1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2021 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 
11 #include <linux/uaccess.h>
12 #include <linux/slab.h>
13 
14 #define HL_CS_FLAGS_TYPE_MASK	(HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
15 			HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \
16 			HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \
17 			HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
18 
19 
20 #define MAX_TS_ITER_NUM 100
21 
22 /**
23  * enum hl_cs_wait_status - cs wait status
24  * @CS_WAIT_STATUS_BUSY: cs was not completed yet
25  * @CS_WAIT_STATUS_COMPLETED: cs completed
26  * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
27  */
28 enum hl_cs_wait_status {
29 	CS_WAIT_STATUS_BUSY,
30 	CS_WAIT_STATUS_COMPLETED,
31 	CS_WAIT_STATUS_GONE
32 };
33 
34 static void job_wq_completion(struct work_struct *work);
35 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
36 				enum hl_cs_wait_status *status, s64 *timestamp);
37 static void cs_do_release(struct kref *ref);
38 
39 static void hl_push_cs_outcome(struct hl_device *hdev,
40 			       struct hl_cs_outcome_store *outcome_store,
41 			       u64 seq, ktime_t ts, int error)
42 {
43 	struct hl_cs_outcome *node;
44 	unsigned long flags;
45 
46 	/*
47 	 * CS outcome store supports the following operations:
48 	 * push outcome - store a recent CS outcome in the store
49 	 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store
50 	 * It uses 2 lists: used list and free list.
51 	 * It has a pre-allocated amount of nodes, each node stores
52 	 * a single CS outcome.
53 	 * Initially, all the nodes are in the free list.
54 	 * On push outcome, a node (any) is taken from the free list, its
55 	 * information is filled in, and the node is moved to the used list.
56 	 * It is possible, that there are no nodes left in the free list.
57 	 * In this case, we will lose some information about old outcomes. We
58 	 * will pop the OLDEST node from the used list, and make it free.
59 	 * On pop, the node is searched for in the used list (using a search
60 	 * index).
61 	 * If found, the node is then removed from the used list, and moved
62 	 * back to the free list. The outcome data that the node contained is
63 	 * returned back to the user.
64 	 */
65 
66 	spin_lock_irqsave(&outcome_store->db_lock, flags);
67 
68 	if (list_empty(&outcome_store->free_list)) {
69 		node = list_last_entry(&outcome_store->used_list,
70 				       struct hl_cs_outcome, list_link);
71 		hash_del(&node->map_link);
72 		dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq);
73 	} else {
74 		node = list_last_entry(&outcome_store->free_list,
75 				       struct hl_cs_outcome, list_link);
76 	}
77 
78 	list_del_init(&node->list_link);
79 
80 	node->seq = seq;
81 	node->ts = ts;
82 	node->error = error;
83 
84 	list_add(&node->list_link, &outcome_store->used_list);
85 	hash_add(outcome_store->outcome_map, &node->map_link, node->seq);
86 
87 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
88 }
89 
90 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store,
91 			       u64 seq, ktime_t *ts, int *error)
92 {
93 	struct hl_cs_outcome *node;
94 	unsigned long flags;
95 
96 	spin_lock_irqsave(&outcome_store->db_lock, flags);
97 
98 	hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq)
99 		if (node->seq == seq) {
100 			*ts = node->ts;
101 			*error = node->error;
102 
103 			hash_del(&node->map_link);
104 			list_del_init(&node->list_link);
105 			list_add(&node->list_link, &outcome_store->free_list);
106 
107 			spin_unlock_irqrestore(&outcome_store->db_lock, flags);
108 
109 			return true;
110 		}
111 
112 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
113 
114 	return false;
115 }
116 
117 static void hl_sob_reset(struct kref *ref)
118 {
119 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
120 							kref);
121 	struct hl_device *hdev = hw_sob->hdev;
122 
123 	dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
124 
125 	hdev->asic_funcs->reset_sob(hdev, hw_sob);
126 
127 	hw_sob->need_reset = false;
128 }
129 
130 void hl_sob_reset_error(struct kref *ref)
131 {
132 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
133 							kref);
134 	struct hl_device *hdev = hw_sob->hdev;
135 
136 	dev_crit(hdev->dev,
137 		"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
138 		hw_sob->q_idx, hw_sob->sob_id);
139 }
140 
141 void hw_sob_put(struct hl_hw_sob *hw_sob)
142 {
143 	if (hw_sob)
144 		kref_put(&hw_sob->kref, hl_sob_reset);
145 }
146 
147 static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
148 {
149 	if (hw_sob)
150 		kref_put(&hw_sob->kref, hl_sob_reset_error);
151 }
152 
153 void hw_sob_get(struct hl_hw_sob *hw_sob)
154 {
155 	if (hw_sob)
156 		kref_get(&hw_sob->kref);
157 }
158 
159 /**
160  * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
161  * @sob_base: sob base id
162  * @sob_mask: sob user mask, each bit represents a sob offset from sob base
163  * @mask: generated mask
164  *
165  * Return: 0 if given parameters are valid
166  */
167 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
168 {
169 	int i;
170 
171 	if (sob_mask == 0)
172 		return -EINVAL;
173 
174 	if (sob_mask == 0x1) {
175 		*mask = ~(1 << (sob_base & 0x7));
176 	} else {
177 		/* find msb in order to verify sob range is valid */
178 		for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
179 			if (BIT(i) & sob_mask)
180 				break;
181 
182 		if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
183 			return -EINVAL;
184 
185 		*mask = ~sob_mask;
186 	}
187 
188 	return 0;
189 }
190 
191 static void hl_fence_release(struct kref *kref)
192 {
193 	struct hl_fence *fence =
194 		container_of(kref, struct hl_fence, refcount);
195 	struct hl_cs_compl *hl_cs_cmpl =
196 		container_of(fence, struct hl_cs_compl, base_fence);
197 
198 	kfree(hl_cs_cmpl);
199 }
200 
201 void hl_fence_put(struct hl_fence *fence)
202 {
203 	if (IS_ERR_OR_NULL(fence))
204 		return;
205 	kref_put(&fence->refcount, hl_fence_release);
206 }
207 
208 void hl_fences_put(struct hl_fence **fence, int len)
209 {
210 	int i;
211 
212 	for (i = 0; i < len; i++, fence++)
213 		hl_fence_put(*fence);
214 }
215 
216 void hl_fence_get(struct hl_fence *fence)
217 {
218 	if (fence)
219 		kref_get(&fence->refcount);
220 }
221 
222 static void hl_fence_init(struct hl_fence *fence, u64 sequence)
223 {
224 	kref_init(&fence->refcount);
225 	fence->cs_sequence = sequence;
226 	fence->error = 0;
227 	fence->timestamp = ktime_set(0, 0);
228 	fence->mcs_handling_done = false;
229 	init_completion(&fence->completion);
230 }
231 
232 void cs_get(struct hl_cs *cs)
233 {
234 	kref_get(&cs->refcount);
235 }
236 
237 static int cs_get_unless_zero(struct hl_cs *cs)
238 {
239 	return kref_get_unless_zero(&cs->refcount);
240 }
241 
242 static void cs_put(struct hl_cs *cs)
243 {
244 	kref_put(&cs->refcount, cs_do_release);
245 }
246 
247 static void cs_job_do_release(struct kref *ref)
248 {
249 	struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
250 
251 	kfree(job);
252 }
253 
254 static void hl_cs_job_put(struct hl_cs_job *job)
255 {
256 	kref_put(&job->refcount, cs_job_do_release);
257 }
258 
259 bool cs_needs_completion(struct hl_cs *cs)
260 {
261 	/* In case this is a staged CS, only the last CS in sequence should
262 	 * get a completion, any non staged CS will always get a completion
263 	 */
264 	if (cs->staged_cs && !cs->staged_last)
265 		return false;
266 
267 	return true;
268 }
269 
270 bool cs_needs_timeout(struct hl_cs *cs)
271 {
272 	/* In case this is a staged CS, only the first CS in sequence should
273 	 * get a timeout, any non staged CS will always get a timeout
274 	 */
275 	if (cs->staged_cs && !cs->staged_first)
276 		return false;
277 
278 	return true;
279 }
280 
281 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
282 {
283 	/*
284 	 * Patched CB is created for external queues jobs, and for H/W queues
285 	 * jobs if the user CB was allocated by driver and MMU is disabled.
286 	 */
287 	return (job->queue_type == QUEUE_TYPE_EXT ||
288 			(job->queue_type == QUEUE_TYPE_HW &&
289 					job->is_kernel_allocated_cb &&
290 					!hdev->mmu_enable));
291 }
292 
293 /*
294  * cs_parser - parse the user command submission
295  *
296  * @hpriv	: pointer to the private data of the fd
297  * @job        : pointer to the job that holds the command submission info
298  *
299  * The function parses the command submission of the user. It calls the
300  * ASIC specific parser, which returns a list of memory blocks to send
301  * to the device as different command buffers
302  *
303  */
304 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
305 {
306 	struct hl_device *hdev = hpriv->hdev;
307 	struct hl_cs_parser parser;
308 	int rc;
309 
310 	parser.ctx_id = job->cs->ctx->asid;
311 	parser.cs_sequence = job->cs->sequence;
312 	parser.job_id = job->id;
313 
314 	parser.hw_queue_id = job->hw_queue_id;
315 	parser.job_userptr_list = &job->userptr_list;
316 	parser.patched_cb = NULL;
317 	parser.user_cb = job->user_cb;
318 	parser.user_cb_size = job->user_cb_size;
319 	parser.queue_type = job->queue_type;
320 	parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
321 	job->patched_cb = NULL;
322 	parser.completion = cs_needs_completion(job->cs);
323 
324 	rc = hdev->asic_funcs->cs_parser(hdev, &parser);
325 
326 	if (is_cb_patched(hdev, job)) {
327 		if (!rc) {
328 			job->patched_cb = parser.patched_cb;
329 			job->job_cb_size = parser.patched_cb_size;
330 			job->contains_dma_pkt = parser.contains_dma_pkt;
331 			atomic_inc(&job->patched_cb->cs_cnt);
332 		}
333 
334 		/*
335 		 * Whether the parsing worked or not, we don't need the
336 		 * original CB anymore because it was already parsed and
337 		 * won't be accessed again for this CS
338 		 */
339 		atomic_dec(&job->user_cb->cs_cnt);
340 		hl_cb_put(job->user_cb);
341 		job->user_cb = NULL;
342 	} else if (!rc) {
343 		job->job_cb_size = job->user_cb_size;
344 	}
345 
346 	return rc;
347 }
348 
349 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job)
350 {
351 	struct hl_cs *cs = job->cs;
352 
353 	if (is_cb_patched(hdev, job)) {
354 		hl_userptr_delete_list(hdev, &job->userptr_list);
355 
356 		/*
357 		 * We might arrive here from rollback and patched CB wasn't
358 		 * created, so we need to check it's not NULL
359 		 */
360 		if (job->patched_cb) {
361 			atomic_dec(&job->patched_cb->cs_cnt);
362 			hl_cb_put(job->patched_cb);
363 		}
364 	}
365 
366 	/* For H/W queue jobs, if a user CB was allocated by driver and MMU is
367 	 * enabled, the user CB isn't released in cs_parser() and thus should be
368 	 * released here. This is also true for INT queues jobs which were
369 	 * allocated by driver.
370 	 */
371 	if ((job->is_kernel_allocated_cb &&
372 		((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) ||
373 				job->queue_type == QUEUE_TYPE_INT))) {
374 		atomic_dec(&job->user_cb->cs_cnt);
375 		hl_cb_put(job->user_cb);
376 	}
377 
378 	/*
379 	 * This is the only place where there can be multiple threads
380 	 * modifying the list at the same time
381 	 */
382 	spin_lock(&cs->job_lock);
383 	list_del(&job->cs_node);
384 	spin_unlock(&cs->job_lock);
385 
386 	hl_debugfs_remove_job(hdev, job);
387 
388 	/* We decrement reference only for a CS that gets completion
389 	 * because the reference was incremented only for this kind of CS
390 	 * right before it was scheduled.
391 	 *
392 	 * In staged submission, only the last CS marked as 'staged_last'
393 	 * gets completion, hence its release function will be called from here.
394 	 * As for all the rest CS's in the staged submission which do not get
395 	 * completion, their CS reference will be decremented by the
396 	 * 'staged_last' CS during the CS release flow.
397 	 * All relevant PQ CI counters will be incremented during the CS release
398 	 * flow by calling 'hl_hw_queue_update_ci'.
399 	 */
400 	if (cs_needs_completion(cs) &&
401 			(job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) {
402 
403 		/* In CS based completions, the timestamp is already available,
404 		 * so no need to extract it from job
405 		 */
406 		if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB)
407 			cs->completion_timestamp = job->timestamp;
408 
409 		cs_put(cs);
410 	}
411 
412 	hl_cs_job_put(job);
413 }
414 
415 /*
416  * hl_staged_cs_find_first - locate the first CS in this staged submission
417  *
418  * @hdev: pointer to device structure
419  * @cs_seq: staged submission sequence number
420  *
421  * @note: This function must be called under 'hdev->cs_mirror_lock'
422  *
423  * Find and return a CS pointer with the given sequence
424  */
425 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
426 {
427 	struct hl_cs *cs;
428 
429 	list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
430 		if (cs->staged_cs && cs->staged_first &&
431 				cs->sequence == cs_seq)
432 			return cs;
433 
434 	return NULL;
435 }
436 
437 /*
438  * is_staged_cs_last_exists - returns true if the last CS in sequence exists
439  *
440  * @hdev: pointer to device structure
441  * @cs: staged submission member
442  *
443  */
444 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
445 {
446 	struct hl_cs *last_entry;
447 
448 	last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
449 								staged_cs_node);
450 
451 	if (last_entry->staged_last)
452 		return true;
453 
454 	return false;
455 }
456 
457 /*
458  * staged_cs_get - get CS reference if this CS is a part of a staged CS
459  *
460  * @hdev: pointer to device structure
461  * @cs: current CS
462  * @cs_seq: staged submission sequence number
463  *
464  * Increment CS reference for every CS in this staged submission except for
465  * the CS which get completion.
466  */
467 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
468 {
469 	/* Only the last CS in this staged submission will get a completion.
470 	 * We must increment the reference for all other CS's in this
471 	 * staged submission.
472 	 * Once we get a completion we will release the whole staged submission.
473 	 */
474 	if (!cs->staged_last)
475 		cs_get(cs);
476 }
477 
478 /*
479  * staged_cs_put - put a CS in case it is part of staged submission
480  *
481  * @hdev: pointer to device structure
482  * @cs: CS to put
483  *
484  * This function decrements a CS reference (for a non completion CS)
485  */
486 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
487 {
488 	/* We release all CS's in a staged submission except the last
489 	 * CS which we have never incremented its reference.
490 	 */
491 	if (!cs_needs_completion(cs))
492 		cs_put(cs);
493 }
494 
495 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
496 {
497 	struct hl_cs *next = NULL, *iter, *first_cs;
498 
499 	if (!cs_needs_timeout(cs))
500 		return;
501 
502 	spin_lock(&hdev->cs_mirror_lock);
503 
504 	/* We need to handle tdr only once for the complete staged submission.
