%d_pte_addr: 0x%llx\n", 476 i, hops_info.hop_info[i].hop_pte_addr); 477 seq_printf(s, "hop%d_pte: 0x%llx\n", 478 i, hops_info.hop_info[i].hop_pte_val); 479 } 480 481 put_ctx: 482 if (dev_entry->mmu_asid != HL_KERNEL_ASID_ID) 483 hl_ctx_put(ctx); 484 485 return 0; 486 } 487 488 static ssize_t mmu_asid_va_write(struct file *file, const char __user *buf, 489 size_t count, loff_t *f_pos) 490 { 491 struct seq_file *s = file->private_data; 492 struct hl_debugfs_entry *entry = s->private; 493 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 494 struct hl_device *hdev = dev_entry->hdev; 495 char kbuf[MMU_KBUF_SIZE]; 496 char *c; 497 ssize_t rc; 498 499 if (!hdev->mmu_enable) 500 return count; 501 502 if (count > sizeof(kbuf) - 1) 503 goto err; 504 if (copy_from_user(kbuf, buf, count)) 505 goto err; 506 kbuf[count] = 0; 507 508 c = strchr(kbuf, ' '); 509 if (!c) 510 goto err; 511 *c = '\0'; 512 513 rc = kstrtouint(kbuf, 10, &dev_entry->mmu_asid); 514 if (rc) 515 goto err; 516 517 if (strncmp(c+1, "0x", 2)) 518 goto err; 519 rc = kstrtoull(c+3, 16, &dev_entry->mmu_addr); 520 if (rc) 521 goto err; 522 523 return count; 524 525 err: 526 dev_err(hdev->dev, "usage: echo <asid> <0xaddr> > mmu\n"); 527 528 return -EINVAL; 529 } 530 531 static int mmu_ack_error(struct seq_file *s, void *data) 532 { 533 struct hl_debugfs_entry *entry = s->private; 534 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 535 struct hl_device *hdev = dev_entry->hdev; 536 int rc; 537 538 if (!hdev->mmu_enable) 539 return 0; 540 541 if (!dev_entry->mmu_cap_mask) { 542 dev_err(hdev->dev, "mmu_cap_mask is not set\n"); 543 goto err; 544 } 545 546 rc = hdev->asic_funcs->ack_mmu_errors(hdev, dev_entry->mmu_cap_mask); 547 if (rc) 548 goto err; 549 550 return 0; 551 err: 552 return -EINVAL; 553 } 554 555 static ssize_t mmu_ack_error_value_write(struct file *file, 556 const char __user *buf, 557 size_t count, loff_t *f_pos) 558 { 559 struct seq_file *s = file->private_data; 560 struct hl_debugfs_entry *entry = s->private; 561 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 562 struct hl_device *hdev = dev_entry->hdev; 563 char kbuf[MMU_KBUF_SIZE]; 564 ssize_t rc; 565 566 if (!hdev->mmu_enable) 567 return count; 568 569 if (count > sizeof(kbuf) - 1) 570 goto err; 571 572 if (copy_from_user(kbuf, buf, count)) 573 goto err; 574 575 kbuf[count] = 0; 576 577 if (strncmp(kbuf, "0x", 2)) 578 goto err; 579 580 rc = kstrtoull(kbuf, 16, &dev_entry->mmu_cap_mask); 581 if (rc) 582 goto err; 583 584 return count; 585 err: 586 dev_err(hdev->dev, "usage: echo <0xmmu_cap_mask > > mmu_error\n"); 587 588 return -EINVAL; 589 } 590 591 static int engines_show(struct seq_file *s, void *data) 592 { 593 struct hl_debugfs_entry *entry = s->private; 594 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 595 struct hl_device *hdev = dev_entry->hdev; 596 struct engines_data eng_data; 597 598 if (hdev->reset_info.in_reset) { 599 dev_warn_ratelimited(hdev->dev, 600 "Can't check device idle during reset\n"); 601 return 0; 602 } 603 604 eng_data.actual_size = 0; 605 eng_data.allocated_buf_size = HL_ENGINES_DATA_MAX_SIZE; 606 eng_data.buf = vmalloc(eng_data.allocated_buf_size); 607 if (!eng_data.buf) 608 return -ENOMEM; 609 610 hdev->asic_funcs->is_device_idle(hdev, NULL, 0, &eng_data); 611 612 if (eng_data.actual_size > eng_data.allocated_buf_size) { 613 dev_err(hdev->dev, 614 "Engines data size (%d Bytes) is bigger than allocated size (%u Bytes)\n", 615 eng_data.actual_size, eng_data.allocated_buf_size); 616 vfree(eng_data.buf); 617 return -ENOMEM; 618 } 619 620 seq_write(s, eng_data.buf, eng_data.actual_size); 621 622 vfree(eng_data.buf); 623 624 return 0; 625 } 626 627 static ssize_t hl_memory_scrub(struct file *f, const char __user *buf, 628 size_t count, loff_t *ppos) 629 { 630 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 631 struct hl_device *hdev = entry->hdev; 632 u64 val = hdev->memory_scrub_val; 633 int rc; 634 635 if (!hl_device_operational(hdev, NULL)) { 636 dev_warn_ratelimited(hdev->dev, "Can't scrub memory, device is not operational\n"); 637 return -EIO; 638 } 639 640 mutex_lock(&hdev->fpriv_list_lock); 641 if (hdev->is_compute_ctx_active) { 642 mutex_unlock(&hdev->fpriv_list_lock); 643 dev_err(hdev->dev, "can't scrub dram, context exist\n"); 644 return -EBUSY; 645 } 646 hdev->is_in_dram_scrub = true; 647 mutex_unlock(&hdev->fpriv_list_lock); 648 649 rc = hdev->asic_funcs->scrub_device_dram(hdev, val); 650 651 mutex_lock(&hdev->fpriv_list_lock); 652 hdev->is_in_dram_scrub = false; 653 mutex_unlock(&hdev->fpriv_list_lock); 654 655 if (rc) 656 return rc; 657 return count; 658 } 659 660 static bool hl_is_device_va(struct hl_device *hdev, u64 addr) 661 { 662 struct asic_fixed_properties *prop = &hdev->asic_prop; 663 664 if (!hdev->mmu_enable) 665 goto out; 666 667 if (prop->dram_supports_virtual_memory && 668 (addr >= prop->dmmu.start_addr && addr < prop->dmmu.end_addr)) 669 