1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2021 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include <uapi/drm/habanalabs_accel.h> 9 #include "habanalabs.h" 10 11 #include <linux/uaccess.h> 12 #include <linux/slab.h> 13 14 #define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \ 15 HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \ 16 HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \ 17 HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) 18 19 20 #define MAX_TS_ITER_NUM 100 21 22 /** 23 * enum hl_cs_wait_status - cs wait status 24 * @CS_WAIT_STATUS_BUSY: cs was not completed yet 25 * @CS_WAIT_STATUS_COMPLETED: cs completed 26 * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone 27 */ 28 enum hl_cs_wait_status { 29 CS_WAIT_STATUS_BUSY, 30 CS_WAIT_STATUS_COMPLETED, 31 CS_WAIT_STATUS_GONE 32 }; 33 34 static void job_wq_completion(struct work_struct *work); 35 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, 36 enum hl_cs_wait_status *status, s64 *timestamp); 37 static void cs_do_release(struct kref *ref); 38 39 static void hl_push_cs_outcome(struct hl_device *hdev, 40 struct hl_cs_outcome_store *outcome_store, 41 u64 seq, ktime_t ts, int error) 42 { 43 struct hl_cs_outcome *node; 44 unsigned long flags; 45 46 /* 47 * CS outcome store supports the following operations: 48 * push outcome - store a recent CS outcome in the store 49 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store 50 * It uses 2 lists: used list and free list. 51 * It has a pre-allocated amount of nodes, each node stores 52 * a single CS outcome. 53 * Initially, all the nodes are in the free list. 54 * On push outcome, a node (any) is taken from the free list, its 55 * information is filled in, and the node is moved to the used list. 56 * It is possible, that there are no nodes left in the free list. 57 * In this case, we will lose some information about old outcomes. We 58 * will pop the OLDEST node from the used list, and make it free. 59 * On pop, the node is searched for in the used list (using a search 60 * index). 61 * If found, the node is then removed from the used list, and moved 62 * back to the free list. The outcome data that the node contained is 63 * returned back to the user. 64 */ 65 66 spin_lock_irqsave(&outcome_store->db_lock, flags); 67 68 if (list_empty(&outcome_store->free_list)) { 69 node = list_last_entry(&outcome_store->used_list, 70 struct hl_cs_outcome, list_link); 71 hash_del(&node->map_link); 72 dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq); 73 } else { 74 node = list_last_entry(&outcome_store->free_list, 75 struct hl_cs_outcome, list_link); 76 } 77 78 list_del_init(&node->list_link); 79 80 node->seq = seq; 81 node->ts = ts; 82 node->error = error; 83 84 list_add(&node->list_link, &outcome_store->used_list); 85 hash_add(outcome_store->outcome_map, &node->map_link, node->seq); 86 87 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 88 } 89 90 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store, 91 u64 seq, ktime_t *ts, int *error) 92 { 93 struct hl_cs_outcome *node; 94 unsigned long flags; 95 96 spin_lock_irqsave(&outcome_store->db_lock, flags); 97 98 hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq) 99 if (node->seq == seq) { 100 *ts = node->ts; 101 *error = node->error; 102 103 hash_del(&node->map_link); 104 list_del_init(&node->list_link); 105 list_add(&node->list_link, &outcome_store->free_list); 106 107 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 108 109 return true; 110 } 111 112 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 113 114 return false; 115 } 116 117 static void hl_sob_reset(struct kref *ref) 118 { 119 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, 120 kref); 121 struct hl_device *hdev = hw_sob->hdev; 122 123 dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id); 124 125 hdev->asic_funcs->reset_sob(hdev, hw_sob); 126 127 hw_sob->need_reset = false; 128 } 129 130 void hl_sob_reset_error(struct kref *ref) 131 { 132 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, 133 kref); 134 struct hl_device *hdev = hw_sob->hdev; 135 136 dev_crit(hdev->dev, 137 "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n", 138 hw_sob->q_idx, hw_sob->sob_id); 139 } 140 141 void hw_sob_put(struct hl_hw_sob *hw_sob) 142 { 143 if (hw_sob) 144 kref_put(&hw_sob->kref, hl_sob_reset); 145 } 146 147 static void hw_sob_put_err(struct hl_hw_sob *hw_sob) 148 { 149 if (hw_sob) 150 kref_put(&hw_sob->kref, hl_sob_reset_error); 151 } 152 153 void hw_sob_get(struct hl_hw_sob *hw_sob) 154 { 155 if (hw_sob) 156 kref_get(&hw_sob->kref); 157 } 158 159 /** 160 * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet 161 * @sob_base: sob base id 162 * @sob_mask: sob user mask, each bit represents a sob offset from sob base 163 * @mask: generated mask 164 * 165 * Return: 0 if given parameters are valid 166 */ 167 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask) 168 { 169 int i; 170 171 if (sob_mask == 0) 172 return -EINVAL; 173 174 if (sob_mask == 0x1) { 175 *mask = ~(1 << (sob_base & 0x7)); 176 } else { 177 /* find msb in order to verify sob range is valid */ 178 for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--) 179 if (BIT(i) & sob_mask) 180 break; 181 182 if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1)) 183 return -EINVAL; 184 185 *mask = ~sob_mask; 186 } 187 188 return 0; 189 } 190 191 static void hl_fence_release(struct kref *kref) 192 { 193 struct hl_fence *fence = 194 container_of(kref, struct hl_fence, refcount); 195 struct hl_cs_compl *hl_cs_cmpl = 196 container_of(fence, struct hl_cs_compl, base_fence); 197 198 kfree(hl_cs_cmpl); 199 } 200 201 void hl_fence_put(struct hl_fence *fence) 202 { 203 if (IS_ERR_OR_NULL(fence)) 204 return; 205 kref_put(&fence->refcount, hl_fence_release); 206 } 207 208 void hl_fences_put(struct hl_fence **fence, int len) 209 { 210 int i; 211 212 for (i = 0; i < len; i++, fence++) 213 hl_fence_put(*fence); 214 } 215 216 void hl_fence_get(struct hl_fence *fence) 217 { 218 if (fence) 219 kref_get(&fence->refcount); 220 } 221 222 static void hl_fence_init(struct hl_fence *fence, u64 sequence) 223 { 224 kref_init(&fence->refcount); 225 fence->cs_sequence = sequence; 226 fence->error = 0; 227 fence->timestamp = ktime_set(0, 0); 228 fence->mcs_handling_done = false; 229 init_completion(&fence->completion); 230 } 231 232 void cs_get(struct hl_cs *cs) 233 { 234 kref_get(&cs->refcount); 235 } 236 237 static int cs_get_unless_zero(struct hl_cs *cs) 238 { 239 return kref_get_unless_zero(&cs->refcount); 240 } 241 242 static void cs_put(struct hl_cs *cs) 243 { 244 kref_put(&cs->refcount, cs_do_release); 245 } 246 247 static void cs_job_do_release(struct kref *ref) 248 { 249 struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount); 250 251 kfree(job); 252 } 253 254 static void hl_cs_job_put(struct hl_cs_job *job) 255 { 256 kref_put(&job->refcount, cs_job_do_release); 257 } 258 259 bool cs_needs_completion(struct hl_cs *cs) 260 { 261 /* In case this is a staged CS, only the last CS in sequence should 262 * get a completion, any non staged CS will always get a completion 263 */ 264 if (cs->staged_cs && !cs->staged_last) 265 return false; 266 267 return true; 268 } 269 270 bool cs_needs_timeout(struct hl_cs *cs) 271 { 272 /* In case this is a staged CS, only the first CS in sequence should 273 * get a timeout, any non staged CS will always get a timeout 274 */ 275 if (cs->staged_cs && !cs->staged_first) 276 return false; 277 278 return true; 279 } 280 281 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job) 282 { 283 /* 284 * Patched CB is created for external queues jobs, and for H/W queues 285 * jobs if the user CB was allocated by driver and MMU is disabled. 