505 	 * Hence, we choose the CS that reaches this function first which is
506 	 * the CS marked as 'staged_last'.
507 	 * In case single staged cs was submitted which has both first and last
508 	 * indications, then "cs_find_first" below will return NULL, since we
509 	 * removed the cs node from the list before getting here,
510 	 * in such cases just continue with the cs to cancel it's TDR work.
511 	 */
512 	if (cs->staged_cs && cs->staged_last) {
513 		first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
514 		if (first_cs)
515 			cs = first_cs;
516 	}
517 
518 	spin_unlock(&hdev->cs_mirror_lock);
519 
520 	/* Don't cancel TDR in case this CS was timedout because we might be
521 	 * running from the TDR context
522 	 */
523 	if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
524 		return;
525 
526 	if (cs->tdr_active)
527 		cancel_delayed_work_sync(&cs->work_tdr);
528 
529 	spin_lock(&hdev->cs_mirror_lock);
530 
531 	/* queue TDR for next CS */
532 	list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node)
533 		if (cs_needs_timeout(iter)) {
534 			next = iter;
535 			break;
536 		}
537 
538 	if (next && !next->tdr_active) {
539 		next->tdr_active = true;
540 		schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
541 	}
542 
543 	spin_unlock(&hdev->cs_mirror_lock);
544 }
545 
546 /*
547  * force_complete_multi_cs - complete all contexts that wait on multi-CS
548  *
549  * @hdev: pointer to habanalabs device structure
550  */
551 static void force_complete_multi_cs(struct hl_device *hdev)
552 {
553 	int i;
554 
555 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
556 		struct multi_cs_completion *mcs_compl;
557 
558 		mcs_compl = &hdev->multi_cs_completion[i];
559 
560 		spin_lock(&mcs_compl->lock);
561 
562 		if (!mcs_compl->used) {
563 			spin_unlock(&mcs_compl->lock);
564 			continue;
565 		}
566 
567 		/* when calling force complete no context should be waiting on
568 		 * multi-cS.
569 		 * We are calling the function as a protection for such case
570 		 * to free any pending context and print error message
571 		 */
572 		dev_err(hdev->dev,
573 				"multi-CS completion context %d still waiting when calling force completion\n",
574 				i);
575 		complete_all(&mcs_compl->completion);
576 		spin_unlock(&mcs_compl->lock);
577 	}
578 }
579 
580 /*
581  * complete_multi_cs - complete all waiting entities on multi-CS
582  *
583  * @hdev: pointer to habanalabs device structure
584  * @cs: CS structure
585  * The function signals a waiting entity that has an overlapping stream masters
586  * with the completed CS.
587  * For example:
588  * - a completed CS worked on stream master QID 4, multi CS completion
589  *   is actively waiting on stream master QIDs 3, 5. don't send signal as no
590  *   common stream master QID
591  * - a completed CS worked on stream master QID 4, multi CS completion
592  *   is actively waiting on stream master QIDs 3, 4. send signal as stream
593  *   master QID 4 is common
594  */
595 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
596 {
597 	struct hl_fence *fence = cs->fence;
598 	int i;
599 
600 	/* in case of multi CS check for completion only for the first CS */
601 	if (cs->staged_cs && !cs->staged_first)
602 		return;
603 
604 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
605 		struct multi_cs_completion *mcs_compl;
606 
607 		mcs_compl = &hdev->multi_cs_completion[i];
608 		if (!mcs_compl->used)
609 			continue;
610 
611 		spin_lock(&mcs_compl->lock);
612 
613 		/*
614 		 * complete if:
615 		 * 1. still waiting for completion
616 		 * 2. the completed CS has at least one overlapping stream
617 		 *    master with the stream masters in the completion
618 		 */
619 		if (mcs_compl->used &&
620 				(fence->stream_master_qid_map &
621 					mcs_compl->stream_master_qid_map)) {
622 			/* extract the timestamp only of first completed CS */
623 			if (!mcs_compl->timestamp)
624 				mcs_compl->timestamp = ktime_to_ns(fence->timestamp);
625 
626 			complete_all(&mcs_compl->completion);
627 
628 			/*
629 			 * Setting mcs_handling_done inside the lock ensures
630 			 * at least one fence have mcs_handling_done set to
631 			 * true before wait for mcs finish. This ensures at
632 			 * least one CS will be set as completed when polling
633 			 * mcs fences.
634 			 */
635 			fence->mcs_handling_done = true;
636 		}
637 
638 		spin_unlock(&mcs_compl->lock);
639 	}
640 	/* In case CS completed without mcs completion initialized */
641 	fence->mcs_handling_done = true;
642 }
643 
644 static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
645 					struct hl_cs *cs,
646 					struct hl_cs_compl *hl_cs_cmpl)
647 {
648 	/* Skip this handler if the cs wasn't submitted, to avoid putting
649 	 * the hw_sob twice, since this case already handled at this point,
650 	 * also skip if the hw_sob pointer wasn't set.
651 	 */
652 	if (!hl_cs_cmpl->hw_sob || !cs->submitted)
653 		return;
654 
655 	spin_lock(&hl_cs_cmpl->lock);
656 
657 	/*
658 	 * we get refcount upon reservation of signals or signal/wait cs for the
659 	 * hw_sob object, and need to put it when the first staged cs
660 	 * (which cotains the encaps signals) or cs signal/wait is completed.
661 	 */
662 	if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
663 			(hl_cs_cmpl->type == CS_TYPE_WAIT) ||
664 			(hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
665 			(!!hl_cs_cmpl->encaps_signals)) {
666 		dev_dbg(hdev->dev,
667 				"CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
668 				hl_cs_cmpl->cs_seq,
669 				hl_cs_cmpl->type,
670 				hl_cs_cmpl->hw_sob->sob_id,
671 				hl_cs_cmpl->sob_val);
672 
673 		hw_sob_put(hl_cs_cmpl->hw_sob);
674 
675 		if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
676 			hdev->asic_funcs->reset_sob_group(hdev,
677 					hl_cs_cmpl->sob_group);
678 	}
679 
680 	spin_unlock(&hl_cs_cmpl->lock);
681 }
682 
683 static void cs_do_release(struct kref *ref)
684 {
685 	struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
686 	struct hl_device *hdev = cs->ctx->hdev;
687 	struct hl_cs_job *job, *tmp;
688 	struct hl_cs_compl *hl_cs_cmpl =
689 			container_of(cs->fence, struct hl_cs_compl, base_fence);
690 
691 	cs->completed = true;
692 
693 	/*
694 	 * Although if we reached here it means that all external jobs have
695 	 * finished, because each one of them took refcnt to CS, we still
696 	 * need to go over the internal jobs and complete them. Otherwise, we
697 	 * will have leaked memory and what's worse, the CS object (and
698 	 * potentially the CTX object) could be released, while the JOB
699 	 * still holds a pointer to them (but no reference).
700 	 */
701 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
702 		hl_complete_job(hdev, job);
703 
704 	if (!cs->submitted) {
705 		/*
706 		 * In case the wait for signal CS was submitted, the fence put
707 		 * occurs in init_signal_wait_cs() or collective_wait_init_cs()
708 		 * right before hanging on the PQ.
709 		 */
710 		if (cs->type == CS_TYPE_WAIT ||
711 				cs->type == CS_TYPE_COLLECTIVE_WAIT)
712 			hl_fence_put(cs->signal_fence);
713 
714 		goto out;
715 	}
716 
717 	/* Need to update CI for all queue jobs that does not get completion */
718 	hl_hw_queue_update_ci(cs);
719 
720 	/* remove CS from CS mirror list */
721 	spin_lock(&hdev->cs_mirror_lock);
722 	list_del_init(&cs->mirror_node);
723 	spin_unlock(&hdev->cs_mirror_lock);
724 
725 	cs_handle_tdr(hdev, cs);
726 
727 	if (cs->staged_cs) {
728 		/* the completion CS decrements reference for the entire
729 		 * staged submission
730 		 */
731 		if (cs->staged_last) {
732 			struct hl_cs *staged_cs, *tmp_cs;
733 
734 			list_for_each_entry_safe(staged_cs, tmp_cs,
735 					&cs->staged_cs_node, staged_cs_node)
736 				staged_cs_put(hdev, staged_cs);
737 		}
738 
739 		/* A staged CS will be a member in the list only after it
740 		 * was submitted. We used 'cs_mirror_lock' when inserting
741 		 * it to list so we will use it again when removing it
742 		 */
743 		if (cs->submitted) {
744 			spin_lock(&hdev->cs_mirror_lock);
745 			list_del(&cs->staged_cs_node);
746 			spin_unlock(&hdev->cs_mirror_lock);
747 		}
748 
749 		/* decrement refcount to handle when first staged cs
750 		 * with encaps signals is completed.
751 		 */
752 		if (hl_cs_cmpl->encaps_signals)
753 			kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
754 					hl_encaps_release_handle_and_put_ctx);
755 	}
756 
757 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals)
758 		kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
759 
760 out:
761 	/* Must be called before hl_ctx_put because inside we use ctx to get
762 	 * the device
763 	 */
764 	hl_debugfs_remove_cs(cs);
765 
766 	hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL;
767 
768 	/* We need to mark an error for not submitted because in that case
769 	 * the hl fence release flow is different. Mainly, we don't need
770 	 * to handle hw_sob for signal/wait
771 	 */
772 	if (cs->timedout)
773 		cs->fence->error = -ETIMEDOUT;
774 	else if (cs->aborted)
775 		cs->fence->error = -EIO;
776 	else if (!cs->submitted)
777 		cs->fence->error = -EBUSY;
778 
779 	if (unlikely(cs->skip_reset_on_timeout)) {
780 		dev_err(hdev->dev,
781 			"Command submission %llu completed after %llu (s)\n",
782 			cs->sequence,
783 			div_u64(jiffies - cs->submission_time_jiffies, HZ));
784 	}
785 
786 	if (cs->timestamp) {
787 		cs->fence->timestamp = cs->completion_timestamp;
788 		hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence,
789 				   cs->fence->timestamp, cs->fence->error);
790 	}
791 
792 	hl_ctx_put(cs->ctx);
793 
794 	complete_all(&cs->fence->completion);
795 	complete_multi_cs(hdev, cs);
796 
797 	cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
798 
799 	hl_fence_put(cs->fence);
800 
801 	kfree(cs->jobs_in_queue_cnt);
802 	kfree(cs);
803 }
804 
805 static void cs_timedout(struct work_struct *work)
806 {
807 	struct hl_device *hdev;
808 	u64 event_mask = 0x0;
809 	int rc;
810 	struct hl_cs *cs = container_of(work, struct hl_cs,
811 						 work_tdr.work);
812 	bool skip_reset_on_timeout = cs->skip_reset_on_timeout, device_reset = false;
813 
814 	rc = cs_get_unless_zero(cs);
815 	if (!rc)
816 		return;
817 
818 	if ((!cs->submitted) || (cs->completed)) {
819 		cs_put(cs);
820 		return;
821 	}
822 
823 	hdev = cs->ctx->hdev;
824 
825 	if (likely(!skip_reset_on_timeout)) {
826 		if (hdev->reset_on_lockup)
827 			device_reset = true;
828 		else
829 			hdev->reset_info.needs_reset = true;
830 
831 		/* Mark the CS is timed out so we won't try to cancel its TDR */
832 		cs->timedout = true;
833 	}
834 
835 	/* Save only the first CS timeout parameters */
836 	rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0);
837 	if (rc) {
838 		hdev->captured_err_info.cs_timeout.timestamp = ktime_get();
839 		hdev->captured_err_info.cs_timeout.seq = cs->sequence;
840 		event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT;
841 	}
842 
843 	switch (cs->type) {
844 	case CS_TYPE_SIGNAL:
845 		dev_err(hdev->dev,
846 			"Signal command submission %llu has not finished in time!\n",
847 			cs->sequence);
848 		break;
849 
850 	case CS_TYPE_WAIT:
851 		dev_err(hdev->dev,
852 			"Wait command submission %llu has not finished in time!\n",
853 			cs->sequence);
854 		break;
855 
856 	case CS_TYPE_COLLECTIVE_WAIT:
857 		dev_err(hdev->dev,
858 			"Collective Wait command submission %llu has not finished in time!\n",
859 			cs->sequence);
860 		break;
861 
862 	default:
863 		dev_err(hdev->dev,
864 			"Command submission %llu has not finished in time!\n",
865 			cs->sequence);
866 		break;
867 	}
868 
869 	rc = hl_state_dump(hdev);
870 	if (rc)
871 		dev_err(hdev->dev, "Error during system state dump %d\n", rc);
872 
873 	cs_put(cs);
874 
875 	if (device_reset) {
876 		event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
877 		hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask);
878 	} else if (event_mask) {
879 		hl_notifier_event_send_all(hdev, event_mask);
880 	}
881 }
882 
883 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
884 			enum hl_cs_type cs_type, u64 user_sequence,
885 			struct hl_cs **cs_new, u32 flags, u32 timeout)
886 {
887 	struct hl_cs_counters_atomic *cntr;
888 	struct hl_fence *other = NULL;
889 	struct hl_cs_compl *cs_cmpl;
890 	struct hl_cs *cs;
891 	int rc;
892 
893 	cntr = &hdev->aggregated_cs_counters;
894 
895 	cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
896 	if (!cs)
897 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
898 
899 	if (!cs) {
900 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
901 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
902 		return -ENOMEM;
903 	}
904 
905 	/* increment refcnt for context */
906 	hl_ctx_get(ctx);
907 
908 	cs->ctx = ctx;
909 	cs->submitted = false;
910 	cs->completed = false;
911 	cs->type = cs_type;
912 	cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
913 	cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
914 	cs->timeout_jiffies = timeout;
915 	cs->skip_reset_on_timeout =
916 		hdev->reset_info.skip_reset_on_timeout ||
917 		!!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
918 	cs->submission_time_jiffies = jiffies;
919 	INIT_LIST_HEAD(&cs->job_list);
920 	INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
921 	kref_init(&cs->refcount);
922 	spin_lock_init(&cs->job_lock);
923 
924 	cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
925 	if (!cs_cmpl)
926 		cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
927 
928 	if (!cs_cmpl) {
929 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
930 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
931 		rc = -ENOMEM;
932 		goto free_cs;
933 	}
934 
935 	cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
936 			sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
937 	if (!cs->jobs_in_queue_cnt)
938 		cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
939 				sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
940 
941 	if (!cs->jobs_in_queue_cnt) {
942 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
943 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
944 		rc = -ENOMEM;
945 		goto free_cs_cmpl;
946 	}
947 
948 	cs_cmpl->hdev = hdev;
949 	cs_cmpl->type = cs->type;
950 	spin_lock_init(&cs_cmpl->lock);
951 	cs->fence = &cs_cmpl->base_fence;
952 
953 	spin_lock(&ctx->cs_lock);
954 
955 	cs_cmpl->cs_seq = ctx->cs_sequence;
956 	other = ctx->cs_pending[cs_cmpl->cs_seq &
957 				(hdev->asic_prop.max_pending_cs - 1)];
958 
959 	if (other && !completion_done(&other->completion)) {
960 		/* If the following statement is true, it means we have reached
961 		 * a point in which only part of the staged submission was
962 		 * submitted and we don't have enough room in the 'cs_pending'
963 		 * array for the rest of the submission.