return true; 670 671 if (addr >= prop->pmmu.start_addr && 672 addr < prop->pmmu.end_addr) 673 return true; 674 675 if (addr >= prop->pmmu_huge.start_addr && 676 addr < prop->pmmu_huge.end_addr) 677 return true; 678 out: 679 return false; 680 } 681 682 static bool hl_is_device_internal_memory_va(struct hl_device *hdev, u64 addr, 683 u32 size) 684 { 685 struct asic_fixed_properties *prop = &hdev->asic_prop; 686 u64 dram_start_addr, dram_end_addr; 687 688 if (!hdev->mmu_enable) 689 return false; 690 691 if (prop->dram_supports_virtual_memory) { 692 dram_start_addr = prop->dmmu.start_addr; 693 dram_end_addr = prop->dmmu.end_addr; 694 } else { 695 dram_start_addr = prop->dram_base_address; 696 dram_end_addr = prop->dram_end_address; 697 } 698 699 if (hl_mem_area_inside_range(addr, size, dram_start_addr, 700 dram_end_addr)) 701 return true; 702 703 if (hl_mem_area_inside_range(addr, size, prop->sram_base_address, 704 prop->sram_end_address)) 705 return true; 706 707 return false; 708 } 709 710 static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr, u32 size, 711 u64 *phys_addr) 712 { 713 struct hl_vm_phys_pg_pack *phys_pg_pack; 714 struct hl_ctx *ctx; 715 struct hl_vm_hash_node *hnode; 716 u64 end_address, range_size; 717 struct hl_userptr *userptr; 718 enum vm_type *vm_type; 719 bool valid = false; 720 int i, rc = 0; 721 722 ctx = hl_get_compute_ctx(hdev); 723 724 if (!ctx) { 725 dev_err(hdev->dev, "no ctx available\n"); 726 return -EINVAL; 727 } 728 729 /* Verify address is mapped */ 730 mutex_lock(&ctx->mem_hash_lock); 731 hash_for_each(ctx->mem_hash, i, hnode, node) { 732 vm_type = hnode->ptr; 733 734 if (*vm_type == VM_TYPE_USERPTR) { 735 userptr = hnode->ptr; 736 range_size = userptr->size; 737 } else { 738 phys_pg_pack = hnode->ptr; 739 range_size = phys_pg_pack->total_size; 740 } 741 742 end_address = virt_addr + size; 743 if ((virt_addr >= hnode->vaddr) && 744 (end_address <= hnode->vaddr + range_size)) { 745 valid = true; 746 break; 747 } 748 } 749 mutex_unlock(&ctx->mem_hash_lock); 750 751 if (!valid) { 752 dev_err(hdev->dev, 753 "virt addr 0x%llx is not mapped\n", 754 virt_addr); 755 rc = -EINVAL; 756 goto put_ctx; 757 } 758 759 rc = hl_mmu_va_to_pa(ctx, virt_addr, phys_addr); 760 if (rc) { 761 dev_err(hdev->dev, 762 "virt addr 0x%llx is not mapped to phys addr\n", 763 virt_addr); 764 rc = -EINVAL; 765 } 766 767 put_ctx: 768 hl_ctx_put(ctx); 769 770 return rc; 771 } 772 773 static int hl_access_dev_mem_by_region(struct hl_device *hdev, u64 addr, 774 u64 *val, enum debugfs_access_type acc_type, bool *found) 775 { 776 size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ? 777 sizeof(u64) : sizeof(u32); 778 struct pci_mem_region *mem_reg; 779 int i; 780 781 for (i = 0; i < PCI_REGION_NUMBER; i++) { 782 mem_reg = &hdev->pci_mem_region[i]; 783 if (!mem_reg->used) 784 continue; 785 if (addr >= mem_reg->region_base && 786 addr <= mem_reg->region_base + mem_reg->region_size - acc_size) { 787 *found = true; 788 return hdev->asic_funcs->access_dev_mem(hdev, i, addr, val, acc_type); 789 } 790 } 791 return 0; 792 } 793 794 static void hl_access_host_mem(struct hl_device *hdev, u64 addr, u64 *val, 795 enum debugfs_access_type acc_type) 796 { 797 struct asic_fixed_properties *prop = &hdev->asic_prop; 798 u64 offset = prop->device_dma_offset_for_host_access; 799 800 switch (acc_type) { 801 case DEBUGFS_READ32: 802 *val = *(u32 *) phys_to_virt(addr - offset); 803 break; 804 case DEBUGFS_WRITE32: 805 *(u32 *) phys_to_virt(addr - offset) = *val; 806 break; 807 case DEBUGFS_READ64: 808 *val = *(u64 *) phys_to_virt(addr - offset); 809 break; 810 case DEBUGFS_WRITE64: 811 *(u64 *) phys_to_virt(addr - offset) = *val; 812 break; 813 default: 814 dev_err(hdev->dev, "hostmem access-type %d id not supported\n", acc_type); 815 break; 816 } 817 } 818 819 static int hl_access_mem(struct hl_device *hdev, u64 addr, u64 *val, 820 enum debugfs_access_type acc_type) 821 { 822 size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ? 823 sizeof(u64) : sizeof(u32); 824 u64 host_start = hdev->asic_prop.host_base_address; 825 u64 host_end = hdev->asic_prop.host_end_address; 826 bool user_address, found = false; 827 int rc; 828 829 user_address = hl_is_device_va(hdev, addr); 830 if (user_address) { 831 rc = device_va_to_pa(hdev, addr, acc_size, &addr); 832 if (rc) 833 return rc; 834 } 835 836 rc = hl_access_dev_mem_by_region(hdev, addr, val, acc_type, &found); 837 if (rc) { 838 dev_err(hdev->dev, 839 "Failed reading addr %#llx from dev mem (%d)\n", 840 addr, rc); 841 return rc; 842 } 843 844 if (found) 845 return 0; 846 847 if (!user_address || device_iommu_mapped(&hdev->pdev->dev)) { 848 rc = -EINVAL; 849 goto err; 850 } 851 852 if (addr >= host_start && addr <= host_end - acc_size) { 853 hl_access_host_mem(hdev, addr, val, acc_type); 854 } else { 855 rc = -EINVAL; 856 goto err; 857 } 858 859 return 0; 860 err: 861 dev_err(hdev->dev, "invalid addr %#llx\n", addr); 