286 */ 287 return (job->queue_type == QUEUE_TYPE_EXT || 288 (job->queue_type == QUEUE_TYPE_HW && 289 job->is_kernel_allocated_cb && 290 !hdev->mmu_enable)); 291 } 292 293 /* 294 * cs_parser - parse the user command submission 295 * 296 * @hpriv : pointer to the private data of the fd 297 * @job : pointer to the job that holds the command submission info 298 * 299 * The function parses the command submission of the user. It calls the 300 * ASIC specific parser, which returns a list of memory blocks to send 301 * to the device as different command buffers 302 * 303 */ 304 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job) 305 { 306 struct hl_device *hdev = hpriv->hdev; 307 struct hl_cs_parser parser; 308 int rc; 309 310 parser.ctx_id = job->cs->ctx->asid; 311 parser.cs_sequence = job->cs->sequence; 312 parser.job_id = job->id; 313 314 parser.hw_queue_id = job->hw_queue_id; 315 parser.job_userptr_list = &job->userptr_list; 316 parser.patched_cb = NULL; 317 parser.user_cb = job->user_cb; 318 parser.user_cb_size = job->user_cb_size; 319 parser.queue_type = job->queue_type; 320 parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb; 321 job->patched_cb = NULL; 322 parser.completion = cs_needs_completion(job->cs); 323 324 rc = hdev->asic_funcs->cs_parser(hdev, &parser); 325 326 if (is_cb_patched(hdev, job)) { 327 if (!rc) { 328 job->patched_cb = parser.patched_cb; 329 job->job_cb_size = parser.patched_cb_size; 330 job->contains_dma_pkt = parser.contains_dma_pkt; 331 atomic_inc(&job->patched_cb->cs_cnt); 332 } 333 334 /* 335 * Whether the parsing worked or not, we don't need the 336 * original CB anymore because it was already parsed and 337 * won't be accessed again for this CS 338 */ 339 atomic_dec(&job->user_cb->cs_cnt); 340 hl_cb_put(job->user_cb); 341 job->user_cb = NULL; 342 } else if (!rc) { 343 job->job_cb_size = job->user_cb_size; 344 } 345 346 return rc; 347 } 348 349 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job) 350 { 351 struct hl_cs *cs = job->cs; 352 353 if (is_cb_patched(hdev, job)) { 354 hl_userptr_delete_list(hdev, &job->userptr_list); 355 356 /* 357 * We might arrive here from rollback and patched CB wasn't 358 * created, so we need to check it's not NULL 359 */ 360 if (job->patched_cb) { 361 atomic_dec(&job->patched_cb->cs_cnt); 362 hl_cb_put(job->patched_cb); 363 } 364 } 365 366 /* For H/W queue jobs, if a user CB was allocated by driver and MMU is 367 * enabled, the user CB isn't released in cs_parser() and thus should be 368 * released here. This is also true for INT queues jobs which were 369 * allocated by driver. 370 */ 371 if ((job->is_kernel_allocated_cb && 372 ((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) || 373 job->queue_type == QUEUE_TYPE_INT))) { 374 atomic_dec(&job->user_cb->cs_cnt); 375 hl_cb_put(job->user_cb); 376 } 377 378 /* 379 * This is the only place where there can be multiple threads 380 * modifying the list at the same time 381 */ 382 spin_lock(&cs->job_lock); 383 list_del(&job->cs_node); 384 spin_unlock(&cs->job_lock); 385 386 hl_debugfs_remove_job(hdev, job); 387 388 /* We decrement reference only for a CS that gets completion 389 * because the reference was incremented only for this kind of CS 390 * right before it was scheduled. 391 * 392 * In staged submission, only the last CS marked as 'staged_last' 393 * gets completion, hence its release function will be called from here. 394 * As for all the rest CS's in the staged submission which do not get 395 * completion, their CS reference will be decremented by the 396 * 'staged_last' CS during the CS release flow. 397 * All relevant PQ CI counters will be incremented during the CS release 398 * flow by calling 'hl_hw_queue_update_ci'. 399 */ 400 if (cs_needs_completion(cs) && 401 (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) { 402 403 /* In CS based completions, the timestamp is already available, 404 * so no need to extract it from job 405 */ 406 if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB) 407 cs->completion_timestamp = job->timestamp; 408 409 cs_put(cs); 410 } 411 412 hl_cs_job_put(job); 413 } 414 415 /* 416 * hl_staged_cs_find_first - locate the first CS in this staged submission 417 * 418 * @hdev: pointer to device structure 419 * @cs_seq: staged submission sequence number 420 * 421 * @note: This function must be called under 'hdev->cs_mirror_lock' 422 * 423 * Find and return a CS pointer with the given sequence 424 */ 425 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq) 426 { 427 struct hl_cs *cs; 428 429 list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node) 430 if (cs->staged_cs && cs->staged_first && 431 cs->sequence == cs_seq) 432 return cs; 433 434 return NULL; 435 } 436 437 /* 438 * is_staged_cs_last_exists - returns true if the last CS in sequence exists 439 * 440 * @hdev: pointer to device structure 441 * @cs: staged submission member 442 * 443 */ 444 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs) 445 { 446 struct hl_cs *last_entry; 447 448 last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs, 449 staged_cs_node); 450 451 if (last_entry->staged_last) 452 return true; 453 454 return false; 455 } 456 457 /* 458 * staged_cs_get - get CS reference if this CS is a part of a staged CS 459 * 460 * @hdev: pointer to device structure 461 * @cs: current CS 462 * @cs_seq: staged submission sequence number 463 * 464 * Increment CS reference for every CS in this staged submission except for 465 * the CS which get completion. 466 */ 467 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs) 468 { 469 /* Only the last CS in this staged submission will get a completion. 470 * We must increment the reference for all other CS's in this 471 * staged submission. 472 * Once we get a completion we will release the whole staged submission. 473 */ 474 if (!cs->staged_last) 475 cs_get(cs); 476 } 477 478 /* 479 * staged_cs_put - put a CS in case it is part of staged submission 480 * 481 * @hdev: pointer to device structure 482 * @cs: CS to put 483 * 484 * This function decrements a CS reference (for a non completion CS) 485 */ 486 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs) 487 { 488 /* We release all CS's in a staged submission except the last 489 * CS which we have never incremented its reference. 490 */ 491 if (!cs_needs_completion(cs)) 492 cs_put(cs); 493 } 494 495 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs) 496 { 497 struct hl_cs *next = NULL, *iter, *first_cs; 498 499 if (!cs_needs_timeout(cs)) 500 return; 501 502 spin_lock(&hdev->cs_mirror_lock); 503 504 /* We need to handle tdr only once for the complete staged submission. 505 * Hence, we choose the CS that reaches this function first which is 506 * the CS marked as 'staged_last'. 507 * In case single staged cs was submitted which has both first and last 508 * indications, then "cs_find_first" below will return NULL, since we 509 * removed the cs node from the list before getting here, 510 * in such cases just continue with the cs to cancel it's TDR work. 511 */ 512 if (cs->staged_cs && cs->staged_last) { 513 first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence); 514 if (first_cs) 515 cs = first_cs; 516 } 517 518 spin_unlock(&hdev->cs_mirror_lock); 519 520 /* Don't cancel TDR in case this CS was timedout because we might be 521 * running from the TDR context 522 */ 523 if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT) 524 return; 525 526 if (cs->tdr_active) 527 cancel_delayed_work_sync(&cs->work_tdr); 528 529 spin_lock(&hdev->cs_mirror_lock); 530 531 /* queue TDR for next CS */ 532 list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node) 533 if (cs_needs_timeout(iter)) { 534 next = iter; 535 break; 536 } 537 538 if (next && !next->tdr_active) { 539 next->tdr_active = true; 540 schedule_delayed_work(&next->work_tdr, next->timeout_jiffies); 541 } 542 543 spin_unlock(&hdev->cs_mirror_lock); 544 } 545 546 /* 547 * force_complete_multi_cs - complete all contexts that wait on multi-CS 548 * 549 * @hdev: pointer to habanalabs device structure 550 */ 551 static void force_complete_multi_cs(struct hl_device *hdev) 552 { 553 int i; 554 555 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 556 struct multi_cs_completion *mcs_compl; 557 558 mcs_compl = &hdev->multi_cs_completion[i]; 559 560 spin_lock(&mcs_compl->lock); 561 562 if (!mcs_compl->used) { 563 spin_unlock(&mcs_compl->lock); 564 continue; 565 } 566 567 /* when calling force complete no context should be waiting on 568 * multi-cS. 569 * We are calling the function as a protection for such case 570 * to free any pending context and print error message 571 */ 572 dev_err(hdev->dev, 573 "multi-CS completion context %d still waiting when calling force completion\n", 574 i); 575 complete_all(&mcs_compl->completion); 576 spin_unlock(&mcs_compl->lock); 577 } 578 } 579 580 /* 581 * complete_multi_cs - complete all waiting entities on multi-CS 582 * 583 * @hdev: pointer to habanalabs device structure 584 * @cs: CS structure 585 * The function signals a waiting entity that has an overlapping stream masters 586 * with the completed CS. 587 * For example: 588 * - a completed CS worked on stream master QID 4, multi CS completion 589 * is actively waiting on stream master QIDs 3, 5. don't send signal as no 590 * common stream master QID 591 * - a completed CS worked on stream master QID 4, multi CS completion 592 * is actively waiting on stream master QIDs 3, 4. send signal as stream 593 * master QID 4 is common 594 */ 595 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs) 596 { 597 struct hl_fence *fence = cs->fence; 598 int i; 599 600 /* in case of multi CS check for completion only for the first CS */ 601 if (cs->staged_cs && !cs->staged_first) 602 return; 603 604 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 605 struct multi_cs_completion *mcs_compl; 606 607 mcs_compl = &hdev->multi_cs_completion[i]; 608 if (!mcs_compl->used) 609 continue; 610 611 spin_lock(&mcs_compl->lock); 612 613 /* 614 * complete if: 615 * 1. still waiting for completion 616 * 2. the completed CS has at least one overlapping stream 617 * master with the stream masters in the completion 618 */ 619 if (mcs_compl->used && 620 (fence->stream_master_qid_map & 621 mcs_compl->stream_master_qid_map)) { 622 /* extract the timestamp only of first completed CS */ 623 if (!mcs_compl->timestamp) 624 mcs_compl->timestamp = ktime_to_ns(fence->timestamp); 625 626 complete_all(&mcs_compl->completion); 627 628 /* 629 * Setting mcs_handling_done inside the lock ensures 630 * at least one fence have mcs_handling_done set to 631 * true before wait for mcs finish. This ensures at 632 * least one CS will be set as completed when polling 633 * mcs fences. 