964 		 * This causes a deadlock because this CS will never be
965 		 * completed as it depends on future CS's for completion.
966 		 */
967 		if (other->cs_sequence == user_sequence)
968 			dev_crit_ratelimited(hdev->dev,
969 				"Staged CS %llu deadlock due to lack of resources",
970 				user_sequence);
971 
972 		dev_dbg_ratelimited(hdev->dev,
973 			"Rejecting CS because of too many in-flights CS\n");
974 		atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
975 		atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
976 		rc = -EAGAIN;
977 		goto free_fence;
978 	}
979 
980 	/* init hl_fence */
981 	hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
982 
983 	cs->sequence = cs_cmpl->cs_seq;
984 
985 	ctx->cs_pending[cs_cmpl->cs_seq &
986 			(hdev->asic_prop.max_pending_cs - 1)] =
987 							&cs_cmpl->base_fence;
988 	ctx->cs_sequence++;
989 
990 	hl_fence_get(&cs_cmpl->base_fence);
991 
992 	hl_fence_put(other);
993 
994 	spin_unlock(&ctx->cs_lock);
995 
996 	*cs_new = cs;
997 
998 	return 0;
999 
1000 free_fence:
1001 	spin_unlock(&ctx->cs_lock);
1002 	kfree(cs->jobs_in_queue_cnt);
1003 free_cs_cmpl:
1004 	kfree(cs_cmpl);
1005 free_cs:
1006 	kfree(cs);
1007 	hl_ctx_put(ctx);
1008 	return rc;
1009 }
1010 
1011 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
1012 {
1013 	struct hl_cs_job *job, *tmp;
1014 
1015 	staged_cs_put(hdev, cs);
1016 
1017 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1018 		hl_complete_job(hdev, job);
1019 }
1020 
1021 /*
1022  * release_reserved_encaps_signals() - release reserved encapsulated signals.
1023  * @hdev: pointer to habanalabs device structure
1024  *
1025  * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with
1026  * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back.
1027  * For these signals need also to put the refcount of the H/W SOB which was taken at the
1028  * reservation.
1029  */
1030 static void release_reserved_encaps_signals(struct hl_device *hdev)
1031 {
1032 	struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
1033 	struct hl_cs_encaps_sig_handle *handle;
1034 	struct hl_encaps_signals_mgr *mgr;
1035 	u32 id;
1036 
1037 	if (!ctx)
1038 		return;
1039 
1040 	mgr = &ctx->sig_mgr;
1041 
1042 	idr_for_each_entry(&mgr->handles, handle, id)
1043 		if (handle->cs_seq == ULLONG_MAX)
1044 			kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx);
1045 
1046 	hl_ctx_put(ctx);
1047 }
1048 
1049 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush)
1050 {
1051 	int i;
1052 	struct hl_cs *cs, *tmp;
1053 
1054 	if (!skip_wq_flush) {
1055 		flush_workqueue(hdev->ts_free_obj_wq);
1056 
1057 		/* flush all completions before iterating over the CS mirror list in
1058 		 * order to avoid a race with the release functions
1059 		 */
1060 		for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1061 			flush_workqueue(hdev->cq_wq[i]);
1062 
1063 		flush_workqueue(hdev->cs_cmplt_wq);
1064 	}
1065 
1066 	/* Make sure we don't have leftovers in the CS mirror list */
1067 	list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
1068 		cs_get(cs);
1069 		cs->aborted = true;
1070 		dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
1071 					cs->ctx->asid, cs->sequence);
1072 		cs_rollback(hdev, cs);
1073 		cs_put(cs);
1074 	}
1075 
1076 	force_complete_multi_cs(hdev);
1077 
1078 	release_reserved_encaps_signals(hdev);
1079 }
1080 
1081 static void
1082 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
1083 {
1084 	struct hl_user_pending_interrupt *pend, *temp;
1085 	unsigned long flags;
1086 
1087 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
1088 	list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) {
1089 		if (pend->ts_reg_info.buf) {
1090 			list_del(&pend->wait_list_node);
1091 			hl_mmap_mem_buf_put(pend->ts_reg_info.buf);
1092 			hl_cb_put(pend->ts_reg_info.cq_cb);
1093 		} else {
1094 			pend->fence.error = -EIO;
1095 			complete_all(&pend->fence.completion);
1096 		}
1097 	}
1098 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
1099 }
1100 
1101 void hl_release_pending_user_interrupts(struct hl_device *hdev)
1102 {
1103 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1104 	struct hl_user_interrupt *interrupt;
1105 	int i;
1106 
1107 	if (!prop->user_interrupt_count)
1108 		return;
1109 
1110 	/* We iterate through the user interrupt requests and waking up all
1111 	 * user threads waiting for interrupt completion. We iterate the
1112 	 * list under a lock, this is why all user threads, once awake,
1113 	 * will wait on the same lock and will release the waiting object upon
1114 	 * unlock.
1115 	 */
1116 
1117 	for (i = 0 ; i < prop->user_interrupt_count ; i++) {
1118 		interrupt = &hdev->user_interrupt[i];
1119 		wake_pending_user_interrupt_threads(interrupt);
1120 	}
1121 
1122 	interrupt = &hdev->common_user_cq_interrupt;
1123 	wake_pending_user_interrupt_threads(interrupt);
1124 
1125 	interrupt = &hdev->common_decoder_interrupt;
1126 	wake_pending_user_interrupt_threads(interrupt);
1127 }
1128 
1129 static void force_complete_cs(struct hl_device *hdev)
1130 {
1131 	struct hl_cs *cs;
1132 
1133 	spin_lock(&hdev->cs_mirror_lock);
1134 
1135 	list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) {
1136 		cs->fence->error = -EIO;
1137 		complete_all(&cs->fence->completion);
1138 	}
1139 
1140 	spin_unlock(&hdev->cs_mirror_lock);
1141 }
1142 
1143 void hl_abort_waitings_for_completion(struct hl_device *hdev)
1144 {
1145 	force_complete_cs(hdev);
1146 	force_complete_multi_cs(hdev);
1147 	hl_release_pending_user_interrupts(hdev);
1148 }
1149 
1150 static void job_wq_completion(struct work_struct *work)
1151 {
1152 	struct hl_cs_job *job = container_of(work, struct hl_cs_job,
1153 						finish_work);
1154 	struct hl_cs *cs = job->cs;
1155 	struct hl_device *hdev = cs->ctx->hdev;
1156 
1157 	/* job is no longer needed */
1158 	hl_complete_job(hdev, job);
1159 }
1160 
1161 static void cs_completion(struct work_struct *work)
1162 {
1163 	struct hl_cs *cs = container_of(work, struct hl_cs, finish_work);
1164 	struct hl_device *hdev = cs->ctx->hdev;
1165 	struct hl_cs_job *job, *tmp;
1166 
1167 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1168 		hl_complete_job(hdev, job);
1169 }
1170 
1171 u32 hl_get_active_cs_num(struct hl_device *hdev)
1172 {
1173 	u32 active_cs_num = 0;
1174 	struct hl_cs *cs;
1175 
1176 	spin_lock(&hdev->cs_mirror_lock);
1177 
1178 	list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node)
1179 		if (!cs->completed)
1180 			active_cs_num++;
1181 
1182 	spin_unlock(&hdev->cs_mirror_lock);
1183 
1184 	return active_cs_num;
1185 }
1186 
1187 static int validate_queue_index(struct hl_device *hdev,
1188 				struct hl_cs_chunk *chunk,
1189 				enum hl_queue_type *queue_type,
1190 				bool *is_kernel_allocated_cb)
1191 {
1192 	struct asic_fixed_properties *asic = &hdev->asic_prop;
1193 	struct hw_queue_properties *hw_queue_prop;
1194 
1195 	/* This must be checked here to prevent out-of-bounds access to
1196 	 * hw_queues_props array
1197 	 */
1198 	if (chunk->queue_index >= asic->max_queues) {
1199 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1200 			chunk->queue_index);
1201 		return -EINVAL;
1202 	}
1203 
1204 	hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
1205 
1206 	if (hw_queue_prop->type == QUEUE_TYPE_NA) {
1207 		dev_err(hdev->dev, "Queue index %d is not applicable\n",
1208 			chunk->queue_index);
1209 		return -EINVAL;
1210 	}
1211 
1212 	if (hw_queue_prop->binned) {
1213 		dev_err(hdev->dev, "Queue index %d is binned out\n",
1214 			chunk->queue_index);
1215 		return -EINVAL;
1216 	}
1217 
1218 	if (hw_queue_prop->driver_only) {
1219 		dev_err(hdev->dev,
1220 			"Queue index %d is restricted for the kernel driver\n",
1221 			chunk->queue_index);
1222 		return -EINVAL;
1223 	}
1224 
1225 	/* When hw queue type isn't QUEUE_TYPE_HW,
1226 	 * USER_ALLOC_CB flag shall be referred as "don't care".
1227 	 */
1228 	if (hw_queue_prop->type == QUEUE_TYPE_HW) {
1229 		if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
1230 			if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
1231 				dev_err(hdev->dev,
1232 					"Queue index %d doesn't support user CB\n",
1233 					chunk->queue_index);
1234 				return -EINVAL;
1235 			}
1236 
1237 			*is_kernel_allocated_cb = false;
1238 		} else {
1239 			if (!(hw_queue_prop->cb_alloc_flags &
1240 					CB_ALLOC_KERNEL)) {
1241 				dev_err(hdev->dev,
1242 					"Queue index %d doesn't support kernel CB\n",
1243 					chunk->queue_index);
1244 				return -EINVAL;
1245 			}
1246 
1247 			*is_kernel_allocated_cb = true;
1248 		}
1249 	} else {
1250 		*is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
1251 						& CB_ALLOC_KERNEL);
1252 	}
1253 
1254 	*queue_type = hw_queue_prop->type;
1255 	return 0;
1256 }
1257 
1258 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
1259 					struct hl_mem_mgr *mmg,
1260 					struct hl_cs_chunk *chunk)
1261 {
1262 	struct hl_cb *cb;
1263 
1264 	cb = hl_cb_get(mmg, chunk->cb_handle);
1265 	if (!cb) {
1266 		dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle);
1267 		return NULL;
1268 	}
1269 
1270 	if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
1271 		dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
1272 		goto release_cb;
1273 	}
1274 
1275 	atomic_inc(&cb->cs_cnt);
1276 
1277 	return cb;
1278 
1279 release_cb:
1280 	hl_cb_put(cb);
1281 	return NULL;
1282 }
1283 
1284 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1285 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
1286 {
1287 	struct hl_cs_job *job;
1288 
1289 	job = kzalloc(sizeof(*job), GFP_ATOMIC);
1290 	if (!job)
1291 		job = kzalloc(sizeof(*job), GFP_KERNEL);
1292 
1293 	if (!job)
1294 		return NULL;
1295 
1296 	kref_init(&job->refcount);
1297 	job->queue_type = queue_type;
1298 	job->is_kernel_allocated_cb = is_kernel_allocated_cb;
1299 
1300 	if (is_cb_patched(hdev, job))
1301 		INIT_LIST_HEAD(&job->userptr_list);
1302 
1303 	if (job->queue_type == QUEUE_TYPE_EXT)
1304 		INIT_WORK(&job->finish_work, job_wq_completion);
1305 
1306 	return job;
1307 }
1308 
1309 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
1310 {
1311 	if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
1312 		return CS_TYPE_SIGNAL;
1313 	else if (cs_type_flags & HL_CS_FLAGS_WAIT)
1314 		return CS_TYPE_WAIT;
1315 	else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
1316 		return CS_TYPE_COLLECTIVE_WAIT;
1317 	else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
1318 		return CS_RESERVE_SIGNALS;
1319 	else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
1320 		return CS_UNRESERVE_SIGNALS;
1321 	else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND)
1322 		return CS_TYPE_ENGINE_CORE;
1323 	else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
1324 		return CS_TYPE_FLUSH_PCI_HBW_WRITES;
1325 	else
1326 		return CS_TYPE_DEFAULT;
1327 }
1328 
1329 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
1330 {
1331 	struct hl_device *hdev = hpriv->hdev;
1332 	struct hl_ctx *ctx = hpriv->ctx;
1333 	u32 cs_type_flags, num_chunks;
1334 	enum hl_device_status status;
1335 	enum hl_cs_type cs_type;
1336 	bool is_sync_stream;
1337 	int i;
1338 
1339 	for (i = 0 ; i < sizeof(args->in.pad) ; i++)
1340 		if (args->in.pad[i]) {
1341 			dev_dbg(hdev->dev, "Padding bytes must be 0\n");
1342 			return -EINVAL;
1343 		}
1344 
1345 	if (!hl_device_operational(hdev, &status)) {
1346 		return -EBUSY;
1347 	}
1348 
1349 	if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1350 			!hdev->supports_staged_submission) {
1351 		dev_err(hdev->dev, "staged submission not supported");
1352 		return -EPERM;
1353 	}
1354 
1355 	cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
1356 
1357 	if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
1358 		dev_err(hdev->dev,
1359 			"CS type flags are mutually exclusive, context %d\n",
1360 			ctx->asid);
1361 		return -EINVAL;
1362 	}
1363 
1364 	cs_type = hl_cs_get_cs_type(cs_type_flags);
1365 	num_chunks = args->in.num_chunks_execute;
1366 
1367 	is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT ||
1368 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
1369 
1370 	if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) {
1371 		dev_err(hdev->dev, "Sync stream CS is not supported\n");
1372 		return -EINVAL;
1373 	}
1374 
1375 	if (cs_type == CS_TYPE_DEFAULT) {
1376 		if (!num_chunks) {
1377 			dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid);
1378 			return -EINVAL;
1379 		}
1380 	} else if (is_sync_stream && num_chunks != 1) {
1381 		dev_err(hdev->dev,
1382 			"Sync stream CS mandates one chunk only, context %d\n",
1383 			ctx->asid);
1384 		return -EINVAL;
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static int hl_cs_copy_chunk_array(struct hl_device *hdev,
1391 					struct hl_cs_chunk **cs_chunk_array,
1392 					void __user *chunks, u32 num_chunks,
1393 					struct hl_ctx *ctx)
1394 {
1395 	u32 size_to_copy;
1396 
1397 	if (num_chunks > HL_MAX_JOBS_PER_CS) {
1398 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1399 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1400 		dev_err(hdev->dev,
1401 			"Number of chunks can NOT be larger than %d\n",
1402 			HL_MAX_JOBS_PER_CS);
1403 		return -EINVAL;
1404 	}
1405 
1406 	*cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
1407 					GFP_ATOMIC);
1408 	if (!*cs_chunk_array)
1409 		*cs_chunk_array = kmalloc_array(num_chunks,
1410 					sizeof(**cs_chunk_array), GFP_KERNEL);
1411 	if (!*cs_chunk_array) {
1412 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1413 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1414 		return -ENOMEM;
1415 	}
1416 
1417 	size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