862 return rc; 863 } 864 865 static ssize_t hl_data_read32(struct file *f, char __user *buf, 866 size_t count, loff_t *ppos) 867 { 868 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 869 struct hl_device *hdev = entry->hdev; 870 u64 value64, addr = entry->addr; 871 char tmp_buf[32]; 872 ssize_t rc; 873 u32 val; 874 875 if (hdev->reset_info.in_reset) { 876 dev_warn_ratelimited(hdev->dev, "Can't read during reset\n"); 877 return 0; 878 } 879 880 if (*ppos) 881 return 0; 882 883 rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_READ32); 884 if (rc) 885 return rc; 886 887 val = value64; /* downcast back to 32 */ 888 889 sprintf(tmp_buf, "0x%08x\n", val); 890 return simple_read_from_buffer(buf, count, ppos, tmp_buf, 891 strlen(tmp_buf)); 892 } 893 894 static ssize_t hl_data_write32(struct file *f, const char __user *buf, 895 size_t count, loff_t *ppos) 896 { 897 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 898 struct hl_device *hdev = entry->hdev; 899 u64 value64, addr = entry->addr; 900 u32 value; 901 ssize_t rc; 902 903 if (hdev->reset_info.in_reset) { 904 dev_warn_ratelimited(hdev->dev, "Can't write during reset\n"); 905 return 0; 906 } 907 908 rc = kstrtouint_from_user(buf, count, 16, &value); 909 if (rc) 910 return rc; 911 912 value64 = value; 913 rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_WRITE32); 914 if (rc) 915 return rc; 916 917 return count; 918 } 919 920 static ssize_t hl_data_read64(struct file *f, char __user *buf, 921 size_t count, loff_t *ppos) 922 { 923 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 924 struct hl_device *hdev = entry->hdev; 925 u64 addr = entry->addr; 926 char tmp_buf[32]; 927 ssize_t rc; 928 u64 val; 929 930 if (hdev->reset_info.in_reset) { 931 dev_warn_ratelimited(hdev->dev, "Can't read during reset\n"); 932 return 0; 933 } 934 935 if (*ppos) 936 return 0; 937 938 rc = hl_access_mem(hdev, addr, &val, DEBUGFS_READ64); 939 if (rc) 940 return rc; 941 942 sprintf(tmp_buf, "0x%016llx\n", val); 943 return simple_read_from_buffer(buf, count, ppos, tmp_buf, 944 strlen(tmp_buf)); 945 } 946 947 static ssize_t hl_data_write64(struct file *f, const char __user *buf, 948 size_t count, loff_t *ppos) 949 { 950 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 951 struct hl_device *hdev = entry->hdev; 952 u64 addr = entry->addr; 953 u64 value; 954 ssize_t rc; 955 956 if (hdev->reset_info.in_reset) { 957 dev_warn_ratelimited(hdev->dev, "Can't write during reset\n"); 958 return 0; 959 } 960 961 rc = kstrtoull_from_user(buf, count, 16, &value); 962 if (rc) 963 return rc; 964 965 rc = hl_access_mem(hdev, addr, &value, DEBUGFS_WRITE64); 966 if (rc) 967 return rc; 968 969 return count; 970 } 971 972 static ssize_t hl_dma_size_write(struct file *f, const char __user *buf, 973 size_t count, loff_t *ppos) 974 { 975 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 976 struct hl_device *hdev = entry->hdev; 977 u64 addr = entry->addr; 978 ssize_t rc; 979 u32 size; 980 981 if (hdev->reset_info.in_reset) { 982 dev_warn_ratelimited(hdev->dev, "Can't DMA during reset\n"); 983 return 0; 984 } 985 rc = kstrtouint_from_user(buf, count, 16, &size); 986 if (rc) 987 return rc; 988 989 if (!size) { 990 dev_err(hdev->dev, "DMA read failed. size can't be 0\n"); 991 return -EINVAL; 992 } 993 994 if (size > SZ_128M) { 995 dev_err(hdev->dev, 996 "DMA read failed. size can't be larger than 128MB\n"); 997 return -EINVAL; 998 } 999 1000 if (!hl_is_device_internal_memory_va(hdev, addr, size)) { 1001 dev_err(hdev->dev, 1002 "DMA read failed. Invalid 0x%010llx + 0x%08x\n", 1003 addr, size); 1004 return -EINVAL; 1005 } 1006 1007 /* Free the previous allocation, if there was any */ 1008 entry->data_dma_blob_desc.size = 0; 1009 vfree(entry->data_dma_blob_desc.data); 1010 1011 entry->data_dma_blob_desc.data = vmalloc(size); 1012 if (!entry->data_dma_blob_desc.data) 1013 return -ENOMEM; 1014 1015 rc = hdev->asic_funcs->debugfs_read_dma(hdev, addr, size, 1016 entry->data_dma_blob_desc.data); 1017 if (rc) { 1018 dev_err(hdev->dev, "Failed to DMA from 0x%010llx\n", addr); 1019 vfree(entry->data_dma_blob_desc.data); 1020 entry->data_dma_blob_desc.data = NULL; 1021 return -EIO; 1022 } 1023 1024 entry->data_dma_blob_desc.size = size; 1025 1026 return count; 1027 } 1028 1029 static ssize_t hl_monitor_dump_trigger(struct file *f, const char __user *buf, 1030 size_t count, loff_t *ppos) 1031 { 1032 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1033 struct hl_device *hdev = entry->hdev; 1034 u32 size, trig; 1035 ssize_t rc; 1036 1037 if (hdev->reset_info.in_reset) { 1038 dev_warn_ratelimited(hdev->dev, "Can't dump monitors during reset\n"); 1039 return 0; 1040 } 1041 rc = kstrtouint_from_user(buf, count, 10, &trig); 1042 if (rc) 1043 return rc; 1044 1045 if (trig != 1) { 1046 dev_err(hdev->dev, "Must write 1 to trigger monitor dump\n"); 1047 return -EINVAL; 1048 } 1049 1050 size = sizeof(struct cpucp_monitor_dump); 