634 */ 635 fence->mcs_handling_done = true; 636 } 637 638 spin_unlock(&mcs_compl->lock); 639 } 640 /* In case CS completed without mcs completion initialized */ 641 fence->mcs_handling_done = true; 642 } 643 644 static inline void cs_release_sob_reset_handler(struct hl_device *hdev, 645 struct hl_cs *cs, 646 struct hl_cs_compl *hl_cs_cmpl) 647 { 648 /* Skip this handler if the cs wasn't submitted, to avoid putting 649 * the hw_sob twice, since this case already handled at this point, 650 * also skip if the hw_sob pointer wasn't set. 651 */ 652 if (!hl_cs_cmpl->hw_sob || !cs->submitted) 653 return; 654 655 spin_lock(&hl_cs_cmpl->lock); 656 657 /* 658 * we get refcount upon reservation of signals or signal/wait cs for the 659 * hw_sob object, and need to put it when the first staged cs 660 * (which cotains the encaps signals) or cs signal/wait is completed. 661 */ 662 if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) || 663 (hl_cs_cmpl->type == CS_TYPE_WAIT) || 664 (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) || 665 (!!hl_cs_cmpl->encaps_signals)) { 666 dev_dbg(hdev->dev, 667 "CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n", 668 hl_cs_cmpl->cs_seq, 669 hl_cs_cmpl->type, 670 hl_cs_cmpl->hw_sob->sob_id, 671 hl_cs_cmpl->sob_val); 672 673 hw_sob_put(hl_cs_cmpl->hw_sob); 674 675 if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) 676 hdev->asic_funcs->reset_sob_group(hdev, 677 hl_cs_cmpl->sob_group); 678 } 679 680 spin_unlock(&hl_cs_cmpl->lock); 681 } 682 683 static void cs_do_release(struct kref *ref) 684 { 685 struct hl_cs *cs = container_of(ref, struct hl_cs, refcount); 686 struct hl_device *hdev = cs->ctx->hdev; 687 struct hl_cs_job *job, *tmp; 688 struct hl_cs_compl *hl_cs_cmpl = 689 container_of(cs->fence, struct hl_cs_compl, base_fence); 690 691 cs->completed = true; 692 693 /* 694 * Although if we reached here it means that all external jobs have 695 * finished, because each one of them took refcnt to CS, we still 696 * need to go over the internal jobs and complete them. Otherwise, we 697 * will have leaked memory and what's worse, the CS object (and 698 * potentially the CTX object) could be released, while the JOB 699 * still holds a pointer to them (but no reference). 700 */ 701 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 702 hl_complete_job(hdev, job); 703 704 if (!cs->submitted) { 705 /* 706 * In case the wait for signal CS was submitted, the fence put 707 * occurs in init_signal_wait_cs() or collective_wait_init_cs() 708 * right before hanging on the PQ. 709 */ 710 if (cs->type == CS_TYPE_WAIT || 711 cs->type == CS_TYPE_COLLECTIVE_WAIT) 712 hl_fence_put(cs->signal_fence); 713 714 goto out; 715 } 716 717 /* Need to update CI for all queue jobs that does not get completion */ 718 hl_hw_queue_update_ci(cs); 719 720 /* remove CS from CS mirror list */ 721 spin_lock(&hdev->cs_mirror_lock); 722 list_del_init(&cs->mirror_node); 723 spin_unlock(&hdev->cs_mirror_lock); 724 725 cs_handle_tdr(hdev, cs); 726 727 if (cs->staged_cs) { 728 /* the completion CS decrements reference for the entire 729 * staged submission 730 */ 731 if (cs->staged_last) { 732 struct hl_cs *staged_cs, *tmp_cs; 733 734 list_for_each_entry_safe(staged_cs, tmp_cs, 735 &cs->staged_cs_node, staged_cs_node) 736 staged_cs_put(hdev, staged_cs); 737 } 738 739 /* A staged CS will be a member in the list only after it 740 * was submitted. We used 'cs_mirror_lock' when inserting 741 * it to list so we will use it again when removing it 742 */ 743 if (cs->submitted) { 744 spin_lock(&hdev->cs_mirror_lock); 745 list_del(&cs->staged_cs_node); 746 spin_unlock(&hdev->cs_mirror_lock); 747 } 748 749 /* decrement refcount to handle when first staged cs 750 * with encaps signals is completed. 751 */ 752 if (hl_cs_cmpl->encaps_signals) 753 kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount, 754 hl_encaps_release_handle_and_put_ctx); 755 } 756 757 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals) 758 kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); 759 760 out: 761 /* Must be called before hl_ctx_put because inside we use ctx to get 762 * the device 763 */ 764 hl_debugfs_remove_cs(cs); 765 766 hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL; 767 768 /* We need to mark an error for not submitted because in that case 769 * the hl fence release flow is different. Mainly, we don't need 770 * to handle hw_sob for signal/wait 771 */ 772 if (cs->timedout) 773 cs->fence->error = -ETIMEDOUT; 774 else if (cs->aborted) 775 cs->fence->error = -EIO; 776 else if (!cs->submitted) 777 cs->fence->error = -EBUSY; 778 779 if (unlikely(cs->skip_reset_on_timeout)) { 780 dev_err(hdev->dev, 781 "Command submission %llu completed after %llu (s)\n", 782 cs->sequence, 783 div_u64(jiffies - cs->submission_time_jiffies, HZ)); 784 } 785 786 if (cs->timestamp) { 787 cs->fence->timestamp = cs->completion_timestamp; 788 hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence, 789 cs->fence->timestamp, cs->fence->error); 790 } 791 792 hl_ctx_put(cs->ctx); 793 794 complete_all(&cs->fence->completion); 795 complete_multi_cs(hdev, cs); 796 797 cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl); 798 799 hl_fence_put(cs->fence); 800 801 kfree(cs->jobs_in_queue_cnt); 802 kfree(cs); 803 } 804 805 static void cs_timedout(struct work_struct *work) 806 { 807 struct hl_device *hdev; 808 u64 event_mask = 0x0; 809 int rc; 810 struct hl_cs *cs = container_of(work, struct hl_cs, 811 work_tdr.work); 812 bool skip_reset_on_timeout = cs->skip_reset_on_timeout, device_reset = false; 813 814 rc = cs_get_unless_zero(cs); 815 if (!rc) 816 return; 817 818 if ((!cs->submitted) || (cs->completed)) { 819 cs_put(cs); 820 return; 821 } 822 823 hdev = cs->ctx->hdev; 824 825 if (likely(!skip_reset_on_timeout)) { 826 if (hdev->reset_on_lockup) 827 device_reset = true; 828 else 829 hdev->reset_info.needs_reset = true; 830 831 /* Mark the CS is timed out so we won't try to cancel its TDR */ 832 cs->timedout = true; 833 } 834 835 /* Save only the first CS timeout parameters */ 836 rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0); 837 if (rc) { 838 hdev->captured_err_info.cs_timeout.timestamp = ktime_get(); 839 hdev->captured_err_info.cs_timeout.seq = cs->sequence; 840 event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT; 841 } 842 843 switch (cs->type) { 844 case CS_TYPE_SIGNAL: 845 dev_err(hdev->dev, 846 "Signal command submission %llu has not finished in time!\n", 847 cs->sequence); 848 break; 849 850 case CS_TYPE_WAIT: 851 dev_err(hdev->dev, 852 "Wait command submission %llu has not finished in time!\n", 853 cs->sequence); 854 break; 855 856 case CS_TYPE_COLLECTIVE_WAIT: 857 dev_err(hdev->dev, 858 "Collective Wait command submission %llu has not finished in time!\n", 859 cs->sequence); 860 break; 861 862 default: 863 dev_err(hdev->dev, 864 "Command submission %llu has not finished in time!\n", 865 cs->sequence); 866 break; 867 } 868 869 rc = hl_state_dump(hdev); 870 if (rc) 871 dev_err(hdev->dev, "Error during system state dump %d\n", rc); 872 873 cs_put(cs); 874 875 if (device_reset) { 876 event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET; 877 hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask); 878 } else if (event_mask) { 879 hl_notifier_event_send_all(hdev, event_mask); 880 } 881 } 882 883 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx, 884 enum hl_cs_type cs_type, u64 user_sequence, 885 struct hl_cs **cs_new, u32 flags, u32 timeout) 886 { 887 struct hl_cs_counters_atomic *cntr; 888 struct hl_fence *other = NULL; 889 struct hl_cs_compl *cs_cmpl; 890 struct hl_cs *cs; 891 int rc; 892 893 cntr = &hdev->aggregated_cs_counters; 894 895 cs = kzalloc(sizeof(*cs), GFP_ATOMIC); 896 if (!cs) 897 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 898 899 if (!cs) { 900 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 901 atomic64_inc(&cntr->out_of_mem_drop_cnt); 902 return -ENOMEM; 903 } 904 905 /* increment refcnt for context */ 906 hl_ctx_get(ctx); 907 908 cs->ctx = ctx; 909 cs->submitted = false; 910 cs->completed = false; 911 cs->type = cs_type; 912 cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP); 913 cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); 914 cs->timeout_jiffies = timeout; 915 cs->skip_reset_on_timeout = 916 hdev->reset_info.skip_reset_on_timeout || 917 !