1418 	if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
1419 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1420 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1421 		dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
1422 		kfree(*cs_chunk_array);
1423 		return -EFAULT;
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
1430 				u64 sequence, u32 flags,
1431 				u32 encaps_signal_handle)
1432 {
1433 	if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
1434 		return 0;
1435 
1436 	cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
1437 	cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
1438 
1439 	if (cs->staged_first) {
1440 		/* Staged CS sequence is the first CS sequence */
1441 		INIT_LIST_HEAD(&cs->staged_cs_node);
1442 		cs->staged_sequence = cs->sequence;
1443 
1444 		if (cs->encaps_signals)
1445 			cs->encaps_sig_hdl_id = encaps_signal_handle;
1446 	} else {
1447 		/* User sequence will be validated in 'hl_hw_queue_schedule_cs'
1448 		 * under the cs_mirror_lock
1449 		 */
1450 		cs->staged_sequence = sequence;
1451 	}
1452 
1453 	/* Increment CS reference if needed */
1454 	staged_cs_get(hdev, cs);
1455 
1456 	cs->staged_cs = true;
1457 
1458 	return 0;
1459 }
1460 
1461 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
1462 {
1463 	int i;
1464 
1465 	for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
1466 		if (qid == hdev->stream_master_qid_arr[i])
1467 			return BIT(i);
1468 
1469 	return 0;
1470 }
1471 
1472 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
1473 				u32 num_chunks, u64 *cs_seq, u32 flags,
1474 				u32 encaps_signals_handle, u32 timeout,
1475 				u16 *signal_initial_sob_count)
1476 {
1477 	bool staged_mid, int_queues_only = true, using_hw_queues = false;
1478 	struct hl_device *hdev = hpriv->hdev;
1479 	struct hl_cs_chunk *cs_chunk_array;
1480 	struct hl_cs_counters_atomic *cntr;
1481 	struct hl_ctx *ctx = hpriv->ctx;
1482 	struct hl_cs_job *job;
1483 	struct hl_cs *cs;
1484 	struct hl_cb *cb;
1485 	u64 user_sequence;
1486 	u8 stream_master_qid_map = 0;
1487 	int rc, i;
1488 
1489 	cntr = &hdev->aggregated_cs_counters;
1490 	user_sequence = *cs_seq;
1491 	*cs_seq = ULLONG_MAX;
1492 
1493 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
1494 			hpriv->ctx);
1495 	if (rc)
1496 		goto out;
1497 
1498 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1499 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
1500 		staged_mid = true;
1501 	else
1502 		staged_mid = false;
1503 
1504 	rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
1505 			staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
1506 			timeout);
1507 	if (rc)
1508 		goto free_cs_chunk_array;
1509 
1510 	*cs_seq = cs->sequence;
1511 
1512 	hl_debugfs_add_cs(cs);
1513 
1514 	rc = cs_staged_submission(hdev, cs, user_sequence, flags,
1515 						encaps_signals_handle);
1516 	if (rc)
1517 		goto free_cs_object;
1518 
1519 	/* If this is a staged submission we must return the staged sequence
1520 	 * rather than the internal CS sequence
1521 	 */
1522 	if (cs->staged_cs)
1523 		*cs_seq = cs->staged_sequence;
1524 
1525 	/* Validate ALL the CS chunks before submitting the CS */
1526 	for (i = 0 ; i < num_chunks ; i++) {
1527 		struct hl_cs_chunk *chunk = &cs_chunk_array[i];
1528 		enum hl_queue_type queue_type;
1529 		bool is_kernel_allocated_cb;
1530 
1531 		rc = validate_queue_index(hdev, chunk, &queue_type,
1532 						&is_kernel_allocated_cb);
1533 		if (rc) {
1534 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1535 			atomic64_inc(&cntr->validation_drop_cnt);
1536 			goto free_cs_object;
1537 		}
1538 
1539 		if (is_kernel_allocated_cb) {
1540 			cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk);
1541 			if (!cb) {
1542 				atomic64_inc(
1543 					&ctx->cs_counters.validation_drop_cnt);
1544 				atomic64_inc(&cntr->validation_drop_cnt);
1545 				rc = -EINVAL;
1546 				goto free_cs_object;
1547 			}
1548 		} else {
1549 			cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
1550 		}
1551 
1552 		if (queue_type == QUEUE_TYPE_EXT ||
1553 						queue_type == QUEUE_TYPE_HW) {
1554 			int_queues_only = false;
1555 
1556 			/*
1557 			 * store which stream are being used for external/HW
1558 			 * queues of this CS
1559 			 */
1560 			if (hdev->supports_wait_for_multi_cs)
1561 				stream_master_qid_map |=
1562 					get_stream_master_qid_mask(hdev,
1563 							chunk->queue_index);
1564 		}
1565 
1566 		if (queue_type == QUEUE_TYPE_HW)
1567 			using_hw_queues = true;
1568 
1569 		job = hl_cs_allocate_job(hdev, queue_type,
1570 						is_kernel_allocated_cb);
1571 		if (!job) {
1572 			atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1573 			atomic64_inc(&cntr->out_of_mem_drop_cnt);
1574 			dev_err(hdev->dev, "Failed to allocate a new job\n");
1575 			rc = -ENOMEM;
1576 			if (is_kernel_allocated_cb)
1577 				goto release_cb;
1578 
1579 			goto free_cs_object;
1580 		}
1581 
1582 		job->id = i + 1;
1583 		job->cs = cs;
1584 		job->user_cb = cb;
1585 		job->user_cb_size = chunk->cb_size;
1586 		job->hw_queue_id = chunk->queue_index;
1587 
1588 		cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1589 		cs->jobs_cnt++;
1590 
1591 		list_add_tail(&job->cs_node, &cs->job_list);
1592 
1593 		/*
1594 		 * Increment CS reference. When CS reference is 0, CS is
1595 		 * done and can be signaled to user and free all its resources
1596 		 * Only increment for JOB on external or H/W queues, because
1597 		 * only for those JOBs we get completion
1598 		 */
1599 		if (cs_needs_completion(cs) &&
1600 			(job->queue_type == QUEUE_TYPE_EXT ||
1601 				job->queue_type == QUEUE_TYPE_HW))
1602 			cs_get(cs);
1603 
1604 		hl_debugfs_add_job(hdev, job);
1605 
1606 		rc = cs_parser(hpriv, job);
1607 		if (rc) {
1608 			atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
1609 			atomic64_inc(&cntr->parsing_drop_cnt);
1610 			dev_err(hdev->dev,
1611 				"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
1612 				cs->ctx->asid, cs->sequence, job->id, rc);
1613 			goto free_cs_object;
1614 		}
1615 	}
1616 
1617 	/* We allow a CS with any queue type combination as long as it does
1618 	 * not get a completion
1619 	 */
1620 	if (int_queues_only && cs_needs_completion(cs)) {
1621 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1622 		atomic64_inc(&cntr->validation_drop_cnt);
1623 		dev_err(hdev->dev,
1624 			"Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
1625 			cs->ctx->asid, cs->sequence);
1626 		rc = -EINVAL;
1627 		goto free_cs_object;
1628 	}
1629 
1630 	if (using_hw_queues)
1631 		INIT_WORK(&cs->finish_work, cs_completion);
1632 
1633 	/*
1634 	 * store the (external/HW queues) streams used by the CS in the
1635 	 * fence object for multi-CS completion
1636 	 */
1637 	if (hdev->supports_wait_for_multi_cs)
1638 		cs->fence->stream_master_qid_map = stream_master_qid_map;
1639 
1640 	rc = hl_hw_queue_schedule_cs(cs);
1641 	if (rc) {
1642 		if (rc != -EAGAIN)
1643 			dev_err(hdev->dev,
1644 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
1645 				cs->ctx->asid, cs->sequence, rc);
1646 		goto free_cs_object;
1647 	}
1648 
1649 	*signal_initial_sob_count = cs->initial_sob_count;
1650 
1651 	rc = HL_CS_STATUS_SUCCESS;
1652 	goto put_cs;
1653 
1654 release_cb:
1655 	atomic_dec(&cb->cs_cnt);
1656 	hl_cb_put(cb);
1657 free_cs_object:
1658 	cs_rollback(hdev, cs);
1659 	*cs_seq = ULLONG_MAX;
1660 	/* The path below is both for good and erroneous exits */
1661 put_cs:
1662 	/* We finished with the CS in this function, so put the ref */
1663 	cs_put(cs);
1664 free_cs_chunk_array:
1665 	kfree(cs_chunk_array);
1666 out:
1667 	return rc;
1668 }
1669 
1670 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
1671 				u64 *cs_seq)
1672 {
1673 	struct hl_device *hdev = hpriv->hdev;
1674 	struct hl_ctx *ctx = hpriv->ctx;
1675 	bool need_soft_reset = false;
1676 	int rc = 0, do_ctx_switch = 0;
1677 	void __user *chunks;
1678 	u32 num_chunks, tmp;
1679 	u16 sob_count;
1680 	int ret;
1681 
1682 	if (hdev->supports_ctx_switch)
1683 		do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
1684 
1685 	if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
1686 		mutex_lock(&hpriv->restore_phase_mutex);
1687 
1688 		if (do_ctx_switch) {
1689 			rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
1690 			if (rc) {
1691 				dev_err_ratelimited(hdev->dev,
1692 					"Failed to switch to context %d, rejecting CS! %d\n",
1693 					ctx->asid, rc);
1694 				/*
1695 				 * If we timedout, or if the device is not IDLE
1696 				 * while we want to do context-switch (-EBUSY),
1697 				 * we need to soft-reset because QMAN is
1698 				 * probably stuck. However, we can't call to
1699 				 * reset here directly because of deadlock, so
1700 				 * need to do it at the very end of this
1701 				 * function
1702 				 */
1703 				if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
1704 					need_soft_reset = true;
1705 				mutex_unlock(&hpriv->restore_phase_mutex);
1706 				goto out;
1707 			}
1708 		}
1709 
1710 		hdev->asic_funcs->restore_phase_topology(hdev);
1711 
1712 		chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
1713 		num_chunks = args->in.num_chunks_restore;
1714 
1715 		if (!num_chunks) {
1716 			dev_dbg(hdev->dev,
1717 				"Need to run restore phase but restore CS is empty\n");
1718 			rc = 0;
1719 		} else {
1720 			rc = cs_ioctl_default(hpriv, chunks, num_chunks,
1721 					cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count);
1722 		}
1723 
1724 		mutex_unlock(&hpriv->restore_phase_mutex);
1725 
1726 		if (rc) {
1727 			dev_err(hdev->dev,
1728 				"Failed to submit restore CS for context %d (%d)\n",
1729 				ctx->asid, rc);
1730 			goto out;
1731 		}
1732 
1733 		/* Need to wait for restore completion before execution phase */
1734 		if (num_chunks) {
1735 			enum hl_cs_wait_status status;
1736 wait_again:
1737 			ret = _hl_cs_wait_ioctl(hdev, ctx,
1738 					jiffies_to_usecs(hdev->timeout_jiffies),
1739 					*cs_seq, &status, NULL);
1740 			if (ret) {
1741 				if (ret == -ERESTARTSYS) {
1742 					usleep_range(100, 200);
1743 					goto wait_again;
1744 				}
1745 
1746 				dev_err(hdev->dev,
1747 					"Restore CS for context %d failed to complete %d\n",
1748 					ctx->asid, ret);
1749 				rc = -ENOEXEC;
1750 				goto out;
1751 			}
1752 		}
1753 
1754 		if (hdev->supports_ctx_switch)
1755 			ctx->thread_ctx_switch_wait_token = 1;
1756 
1757 	} else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) {
1758 		rc = hl_poll_timeout_memory(hdev,
1759 			&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
1760 			100, jiffies_to_usecs(hdev->timeout_jiffies), false);
1761 
1762 		if (rc == -ETIMEDOUT) {
1763 			dev_err(hdev->dev,
1764 				"context switch phase timeout (%d)\n", tmp);
1765 			goto out;
1766 		}
1767 	}
1768 
1769 out:
1770 	if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
1771 		hl_device_reset(hdev, 0);
1772 
1773 	return rc;
1774 }
1775 
1776 /*
1777  * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
1778  * if the SOB value reaches the max value move to the other SOB reserved
1779  * to the queue.
1780  * @hdev: pointer to device structure
1781  * @q_idx: stream queue index
1782  * @hw_sob: the H/W SOB used in this signal CS.
1783  * @count: signals count
1784  * @encaps_sig: tells whether it's reservation for encaps signals or not.
1785  *
1786  * Note that this function must be called while hw_queues_lock is taken.
1787  */
1788 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
1789 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
1790 
1791 {
1792 	struct hl_sync_stream_properties *prop;
1793 	struct hl_hw_sob *sob = *hw_sob, *other_sob;
1794 	u8 other_sob_offset;
1795 
1796 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1797 
1798 	hw_sob_get(sob);
1799 
1800 	/* check for wraparound */
1801 	if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
1802 		/*
1803 		 * Decrement as we reached the max value.
1804 		 * The release function won't be called here as we've
1805 		 * just incremented the refcount right before calling this
1806 		 * function.
1807 		 */
1808 		hw_sob_put_err(sob);
1809 
1810 		/*
1811 		 * check the other sob value, if it still in use then fail
1812 		 * otherwise make the switch
1813 		 */
1814 		other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
1815 		other_sob = &prop->hw_sob[other_sob_offset];
1816 
1817 		if (kref_read(&other_sob->kref) != 1) {
1818 			dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
1819 								q_idx);
1820 			return -EINVAL;
1821 		}
1822 
1823 		/*
1824 		 * next_sob_val always points to the next available signal
1825 		 * in the sob, so in encaps signals it will be the next one
1826 		 * after reserving the required amount.
1827 		 */
1828 		if (encaps_sig)
1829 			prop->next_sob_val = count + 1;
1830 		else
1831 			prop->next_sob_val = count;
1832 
1833 		/* only two SOBs are currently in use */
1834 		prop->curr_sob_offset = other_sob_offset;
1835 		*hw_sob = other_sob;
1836 
1837 		/*
1838 		 * check if other_sob needs reset, then do it before using it
1839 		 * for the reservation or the next signal cs.
1840 		 * we do it here, and for both encaps and regular signal cs
1841 		 * cases in order to avoid possible races of two kref_put
1842 		 * of the sob which can occur at the same time if we move the
1843 		 * sob reset(kref_put) to cs_do_release function.
1844 		 * in addition, if we have combination of cs signal and
1845 		 * encaps, and at the point we need to reset the sob there was
1846 		 * no more reservations and only signal cs keep coming,
1847 		 * in such case we need signal_cs to put the refcount and
1848 		 * reset the sob.