1051 1052 /* Free the previous allocation, if there was any */ 1053 entry->mon_dump_blob_desc.size = 0; 1054 vfree(entry->mon_dump_blob_desc.data); 1055 1056 entry->mon_dump_blob_desc.data = vmalloc(size); 1057 if (!entry->mon_dump_blob_desc.data) 1058 return -ENOMEM; 1059 1060 rc = hdev->asic_funcs->get_monitor_dump(hdev, entry->mon_dump_blob_desc.data); 1061 if (rc) { 1062 dev_err(hdev->dev, "Failed to dump monitors\n"); 1063 vfree(entry->mon_dump_blob_desc.data); 1064 entry->mon_dump_blob_desc.data = NULL; 1065 return -EIO; 1066 } 1067 1068 entry->mon_dump_blob_desc.size = size; 1069 1070 return count; 1071 } 1072 1073 static ssize_t hl_get_power_state(struct file *f, char __user *buf, 1074 size_t count, loff_t *ppos) 1075 { 1076 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1077 struct hl_device *hdev = entry->hdev; 1078 char tmp_buf[200]; 1079 int i; 1080 1081 if (*ppos) 1082 return 0; 1083 1084 if (hdev->pdev->current_state == PCI_D0) 1085 i = 1; 1086 else if (hdev->pdev->current_state == PCI_D3hot) 1087 i = 2; 1088 else 1089 i = 3; 1090 1091 sprintf(tmp_buf, 1092 "current power state: %d\n1 - D0\n2 - D3hot\n3 - Unknown\n", i); 1093 return simple_read_from_buffer(buf, count, ppos, tmp_buf, 1094 strlen(tmp_buf)); 1095 } 1096 1097 static ssize_t hl_set_power_state(struct file *f, const char __user *buf, 1098 size_t count, loff_t *ppos) 1099 { 1100 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1101 struct hl_device *hdev = entry->hdev; 1102 u32 value; 1103 ssize_t rc; 1104 1105 rc = kstrtouint_from_user(buf, count, 10, &value); 1106 if (rc) 1107 return rc; 1108 1109 if (value == 1) { 1110 pci_set_power_state(hdev->pdev, PCI_D0); 1111 pci_restore_state(hdev->pdev); 1112 rc = pci_enable_device(hdev->pdev); 1113 if (rc < 0) 1114 return rc; 1115 } else if (value == 2) { 1116 pci_save_state(hdev->pdev); 1117 pci_disable_device(hdev->pdev); 1118 pci_set_power_state(hdev->pdev, PCI_D3hot); 1119 } else { 1120 dev_dbg(hdev->dev, "invalid power state value %u\n", value); 1121 return -EINVAL; 1122 } 1123 1124 return count; 1125 } 1126 1127 static ssize_t hl_i2c_data_read(struct file *f, char __user *buf, 1128 size_t count, loff_t *ppos) 1129 { 1130 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1131 struct hl_device *hdev = entry->hdev; 1132 char tmp_buf[32]; 1133 u64 val; 1134 ssize_t rc; 1135 1136 if (*ppos) 1137 return 0; 1138 1139 rc = hl_debugfs_i2c_read(hdev, entry->i2c_bus, entry->i2c_addr, 1140 entry->i2c_reg, entry->i2c_len, &val); 1141 if (rc) { 1142 dev_err(hdev->dev, 1143 "Failed to read from I2C bus %d, addr %d, reg %d, len %d\n", 1144 entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len); 1145 return rc; 1146 } 1147 1148 sprintf(tmp_buf, "%#02llx\n", val); 1149 rc = simple_read_from_buffer(buf, count, ppos, tmp_buf, 1150 strlen(tmp_buf)); 1151 1152 return rc; 1153 } 1154 1155 static ssize_t hl_i2c_data_write(struct file *f, const char __user *buf, 1156 size_t count, loff_t *ppos) 1157 { 1158 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1159 struct hl_device *hdev = entry->hdev; 1160 u64 value; 1161 ssize_t rc; 1162 1163 rc = kstrtou64_from_user(buf, count, 16, &value); 1164 if (rc) 1165 return rc; 1166 1167 rc = hl_debugfs_i2c_write(hdev, entry->i2c_bus, entry->i2c_addr, 1168 entry->i2c_reg, entry->i2c_len, value); 1169 if (rc) { 1170 dev_err(hdev->dev, 1171 "Failed to write %#02llx to I2C bus %d, addr %d, reg %d, len %d\n", 1172 value, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len); 1173 return rc; 1174 } 1175 1176 return count; 1177 } 1178 1179 static ssize_t hl_led0_write(struct file *f, const char __user *buf, 1180 size_t count, loff_t *ppos) 1181 { 1182 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1183 struct hl_device *hdev = entry->hdev; 1184 u32 value; 1185 ssize_t rc; 1186 1187 rc = kstrtouint_from_user(buf, count, 10, &value); 1188 if (rc) 1189 return rc; 1190 1191 value = value ? 1 : 0; 1192 1193 hl_debugfs_led_set(hdev, 0, value); 1194 1195 return count; 1196 } 1197 1198 static ssize_t hl_led1_write(struct file *f, const char __user *buf, 1199 size_t count, loff_t *ppos) 1200 { 1201 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1202 struct hl_device *hdev = entry->hdev; 1203 u32 value; 1204 ssize_t rc; 1205 1206 rc = kstrtouint_from_user(buf, count, 10, &value); 1207 if (rc) 1208 return rc; 1209 1210 value = value ? 1 : 0; 1211 1212 hl_debugfs_led_set(hdev, 1, value); 1213 1214 return count; 1215 } 1216 1217 static ssize_t hl_led2_write(struct file *f, const char __user *buf, 1218 size_t count, loff_t *ppos) 1219 { 1220 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1221 struct hl_device *hdev = entry->hdev; 1222 u32 value; 1223 ssize_t rc; 1224 1225 rc = kstrtouint_from_user(buf, count, 10, &value); 1226 if (rc) 1227 return rc; 1228 1229 value = value ? 