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT); 918 cs->submission_time_jiffies = jiffies; 919 INIT_LIST_HEAD(&cs->job_list); 920 INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout); 921 kref_init(&cs->refcount); 922 spin_lock_init(&cs->job_lock); 923 924 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC); 925 if (!cs_cmpl) 926 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL); 927 928 if (!cs_cmpl) { 929 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 930 atomic64_inc(&cntr->out_of_mem_drop_cnt); 931 rc = -ENOMEM; 932 goto free_cs; 933 } 934 935 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, 936 sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC); 937 if (!cs->jobs_in_queue_cnt) 938 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, 939 sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL); 940 941 if (!cs->jobs_in_queue_cnt) { 942 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 943 atomic64_inc(&cntr->out_of_mem_drop_cnt); 944 rc = -ENOMEM; 945 goto free_cs_cmpl; 946 } 947 948 cs_cmpl->hdev = hdev; 949 cs_cmpl->type = cs->type; 950 spin_lock_init(&cs_cmpl->lock); 951 cs->fence = &cs_cmpl->base_fence; 952 953 spin_lock(&ctx->cs_lock); 954 955 cs_cmpl->cs_seq = ctx->cs_sequence; 956 other = ctx->cs_pending[cs_cmpl->cs_seq & 957 (hdev->asic_prop.max_pending_cs - 1)]; 958 959 if (other && !completion_done(&other->completion)) { 960 /* If the following statement is true, it means we have reached 961 * a point in which only part of the staged submission was 962 * submitted and we don't have enough room in the 'cs_pending' 963 * array for the rest of the submission. 964 * This causes a deadlock because this CS will never be 965 * completed as it depends on future CS's for completion. 966 */ 967 if (other->cs_sequence == user_sequence) 968 dev_crit_ratelimited(hdev->dev, 969 "Staged CS %llu deadlock due to lack of resources", 970 user_sequence); 971 972 dev_dbg_ratelimited(hdev->dev, 973 "Rejecting CS because of too many in-flights CS\n"); 974 atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt); 975 atomic64_inc(&cntr->max_cs_in_flight_drop_cnt); 976 rc = -EAGAIN; 977 goto free_fence; 978 } 979 980 /* init hl_fence */ 981 hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq); 982 983 cs->sequence = cs_cmpl->cs_seq; 984 985 ctx->cs_pending[cs_cmpl->cs_seq & 986 (hdev->asic_prop.max_pending_cs - 1)] = 987 &cs_cmpl->base_fence; 988 ctx->cs_sequence++; 989 990 hl_fence_get(&cs_cmpl->base_fence); 991 992 hl_fence_put(other); 993 994 spin_unlock(&ctx->cs_lock); 995 996 *cs_new = cs; 997 998 return 0; 999 1000 free_fence: 1001 spin_unlock(&ctx->cs_lock); 1002 kfree(cs->jobs_in_queue_cnt); 1003 free_cs_cmpl: 1004 kfree(cs_cmpl); 1005 free_cs: 1006 kfree(cs); 1007 hl_ctx_put(ctx); 1008 return rc; 1009 } 1010 1011 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs) 1012 { 1013 struct hl_cs_job *job, *tmp; 1014 1015 staged_cs_put(hdev, cs); 1016 1017 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 1018 hl_complete_job(hdev, job); 1019 } 1020 1021 /* 1022 * release_reserved_encaps_signals() - release reserved encapsulated signals. 1023 * @hdev: pointer to habanalabs device structure 1024 * 1025 * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with 1026 * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back. 1027 * For these signals need also to put the refcount of the H/W SOB which was taken at the 1028 * reservation. 1029 */ 1030 static void release_reserved_encaps_signals(struct hl_device *hdev) 1031 { 1032 struct hl_ctx *ctx = hl_get_compute_ctx(hdev); 1033 struct hl_cs_encaps_sig_handle *handle; 1034 struct hl_encaps_signals_mgr *mgr; 1035 u32 id; 1036 1037 if (!ctx) 1038 return; 1039 1040 mgr = &ctx->sig_mgr; 1041 1042 idr_for_each_entry(&mgr->handles, handle, id) 1043 if (handle->cs_seq == ULLONG_MAX) 1044 kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx); 1045 1046 hl_ctx_put(ctx); 1047 } 1048 1049 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush) 1050 { 1051 int i; 1052 struct hl_cs *cs, *tmp; 1053 1054 if (!skip_wq_flush) { 1055 flush_workqueue(hdev->ts_free_obj_wq); 1056 1057 /* flush all completions before iterating over the CS mirror list in 1058 * order to avoid a race with the release functions 1059 */ 1060 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) 1061 flush_workqueue(hdev->cq_wq[i]); 1062 1063 flush_workqueue(hdev->cs_cmplt_wq); 1064 } 1065 1066 /* Make sure we don't have leftovers in the CS mirror list */ 1067 list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) { 1068 cs_get(cs); 1069 cs->aborted = true; 1070 dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n", 1071 cs->ctx->asid, cs->sequence); 1072 cs_rollback(hdev, cs); 1073 cs_put(cs); 1074 } 1075 1076 force_complete_multi_cs(hdev); 1077 1078 release_reserved_encaps_signals(hdev); 1079 } 1080 1081 static void 1082 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt) 1083 { 1084 struct hl_user_pending_interrupt *pend, *temp; 1085 unsigned long flags; 1086 1087 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 1088 list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) { 1089 if (pend->ts_reg_info.buf) { 1090 list_del(&pend->wait_list_node); 1091 hl_mmap_mem_buf_put(pend->ts_reg_info.buf); 1092 hl_cb_put(pend->ts_reg_info.cq_cb); 1093 } else { 1094 pend->fence.error = -EIO; 1095 complete_all(&pend->fence.completion); 1096 } 1097 } 1098 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 1099 } 1100 1101 void hl_release_pending_user_interrupts(struct hl_device *hdev) 1102 { 1103 struct asic_fixed_properties *prop = &hdev->asic_prop; 1104 struct hl_user_interrupt *interrupt; 1105 int i; 1106 1107 if (!prop->user_interrupt_count) 1108 return; 1109 1110 /* We iterate through the user interrupt requests and waking up all 1111 * user threads waiting for interrupt completion. We iterate the 1112 * list under a lock, this is why all user threads, once awake, 1113 * will wait on the same lock and will release the waiting object upon 1114 * unlock. 1115 */ 1116 1117 for (i = 0 ; i < prop->user_interrupt_count ; i++) { 1118 interrupt = &hdev->user_interrupt[i]; 1119 wake_pending_user_interrupt_threads(interrupt); 1120 } 1121 1122 interrupt = &hdev->common_user_cq_interrupt; 1123 wake_pending_user_interrupt_threads(interrupt); 1124 1125 interrupt = &hdev->common_decoder_interrupt; 1126 wake_pending_user_interrupt_threads(interrupt); 1127 } 1128 1129 static void force_complete_cs(struct hl_device *hdev) 1130 { 1131 struct hl_cs *cs; 1132 1133 spin_lock(&hdev->cs_mirror_lock); 1134 1135 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) { 1136 cs->fence->error = -EIO; 1137 complete_all(&cs->fence->completion); 1138 } 1139 1140 spin_unlock(&hdev->cs_mirror_lock); 1141 } 1142 1143 void hl_abort_waitings_for_completion(struct hl_device *hdev) 1144 { 1145 force_complete_cs(hdev); 1146 force_complete_multi_cs(hdev); 1147 hl_release_pending_user_interrupts(hdev); 1148 } 1149 1150 static void job_wq_completion(struct work_struct *work) 1151 { 1152 struct hl_cs_job *job = container_of(work, struct hl_cs_job, 1153 finish_work); 1154 struct hl_cs *cs = job->cs; 1155 struct hl_device *hdev = cs->ctx->hdev; 1156 1157 /* job is no longer needed */ 1158 hl_complete_job(hdev, job); 1159 } 1160 1161 static void cs_completion(struct work_struct *work) 1162 { 1163 struct hl_cs *cs = container_of(work, struct hl_cs, finish_work); 1164 struct hl_device *hdev = cs->ctx->hdev; 1165 struct hl_cs_job *job, *tmp; 1166 1167 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 1168 hl_complete_job(hdev, job); 1169 } 1170 1171 u32 hl_get_active_cs_num(struct hl_device *hdev) 1172 { 1173 u32 active_cs_num = 0; 1174 struct hl_cs *cs; 1175 1176 spin_lock(&hdev->cs_mirror_lock); 1177 1178 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) 1179 if (!cs->completed) 1180 active_cs_num++; 1181 1182 spin_unlock(&hdev->cs_mirror_lock); 1183 1184 return active_cs_num; 1185 } 1186 1187 static int validate_queue_index(struct hl_device *hdev, 1188 struct hl_cs_chunk *chunk, 1189 enum hl_queue_type *queue_type, 1190 bool *is_kernel_allocated_cb) 1191 { 1192 struct asic_fixed_properties *asic = &hdev->asic_prop; 1193 struct hw_queue_properties *hw_queue_prop; 1194 1195 /* This must be checked here to prevent out-of-bounds access to 1196 * hw_queues_props array 1197 */ 1198 if (chunk->queue_index >= asic->max_queues) { 1199 dev_err(hdev->dev, "Queue index %d is invalid\n", 1200 chunk->queue_index); 1201 return -EINVAL; 1202 } 1203 1204 hw_queue_prop = &asic->hw_queues_props[chunk->queue_index]; 1205 1206 if (hw_queue_prop->type == QUEUE_TYPE_NA) { 1207 dev_err(hdev->dev, "Queue index %d is not applicable\n", 1208 chunk->queue_index); 1209 return -EINVAL; 1210 } 1211 1212 if (hw_queue_prop->binned) { 1213 dev_err(hdev->dev, "Queue index %d is binned out\n", 1214 chunk->queue_index); 1215 return -EINVAL; 1216 } 1217 1218 if (hw_queue_prop->driver_only) { 1219 dev_err(hdev->dev, 1220 "Queue index %d is restricted for the kernel driver\n", 1221 chunk->queue_index); 1222 return -EINVAL; 1223 } 1224 1225 /* When hw queue type isn't QUEUE_TYPE_HW, 1226 * USER_ALLOC_CB flag shall be referred as "don't care". 