1849 		 */
1850 		if (other_sob->need_reset)
1851 			hw_sob_put(other_sob);
1852 
1853 		if (encaps_sig) {
1854 			/* set reset indication for the sob */
1855 			sob->need_reset = true;
1856 			hw_sob_get(other_sob);
1857 		}
1858 
1859 		dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
1860 				prop->curr_sob_offset, q_idx);
1861 	} else {
1862 		prop->next_sob_val += count;
1863 	}
1864 
1865 	return 0;
1866 }
1867 
1868 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
1869 		struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
1870 		bool encaps_signals)
1871 {
1872 	u64 *signal_seq_arr = NULL;
1873 	u32 size_to_copy, signal_seq_arr_len;
1874 	int rc = 0;
1875 
1876 	if (encaps_signals) {
1877 		*signal_seq = chunk->encaps_signal_seq;
1878 		return 0;
1879 	}
1880 
1881 	signal_seq_arr_len = chunk->num_signal_seq_arr;
1882 
1883 	/* currently only one signal seq is supported */
1884 	if (signal_seq_arr_len != 1) {
1885 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1886 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1887 		dev_err(hdev->dev,
1888 			"Wait for signal CS supports only one signal CS seq\n");
1889 		return -EINVAL;
1890 	}
1891 
1892 	signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1893 					sizeof(*signal_seq_arr),
1894 					GFP_ATOMIC);
1895 	if (!signal_seq_arr)
1896 		signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1897 					sizeof(*signal_seq_arr),
1898 					GFP_KERNEL);
1899 	if (!signal_seq_arr) {
1900 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1901 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1902 		return -ENOMEM;
1903 	}
1904 
1905 	size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
1906 	if (copy_from_user(signal_seq_arr,
1907 				u64_to_user_ptr(chunk->signal_seq_arr),
1908 				size_to_copy)) {
1909 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1910 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1911 		dev_err(hdev->dev,
1912 			"Failed to copy signal seq array from user\n");
1913 		rc = -EFAULT;
1914 		goto out;
1915 	}
1916 
1917 	/* currently it is guaranteed to have only one signal seq */
1918 	*signal_seq = signal_seq_arr[0];
1919 
1920 out:
1921 	kfree(signal_seq_arr);
1922 
1923 	return rc;
1924 }
1925 
1926 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
1927 		struct hl_ctx *ctx, struct hl_cs *cs,
1928 		enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
1929 {
1930 	struct hl_cs_counters_atomic *cntr;
1931 	struct hl_cs_job *job;
1932 	struct hl_cb *cb;
1933 	u32 cb_size;
1934 
1935 	cntr = &hdev->aggregated_cs_counters;
1936 
1937 	job = hl_cs_allocate_job(hdev, q_type, true);
1938 	if (!job) {
1939 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1940 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1941 		dev_err(hdev->dev, "Failed to allocate a new job\n");
1942 		return -ENOMEM;
1943 	}
1944 
1945 	if (cs->type == CS_TYPE_WAIT)
1946 		cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
1947 	else
1948 		cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
1949 
1950 	cb = hl_cb_kernel_create(hdev, cb_size,
1951 				q_type == QUEUE_TYPE_HW && hdev->mmu_enable);
1952 	if (!cb) {
1953 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1954 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1955 		kfree(job);
1956 		return -EFAULT;
1957 	}
1958 
1959 	job->id = 0;
1960 	job->cs = cs;
1961 	job->user_cb = cb;
1962 	atomic_inc(&job->user_cb->cs_cnt);
1963 	job->user_cb_size = cb_size;
1964 	job->hw_queue_id = q_idx;
1965 
1966 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
1967 			&& cs->encaps_signals)
1968 		job->encaps_sig_wait_offset = encaps_signal_offset;
1969 	/*
1970 	 * No need in parsing, user CB is the patched CB.
1971 	 * We call hl_cb_destroy() out of two reasons - we don't need the CB in
1972 	 * the CB idr anymore and to decrement its refcount as it was
1973 	 * incremented inside hl_cb_kernel_create().
1974 	 */
1975 	job->patched_cb = job->user_cb;
1976 	job->job_cb_size = job->user_cb_size;
1977 	hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
1978 
1979 	/* increment refcount as for external queues we get completion */
1980 	cs_get(cs);
1981 
1982 	cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1983 	cs->jobs_cnt++;
1984 
1985 	list_add_tail(&job->cs_node, &cs->job_list);
1986 
1987 	hl_debugfs_add_job(hdev, job);
1988 
1989 	return 0;
1990 }
1991 
1992 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
1993 				u32 q_idx, u32 count,
1994 				u32 *handle_id, u32 *sob_addr,
1995 				u32 *signals_count)
1996 {
1997 	struct hw_queue_properties *hw_queue_prop;
1998 	struct hl_sync_stream_properties *prop;
1999 	struct hl_device *hdev = hpriv->hdev;
2000 	struct hl_cs_encaps_sig_handle *handle;
2001 	struct hl_encaps_signals_mgr *mgr;
2002 	struct hl_hw_sob *hw_sob;
2003 	int hdl_id;
2004 	int rc = 0;
2005 
2006 	if (count >= HL_MAX_SOB_VAL) {
2007 		dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
2008 						count);
2009 		rc = -EINVAL;
2010 		goto out;
2011 	}
2012 
2013 	if (q_idx >= hdev->asic_prop.max_queues) {
2014 		dev_err(hdev->dev, "Queue index %d is invalid\n",
2015 			q_idx);
2016 		rc = -EINVAL;
2017 		goto out;
2018 	}
2019 
2020 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2021 
2022 	if (!hw_queue_prop->supports_sync_stream) {
2023 		dev_err(hdev->dev,
2024 			"Queue index %d does not support sync stream operations\n",
2025 									q_idx);
2026 		rc = -EINVAL;
2027 		goto out;
2028 	}
2029 
2030 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2031 
2032 	handle = kzalloc(sizeof(*handle), GFP_KERNEL);
2033 	if (!handle) {
2034 		rc = -ENOMEM;
2035 		goto out;
2036 	}
2037 
2038 	handle->count = count;
2039 
2040 	hl_ctx_get(hpriv->ctx);
2041 	handle->ctx = hpriv->ctx;
2042 	mgr = &hpriv->ctx->sig_mgr;
2043 
2044 	spin_lock(&mgr->lock);
2045 	hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
2046 	spin_unlock(&mgr->lock);
2047 
2048 	if (hdl_id < 0) {
2049 		dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
2050 		rc = -EINVAL;
2051 		goto put_ctx;
2052 	}
2053 
2054 	handle->id = hdl_id;
2055 	handle->q_idx = q_idx;
2056 	handle->hdev = hdev;
2057 	kref_init(&handle->refcount);
2058 
2059 	hdev->asic_funcs->hw_queues_lock(hdev);
2060 
2061 	hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2062 
2063 	/*
2064 	 * Increment the SOB value by count by user request
2065 	 * to reserve those signals
2066 	 * check if the signals amount to reserve is not exceeding the max sob
2067 	 * value, if yes then switch sob.
2068 	 */
2069 	rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
2070 								true);
2071 	if (rc) {
2072 		dev_err(hdev->dev, "Failed to switch SOB\n");
2073 		hdev->asic_funcs->hw_queues_unlock(hdev);
2074 		rc = -EINVAL;
2075 		goto remove_idr;
2076 	}
2077 	/* set the hw_sob to the handle after calling the sob wraparound handler
2078 	 * since sob could have changed.
2079 	 */
2080 	handle->hw_sob = hw_sob;
2081 
2082 	/* store the current sob value for unreserve validity check, and
2083 	 * signal offset support
2084 	 */
2085 	handle->pre_sob_val = prop->next_sob_val - handle->count;
2086 
2087 	handle->cs_seq = ULLONG_MAX;
2088 
2089 	*signals_count = prop->next_sob_val;
2090 	hdev->asic_funcs->hw_queues_unlock(hdev);
2091 
2092 	*sob_addr = handle->hw_sob->sob_addr;
2093 	*handle_id = hdl_id;
2094 
2095 	dev_dbg(hdev->dev,
2096 		"Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
2097 			hw_sob->sob_id, handle->hw_sob->sob_addr,
2098 			prop->next_sob_val - 1, q_idx, hdl_id);
2099 	goto out;
2100 
2101 remove_idr:
2102 	spin_lock(&mgr->lock);
2103 	idr_remove(&mgr->handles, hdl_id);
2104 	spin_unlock(&mgr->lock);
2105 
2106 put_ctx:
2107 	hl_ctx_put(handle->ctx);
2108 	kfree(handle);
2109 
2110 out:
2111 	return rc;
2112 }
2113 
2114 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
2115 {
2116 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2117 	struct hl_sync_stream_properties *prop;
2118 	struct hl_device *hdev = hpriv->hdev;
2119 	struct hl_encaps_signals_mgr *mgr;
2120 	struct hl_hw_sob *hw_sob;
2121 	u32 q_idx, sob_addr;
2122 	int rc = 0;
2123 
2124 	mgr = &hpriv->ctx->sig_mgr;
2125 
2126 	spin_lock(&mgr->lock);
2127 	encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
2128 	if (encaps_sig_hdl) {
2129 		dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
2130 				handle_id, encaps_sig_hdl->hw_sob->sob_addr,
2131 					encaps_sig_hdl->count);
2132 
2133 		hdev->asic_funcs->hw_queues_lock(hdev);
2134 
2135 		q_idx = encaps_sig_hdl->q_idx;
2136 		prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2137 		hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2138 		sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
2139 
2140 		/* Check if sob_val got out of sync due to other
2141 		 * signal submission requests which were handled
2142 		 * between the reserve-unreserve calls or SOB switch
2143 		 * upon reaching SOB max value.
2144 		 */
2145 		if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
2146 				!= prop->next_sob_val ||
2147 				sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
2148 			dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
2149 				encaps_sig_hdl->pre_sob_val,
2150 				(prop->next_sob_val - encaps_sig_hdl->count));
2151 
2152 			hdev->asic_funcs->hw_queues_unlock(hdev);
2153 			rc = -EINVAL;
2154 			goto out;
2155 		}
2156 
2157 		/*
2158 		 * Decrement the SOB value by count by user request
2159 		 * to unreserve those signals
2160 		 */
2161 		prop->next_sob_val -= encaps_sig_hdl->count;
2162 
2163 		hdev->asic_funcs->hw_queues_unlock(hdev);
2164 
2165 		hw_sob_put(hw_sob);
2166 
2167 		/* Release the id and free allocated memory of the handle */
2168 		idr_remove(&mgr->handles, handle_id);
2169 		hl_ctx_put(encaps_sig_hdl->ctx);
2170 		kfree(encaps_sig_hdl);
2171 	} else {
2172 		rc = -EINVAL;
2173 		dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
2174 	}
2175 out:
2176 	spin_unlock(&mgr->lock);
2177 
2178 	return rc;
2179 }
2180 
2181 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
2182 				void __user *chunks, u32 num_chunks,
2183 				u64 *cs_seq, u32 flags, u32 timeout,
2184 				u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
2185 {
2186 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
2187 	bool handle_found = false, is_wait_cs = false,
2188 			wait_cs_submitted = false,
2189 			cs_encaps_signals = false;
2190 	struct hl_cs_chunk *cs_chunk_array, *chunk;
2191 	bool staged_cs_with_encaps_signals = false;
2192 	struct hw_queue_properties *hw_queue_prop;
2193 	struct hl_device *hdev = hpriv->hdev;
2194 	struct hl_cs_compl *sig_waitcs_cmpl;
2195 	u32 q_idx, collective_engine_id = 0;
2196 	struct hl_cs_counters_atomic *cntr;
2197 	struct hl_fence *sig_fence = NULL;
2198 	struct hl_ctx *ctx = hpriv->ctx;
2199 	enum hl_queue_type q_type;
2200 	struct hl_cs *cs;
2201 	u64 signal_seq;
2202 	int rc;
2203 
2204 	cntr = &hdev->aggregated_cs_counters;
2205 	*cs_seq = ULLONG_MAX;
2206 
2207 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
2208 			ctx);
2209 	if (rc)
2210 		goto out;
2211 
2212 	/* currently it is guaranteed to have only one chunk */
2213 	chunk = &cs_chunk_array[0];
2214 
2215 	if (chunk->queue_index >= hdev->asic_prop.max_queues) {
2216 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2217 		atomic64_inc(&cntr->validation_drop_cnt);
2218 		dev_err(hdev->dev, "Queue index %d is invalid\n",
2219 			chunk->queue_index);
2220 		rc = -EINVAL;
2221 		goto free_cs_chunk_array;
2222 	}
2223 
2224 	q_idx = chunk->queue_index;
2225 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2226 	q_type = hw_queue_prop->type;
2227 
2228 	if (!hw_queue_prop->supports_sync_stream) {
2229 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2230 		atomic64_inc(&cntr->validation_drop_cnt);
2231 		dev_err(hdev->dev,
2232 			"Queue index %d does not support sync stream operations\n",
2233 			q_idx);
2234 		rc = -EINVAL;
2235 		goto free_cs_chunk_array;
2236 	}
2237 
2238 	if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
2239 		if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
2240 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2241 			atomic64_inc(&cntr->validation_drop_cnt);
2242 			dev_err(hdev->dev,
2243 				"Queue index %d is invalid\n", q_idx);
2244 			rc = -EINVAL;
2245 			goto free_cs_chunk_array;
2246 		}
2247 
2248 		if (!hdev->nic_ports_mask) {
2249 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2250 			atomic64_inc(&cntr->validation_drop_cnt);
2251 			dev_err(hdev->dev,
2252 				"Collective operations not supported when NIC ports are disabled");
2253 			rc = -EINVAL;
2254 			goto free_cs_chunk_array;
2255 		}
2256 
2257 		collective_engine_id = chunk->collective_engine_id;
2258 	}
2259 
2260 	is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
2261 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
2262 
2263 	cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
2264 
2265 	if (is_wait_cs) {
2266 		rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
2267 				ctx, cs_encaps_signals);
2268 		if (rc)
2269 			goto free_cs_chunk_array;
2270 
2271 		if (cs_encaps_signals) {
2272 			/* check if cs sequence has encapsulated
2273 			 * signals handle
2274 			 */
2275 			struct idr *idp;
2276 			u32 id;
2277 
2278 			spin_lock(&ctx->sig_mgr.lock);
2279 			idp = &ctx->sig_mgr.handles;
2280 			idr_for_each_entry(idp, encaps_sig_hdl, id) {
2281 				if (encaps_sig_hdl->cs_seq == signal_seq) {
2282 					/* get refcount to protect removing this handle from idr,
2283 					 * needed when multiple wait cs are used with offset
2284 					 * to wait on reserved encaps signals.
2285 					 * Since kref_put of this handle is executed outside the
2286 					 * current lock, it is possible that the handle refcount
2287 					 * is 0 but it yet to be removed from the list. In this
2288 					 * case need to consider the handle as not valid.