1 : 0; 1230 1231 hl_debugfs_led_set(hdev, 2, value); 1232 1233 return count; 1234 } 1235 1236 static ssize_t hl_device_read(struct file *f, char __user *buf, 1237 size_t count, loff_t *ppos) 1238 { 1239 static const char *help = 1240 "Valid values: disable, enable, suspend, resume, cpu_timeout\n"; 1241 return simple_read_from_buffer(buf, count, ppos, help, strlen(help)); 1242 } 1243 1244 static ssize_t hl_device_write(struct file *f, const char __user *buf, 1245 size_t count, loff_t *ppos) 1246 { 1247 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1248 struct hl_device *hdev = entry->hdev; 1249 char data[30] = {0}; 1250 1251 /* don't allow partial writes */ 1252 if (*ppos != 0) 1253 return 0; 1254 1255 simple_write_to_buffer(data, 29, ppos, buf, count); 1256 1257 if (strncmp("disable", data, strlen("disable")) == 0) { 1258 hdev->disabled = true; 1259 } else if (strncmp("enable", data, strlen("enable")) == 0) { 1260 hdev->disabled = false; 1261 } else if (strncmp("suspend", data, strlen("suspend")) == 0) { 1262 hdev->asic_funcs->suspend(hdev); 1263 } else if (strncmp("resume", data, strlen("resume")) == 0) { 1264 hdev->asic_funcs->resume(hdev); 1265 } else if (strncmp("cpu_timeout", data, strlen("cpu_timeout")) == 0) { 1266 hdev->device_cpu_disabled = true; 1267 } else { 1268 dev_err(hdev->dev, 1269 "Valid values: disable, enable, suspend, resume, cpu_timeout\n"); 1270 count = -EINVAL; 1271 } 1272 1273 return count; 1274 } 1275 1276 static ssize_t hl_clk_gate_read(struct file *f, char __user *buf, 1277 size_t count, loff_t *ppos) 1278 { 1279 return 0; 1280 } 1281 1282 static ssize_t hl_clk_gate_write(struct file *f, const char __user *buf, 1283 size_t count, loff_t *ppos) 1284 { 1285 return count; 1286 } 1287 1288 static ssize_t hl_stop_on_err_read(struct file *f, char __user *buf, 1289 size_t count, loff_t *ppos) 1290 { 1291 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1292 struct hl_device *hdev = entry->hdev; 1293 char tmp_buf[200]; 1294 ssize_t rc; 1295 1296 if (!hdev->asic_prop.configurable_stop_on_err) 1297 return -EOPNOTSUPP; 1298 1299 if (*ppos) 1300 return 0; 1301 1302 sprintf(tmp_buf, "%d\n", hdev->stop_on_err); 1303 rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf, 1304 strlen(tmp_buf) + 1); 1305 1306 return rc; 1307 } 1308 1309 static ssize_t hl_stop_on_err_write(struct file *f, const char __user *buf, 1310 size_t count, loff_t *ppos) 1311 { 1312 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1313 struct hl_device *hdev = entry->hdev; 1314 u32 value; 1315 ssize_t rc; 1316 1317 if (!hdev->asic_prop.configurable_stop_on_err) 1318 return -EOPNOTSUPP; 1319 1320 if (hdev->reset_info.in_reset) { 1321 dev_warn_ratelimited(hdev->dev, 1322 "Can't change stop on error during reset\n"); 1323 return 0; 1324 } 1325 1326 rc = kstrtouint_from_user(buf, count, 10, &value); 1327 if (rc) 1328 return rc; 1329 1330 hdev->stop_on_err = value ? 1 : 0; 1331 1332 hl_device_reset(hdev, 0); 1333 1334 return count; 1335 } 1336 1337 static ssize_t hl_security_violations_read(struct file *f, char __user *buf, 1338 size_t count, loff_t *ppos) 1339 { 1340 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1341 struct hl_device *hdev = entry->hdev; 1342 1343 hdev->asic_funcs->ack_protection_bits_errors(hdev); 1344 1345 return 0; 1346 } 1347 1348 static ssize_t hl_state_dump_read(struct file *f, char __user *buf, 1349 size_t count, loff_t *ppos) 1350 { 1351 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1352 ssize_t rc; 1353 1354 down_read(&entry->state_dump_sem); 1355 if (!entry->state_dump[entry->state_dump_head]) 1356 rc = 0; 1357 else 1358 rc = simple_read_from_buffer( 1359 buf, count, ppos, 1360 entry->state_dump[entry->state_dump_head], 1361 strlen(entry->state_dump[entry->state_dump_head])); 1362 up_read(&entry->state_dump_sem); 1363 1364 return rc; 1365 } 1366 1367 static ssize_t hl_state_dump_write(struct file *f, const char __user *buf, 1368 size_t count, loff_t *ppos) 1369 { 1370 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1371 struct hl_device *hdev = entry->hdev; 1372 ssize_t rc; 1373 u32 size; 1374 int i; 1375 1376 rc = kstrtouint_from_user(buf, count, 10, &size); 1377 if (rc) 1378 return rc; 1379 1380 if (size <= 0 || size >= ARRAY_SIZE(entry->state_dump)) { 1381 dev_err(hdev->dev, "Invalid number of dumps to skip\n"); 1382 return -EINVAL; 1383 } 1384 1385 if (entry->state_dump[entry->state_dump_head]) { 1386 down_write(&entry->state_dump_sem); 1387 for (i = 0; i < size; ++i) { 1388 vfree(entry->state_dump[entry->state_dump_head]); 1389 entry->state_dump[entry->state_dump_head] = NULL; 1390 if (entry->state_dump_head > 0) 1391 entry->state_dump_head--; 1392 else 1393 entry->state_dump_head = 1394 ARRAY_SIZE(entry->state_dump) - 1; 1395 } 1396 up_write(&entry->state_dump_sem); 1397 } 1398 1399 return count; 1400 } 1401 1402 static ssize_t hl_timeout_locked_read(struct file *f, char __user *buf, 1403 size_t count, loff_t *ppos) 1404 { 1405 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1406 