1227 */ 1228 if (hw_queue_prop->type == QUEUE_TYPE_HW) { 1229 if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) { 1230 if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) { 1231 dev_err(hdev->dev, 1232 "Queue index %d doesn't support user CB\n", 1233 chunk->queue_index); 1234 return -EINVAL; 1235 } 1236 1237 *is_kernel_allocated_cb = false; 1238 } else { 1239 if (!(hw_queue_prop->cb_alloc_flags & 1240 CB_ALLOC_KERNEL)) { 1241 dev_err(hdev->dev, 1242 "Queue index %d doesn't support kernel CB\n", 1243 chunk->queue_index); 1244 return -EINVAL; 1245 } 1246 1247 *is_kernel_allocated_cb = true; 1248 } 1249 } else { 1250 *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags 1251 & CB_ALLOC_KERNEL); 1252 } 1253 1254 *queue_type = hw_queue_prop->type; 1255 return 0; 1256 } 1257 1258 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev, 1259 struct hl_mem_mgr *mmg, 1260 struct hl_cs_chunk *chunk) 1261 { 1262 struct hl_cb *cb; 1263 1264 cb = hl_cb_get(mmg, chunk->cb_handle); 1265 if (!cb) { 1266 dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle); 1267 return NULL; 1268 } 1269 1270 if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) { 1271 dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size); 1272 goto release_cb; 1273 } 1274 1275 atomic_inc(&cb->cs_cnt); 1276 1277 return cb; 1278 1279 release_cb: 1280 hl_cb_put(cb); 1281 return NULL; 1282 } 1283 1284 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 1285 enum hl_queue_type queue_type, bool is_kernel_allocated_cb) 1286 { 1287 struct hl_cs_job *job; 1288 1289 job = kzalloc(sizeof(*job), GFP_ATOMIC); 1290 if (!job) 1291 job = kzalloc(sizeof(*job), GFP_KERNEL); 1292 1293 if (!job) 1294 return NULL; 1295 1296 kref_init(&job->refcount); 1297 job->queue_type = queue_type; 1298 job->is_kernel_allocated_cb = is_kernel_allocated_cb; 1299 1300 if (is_cb_patched(hdev, job)) 1301 INIT_LIST_HEAD(&job->userptr_list); 1302 1303 if (job->queue_type == QUEUE_TYPE_EXT) 1304 INIT_WORK(&job->finish_work, job_wq_completion); 1305 1306 return job; 1307 } 1308 1309 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags) 1310 { 1311 if (cs_type_flags & HL_CS_FLAGS_SIGNAL) 1312 return CS_TYPE_SIGNAL; 1313 else if (cs_type_flags & HL_CS_FLAGS_WAIT) 1314 return CS_TYPE_WAIT; 1315 else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT) 1316 return CS_TYPE_COLLECTIVE_WAIT; 1317 else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY) 1318 return CS_RESERVE_SIGNALS; 1319 else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY) 1320 return CS_UNRESERVE_SIGNALS; 1321 else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND) 1322 return CS_TYPE_ENGINE_CORE; 1323 else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) 1324 return CS_TYPE_FLUSH_PCI_HBW_WRITES; 1325 else 1326 return CS_TYPE_DEFAULT; 1327 } 1328 1329 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args) 1330 { 1331 struct hl_device *hdev = hpriv->hdev; 1332 struct hl_ctx *ctx = hpriv->ctx; 1333 u32 cs_type_flags, num_chunks; 1334 enum hl_device_status status; 1335 enum hl_cs_type cs_type; 1336 bool is_sync_stream; 1337 int i; 1338 1339 for (i = 0 ; i < sizeof(args->in.pad) ; i++) 1340 if (args->in.pad[i]) { 1341 dev_dbg(hdev->dev, "Padding bytes must be 0\n"); 1342 return -EINVAL; 1343 } 1344 1345 if (!hl_device_operational(hdev, &status)) { 1346 return -EBUSY; 1347 } 1348 1349 if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 1350 !hdev->supports_staged_submission) { 1351 dev_err(hdev->dev, "staged submission not supported"); 1352 return -EPERM; 1353 } 1354 1355 cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK; 1356 1357 if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) { 1358 dev_err(hdev->dev, 1359 "CS type flags are mutually exclusive, context %d\n", 1360 ctx->asid); 1361 return -EINVAL; 1362 } 1363 1364 cs_type = hl_cs_get_cs_type(cs_type_flags); 1365 num_chunks = args->in.num_chunks_execute; 1366 1367 is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT || 1368 cs_type == CS_TYPE_COLLECTIVE_WAIT); 1369 1370 if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) { 1371 dev_err(hdev->dev, "Sync stream CS is not supported\n"); 1372 return -EINVAL; 1373 } 1374 1375 if (cs_type == CS_TYPE_DEFAULT) { 1376 if (!num_chunks) { 1377 dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid); 1378 return -EINVAL; 1379 } 1380 } else if (is_sync_stream && num_chunks != 1) { 1381 dev_err(hdev->dev, 1382 "Sync stream CS mandates one chunk only, context %d\n", 1383 ctx->asid); 1384 return -EINVAL; 1385 } 1386 1387 return 0; 1388 } 1389 1390 static int hl_cs_copy_chunk_array(struct hl_device *hdev, 1391 struct hl_cs_chunk **cs_chunk_array, 1392 void __user *chunks, u32 num_chunks, 1393 struct hl_ctx *ctx) 1394 { 1395 u32 size_to_copy; 1396 1397 if (num_chunks > HL_MAX_JOBS_PER_CS) { 1398 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1399 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1400 dev_err(hdev->dev, 1401 "Number of chunks can NOT be larger than %d\n", 1402 HL_MAX_JOBS_PER_CS); 1403 return -EINVAL; 1404 } 1405 1406 *cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array), 1407 GFP_ATOMIC); 1408 if (!*cs_chunk_array) 1409 *cs_chunk_array = kmalloc_array(num_chunks, 1410 sizeof(**cs_chunk_array), GFP_KERNEL); 1411 if (!*cs_chunk_array) { 1412 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1413 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); 1414 return -ENOMEM; 1415 } 1416 1417 size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); 1418 if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) { 1419 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1420 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1421 dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); 1422 kfree(*cs_chunk_array); 1423 return -EFAULT; 1424 } 1425 1426 return 0; 1427 } 1428 1429 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs, 1430 u64 sequence, u32 flags, 1431 u32 encaps_signal_handle) 1432 { 1433 if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION)) 1434 return 0; 1435 1436 cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST); 1437 cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST); 1438 1439 if (cs->staged_first) { 1440 /* Staged CS sequence is the first CS sequence */ 1441 INIT_LIST_HEAD(&cs->staged_cs_node); 1442 cs->staged_sequence = cs->sequence; 1443 1444 if (cs->encaps_signals) 1445 cs->encaps_sig_hdl_id = encaps_signal_handle; 1446 } else { 1447 /* User sequence will be validated in 'hl_hw_queue_schedule_cs' 1448 * under the cs_mirror_lock 1449 */ 1450 cs->staged_sequence = sequence; 1451 } 1452 1453 /* Increment CS reference if needed */ 1454 staged_cs_get(hdev, cs); 1455 1456 cs->staged_cs = true; 1457 1458 return 0; 1459 } 1460 1461 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid) 1462 { 1463 int i; 1464 1465 for (i = 0; i < hdev->stream_master_qid_arr_size; i++) 1466 if (qid == hdev->stream_master_qid_arr[i]) 1467 return BIT(i); 1468 1469 return 0; 1470 } 1471 1472 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks, 1473 u32 num_chunks, u64 *cs_seq, u32 flags, 1474 u32 encaps_signals_handle, u32 timeout, 1475 u16 *signal_initial_sob_count) 1476 { 1477 bool staged_mid, int_queues_only = true, using_hw_queues = false; 1478 struct hl_device *hdev = hpriv->hdev; 1479 struct hl_cs_chunk *cs_chunk_array; 1480 struct hl_cs_counters_atomic *cntr; 1481 struct hl_ctx *ctx = hpriv->ctx; 1482 struct hl_cs_job *job; 1483 struct hl_cs *cs; 1484 struct hl_cb *cb; 1485 u64 user_sequence; 1486 u8 stream_master_qid_map = 0; 1487 int rc, i; 1488 1489 cntr = &hdev->aggregated_cs_counters; 1490 user_sequence = *cs_seq; 1491 *cs_seq = ULLONG_MAX; 1492 1493 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, 1494 hpriv->ctx); 1495 if (rc) 1496 goto out; 1497 1498 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 1499 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) 1500 staged_mid = true; 1501 else 1502 staged_mid = false; 1503 1504 rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, 1505 staged_mid ? user_sequence : ULLONG_MAX, &cs, flags, 1506 timeout); 1507 if (rc) 1508 goto free_cs_chunk_array; 1509 1510 *cs_seq = cs->sequence; 1511 1512 hl_debugfs_add_cs(cs); 1513 1514 rc = cs_staged_submission(hdev, cs, user_sequence, flags, 1515 encaps_signals_handle); 1516 if (rc) 1517 goto free_cs_object; 1518 1519 /* If this is a staged