2289 					 */
2290 					if (kref_get_unless_zero(&encaps_sig_hdl->refcount))
2291 						handle_found = true;
2292 					break;
2293 				}
2294 			}
2295 			spin_unlock(&ctx->sig_mgr.lock);
2296 
2297 			if (!handle_found) {
2298 				/* treat as signal CS already finished */
2299 				dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
2300 						signal_seq);
2301 				rc = 0;
2302 				goto free_cs_chunk_array;
2303 			}
2304 
2305 			/* validate also the signal offset value */
2306 			if (chunk->encaps_signal_offset >
2307 					encaps_sig_hdl->count) {
2308 				dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
2309 						chunk->encaps_signal_offset,
2310 						encaps_sig_hdl->count);
2311 				rc = -EINVAL;
2312 				goto free_cs_chunk_array;
2313 			}
2314 		}
2315 
2316 		sig_fence = hl_ctx_get_fence(ctx, signal_seq);
2317 		if (IS_ERR(sig_fence)) {
2318 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2319 			atomic64_inc(&cntr->validation_drop_cnt);
2320 			dev_err(hdev->dev,
2321 				"Failed to get signal CS with seq 0x%llx\n",
2322 				signal_seq);
2323 			rc = PTR_ERR(sig_fence);
2324 			goto free_cs_chunk_array;
2325 		}
2326 
2327 		if (!sig_fence) {
2328 			/* signal CS already finished */
2329 			rc = 0;
2330 			goto free_cs_chunk_array;
2331 		}
2332 
2333 		sig_waitcs_cmpl =
2334 			container_of(sig_fence, struct hl_cs_compl, base_fence);
2335 
2336 		staged_cs_with_encaps_signals = !!
2337 				(sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
2338 				(flags & HL_CS_FLAGS_ENCAP_SIGNALS));
2339 
2340 		if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
2341 				!staged_cs_with_encaps_signals) {
2342 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2343 			atomic64_inc(&cntr->validation_drop_cnt);
2344 			dev_err(hdev->dev,
2345 				"CS seq 0x%llx is not of a signal/encaps-signal CS\n",
2346 				signal_seq);
2347 			hl_fence_put(sig_fence);
2348 			rc = -EINVAL;
2349 			goto free_cs_chunk_array;
2350 		}
2351 
2352 		if (completion_done(&sig_fence->completion)) {
2353 			/* signal CS already finished */
2354 			hl_fence_put(sig_fence);
2355 			rc = 0;
2356 			goto free_cs_chunk_array;
2357 		}
2358 	}
2359 
2360 	rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
2361 	if (rc) {
2362 		if (is_wait_cs)
2363 			hl_fence_put(sig_fence);
2364 
2365 		goto free_cs_chunk_array;
2366 	}
2367 
2368 	/*
2369 	 * Save the signal CS fence for later initialization right before
2370 	 * hanging the wait CS on the queue.
2371 	 * for encaps signals case, we save the cs sequence and handle pointer
2372 	 * for later initialization.
2373 	 */
2374 	if (is_wait_cs) {
2375 		cs->signal_fence = sig_fence;
2376 		/* store the handle pointer, so we don't have to
2377 		 * look for it again, later on the flow
2378 		 * when we need to set SOB info in hw_queue.
2379 		 */
2380 		if (cs->encaps_signals)
2381 			cs->encaps_sig_hdl = encaps_sig_hdl;
2382 	}
2383 
2384 	hl_debugfs_add_cs(cs);
2385 
2386 	*cs_seq = cs->sequence;
2387 
2388 	if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
2389 		rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
2390 				q_idx, chunk->encaps_signal_offset);
2391 	else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
2392 		rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
2393 				cs, q_idx, collective_engine_id,
2394 				chunk->encaps_signal_offset);
2395 	else {
2396 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2397 		atomic64_inc(&cntr->validation_drop_cnt);
2398 		rc = -EINVAL;
2399 	}
2400 
2401 	if (rc)
2402 		goto free_cs_object;
2403 
2404 	if (q_type == QUEUE_TYPE_HW)
2405 		INIT_WORK(&cs->finish_work, cs_completion);
2406 
2407 	rc = hl_hw_queue_schedule_cs(cs);
2408 	if (rc) {
2409 		/* In case wait cs failed here, it means the signal cs
2410 		 * already completed. we want to free all it's related objects
2411 		 * but we don't want to fail the ioctl.
2412 		 */
2413 		if (is_wait_cs)
2414 			rc = 0;
2415 		else if (rc != -EAGAIN)
2416 			dev_err(hdev->dev,
2417 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
2418 				ctx->asid, cs->sequence, rc);
2419 		goto free_cs_object;
2420 	}
2421 
2422 	*signal_sob_addr_offset = cs->sob_addr_offset;
2423 	*signal_initial_sob_count = cs->initial_sob_count;
2424 
2425 	rc = HL_CS_STATUS_SUCCESS;
2426 	if (is_wait_cs)
2427 		wait_cs_submitted = true;
2428 	goto put_cs;
2429 
2430 free_cs_object:
2431 	cs_rollback(hdev, cs);
2432 	*cs_seq = ULLONG_MAX;
2433 	/* The path below is both for good and erroneous exits */
2434 put_cs:
2435 	/* We finished with the CS in this function, so put the ref */
2436 	cs_put(cs);
2437 free_cs_chunk_array:
2438 	if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs)
2439 		kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
2440 	kfree(cs_chunk_array);
2441 out:
2442 	return rc;
2443 }
2444 
2445 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores,
2446 						u32 num_engine_cores, u32 core_command)
2447 {
2448 	int rc;
2449 	struct hl_device *hdev = hpriv->hdev;
2450 	void __user *engine_cores_arr;
2451 	u32 *cores;
2452 
2453 	if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) {
2454 		dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores);
2455 		return -EINVAL;
2456 	}
2457 
2458 	if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) {
2459 		dev_err(hdev->dev, "Engine core command is invalid\n");
2460 		return -EINVAL;
2461 	}
2462 
2463 	engine_cores_arr = (void __user *) (uintptr_t) engine_cores;
2464 	cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL);
2465 	if (!cores)
2466 		return -ENOMEM;
2467 
2468 	if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) {
2469 		dev_err(hdev->dev, "Failed to copy core-ids array from user\n");
2470 		kfree(cores);
2471 		return -EFAULT;
2472 	}
2473 
2474 	rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command);
2475 	kfree(cores);
2476 
2477 	return rc;
2478 }
2479 
2480 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv)
2481 {
2482 	struct hl_device *hdev = hpriv->hdev;
2483 	struct asic_fixed_properties *prop = &hdev->asic_prop;
2484 
2485 	if (!prop->hbw_flush_reg) {
2486 		dev_dbg(hdev->dev, "HBW flush is not supported\n");
2487 		return -EOPNOTSUPP;
2488 	}
2489 
2490 	RREG32(prop->hbw_flush_reg);
2491 
2492 	return 0;
2493 }
2494 
2495 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
2496 {
2497 	union hl_cs_args *args = data;
2498 	enum hl_cs_type cs_type = 0;
2499 	u64 cs_seq = ULONG_MAX;
2500 	void __user *chunks;
2501 	u32 num_chunks, flags, timeout,
2502 		signals_count = 0, sob_addr = 0, handle_id = 0;
2503 	u16 sob_initial_count = 0;
2504 	int rc;
2505 
2506 	rc = hl_cs_sanity_checks(hpriv, args);
2507 	if (rc)
2508 		goto out;
2509 
2510 	rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
2511 	if (rc)
2512 		goto out;
2513 
2514 	cs_type = hl_cs_get_cs_type(args->in.cs_flags &
2515 					~HL_CS_FLAGS_FORCE_RESTORE);
2516 	chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
2517 	num_chunks = args->in.num_chunks_execute;
2518 	flags = args->in.cs_flags;
2519 
2520 	/* In case this is a staged CS, user should supply the CS sequence */
2521 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
2522 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
2523 		cs_seq = args->in.seq;
2524 
2525 	timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
2526 			? msecs_to_jiffies(args->in.timeout * 1000)
2527 			: hpriv->hdev->timeout_jiffies;
2528 
2529 	switch (cs_type) {
2530 	case CS_TYPE_SIGNAL:
2531 	case CS_TYPE_WAIT:
2532 	case CS_TYPE_COLLECTIVE_WAIT:
2533 		rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
2534 					&cs_seq, args->in.cs_flags, timeout,
2535 					&sob_addr, &sob_initial_count);
2536 		break;
2537 	case CS_RESERVE_SIGNALS:
2538 		rc = cs_ioctl_reserve_signals(hpriv,
2539 					args->in.encaps_signals_q_idx,
2540 					args->in.encaps_signals_count,
2541 					&handle_id, &sob_addr, &signals_count);
2542 		break;
2543 	case CS_UNRESERVE_SIGNALS:
2544 		rc = cs_ioctl_unreserve_signals(hpriv,
2545 					args->in.encaps_sig_handle_id);
2546 		break;
2547 	case CS_TYPE_ENGINE_CORE:
2548 		rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores,
2549 				args->in.num_engine_cores, args->in.core_command);
2550 		break;
2551 	case CS_TYPE_FLUSH_PCI_HBW_WRITES:
2552 		rc = cs_ioctl_flush_pci_hbw_writes(hpriv);
2553 		break;
2554 	default:
2555 		rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
2556 						args->in.cs_flags,
2557 						args->in.encaps_sig_handle_id,
2558 						timeout, &sob_initial_count);
2559 		break;
2560 	}
2561 out:
2562 	if (rc != -EAGAIN) {
2563 		memset(args, 0, sizeof(*args));
2564 
2565 		switch (cs_type) {
2566 		case CS_RESERVE_SIGNALS:
2567 			args->out.handle_id = handle_id;
2568 			args->out.sob_base_addr_offset = sob_addr;
2569 			args->out.count = signals_count;
2570 			break;
2571 		case CS_TYPE_SIGNAL:
2572 			args->out.sob_base_addr_offset = sob_addr;
2573 			args->out.sob_count_before_submission = sob_initial_count;
2574 			args->out.seq = cs_seq;
2575 			break;
2576 		case CS_TYPE_DEFAULT:
2577 			args->out.sob_count_before_submission = sob_initial_count;
2578 			args->out.seq = cs_seq;
2579 			break;
2580 		default:
2581 			args->out.seq = cs_seq;
2582 			break;
2583 		}
2584 
2585 		args->out.status = rc;
2586 	}
2587 
2588 	return rc;
2589 }
2590 
2591 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
2592 				enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp)
2593 {
2594 	struct hl_device *hdev = ctx->hdev;
2595 	ktime_t timestamp_kt;
2596 	long completion_rc;
2597 	int rc = 0, error;
2598 
2599 	if (IS_ERR(fence)) {
2600 		rc = PTR_ERR(fence);
2601 		if (rc == -EINVAL)
2602 			dev_notice_ratelimited(hdev->dev,
2603 				"Can't wait on CS %llu because current CS is at seq %llu\n",
2604 				seq, ctx->cs_sequence);
2605 		return rc;
2606 	}
2607 
2608 	if (!fence) {
2609 		if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, &timestamp_kt, &error)) {
2610 			dev_dbg(hdev->dev,
2611 				"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
2612 				seq, ctx->cs_sequence);
2613 			*status = CS_WAIT_STATUS_GONE;
2614 			return 0;
2615 		}
2616 
2617 		completion_rc = 1;
2618 		goto report_results;
2619 	}
2620 
2621 	if (!timeout_us) {
2622 		completion_rc = completion_done(&fence->completion);
2623 	} else {
2624 		unsigned long timeout;
2625 
2626 		timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
2627 				timeout_us : usecs_to_jiffies(timeout_us);
2628 		completion_rc =
2629 			wait_for_completion_interruptible_timeout(
2630 				&fence->completion, timeout);
2631 	}
2632 
2633 	error = fence->error;
2634 	timestamp_kt = fence->timestamp;
2635 
2636 report_results:
2637 	if (completion_rc > 0) {
2638 		*status = CS_WAIT_STATUS_COMPLETED;
2639 		if (timestamp)
2640 			*timestamp = ktime_to_ns(timestamp_kt);
2641 	} else {
2642 		*status = CS_WAIT_STATUS_BUSY;
2643 	}
2644 
2645 	if (completion_rc == -ERESTARTSYS)
2646 		rc = completion_rc;
2647 	else if (error == -ETIMEDOUT || error == -EIO)
2648 		rc = error;
2649 
2650 	return rc;
2651 }
2652 
2653 /*
2654  * hl_cs_poll_fences - iterate CS fences to check for CS completion
2655  *
2656  * @mcs_data: multi-CS internal data
2657  * @mcs_compl: multi-CS completion structure
2658  *
2659  * @return 0 on success, otherwise non 0 error code
2660  *
2661  * The function iterates on all CS sequence in the list and set bit in
2662  * completion_bitmap for each completed CS.
2663  * While iterating, the function sets the stream map of each fence in the fence
2664  * array in the completion QID stream map to be used by CSs to perform
2665  * completion to the multi-CS context.
2666  * This function shall be called after taking context ref
2667  */
2668 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
2669 {
2670 	struct hl_fence **fence_ptr = mcs_data->fence_arr;
2671 	struct hl_device *hdev = mcs_data->ctx->hdev;
2672 	int i, rc, arr_len = mcs_data->arr_len;
2673 	u64 *seq_arr = mcs_data->seq_arr;
2674 	ktime_t max_ktime, first_cs_time;
2675 	enum hl_cs_wait_status status;
2676 
2677 	memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *));
2678 
2679 	/* get all fences under the same lock */
2680 	rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
2681 	if (rc)
2682 		return rc;
2683 
2684 	/*
2685 	 * re-initialize the completion here to handle 2 possible cases:
2686 	 * 1. CS will complete the multi-CS prior clearing the completion. in which
2687 	 *    case the fence iteration is guaranteed to catch the CS completion.
2688 	 * 2. the completion will occur after re-init of the completion.
2689 	 *    in which case we will wake up immediately in wait_for_completion.
2690 	 */
2691 	reinit_completion(&mcs_compl->completion);
2692 
2693 	/*
2694 	 * set to maximum time to verify timestamp is valid: if at the end
2695 	 * this value is maintained- no timestamp was updated
2696 	 */
2697 	max_ktime = ktime_set(KTIME_SEC_MAX, 0);
2698 	first_cs_time = max_ktime;
2699 
2700 	for (i = 0; i < arr_len; i++, fence_ptr++) {
2701 		struct hl_fence *fence = *fence_ptr;
2702 
2703 		/*
2704 		 * In order to prevent case where we wait until timeout even though a CS associated
2705 		 * with the multi-CS actually completed we do things in the below order:
2706 		 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way
2707 		 *    any CS can, potentially, complete the multi CS for the specific QID (note
2708 		 *    that once completion is initialized, calling complete* and then wait on the
2709 		 *    completion will cause it to return at once)
2710 		 * 2. only after allowing multi-CS completion for the specific QID we check whether
2711 		 *    the specific CS already completed (and thus the wait for completion part will
2712 		 *    be skipped). if the CS not completed it is guaranteed that completing CS will
2713 		 *    wake up the completion.
2714 		 */
2715 		if (fence)
2716 			mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
2717 
2718 		/*
2719 		 * function won't sleep as it is called with timeout 0 (i.e.
2720 		 * poll the fence)
2721 		 */
2722 		rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL);
2723 		if (rc) {
2724 			dev_err(hdev->dev,
2725 				"wait_for_fence error :%d for CS seq %llu\n",
2726 								rc, seq_arr[i]);
2727 			break;
2728 		}
2729 
2730 		switch (status) {
2731 		case CS_WAIT_STATUS_BUSY:
2732 			/* CS did not finished, QID to wait on already stored */
2733 			break;
2734 		case CS_WAIT_STATUS_COMPLETED:
2735 			/*
2736 			 * Using mcs_handling_done to avoid possibility of mcs_data
2737 			 * returns to user indicating CS completed before it finished
2738 			 * all of its mcs handling, to avoid race the next time the
2739 			 * user waits for mcs.