struct hl_device *hdev = entry->hdev; 1407 char tmp_buf[200]; 1408 ssize_t rc; 1409 1410 if (*ppos) 1411 return 0; 1412 1413 sprintf(tmp_buf, "%d\n", 1414 jiffies_to_msecs(hdev->timeout_jiffies) / 1000); 1415 rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf, 1416 strlen(tmp_buf) + 1); 1417 1418 return rc; 1419 } 1420 1421 static ssize_t hl_timeout_locked_write(struct file *f, const char __user *buf, 1422 size_t count, loff_t *ppos) 1423 { 1424 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1425 struct hl_device *hdev = entry->hdev; 1426 u32 value; 1427 ssize_t rc; 1428 1429 rc = kstrtouint_from_user(buf, count, 10, &value); 1430 if (rc) 1431 return rc; 1432 1433 if (value) 1434 hdev->timeout_jiffies = msecs_to_jiffies(value * 1000); 1435 else 1436 hdev->timeout_jiffies = MAX_SCHEDULE_TIMEOUT; 1437 1438 return count; 1439 } 1440 1441 static ssize_t hl_check_razwi_happened(struct file *f, char __user *buf, 1442 size_t count, loff_t *ppos) 1443 { 1444 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1445 struct hl_device *hdev = entry->hdev; 1446 1447 hdev->asic_funcs->check_if_razwi_happened(hdev); 1448 1449 return 0; 1450 } 1451 1452 static const struct file_operations hl_mem_scrub_fops = { 1453 .owner = THIS_MODULE, 1454 .write = hl_memory_scrub, 1455 }; 1456 1457 static const struct file_operations hl_data32b_fops = { 1458 .owner = THIS_MODULE, 1459 .read = hl_data_read32, 1460 .write = hl_data_write32 1461 }; 1462 1463 static const struct file_operations hl_data64b_fops = { 1464 .owner = THIS_MODULE, 1465 .read = hl_data_read64, 1466 .write = hl_data_write64 1467 }; 1468 1469 static const struct file_operations hl_dma_size_fops = { 1470 .owner = THIS_MODULE, 1471 .write = hl_dma_size_write 1472 }; 1473 1474 static const struct file_operations hl_monitor_dump_fops = { 1475 .owner = THIS_MODULE, 1476 .write = hl_monitor_dump_trigger 1477 }; 1478 1479 static const struct file_operations hl_i2c_data_fops = { 1480 .owner = THIS_MODULE, 1481 .read = hl_i2c_data_read, 1482 .write = hl_i2c_data_write 1483 }; 1484 1485 static const struct file_operations hl_power_fops = { 1486 .owner = THIS_MODULE, 1487 .read = hl_get_power_state, 1488 .write = hl_set_power_state 1489 }; 1490 1491 static const struct file_operations hl_led0_fops = { 1492 .owner = THIS_MODULE, 1493 .write = hl_led0_write 1494 }; 1495 1496 static const struct file_operations hl_led1_fops = { 1497 .owner = THIS_MODULE, 1498 .write = hl_led1_write 1499 }; 1500 1501 static const struct file_operations hl_led2_fops = { 1502 .owner = THIS_MODULE, 1503 .write = hl_led2_write 1504 }; 1505 1506 static const struct file_operations hl_device_fops = { 1507 .owner = THIS_MODULE, 1508 .read = hl_device_read, 1509 .write = hl_device_write 1510 }; 1511 1512 static const struct file_operations hl_clk_gate_fops = { 1513 .owner = THIS_MODULE, 1514 .read = hl_clk_gate_read, 1515 .write = hl_clk_gate_write 1516 }; 1517 1518 static const struct file_operations hl_stop_on_err_fops = { 1519 .owner = THIS_MODULE, 1520 .read = hl_stop_on_err_read, 1521 .write = hl_stop_on_err_write 1522 }; 1523 1524 static const struct file_operations hl_security_violations_fops = { 1525 .owner = THIS_MODULE, 1526 .read = hl_security_violations_read 1527 }; 1528 1529 static const struct file_operations hl_state_dump_fops = { 1530 .owner = THIS_MODULE, 1531 .read = hl_state_dump_read, 1532 .write = hl_state_dump_write 1533 }; 1534 1535 static const struct file_operations hl_timeout_locked_fops = { 1536 .owner = THIS_MODULE, 1537 .read = hl_timeout_locked_read, 1538 .write = hl_timeout_locked_write 1539 }; 1540 1541 static const struct file_operations hl_razwi_check_fops = { 1542 .owner = THIS_MODULE, 1543 .read = hl_check_razwi_happened 1544 }; 1545 1546 static const struct hl_info_list hl_debugfs_list[] = { 1547 {"command_buffers", command_buffers_show, NULL}, 1548 {"command_submission", command_submission_show, NULL}, 1549 {"command_submission_jobs", command_submission_jobs_show, NULL}, 1550 {"userptr", userptr_show, NULL}, 1551 {"vm", vm_show, NULL}, 1552 {"userptr_lookup", userptr_lookup_show, userptr_lookup_write}, 1553 {"mmu", mmu_show, mmu_asid_va_write}, 1554 {"mmu_error", mmu_ack_error, mmu_ack_error_value_write}, 1555 {"engines", engines_show, NULL}, 1556 }; 1557 1558 static int hl_debugfs_open(struct inode *inode, struct file *file) 1559 { 1560 struct hl_debugfs_entry *node = inode->i_private; 1561 1562 return single_open(file, node->info_ent->show, node); 1563 } 1564 1565 static ssize_t hl_debugfs_write(struct file *file, const char __user *buf, 1566 size_t count, loff_t *f_pos) 1567 { 1568 struct hl_debugfs_entry *node = file->f_inode->i_private; 1569 1570 if (node->info_ent->write) 1571 return node->info_ent->write(file, buf, count, f_pos); 1572 else 1573 return -EINVAL; 1574 1575 } 1576 1577 static const struct file_operations hl_debugfs_fops = { 1578 .owner = THIS_MODULE, 1579 .open = hl_debugfs_open, 1580 .read = seq_read, 1581 .write = hl_debugfs_write, 1582 .llseek = seq_lseek, 1583 .release = single_release, 1584 }; 1585 1586 static void add_secured_nodes(struct hl_dbg_device_entry *dev_entry) 1587 { 1588 debugfs_create_u8("i2c_bus", 1589 0644, 1590 dev_entry->root, 1591 &dev_entry->i2c_bus); 1592 1593 debugfs_create_u8("i2c_addr", 1594 0644, 1595 dev_entry->root, 1596 &dev_entry->i2c_addr); 1597 1598 debugfs_create_u8("i2c_reg", 1599 0644, 1600 dev_entry->root, 1601 &dev_entry->i2c_reg); 1602 1603 debugfs_create_u8("i2c_len", 1604 0644, 1605 dev_entry->root, 1606 &dev_entry->i2c_len); 1607 1608 debugfs_create_file("i2c_data", 1609 0644, 1610 dev_entry->root, 1611 dev_entry, 1612 &hl_i2c_data_fops); 1613 1614 debugfs_create_file("led0", 1615 0200, 1616 dev_entry->root, 1617 dev_entry, 1618 &hl_led0_fops); 1619 1620 debugfs_create_file("led1", 1621 0200, 1622 dev_entry->root, 1623 dev_entry, 1624 &hl_led1_fops); 1625 1626 debugfs_create_file("led2", 1627 0200, 1628 dev_entry->root, 1629 dev_entry, 1630 &hl_led2_fops); 1631 } 1632 1633 void hl_debugfs_add_device(struct hl_device *hdev) 1634 { 1635 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1636 int count = ARRAY_SIZE(hl_debugfs_list); 1637 struct hl_debugfs_entry *entry; 1638 int i; 1639 1640 dev_entry->hdev = hdev; 1641 dev_entry->entry_arr = kmalloc_array(count, 1642 sizeof(struct hl_debugfs_entry), 1643 GFP_KERNEL); 1644 if (!dev_entry->entry_arr) 1645 return; 1646 1647 dev_entry->data_dma_blob_desc.size = 0; 1648 dev_entry->data_dma_blob_desc.data = NULL; 1649 dev_entry->mon_dump_blob_desc.size = 0; 1650 dev_entry->mon_dump_blob_desc.data = NULL; 1651 1652 INIT_LIST_HEAD(&dev_entry->file_list); 1653 INIT_LIST_HEAD(&dev_entry->cb_list); 1654 INIT_LIST_HEAD(&dev_entry->cs_list); 1655 INIT_LIST_HEAD(&dev_entry->cs_job_list); 1656 INIT_LIST_HEAD(&dev_entry->userptr_list); 1657 INIT_LIST_HEAD(&dev_entry->ctx_mem_hash_list); 1658 mutex_init(&dev_entry->file_mutex); 1659 init_rwsem(&dev_entry->state_dump_sem); 1660 spin_lock_init(&dev_entry->cb_spinlock); 1661 spin_lock_init(&dev_entry->cs_spinlock); 1662 spin_lock_init(&dev_entry->cs_job_spinlock); 1663 spin_lock_init(&dev_entry->userptr_spinlock); 1664 spin_lock_init(&dev_entry->ctx_mem_hash_spinlock); 1665 1666 dev_entry->root = debugfs_create_dir(dev_name(hdev->dev), 1667 hl_debug_root); 1668 1669 debugfs_create_x64("memory_scrub_val", 1670 0644, 1671 dev_entry->root, 1672 &hdev->memory_scrub_val); 1673 1674 debugfs_create_file("memory_scrub", 1675 0200, 1676 dev_entry->root, 1677 dev_entry, 1678 &hl_mem_scrub_fops); 1679 1680 debugfs_create_x64("addr", 1681 0644, 1682 dev_entry->root, 1683 &dev_entry->addr); 1684 1685 debugfs_create_file("data32", 1686 0644, 1687 dev_entry->root, 1688 dev_entry, 1689 &hl_data32b_fops); 1690 1691 debugfs_create_file("data64", 1692 0644, 1693 dev_entry->root, 1694 dev_entry, 1695 &hl_data64b_fops); 1696 1697 debugfs_create_file("set_power_state", 1698 0200, 1699 dev_entry->root, 1700 dev_entry, 1701 &hl_power_fops); 1702 1703 debugfs_create_file("device", 1704 0200, 1705 dev_entry->root, 1706 dev_entry, 1707 &hl_device_fops); 1708 1709 debugfs_create_file("clk_gate", 1710 0200, 1711 dev_entry->root, 1712 dev_entry, 1713 &hl_clk_gate_fops); 1714 1715 debugfs_create_file("stop_on_err", 1716 0644, 1717 dev_entry->root, 1718 dev_entry, 1719 &hl_stop_on_err_fops); 1720 1721 debugfs_create_file("dump_security_violations", 1722 0644, 1723 dev_entry->root, 1724 dev_entry, 1725 &hl_security_violations_fops); 1726 1727 debugfs_create_file("dump_razwi_events", 1728 0644, 1729 dev_entry->root, 1730 dev_entry, 1731 &hl_razwi_check_fops); 1732 1733 debugfs_create_file("dma_size", 1734 0200, 1735 dev_entry->root, 1736 dev_entry, 1737 &hl_dma_size_fops); 1738 1739 debugfs_create_blob("data_dma", 1740 0400, 1741 dev_entry->root, 1742 &dev_entry->data_dma_blob_desc); 1743 1744 debugfs_create_file("monitor_dump_trig", 1745 0200, 1746 dev_entry->root, 1747 dev_entry, 1748 &hl_monitor_dump_fops); 1749 1750 debugfs_create_blob("monitor_dump", 1751 0400, 1752 dev_entry->root, 1753 &dev_entry->mon_dump_blob_desc); 1754 1755 debugfs_create_x8("skip_reset_on_timeout", 1756 0644, 1757 dev_entry->root, 1758 &hdev->reset_info.skip_reset_on_timeout); 1759 1760 debugfs_create_file("state_dump", 1761 0600, 1762 dev_entry->root, 1763 dev_entry, 1764 &hl_state_dump_fops); 1765 1766 debugfs_create_file("timeout_locked", 1767 0644, 1768 dev_entry->root, 1769 dev_entry, 1770 &hl_timeout_locked_fops); 1771 1772 debugfs_create_u32("device_release_watchdog_timeout", 1773 0644, 1774 dev_entry->root, 1775 &hdev->device_release_watchdog_timeout_sec); 1776 1777 for (i = 0, entry = dev_entry->entry_arr ; i < count ; i++, entry++) { 1778 debugfs_create_file(hl_debugfs_list[i].name, 1779 0444, 1780 dev_entry->root, 1781 entry, 1782 &hl_debugfs_fops); 1783 entry->info_ent = &hl_debugfs_list[i]; 1784 entry->dev_entry = dev_entry; 1785 } 1786 1787 if (!hdev->asic_prop.fw_security_enabled) 1788 add_secured_nodes(dev_entry); 1789 } 1790 1791 void hl_debugfs_remove_device(struct hl_device *hdev) 1792 { 1793 struct hl_dbg_device_entry *entry = &hdev->hl_debugfs; 1794 int i; 1795 1796 debugfs_remove_recursive(entry->root); 1797 1798 mutex_destroy(&entry->file_mutex); 1799 1800 vfree(entry->data_dma_blob_desc.data); 1801 vfree(entry->mon_dump_blob_desc.data); 1802 1803 for (i = 0; i < ARRAY_SIZE(entry->state_dump); ++i) 1804 vfree(entry->state_dump[i]); 1805 1806 kfree(entry->entry_arr); 1807 } 1808 1809 void hl_debugfs_add_file(struct hl_fpriv *hpriv) 1810 { 1811 struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs; 1812 1813 mutex_lock(&dev_entry->file_mutex); 1814 list_add(&hpriv->debugfs_list, &dev_entry->file_list); 1815 mutex_unlock(&dev_entry->file_mutex); 1816 } 1817 1818 void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 1819 { 1820 struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs; 1821 1822 mutex_lock(&dev_entry->file_mutex); 1823 list_del(&hpriv->debugfs_list); 1824 mutex_unlock(&dev_entry->file_mutex); 1825 } 1826 1827 void hl_debugfs_add_cb(struct hl_cb *cb) 1828 { 1829 struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs; 1830 1831 spin_lock(&dev_entry->cb_spinlock); 1832 list_add(&cb->debugfs_list, &dev_entry->cb_list); 1833 spin_unlock(&dev_entry->cb_spinlock); 1834 } 1835 1836 void hl_debugfs_remove_cb(struct hl_cb *cb) 1837 { 1838 struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs; 1839 1840 spin_lock(&dev_entry->cb_spinlock); 1841 list_del(&cb->debugfs_list); 1842 spin_unlock(&dev_entry->cb_spinlock); 1843 } 1844 1845 void hl_debugfs_add_cs(struct hl_cs *cs) 1846 { 1847 struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs; 1848 1849 spin_lock(&dev_entry->cs_spinlock); 1850 list_add(&cs->debugfs_list, &dev_entry->cs_list); 1851 spin_unlock(&dev_entry->cs_spinlock); 1852 } 1853 1854 void hl_debugfs_remove_cs(struct hl_cs *cs) 1855 { 1856 struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs; 1857 1858 spin_lock(&dev_entry->cs_spinlock); 1859 list_del(&cs->debugfs_list); 1860 spin_unlock(&dev_entry->cs_spinlock); 1861 } 1862 1863 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job) 1864 { 1865 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1866 1867 spin_lock(&dev_entry->cs_job_spinlock); 1868 list_add(&job->debugfs_list, &dev_entry->cs_job_list); 1869 spin_unlock(&dev_entry->cs_job_spinlock); 1870 } 1871 1872 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job) 1873 { 1874 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1875 1876 spin_lock(&dev_entry->cs_job_spinlock); 1877 list_del(&job->debugfs_list); 1878 spin_unlock(&dev_entry->cs_job_spinlock); 1879 } 1880 1881 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr) 1882 { 1883 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1884 1885 spin_lock(&dev_entry->userptr_spinlock); 1886 list_add(&userptr->debugfs_list, &dev_entry->userptr_list); 1887 spin_unlock(&dev_entry->userptr_spinlock); 1888 } 1889 1890 void hl_debugfs_remove_userptr(struct hl_device *hdev, 1891 struct hl_userptr *userptr) 1892 { 1893 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1894 1895 spin_lock(&dev_entry->userptr_spinlock); 1896 list_del(&userptr->debugfs_list); 1897 spin_unlock(&dev_entry->userptr_spinlock); 1898 } 1899 1900 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) 1901 { 1902 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1903 1904 spin_lock(&dev_entry->ctx_mem_hash_spinlock); 1905 list_add(&ctx->debugfs_list, &dev_entry->ctx_mem_hash_list); 1906 spin_unlock(&dev_entry->ctx_mem_hash_spinlock); 1907 } 1908 1909 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) 1910 { 1911 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1912 1913 spin_lock(&dev_entry->ctx_mem_hash_spinlock); 1914 list_del(&ctx->debugfs_list); 1915 spin_unlock(&dev_entry->ctx_mem_hash_spinlock); 1916 } 1917 1918 /** 1919 * hl_debugfs_set_state_dump - register state dump making it accessible via 1920 * debugfs 1921 * @hdev: pointer to the device structure 1922 * @data: the actual dump data 1923 * @length: the length of the data 1924 */ 1925 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, 1926 unsigned long length) 1927 { 1928 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1929 1930 down_write(&dev_entry->state_dump_sem); 1931 1932 dev_entry->state_dump_head = (dev_entry->state_dump_head + 1) % 1933 ARRAY_SIZE(dev_entry->state_dump); 1934 vfree(dev_entry->state_dump[dev_entry->state_dump_head]); 1935 dev_entry->state_dump[dev_entry->state_dump_head] = data; 1936 1937 up_write(&dev_entry->state_dump_sem); 1938 } 1939 1940 void __init hl_debugfs_init(void) 1941 { 1942 hl_debug_root = debugfs_create_dir("habanalabs", NULL); 1943 } 1944 1945 void hl_debugfs_fini(void) 1946 { 1947 debugfs_remove_recursive(hl_debug_root); 1948 } 1949