submission we must return the staged sequence 1520 * rather than the internal CS sequence 1521 */ 1522 if (cs->staged_cs) 1523 *cs_seq = cs->staged_sequence; 1524 1525 /* Validate ALL the CS chunks before submitting the CS */ 1526 for (i = 0 ; i < num_chunks ; i++) { 1527 struct hl_cs_chunk *chunk = &cs_chunk_array[i]; 1528 enum hl_queue_type queue_type; 1529 bool is_kernel_allocated_cb; 1530 1531 rc = validate_queue_index(hdev, chunk, &queue_type, 1532 &is_kernel_allocated_cb); 1533 if (rc) { 1534 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1535 atomic64_inc(&cntr->validation_drop_cnt); 1536 goto free_cs_object; 1537 } 1538 1539 if (is_kernel_allocated_cb) { 1540 cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk); 1541 if (!cb) { 1542 atomic64_inc( 1543 &ctx->cs_counters.validation_drop_cnt); 1544 atomic64_inc(&cntr->validation_drop_cnt); 1545 rc = -EINVAL; 1546 goto free_cs_object; 1547 } 1548 } else { 1549 cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle; 1550 } 1551 1552 if (queue_type == QUEUE_TYPE_EXT || 1553 queue_type == QUEUE_TYPE_HW) { 1554 int_queues_only = false; 1555 1556 /* 1557 * store which stream are being used for external/HW 1558 * queues of this CS 1559 */ 1560 if (hdev->supports_wait_for_multi_cs) 1561 stream_master_qid_map |= 1562 get_stream_master_qid_mask(hdev, 1563 chunk->queue_index); 1564 } 1565 1566 if (queue_type == QUEUE_TYPE_HW) 1567 using_hw_queues = true; 1568 1569 job = hl_cs_allocate_job(hdev, queue_type, 1570 is_kernel_allocated_cb); 1571 if (!job) { 1572 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1573 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1574 dev_err(hdev->dev, "Failed to allocate a new job\n"); 1575 rc = -ENOMEM; 1576 if (is_kernel_allocated_cb) 1577 goto release_cb; 1578 1579 goto free_cs_object; 1580 } 1581 1582 job->id = i + 1; 1583 job->cs = cs; 1584 job->user_cb = cb; 1585 job->user_cb_size = chunk->cb_size; 1586 job->hw_queue_id = chunk->queue_index; 1587 1588 cs->jobs_in_queue_cnt[job->hw_queue_id]++; 1589 cs->jobs_cnt++; 1590 1591 list_add_tail(&job->cs_node, &cs->job_list); 1592 1593 /* 1594 * Increment CS reference. When CS reference is 0, CS is 1595 * done and can be signaled to user and free all its resources 1596 * Only increment for JOB on external or H/W queues, because 1597 * only for those JOBs we get completion 1598 */ 1599 if (cs_needs_completion(cs) && 1600 (job->queue_type == QUEUE_TYPE_EXT || 1601 job->queue_type == QUEUE_TYPE_HW)) 1602 cs_get(cs); 1603 1604 hl_debugfs_add_job(hdev, job); 1605 1606 rc = cs_parser(hpriv, job); 1607 if (rc) { 1608 atomic64_inc(&ctx->cs_counters.parsing_drop_cnt); 1609 atomic64_inc(&cntr->parsing_drop_cnt); 1610 dev_err(hdev->dev, 1611 "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n", 1612 cs->ctx->asid, cs->sequence, job->id, rc); 1613 goto free_cs_object; 1614 } 1615 } 1616 1617 /* We allow a CS with any queue type combination as long as it does 1618 * not get a completion 1619 */ 1620 if (int_queues_only && cs_needs_completion(cs)) { 1621 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1622 atomic64_inc(&cntr->validation_drop_cnt); 1623 dev_err(hdev->dev, 1624 "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n", 1625 cs->ctx->asid, cs->sequence); 1626 rc = -EINVAL; 1627 goto free_cs_object; 1628 } 1629 1630 if (using_hw_queues) 1631 INIT_WORK(&cs->finish_work, cs_completion); 1632 1633 /* 1634 * store the (external/HW queues) streams used by the CS in the 1635 * fence object for multi-CS completion 1636 */ 1637 if (hdev->supports_wait_for_multi_cs) 1638 cs->fence->stream_master_qid_map = stream_master_qid_map; 1639 1640 rc = hl_hw_queue_schedule_cs(cs); 1641 if (rc) { 1642 if (rc != -EAGAIN) 1643 dev_err(hdev->dev, 1644 "Failed to submit CS %d.%llu to H/W queues, error %d\n", 1645 cs->ctx->asid, cs->sequence, rc); 1646 goto free_cs_object; 1647 } 1648 1649 *signal_initial_sob_count = cs->initial_sob_count; 1650 1651 rc = HL_CS_STATUS_SUCCESS; 1652 goto put_cs; 1653 1654 release_cb: 1655 atomic_dec(&cb->cs_cnt); 1656 hl_cb_put(cb); 1657 free_cs_object: 1658 cs_rollback(hdev, cs); 1659 *cs_seq = ULLONG_MAX; 1660 /* The path below is both for good and erroneous exits */ 1661 put_cs: 1662 /* We finished with the CS in this function, so put the ref */ 1663 cs_put(cs); 1664 free_cs_chunk_array: 1665 kfree(cs_chunk_array); 1666 out: 1667 return rc; 1668 } 1669 1670 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args, 1671 u64 *cs_seq) 1672 { 1673 struct hl_device *hdev = hpriv->hdev; 1674 struct hl_ctx *ctx = hpriv->ctx; 1675 bool need_soft_reset = false; 1676 int rc = 0, do_ctx_switch = 0; 1677 void __user *chunks; 1678 u32 num_chunks, tmp; 1679 u16 sob_count; 1680 int ret; 1681 1682 if (hdev->supports_ctx_switch) 1683 do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0); 1684 1685 if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) { 1686 mutex_lock(&hpriv->restore_phase_mutex); 1687 1688 if (do_ctx_switch) { 1689 rc = hdev->asic_funcs->context_switch(hdev, ctx->asid); 1690 if (rc) { 1691 dev_err_ratelimited(hdev->dev, 1692 "Failed to switch to context %d, rejecting CS! %d\n", 1693 ctx->asid, rc); 1694 /* 1695 * If we timedout, or if the device is not IDLE 1696 * while we want to do context-switch (-EBUSY), 1697 * we need to soft-reset because QMAN is 1698 * probably stuck. However, we can't call to 1699 * reset here directly because of deadlock, so 1700 * need to do it at the very end of this 1701 * function 1702 */ 1703 if ((rc == -ETIMEDOUT) || (rc == -EBUSY)) 1704 need_soft_reset = true; 1705 mutex_unlock(&hpriv->restore_phase_mutex); 1706 goto out; 1707 } 1708 } 1709 1710 hdev->asic_funcs->restore_phase_topology(hdev); 1711 1712 chunks = (void __user *) (uintptr_t) args->in.chunks_restore; 1713 num_chunks = args->in.num_chunks_restore; 1714 1715 if (!num_chunks) { 1716 dev_dbg(hdev->dev, 1717 "Need to run restore phase but restore CS is empty\n"); 1718 rc = 0; 1719 } else { 1720 rc = cs_ioctl_default(hpriv, chunks, num_chunks, 1721 cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count); 1722 } 1723 1724 mutex_unlock(&hpriv->restore_phase_mutex); 1725 1726 if (rc) { 1727 dev_err(hdev->dev, 1728 "Failed to submit restore CS for context %d (%d)\n", 1729 ctx->asid, rc); 1730 goto out; 1731 } 1732 1733 /* Need to wait for restore completion before execution phase */ 1734 if (num_chunks) { 1735 enum hl_cs_wait_status status; 1736 wait_again: 1737 ret = _hl_cs_wait_ioctl(hdev, ctx, 1738 jiffies_to_usecs(hdev->timeout_jiffies), 1739 *cs_seq, &status, NULL); 1740 if (ret) { 1741 if (ret == -ERESTARTSYS) { 1742 usleep_range(100, 200); 1743 goto wait_again; 1744 } 1745 1746 dev_err(hdev->dev, 1747 "Restore CS for context %d failed to complete %d\n", 1748 ctx->asid, ret); 1749 rc = -ENOEXEC; 1750 goto out; 1751 } 1752 } 1753 1754 if (hdev->supports_ctx_switch) 1755 ctx->thread_ctx_switch_wait_token = 1; 1756 1757 } else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) { 1758 rc = hl_poll_timeout_memory(hdev, 1759 &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1), 1760 100, jiffies_to_usecs(hdev->timeout_jiffies), false); 1761 1762 if (rc == -ETIMEDOUT) { 1763 dev_err(hdev->dev, 1764 "context switch phase timeout (%d)\n", tmp); 1765 goto out; 1766 } 1767 } 1768 1769 out: 1770 if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset)) 1771 hl_device_reset(hdev, 0); 1772 1773 return rc; 1774 } 1775 1776 /* 1777 * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case. 1778 * if the SOB value reaches the max value move to the other SOB reserved 1779 * to the queue. 1780 * @hdev: pointer to device structure 1781 * @q_idx: stream queue index 1782 * @hw_sob: the H/W SOB used in this signal CS. 1783 * @count: signals count 1784 * @encaps_sig: tells whether it's reservation for encaps signals or not. 1785 * 1786 * Note that this function must be called while hw_queues_lock is taken. 1787 */ 1788 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 1789 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig) 1790 1791 { 1792 struct hl_sync_stream_properties *prop; 1793 struct hl_hw_sob *sob = *hw_sob, *other_sob; 1794 u8 other_sob_offset; 1795 1796 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 1797 1798 hw_sob_get(sob); 1799 1800 /* check for wraparound */ 1801 if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) { 1802 /* 1803 * Decrement as we reached the max value. 1804 * The release function won't be called here as we've 1805 * just incremented the refcount right before calling this 1806 * function. 1807 */ 1808 hw_sob_put_err(sob); 1809 1810 /* 1811 * check the other sob value, if it still in use then fail 1812 * otherwise make the switch 1813 */ 1814 other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS; 1815 other_sob = &prop->hw_sob[other_sob_offset]; 1816 1817 if (kref_read(&other_sob->kref) != 1) { 1818 dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n", 1819 q_idx); 1820 return -EINVAL; 1821 } 1822 1823 /* 1824 * next_sob_val always points to the next available signal 1825 * in the sob, so in encaps signals it will be the next one 1826 * after reserving the required amount. 