2740 			 * note: when reaching this case fence is definitely not NULL
2741 			 *       but NULL check was added to overcome static analysis
2742 			 */
2743 			if (fence && !fence->mcs_handling_done) {
2744 				/*
2745 				 * in case multi CS is completed but MCS handling not done
2746 				 * we "complete" the multi CS to prevent it from waiting
2747 				 * until time-out and the "multi-CS handling done" will have
2748 				 * another chance at the next iteration
2749 				 */
2750 				complete_all(&mcs_compl->completion);
2751 				break;
2752 			}
2753 
2754 			mcs_data->completion_bitmap |= BIT(i);
2755 			/*
2756 			 * For all completed CSs we take the earliest timestamp.
2757 			 * For this we have to validate that the timestamp is
2758 			 * earliest of all timestamps so far.
2759 			 */
2760 			if (fence && mcs_data->update_ts &&
2761 					(ktime_compare(fence->timestamp, first_cs_time) < 0))
2762 				first_cs_time = fence->timestamp;
2763 			break;
2764 		case CS_WAIT_STATUS_GONE:
2765 			mcs_data->update_ts = false;
2766 			mcs_data->gone_cs = true;
2767 			/*
2768 			 * It is possible to get an old sequence numbers from user
2769 			 * which related to already completed CSs and their fences
2770 			 * already gone. In this case, CS set as completed but
2771 			 * no need to consider its QID for mcs completion.
2772 			 */
2773 			mcs_data->completion_bitmap |= BIT(i);
2774 			break;
2775 		default:
2776 			dev_err(hdev->dev, "Invalid fence status\n");
2777 			rc = -EINVAL;
2778 			break;
2779 		}
2780 
2781 	}
2782 
2783 	hl_fences_put(mcs_data->fence_arr, arr_len);
2784 
2785 	if (mcs_data->update_ts &&
2786 			(ktime_compare(first_cs_time, max_ktime) != 0))
2787 		mcs_data->timestamp = ktime_to_ns(first_cs_time);
2788 
2789 	return rc;
2790 }
2791 
2792 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
2793 				enum hl_cs_wait_status *status, s64 *timestamp)
2794 {
2795 	struct hl_fence *fence;
2796 	int rc = 0;
2797 
2798 	if (timestamp)
2799 		*timestamp = 0;
2800 
2801 	hl_ctx_get(ctx);
2802 
2803 	fence = hl_ctx_get_fence(ctx, seq);
2804 
2805 	rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
2806 	hl_fence_put(fence);
2807 	hl_ctx_put(ctx);
2808 
2809 	return rc;
2810 }
2811 
2812 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
2813 {
2814 	if (usecs <= U32_MAX)
2815 		return usecs_to_jiffies(usecs);
2816 
2817 	/*
2818 	 * If the value in nanoseconds is larger than 64 bit, use the largest
2819 	 * 64 bit value.
2820 	 */
2821 	if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
2822 		return nsecs_to_jiffies(U64_MAX);
2823 
2824 	return nsecs_to_jiffies(usecs * NSEC_PER_USEC);
2825 }
2826 
2827 /*
2828  * hl_wait_multi_cs_completion_init - init completion structure
2829  *
2830  * @hdev: pointer to habanalabs device structure
2831  * @stream_master_bitmap: stream master QIDs map, set bit indicates stream
2832  *                        master QID to wait on
2833  *
2834  * @return valid completion struct pointer on success, otherwise error pointer
2835  *
2836  * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
2837  * the function gets the first available completion (by marking it "used")
2838  * and initialize its values.
2839  */
2840 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
2841 {
2842 	struct multi_cs_completion *mcs_compl;
2843 	int i;
2844 
2845 	/* find free multi_cs completion structure */
2846 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2847 		mcs_compl = &hdev->multi_cs_completion[i];
2848 		spin_lock(&mcs_compl->lock);
2849 		if (!mcs_compl->used) {
2850 			mcs_compl->used = 1;
2851 			mcs_compl->timestamp = 0;
2852 			/*
2853 			 * init QID map to 0 to avoid completion by CSs. the actual QID map
2854 			 * to multi-CS CSs will be set incrementally at a later stage
2855 			 */
2856 			mcs_compl->stream_master_qid_map = 0;
2857 			spin_unlock(&mcs_compl->lock);
2858 			break;
2859 		}
2860 		spin_unlock(&mcs_compl->lock);
2861 	}
2862 
2863 	if (i == MULTI_CS_MAX_USER_CTX) {
2864 		dev_err(hdev->dev, "no available multi-CS completion structure\n");
2865 		return ERR_PTR(-ENOMEM);
2866 	}
2867 	return mcs_compl;
2868 }
2869 
2870 /*
2871  * hl_wait_multi_cs_completion_fini - return completion structure and set as
2872  *                                    unused
2873  *
2874  * @mcs_compl: pointer to the completion structure
2875  */
2876 static void hl_wait_multi_cs_completion_fini(
2877 					struct multi_cs_completion *mcs_compl)
2878 {
2879 	/*
2880 	 * free completion structure, do it under lock to be in-sync with the
2881 	 * thread that signals completion
2882 	 */
2883 	spin_lock(&mcs_compl->lock);
2884 	mcs_compl->used = 0;
2885 	spin_unlock(&mcs_compl->lock);
2886 }
2887 
2888 /*
2889  * hl_wait_multi_cs_completion - wait for first CS to complete
2890  *
2891  * @mcs_data: multi-CS internal data
2892  *
2893  * @return 0 on success, otherwise non 0 error code
2894  */
2895 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
2896 						struct multi_cs_completion *mcs_compl)
2897 {
2898 	long completion_rc;
2899 
2900 	completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion,
2901 									mcs_data->timeout_jiffies);
2902 
2903 	/* update timestamp */
2904 	if (completion_rc > 0)
2905 		mcs_data->timestamp = mcs_compl->timestamp;
2906 
2907 	if (completion_rc == -ERESTARTSYS)
2908 		return completion_rc;
2909 
2910 	mcs_data->wait_status = completion_rc;
2911 
2912 	return 0;
2913 }
2914 
2915 /*
2916  * hl_multi_cs_completion_init - init array of multi-CS completion structures
2917  *
2918  * @hdev: pointer to habanalabs device structure
2919  */
2920 void hl_multi_cs_completion_init(struct hl_device *hdev)
2921 {
2922 	struct multi_cs_completion *mcs_cmpl;
2923 	int i;
2924 
2925 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2926 		mcs_cmpl = &hdev->multi_cs_completion[i];
2927 		mcs_cmpl->used = 0;
2928 		spin_lock_init(&mcs_cmpl->lock);
2929 		init_completion(&mcs_cmpl->completion);
2930 	}
2931 }
2932 
2933 /*
2934  * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
2935  *
2936  * @hpriv: pointer to the private data of the fd
2937  * @data: pointer to multi-CS wait ioctl in/out args
2938  *
2939  */
2940 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2941 {
2942 	struct multi_cs_completion *mcs_compl;
2943 	struct hl_device *hdev = hpriv->hdev;
2944 	struct multi_cs_data mcs_data = {};
2945 	union hl_wait_cs_args *args = data;
2946 	struct hl_ctx *ctx = hpriv->ctx;
2947 	struct hl_fence **fence_arr;
2948 	void __user *seq_arr;
2949 	u32 size_to_copy;
2950 	u64 *cs_seq_arr;
2951 	u8 seq_arr_len;
2952 	int rc, i;
2953 
2954 	for (i = 0 ; i < sizeof(args->in.pad) ; i++)
2955 		if (args->in.pad[i]) {
2956 			dev_dbg(hdev->dev, "Padding bytes must be 0\n");
2957 			return -EINVAL;
2958 		}
2959 
2960 	if (!hdev->supports_wait_for_multi_cs) {
2961 		dev_err(hdev->dev, "Wait for multi CS is not supported\n");
2962 		return -EPERM;
2963 	}
2964 
2965 	seq_arr_len = args->in.seq_arr_len;
2966 
2967 	if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
2968 		dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
2969 				HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
2970 		return -EINVAL;
2971 	}
2972 
2973 	/* allocate memory for sequence array */
2974 	cs_seq_arr =
2975 		kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
2976 	if (!cs_seq_arr)
2977 		return -ENOMEM;
2978 
2979 	/* copy CS sequence array from user */
2980 	seq_arr = (void __user *) (uintptr_t) args->in.seq;
2981 	size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
2982 	if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
2983 		dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
2984 		rc = -EFAULT;
2985 		goto free_seq_arr;
2986 	}
2987 
2988 	/* allocate array for the fences */
2989 	fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL);
2990 	if (!fence_arr) {
2991 		rc = -ENOMEM;
2992 		goto free_seq_arr;
2993 	}
2994 
2995 	/* initialize the multi-CS internal data */
2996 	mcs_data.ctx = ctx;
2997 	mcs_data.seq_arr = cs_seq_arr;
2998 	mcs_data.fence_arr = fence_arr;
2999 	mcs_data.arr_len = seq_arr_len;
3000 
3001 	hl_ctx_get(ctx);
3002 
3003 	/* wait (with timeout) for the first CS to be completed */
3004 	mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us);
3005 	mcs_compl = hl_wait_multi_cs_completion_init(hdev);
3006 	if (IS_ERR(mcs_compl)) {
3007 		rc = PTR_ERR(mcs_compl);
3008 		goto put_ctx;
3009 	}
3010 
3011 	/* poll all CS fences, extract timestamp */
3012 	mcs_data.update_ts = true;
3013 	rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3014 	/*
3015 	 * skip wait for CS completion when one of the below is true:
3016 	 * - an error on the poll function
3017 	 * - one or more CS in the list completed
3018 	 * - the user called ioctl with timeout 0
3019 	 */
3020 	if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
3021 		goto completion_fini;
3022 
3023 	while (true) {
3024 		rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl);
3025 		if (rc || (mcs_data.wait_status == 0))
3026 			break;
3027 
3028 		/*
3029 		 * poll fences once again to update the CS map.
3030 		 * no timestamp should be updated this time.
3031 		 */
3032 		mcs_data.update_ts = false;
3033 		rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3034 
3035 		if (rc || mcs_data.completion_bitmap)
3036 			break;
3037 
3038 		/*
3039 		 * if hl_wait_multi_cs_completion returned before timeout (i.e.