1827 */ 1828 if (encaps_sig) 1829 prop->next_sob_val = count + 1; 1830 else 1831 prop->next_sob_val = count; 1832 1833 /* only two SOBs are currently in use */ 1834 prop->curr_sob_offset = other_sob_offset; 1835 *hw_sob = other_sob; 1836 1837 /* 1838 * check if other_sob needs reset, then do it before using it 1839 * for the reservation or the next signal cs. 1840 * we do it here, and for both encaps and regular signal cs 1841 * cases in order to avoid possible races of two kref_put 1842 * of the sob which can occur at the same time if we move the 1843 * sob reset(kref_put) to cs_do_release function. 1844 * in addition, if we have combination of cs signal and 1845 * encaps, and at the point we need to reset the sob there was 1846 * no more reservations and only signal cs keep coming, 1847 * in such case we need signal_cs to put the refcount and 1848 * reset the sob. 1849 */ 1850 if (other_sob->need_reset) 1851 hw_sob_put(other_sob); 1852 1853 if (encaps_sig) { 1854 /* set reset indication for the sob */ 1855 sob->need_reset = true; 1856 hw_sob_get(other_sob); 1857 } 1858 1859 dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n", 1860 prop->curr_sob_offset, q_idx); 1861 } else { 1862 prop->next_sob_val += count; 1863 } 1864 1865 return 0; 1866 } 1867 1868 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev, 1869 struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx, 1870 bool encaps_signals) 1871 { 1872 u64 *signal_seq_arr = NULL; 1873 u32 size_to_copy, signal_seq_arr_len; 1874 int rc = 0; 1875 1876 if (encaps_signals) { 1877 *signal_seq = chunk->encaps_signal_seq; 1878 return 0; 1879 } 1880 1881 signal_seq_arr_len = chunk->num_signal_seq_arr; 1882 1883 /* currently only one signal seq is supported */ 1884 if (signal_seq_arr_len != 1) { 1885 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1886 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1887 dev_err(hdev->dev, 1888 "Wait for signal CS supports only one signal CS seq\n"); 1889 return -EINVAL; 1890 } 1891 1892 signal_seq_arr = kmalloc_array(signal_seq_arr_len, 1893 sizeof(*signal_seq_arr), 1894 GFP_ATOMIC); 1895 if (!signal_seq_arr) 1896 signal_seq_arr = kmalloc_array(signal_seq_arr_len, 1897 sizeof(*signal_seq_arr), 1898 GFP_KERNEL); 1899 if (!signal_seq_arr) { 1900 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1901 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); 1902 return -ENOMEM; 1903 } 1904 1905 size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr); 1906 if (copy_from_user(signal_seq_arr, 1907 u64_to_user_ptr(chunk->signal_seq_arr), 1908 size_to_copy)) { 1909 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1910 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1911 dev_err(hdev->dev, 1912 "Failed to copy signal seq array from user\n"); 1913 rc = -EFAULT; 1914 goto out; 1915 } 1916 1917 /* currently it is guaranteed to have only one signal seq */ 1918 *signal_seq = signal_seq_arr[0]; 1919 1920 out: 1921 kfree(signal_seq_arr); 1922 1923 return rc; 1924 } 1925 1926 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev, 1927 struct hl_ctx *ctx, struct hl_cs *cs, 1928 enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset) 1929 { 1930 struct hl_cs_counters_atomic *cntr; 1931 struct hl_cs_job *job; 1932 struct hl_cb *cb; 1933 u32 cb_size; 1934 1935 cntr = &hdev->aggregated_cs_counters; 1936 1937 job = hl_cs_allocate_job(hdev, q_type, true); 1938 if (!job) { 1939 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1940 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1941 dev_err(hdev->dev, "Failed to allocate a new job\n"); 1942 return -ENOMEM; 1943 } 1944 1945 if (cs->type == CS_TYPE_WAIT) 1946 cb_size = hdev->asic_funcs->get_wait_cb_size(hdev); 1947 else 1948 cb_size = hdev->asic_funcs->get_signal_cb_size(hdev); 1949 1950 cb = hl_cb_kernel_create(hdev, cb_size, 1951 q_type == QUEUE_TYPE_HW && hdev->mmu_enable); 1952 if (!cb) { 1953 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1954 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1955 kfree(job); 1956 return -EFAULT; 1957 } 1958 1959 job->id = 0; 1960 job->cs = cs; 1961 job->user_cb = cb; 1962 atomic_inc(&job->user_cb->cs_cnt); 1963 job->user_cb_size = cb_size; 1964 job->hw_queue_id = q_idx; 1965 1966 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) 1967 && cs->encaps_signals) 1968 job->encaps_sig_wait_offset = encaps_signal_offset; 1969 /* 1970 * No need in parsing, user CB is the patched CB. 1971 * We call hl_cb_destroy() out of two reasons - we don't need the CB in 1972 * the CB idr anymore and to decrement its refcount as it was 1973 * incremented inside hl_cb_kernel_create(). 1974 */ 1975 job->patched_cb = job->user_cb; 1976 job->job_cb_size = job->user_cb_size; 1977 hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle); 1978 1979 /* increment refcount as for external queues we get completion */ 1980 cs_get(cs); 1981 1982 cs->jobs_in_queue_cnt[job->hw_queue_id]++; 1983 cs->jobs_cnt++; 1984 1985 list_add_tail(&job->cs_node, &cs->job_list); 1986 1987 hl_debugfs_add_job(hdev, job); 1988 1989 return 0; 1990 } 1991 1992 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv, 1993 u32 q_idx, u32 count, 1994 u32 *handle_id, u32 *sob_addr, 1995 u32 *signals_count) 1996 { 1997 struct hw_queue_properties *hw_queue_prop; 1998 struct hl_sync_stream_properties *prop; 1999 struct hl_device *hdev = hpriv->hdev; 2000 struct hl_cs_encaps_sig_handle *handle; 2001 struct hl_encaps_signals_mgr *mgr; 2002 struct hl_hw_sob *hw_sob; 2003 int hdl_id; 2004 int rc = 0; 2005 2006 if (count >= HL_MAX_SOB_VAL) { 2007 dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n", 2008 count); 2009 rc = -EINVAL; 2010 goto out; 2011 } 2012 2013 if (q_idx >= hdev->asic_prop.max_queues) { 2014 dev_err(hdev->dev, "Queue index %d is invalid\n", 2015 q_idx); 2016 rc = -EINVAL; 2017 goto out; 2018 } 2019 2020 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; 2021 2022 if (!hw_queue_prop->supports_sync_stream) { 2023 dev_err(hdev->dev, 2024 "Queue index %d does not support sync stream operations\n", 2025 q_idx); 2026 rc = -EINVAL; 2027 goto out; 2028 } 2029 2030 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 2031 2032 handle = kzalloc(sizeof(*handle), GFP_KERNEL); 2033 if (!handle) { 2034 rc = -ENOMEM; 2035 goto out; 2036 } 2037 2038 handle->count = count; 2039 2040 hl_ctx_get(hpriv->ctx); 2041 handle->ctx = hpriv->ctx; 2042 mgr = &hpriv->ctx->sig_mgr; 2043 2044 spin_lock(&mgr->lock); 2045 hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC); 2046 spin_unlock(&mgr->lock); 2047 2048 if (hdl_id < 0) { 2049 dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n"); 2050 rc = -EINVAL; 2051 goto put_ctx; 2052 } 2053 2054 handle->id = hdl_id; 2055 handle->q_idx = q_idx; 2056 handle->hdev = hdev; 2057 kref_init(&handle->refcount); 2058 2059 hdev->asic_funcs->hw_queues_lock(hdev); 2060 2061 hw_sob = &prop->hw_sob[prop->curr_sob_offset]; 2062 2063 /* 2064 * Increment the SOB value by count by user request 2065 * to reserve those signals 2066 * check if the signals amount to reserve is not exceeding the max sob 2067 * value, if yes then switch sob. 2068 */ 2069 rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count, 2070 true); 2071 if (rc) { 2072 dev_err(hdev->dev, "Failed to switch SOB\n"); 2073 hdev->asic_funcs->hw_queues_unlock(hdev); 2074 rc = -EINVAL; 2075 goto remove_idr; 2076 } 2077 /* set the hw_sob to the handle after calling the sob wraparound handler 2078 * since sob could have changed. 2079 */ 2080 handle->hw_sob = hw_sob; 2081 2082 /* store the current sob value for unreserve validity check, and 2083 * signal offset support 2084 */ 2085 handle->pre_sob_val = prop->next_sob_val - handle->count; 2086 2087 handle->cs_seq = ULLONG_MAX; 2088 2089 *signals_count = prop->next_sob_val; 2090 hdev->asic_funcs->hw_queues_unlock(hdev); 2091 2092 *sob_addr = handle->hw_sob->sob_addr; 2093 *handle_id = hdl_id; 2094 2095 dev_dbg(hdev->dev, 2096 "Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n", 2097 hw_sob->sob_id, handle->hw_sob->sob_addr, 2098 prop->next_sob_val - 1, q_idx, hdl_id); 2099 goto out; 2100 2101 remove_idr: 2102 spin_lock(&mgr->lock); 2103 idr_remove(&mgr->handles, hdl_id); 2104 spin_unlock(&mgr->lock); 2105 2106 put_ctx: 2107 hl_ctx_put(handle->ctx); 2108 kfree(handle); 2109 2110 out: 2111 return rc; 2112 } 2113 2114 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id) 2115 { 2116 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 2117 struct hl_sync_stream_properties *prop; 2118 struct hl_device *hdev = hpriv->hdev; 2119 struct hl_encaps_signals_mgr *mgr; 2120 struct hl_hw_sob *hw_sob; 2121 u32 q_idx, sob_addr; 2122 int rc = 0; 2123 2124 mgr = &hpriv->ctx->sig_mgr; 2125 2126 spin_lock(&mgr->lock); 2127 encaps_sig_hdl = idr_find(&mgr->handles, handle_id); 2128 if (encaps_sig_hdl) { 2129 dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n", 2130 handle_id, encaps_sig_hdl->hw_sob->sob_addr, 2131 encaps_sig_hdl->count); 2132 2133 hdev->asic_funcs->hw_queues_lock(hdev); 2134 2135 q_idx = encaps_sig_hdl->q_idx; 2136 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 2137 hw_sob = &prop->hw_sob[prop->curr_sob_offset]; 2138 sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id); 2139 2140 /* Check if sob_val got out of sync due to other 2141 * signal submission requests which were handled 2142 * between the reserve-unreserve calls or SOB switch 2143 * upon reaching SOB max value. 