3040 		 * it got a completion) it either got completed by CS in the multi CS list
3041 		 * (in which case the indication will be non empty completion_bitmap) or it
3042 		 * got completed by CS submitted to one of the shared stream master but
3043 		 * not in the multi CS list (in which case we should wait again but modify
3044 		 * the timeout and set timestamp as zero to let a CS related to the current
3045 		 * multi-CS set a new, relevant, timestamp)
3046 		 */
3047 		mcs_data.timeout_jiffies = mcs_data.wait_status;
3048 		mcs_compl->timestamp = 0;
3049 	}
3050 
3051 completion_fini:
3052 	hl_wait_multi_cs_completion_fini(mcs_compl);
3053 
3054 put_ctx:
3055 	hl_ctx_put(ctx);
3056 	kfree(fence_arr);
3057 
3058 free_seq_arr:
3059 	kfree(cs_seq_arr);
3060 
3061 	if (rc == -ERESTARTSYS) {
3062 		dev_err_ratelimited(hdev->dev,
3063 				"user process got signal while waiting for Multi-CS\n");
3064 		rc = -EINTR;
3065 	}
3066 
3067 	if (rc)
3068 		return rc;
3069 
3070 	/* update output args */
3071 	memset(args, 0, sizeof(*args));
3072 
3073 	if (mcs_data.completion_bitmap) {
3074 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3075 		args->out.cs_completion_map = mcs_data.completion_bitmap;
3076 
3077 		/* if timestamp not 0- it's valid */
3078 		if (mcs_data.timestamp) {
3079 			args->out.timestamp_nsec = mcs_data.timestamp;
3080 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3081 		}
3082 
3083 		/* update if some CS was gone */
3084 		if (!mcs_data.timestamp)
3085 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3086 	} else {
3087 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3088 	}
3089 
3090 	return 0;
3091 }
3092 
3093 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3094 {
3095 	struct hl_device *hdev = hpriv->hdev;
3096 	union hl_wait_cs_args *args = data;
3097 	enum hl_cs_wait_status status;
3098 	u64 seq = args->in.seq;
3099 	s64 timestamp;
3100 	int rc;
3101 
3102 	rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, &timestamp);
3103 
3104 	if (rc == -ERESTARTSYS) {
3105 		dev_err_ratelimited(hdev->dev,
3106 			"user process got signal while waiting for CS handle %llu\n",
3107 			seq);
3108 		return -EINTR;
3109 	}
3110 
3111 	memset(args, 0, sizeof(*args));
3112 
3113 	if (rc) {
3114 		if (rc == -ETIMEDOUT) {
3115 			dev_err_ratelimited(hdev->dev,
3116 				"CS %llu has timed-out while user process is waiting for it\n",
3117 				seq);
3118 			args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
3119 		} else if (rc == -EIO) {
3120 			dev_err_ratelimited(hdev->dev,
3121 				"CS %llu has been aborted while user process is waiting for it\n",
3122 				seq);
3123 			args->out.status = HL_WAIT_CS_STATUS_ABORTED;
3124 		}
3125 		return rc;
3126 	}
3127 
3128 	if (timestamp) {
3129 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3130 		args->out.timestamp_nsec = timestamp;
3131 	}
3132 
3133 	switch (status) {
3134 	case CS_WAIT_STATUS_GONE:
3135 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3136 		fallthrough;
3137 	case CS_WAIT_STATUS_COMPLETED:
3138 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3139 		break;
3140 	case CS_WAIT_STATUS_BUSY:
3141 	default:
3142 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3143 		break;
3144 	}
3145 
3146 	return 0;
3147 }
3148 
3149 static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf,
3150 					struct hl_cb *cq_cb,
3151 					u64 ts_offset, u64 cq_offset, u64 target_value,
3152 					spinlock_t *wait_list_lock,
3153 					struct hl_user_pending_interrupt **pend)
3154 {
3155 	struct hl_ts_buff *ts_buff = buf->private;
3156 	struct hl_user_pending_interrupt *requested_offset_record =
3157 				(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3158 				ts_offset;
3159 	struct hl_user_pending_interrupt *cb_last =
3160 			(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3161 			(ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
3162 	unsigned long flags, iter_counter = 0;
3163 	u64 current_cq_counter;
3164 	ktime_t timestamp;
3165 
3166 	/* Validate ts_offset not exceeding last max */
3167 	if (requested_offset_record >= cb_last) {
3168 		dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n",
3169 								(u64)(uintptr_t)cb_last);
3170 		return -EINVAL;
3171 	}
3172 
3173 	timestamp = ktime_get();
3174 
3175 start_over:
3176 	spin_lock_irqsave(wait_list_lock, flags);
3177 
3178 	/* Unregister only if we didn't reach the target value
3179 	 * since in this case there will be no handling in irq context
3180 	 * and then it's safe to delete the node out of the interrupt list
3181 	 * then re-use it on other interrupt
3182 	 */
3183 	if (requested_offset_record->ts_reg_info.in_use) {
3184 		current_cq_counter = *requested_offset_record->cq_kernel_addr;
3185 		if (current_cq_counter < requested_offset_record->cq_target_value) {
3186 			list_del(&requested_offset_record->wait_list_node);
3187 			spin_unlock_irqrestore(wait_list_lock, flags);
3188 
3189 			hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf);
3190 			hl_cb_put(requested_offset_record->ts_reg_info.cq_cb);
3191 
3192 			dev_dbg(buf->mmg->dev,
3193 				"ts node removed from interrupt list now can re-use\n");
3194 		} else {
3195 			dev_dbg(buf->mmg->dev,
3196 				"ts node in middle of irq handling\n");
3197 
3198 			/* irq handling in the middle give it time to finish */
3199 			spin_unlock_irqrestore(wait_list_lock, flags);
3200 			usleep_range(100, 1000);
3201 			if (++iter_counter == MAX_TS_ITER_NUM) {
3202 				dev_err(buf->mmg->dev,
3203 					"Timestamp offset processing reached timeout of %lld ms\n",
3204 					ktime_ms_delta(ktime_get(), timestamp));
3205 				return -EAGAIN;
3206 			}
3207 
3208 			goto start_over;
3209 		}
3210 	} else {
3211 		/* Fill up the new registration node info */
3212 		requested_offset_record->ts_reg_info.buf = buf;
3213 		requested_offset_record->ts_reg_info.cq_cb = cq_cb;
3214 		requested_offset_record->ts_reg_info.timestamp_kernel_addr =
3215 				(u64 *) ts_buff->user_buff_address + ts_offset;
3216 		requested_offset_record->cq_kernel_addr =
3217 				(u64 *) cq_cb->kernel_address + cq_offset;
3218 		requested_offset_record->cq_target_value = target_value;
3219 
3220 		spin_unlock_irqrestore(wait_list_lock, flags);
3221 	}
3222 
3223 	*pend = requested_offset_record;
3224 
3225 	dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n",
3226 		requested_offset_record);
3227 	return 0;
3228 }
3229 
3230 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
3231 				struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg,
3232 				u64 timeout_us, u64 cq_counters_handle,	u64 cq_counters_offset,
3233 				u64 target_value, struct hl_user_interrupt *interrupt,
3234 				bool register_ts_record, u64 ts_handle, u64 ts_offset,
3235 				u32 *status, u64 *timestamp)
3236 {
3237 	struct hl_user_pending_interrupt *pend;
3238 	struct hl_mmap_mem_buf *buf;
3239 	struct hl_cb *cq_cb;
3240 	unsigned long timeout, flags;
3241 	long completion_rc;
3242 	int rc = 0;
3243 
3244 	timeout = hl_usecs64_to_jiffies(timeout_us);
3245 
3246 	hl_ctx_get(ctx);
3247 
3248 	cq_cb = hl_cb_get(cb_mmg, cq_counters_handle);
3249 	if (!cq_cb) {
3250 		rc = -EINVAL;
3251 		goto put_ctx;
3252 	}
3253 
3254 	/* Validate the cq offset */
3255 	if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >=
3256 			((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) {
3257 		rc = -EINVAL;
3258 		goto put_cq_cb;
3259 	}
3260 
3261 	if (register_ts_record) {
3262 		dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n",
3263 					interrupt->interrupt_id, ts_offset, cq_counters_offset);
3264 		buf = hl_mmap_mem_buf_get(mmg, ts_handle);
3265 		if (!buf) {
3266 			rc = -EINVAL;
3267 			goto put_cq_cb;
3268 		}
3269 
3270 		/* get ts buffer record */
3271 		rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset,
3272 						cq_counters_offset, target_value,
3273 						&interrupt->wait_list_lock, &pend);
3274 		if (rc)
3275 			goto put_ts_buff;
3276 	} else {
3277 		pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3278 		if (!pend) {
3279 			rc = -ENOMEM;
3280 			goto put_cq_cb;
3281 		}
3282 		hl_fence_init(&pend->fence, ULONG_MAX);
3283 		pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset;
3284 		pend->cq_target_value = target_value;
3285 	}
3286 
3287 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3288 
3289 	/* We check for completion value as interrupt could have been received
3290 	 * before we added the node to the wait list
3291 	 */
3292 	if (*pend->cq_kernel_addr >= target_value) {
3293 		if (register_ts_record)
3294 			pend->ts_reg_info.in_use = 0;
3295 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3296 
3297 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3298 
3299 		if (register_ts_record) {
3300 			*pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
3301 			goto put_ts_buff;
3302 		} else {
3303 			pend->fence.timestamp = ktime_get();
3304 			goto set_timestamp;
3305 		}
3306 	} else if (!timeout_us) {
3307 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3308 		*status = HL_WAIT_CS_STATUS_BUSY;
3309 		pend->fence.timestamp = ktime_get();
3310 		goto set_timestamp;
3311 	}
3312 
3313 	/* Add pending user interrupt to relevant list for the interrupt
3314 	 * handler to monitor.
3315 	 * Note that we cannot have sorted list by target value,
3316 	 * in order to shorten the list pass loop, since
3317 	 * same list could have nodes for different cq counter handle.
3318 	 * Note:
3319 	 * Mark ts buff offset as in use here in the spinlock protection area
3320 	 * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record
3321 	 * before adding the node to the list. this scenario might happen when
3322 	 * multiple threads are racing on same offset and one thread could
3323 	 * set the ts buff in ts_buff_get_kernel_ts_record then the other thread
3324 	 * takes over and get to ts_buff_get_kernel_ts_record and then we will try
3325 	 * to re-use the same ts buff offset, and will try to delete a non existing
3326 	 * node from the list.
3327 	 */
3328 	if (register_ts_record)
3329 		pend->ts_reg_info.in_use = 1;
3330 
3331 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3332 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3333 
3334 	if (register_ts_record) {
3335 		rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
3336 		goto ts_registration_exit;
3337 	}
3338 
3339 	/* Wait for interrupt handler to signal completion */
3340 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3341 								timeout);
3342 	if (completion_rc > 0) {
3343 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3344 	} else {
3345 		if (completion_rc == -ERESTARTSYS) {
3346 			dev_err_ratelimited(hdev->dev,
3347 					"user process got signal while waiting for interrupt ID %d\n",
3348 					interrupt->interrupt_id);
3349 			rc = -EINTR;
3350 			*status = HL_WAIT_CS_STATUS_ABORTED;
3351 		} else {
3352 			if (pend->fence.error == -EIO) {
3353 				dev_err_ratelimited(hdev->dev,
3354 						"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3355 						pend->fence.error);
3356 				rc = -EIO;
3357 				*status = HL_WAIT_CS_STATUS_ABORTED;
3358 			} else {
3359 				/* The wait has timed-out. We don't know anything beyond that
3360 				 * because the workload wasn't submitted through the driver.
3361 				 * Therefore, from driver's perspective, the workload is still
3362 				 * executing.
3363 				 */
3364 				rc = 0;
3365 				*status = HL_WAIT_CS_STATUS_BUSY;
3366 			}
3367 		}
3368 	}
3369 
3370 	/*
3371 	 * We keep removing the node from list here, and not at the irq handler
3372 	 * for completion timeout case. and if it's a registration
3373 	 * for ts record, the node will be deleted in the irq handler after
3374 	 * we reach the target value.
3375 	 */
3376 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3377 	list_del(&pend->wait_list_node);
3378 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3379 
3380 set_timestamp:
3381 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3382 	kfree(pend);
3383 	hl_cb_put(cq_cb);
3384 ts_registration_exit:
3385 	hl_ctx_put(ctx);
3386 
3387 	return rc;
3388 
3389 put_ts_buff:
3390 	hl_mmap_mem_buf_put(buf);
3391 put_cq_cb:
3392 	hl_cb_put(cq_cb);
3393 put_ctx:
3394 	hl_ctx_put(ctx);
3395 
3396 	return rc;
3397 }
3398 
3399 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
3400 				u64 timeout_us, u64 user_address,
3401 				u64 target_value, struct hl_user_interrupt *interrupt,
3402 				u32 *status,
3403 				u64 *timestamp)
3404 {
3405 	struct hl_user_pending_interrupt *pend;
3406 	unsigned long timeout, flags;
3407 	u64 completion_value;
3408 	long completion_rc;
3409 	int rc = 0;
3410 
3411 	timeout = hl_usecs64_to_jiffies(timeout_us);
3412 
3413 	hl_ctx_get(ctx);
3414 
3415 	pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3416 	if (!pend) {
3417 		hl_ctx_put(ctx);
3418 		return -ENOMEM;
3419 	}
3420 
3421 	hl_fence_init(&pend->fence, ULONG_MAX);
3422 
3423 	/* Add pending user interrupt to relevant list for the interrupt
3424 	 * handler to monitor
3425 	 */
3426 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3427 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3428 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3429 
3430 	/* We check for completion value as interrupt could have been received
3431 	 * before we added the node to the wait list
3432 	 */
3433 	if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3434 		dev_err(hdev->dev, "Failed to copy completion value from user\n");
3435 		rc = -EFAULT;
3436 		goto remove_pending_user_interrupt;
3437 	}
3438 
3439 	if (completion_value >= target_value) {
3440 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3441 		/* There was no interrupt, we assume the completion is now. */
3442 		pend->fence.timestamp = ktime_get();
3443 	} else {
3444 		*status = HL_WAIT_CS_STATUS_BUSY;
3445 	}
3446 
3447 	if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
3448 		goto remove_pending_user_interrupt;
3449 
3450 wait_again:
3451 	/* Wait for interrupt handler to signal completion */
3452 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3453 										timeout);
3454 
3455 	/* If timeout did not expire we need to perform the comparison.
3456 	 * If comparison fails, keep waiting until timeout expires
3457 	 */
3458 	if (completion_rc > 0) {
3459 		spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3460 		/* reinit_completion must be called before we check for user
3461 		 * completion value, otherwise, if interrupt is received after
3462 		 * the comparison and before the next wait_for_completion,
3463 		 * we will reach timeout and fail
3464 		 */
3465 		reinit_completion(&pend->fence.completion);
3466 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3467 
3468 		if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3469 			dev_err(hdev->dev, "Failed to copy completion value from user\n");
3470 			rc = -EFAULT;
3471 
3472 			goto remove_pending_user_interrupt;
3473 		}
3474 
3475 		if (completion_value >= target_value) {
3476 			*status = HL_WAIT_CS_STATUS_COMPLETED;
3477 		} else if (pend->fence.error) {
3478 			dev_err_ratelimited(hdev->dev,
3479 				"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3480 				pend->fence.error);
3481 			/* set the command completion status as ABORTED */
3482 			*status = HL_WAIT_CS_STATUS_ABORTED;
3483 		} else {
3484 			timeout = completion_rc;
3485 			goto wait_again;
3486 		}
3487 	} else if (completion_rc == -ERESTARTSYS) {
3488 		dev_err_ratelimited(hdev->dev,
3489 			"user process got signal while waiting for interrupt ID %d\n",
3490 			interrupt->interrupt_id);
3491 		rc = -EINTR;
3492 	} else {
3493 		/* The wait has timed-out. We don't know anything beyond that
3494 		 * because the workload wasn't submitted through the driver.
3495 		 * Therefore, from driver's perspective, the workload is still
3496 		 * executing.
3497 		 */
3498 		rc = 0;
3499 		*status = HL_WAIT_CS_STATUS_BUSY;
3500 	}
3501 
3502 remove_pending_user_interrupt:
3503 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3504 	list_del(&pend->wait_list_node);
3505 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3506 
3507 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3508 
3509 	kfree(pend);
3510 	hl_ctx_put(ctx);
3511 
3512 	return rc;
3513 }
3514 
3515 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3516 {
3517 	u16 interrupt_id, first_interrupt, last_interrupt;
3518 	struct hl_device *hdev = hpriv->hdev;
3519 	struct asic_fixed_properties *prop;
3520 	struct hl_user_interrupt *interrupt;
3521 	union hl_wait_cs_args *args = data;
3522 	u32 status = HL_WAIT_CS_STATUS_BUSY;
3523 	u64 timestamp = 0;
3524 	int rc, int_idx;
3525 
3526 	prop = &hdev->asic_prop;
3527 
3528 	if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) {
3529 		dev_err(hdev->dev, "no user interrupts allowed");
3530 		return -EPERM;
3531 	}
3532 
3533 	interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
3534 
3535 	first_interrupt = prop->first_available_user_interrupt;
3536 	last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1;
3537 
3538 	if (interrupt_id < prop->user_dec_intr_count) {
3539 
3540 		/* Check if the requested core is enabled */
3541 		if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) {
3542 			dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed",
3543 				interrupt_id);
3544 			return -EINVAL;
3545 		}
3546 
3547 		interrupt = &hdev->user_interrupt[interrupt_id];
3548 
3549 	} else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) {
3550 
3551 		int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count;
3552 		interrupt = &hdev->user_interrupt[int_idx];
3553 
3554 	} else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) {
3555 		interrupt = &hdev->common_user_cq_interrupt;
3556 	} else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) {
3557 		interrupt = &hdev->common_decoder_interrupt;
3558 	} else {
3559 		dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
3560 		return -EINVAL;
3561 	}
3562 
3563 	if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ)
3564 		rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr,
3565 				args->in.interrupt_timeout_us, args->in.cq_counters_handle,
3566 				args->in.cq_counters_offset,
3567 				args->in.target, interrupt,
3568 				!!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT),
3569 				args->in.timestamp_handle, args->in.timestamp_offset,
3570 				&status, &timestamp);
3571 	else
3572 		rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
3573 				args->in.interrupt_timeout_us, args->in.addr,
3574 				args->in.target, interrupt, &status,
3575 				&timestamp);
3576 	if (rc)
3577 		return rc;
3578 
3579 	memset(args, 0, sizeof(*args));
3580 	args->out.status = status;
3581 
3582 	if (timestamp) {
3583 		args->out.timestamp_nsec = timestamp;
3584 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3585 	}
3586 
3587 	return 0;
3588 }
3589 
3590 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3591 {
3592 	struct hl_device *hdev = hpriv->hdev;
3593 	union hl_wait_cs_args *args = data;
3594 	u32 flags = args->in.flags;
3595 	int rc;
3596 
3597 	/* If the device is not operational, or if an error has happened and user should release the
3598 	 * device, there is no point in waiting for any command submission or user interrupt.
3599 	 */
3600 	if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active)
3601 		return -EBUSY;
3602 
3603 	if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
3604 		rc = hl_interrupt_wait_ioctl(hpriv, data);
3605 	else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
3606 		rc = hl_multi_cs_wait_ioctl(hpriv, data);
3607 	else
3608 		rc = hl_cs_wait_ioctl(hpriv, data);
3609 
3610 	return rc;
3611 }
3612