2144 */ 2145 if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count 2146 != prop->next_sob_val || 2147 sob_addr != encaps_sig_hdl->hw_sob->sob_addr) { 2148 dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n", 2149 encaps_sig_hdl->pre_sob_val, 2150 (prop->next_sob_val - encaps_sig_hdl->count)); 2151 2152 hdev->asic_funcs->hw_queues_unlock(hdev); 2153 rc = -EINVAL; 2154 goto out; 2155 } 2156 2157 /* 2158 * Decrement the SOB value by count by user request 2159 * to unreserve those signals 2160 */ 2161 prop->next_sob_val -= encaps_sig_hdl->count; 2162 2163 hdev->asic_funcs->hw_queues_unlock(hdev); 2164 2165 hw_sob_put(hw_sob); 2166 2167 /* Release the id and free allocated memory of the handle */ 2168 idr_remove(&mgr->handles, handle_id); 2169 hl_ctx_put(encaps_sig_hdl->ctx); 2170 kfree(encaps_sig_hdl); 2171 } else { 2172 rc = -EINVAL; 2173 dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n"); 2174 } 2175 out: 2176 spin_unlock(&mgr->lock); 2177 2178 return rc; 2179 } 2180 2181 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type, 2182 void __user *chunks, u32 num_chunks, 2183 u64 *cs_seq, u32 flags, u32 timeout, 2184 u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count) 2185 { 2186 struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL; 2187 bool handle_found = false, is_wait_cs = false, 2188 wait_cs_submitted = false, 2189 cs_encaps_signals = false; 2190 struct hl_cs_chunk *cs_chunk_array, *chunk; 2191 bool staged_cs_with_encaps_signals = false; 2192 struct hw_queue_properties *hw_queue_prop; 2193 struct hl_device *hdev = hpriv->hdev; 2194 struct hl_cs_compl *sig_waitcs_cmpl; 2195 u32 q_idx, collective_engine_id = 0; 2196 struct hl_cs_counters_atomic *cntr; 2197 struct hl_fence *sig_fence = NULL; 2198 struct hl_ctx *ctx = hpriv->ctx; 2199 enum hl_queue_type q_type; 2200 struct hl_cs *cs; 2201 u64 signal_seq; 2202 int rc; 2203 2204 cntr = &hdev->aggregated_cs_counters; 2205 *cs_seq = ULLONG_MAX; 2206 2207 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, 2208 ctx); 2209 if (rc) 2210 goto out; 2211 2212 /* currently it is guaranteed to have only one chunk */ 2213 chunk = &cs_chunk_array[0]; 2214 2215 if (chunk->queue_index >= hdev->asic_prop.max_queues) { 2216 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2217 atomic64_inc(&cntr->validation_drop_cnt); 2218 dev_err(hdev->dev, "Queue index %d is invalid\n", 2219 chunk->queue_index); 2220 rc = -EINVAL; 2221 goto free_cs_chunk_array; 2222 } 2223 2224 q_idx = chunk->queue_index; 2225 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; 2226 q_type = hw_queue_prop->type; 2227 2228 if (!hw_queue_prop->supports_sync_stream) { 2229 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2230 atomic64_inc(&cntr->validation_drop_cnt); 2231 dev_err(hdev->dev, 2232 "Queue index %d does not support sync stream operations\n", 2233 q_idx); 2234 rc = -EINVAL; 2235 goto free_cs_chunk_array; 2236 } 2237 2238 if (cs_type == CS_TYPE_COLLECTIVE_WAIT) { 2239 if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) { 2240 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2241 atomic64_inc(&cntr->validation_drop_cnt); 2242 dev_err(hdev->dev, 2243 "Queue index %d is invalid\n", q_idx); 2244 rc = -EINVAL; 2245 goto free_cs_chunk_array; 2246 } 2247 2248 if (!hdev->nic_ports_mask) { 2249 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2250 atomic64_inc(&cntr->validation_drop_cnt); 2251 dev_err(hdev->dev, 2252 "Collective operations not supported when NIC ports are disabled"); 2253 rc = -EINVAL; 2254 goto free_cs_chunk_array; 2255 } 2256 2257 collective_engine_id = chunk->collective_engine_id; 2258 } 2259 2260 is_wait_cs = !!(cs_type == CS_TYPE_WAIT || 2261 cs_type == CS_TYPE_COLLECTIVE_WAIT); 2262 2263 cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); 2264 2265 if (is_wait_cs) { 2266 rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq, 2267 ctx, cs_encaps_signals); 2268 if (rc) 2269 goto free_cs_chunk_array; 2270 2271 if (cs_encaps_signals) { 2272 /* check if cs sequence has encapsulated 2273 * signals handle 2274 */ 2275 struct idr *idp; 2276 u32 id; 2277 2278 spin_lock(&ctx->sig_mgr.lock); 2279 idp = &ctx->sig_mgr.handles; 2280 idr_for_each_entry(idp, encaps_sig_hdl, id) { 2281 if (encaps_sig_hdl->cs_seq == signal_seq) { 2282 /* get refcount to protect removing this handle from idr, 2283 * needed when multiple wait cs are used with offset 2284 * to wait on reserved encaps signals. 2285 * Since kref_put of this handle is executed outside the 2286 * current lock, it is possible that the handle refcount 2287 * is 0 but it yet to be removed from the list. In this 2288 * case need to consider the handle as not valid. 2289 */ 2290 if (kref_get_unless_zero(&encaps_sig_hdl->refcount)) 2291 handle_found = true; 2292 break; 2293 } 2294 } 2295 spin_unlock(&ctx->sig_mgr.lock); 2296 2297 if (!handle_found) { 2298 /* treat as signal CS already finished */ 2299 dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n", 2300 signal_seq); 2301 rc = 0; 2302 goto free_cs_chunk_array; 2303 } 2304 2305 /* validate also the signal offset value */ 2306 if (chunk->encaps_signal_offset > 2307 encaps_sig_hdl->count) { 2308 dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n", 2309 chunk->encaps_signal_offset, 2310 encaps_sig_hdl->count); 2311 rc = -EINVAL; 2312 goto free_cs_chunk_array; 2313 } 2314 } 2315 2316 sig_fence = hl_ctx_get_fence(ctx, signal_seq); 2317 if (IS_ERR(sig_fence)) { 2318 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2319 atomic64_inc(&cntr->validation_drop_cnt); 2320 dev_err(hdev->dev, 2321 "Failed to get signal CS with seq 0x%llx\n", 2322 signal_seq); 2323 rc = PTR_ERR(sig_fence); 2324 goto free_cs_chunk_array; 2325 } 2326 2327 if (!sig_fence) { 2328 /* signal CS already finished */ 2329 rc = 0; 2330 goto free_cs_chunk_array; 2331 } 2332 2333 sig_waitcs_cmpl = 2334 container_of(sig_fence, struct hl_cs_compl, base_fence); 2335 2336 staged_cs_with_encaps_signals = !! 2337 (sig_waitcs_cmpl->type == CS_TYPE_DEFAULT && 2338 (flags & HL_CS_FLAGS_ENCAP_SIGNALS)); 2339 2340 if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL && 2341 !staged_cs_with_encaps_signals) { 2342 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2343 atomic64_inc(&cntr->validation_drop_cnt); 2344 dev_err(hdev->dev, 2345 "CS seq 0x%llx is not of a signal/encaps-signal CS\n", 2346 signal_seq); 2347 hl_fence_put(sig_fence); 2348 rc = -EINVAL; 2349 goto free_cs_chunk_array; 2350 } 2351 2352 if (completion_done(&sig_fence->completion)) { 2353 /* signal CS already finished */ 2354 hl_fence_put(sig_fence); 2355 rc = 0; 2356 goto free_cs_chunk_array; 2357 } 2358 } 2359 2360 rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout); 2361 if (rc) { 2362 if (is_wait_cs) 2363 hl_fence_put(sig_fence); 2364 2365 goto free_cs_chunk_array; 2366 } 2367 2368 /* 2369 * Save the signal CS fence for later initialization right before 2370 * hanging the wait CS on the queue. 2371 * for encaps signals case, we save the cs sequence and handle pointer 2372 * for later initialization. 2373 */ 2374 if (is_wait_cs) { 2375 cs->signal_fence = sig_fence; 2376 /* store the handle pointer, so we don't have to 2377 * look for it again, later on the flow 2378 * when we need to set SOB info in hw_queue. 2379 */ 2380 if (cs->encaps_signals) 2381 cs->encaps_sig_hdl = encaps_sig_hdl; 2382 } 2383 2384 hl_debugfs_add_cs(cs); 2385 2386 *cs_seq = cs->sequence; 2387 2388 if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL) 2389 rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type, 2390 q_idx, chunk->encaps_signal_offset); 2391 else if (cs_type == CS_TYPE_COLLECTIVE_WAIT) 2392 rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx, 2393 cs, q_idx, collective_engine_id, 2394 chunk->encaps_signal_offset); 2395 else { 2396 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2397 atomic64_inc(&cntr->validation_drop_cnt); 2398 rc = -EINVAL; 2399 } 2400 2401 if (rc) 2402 goto free_cs_object; 2403 2404 if (q_type == QUEUE_TYPE_HW) 2405 INIT_WORK(&cs->finish_work, cs_completion); 2406 2407 rc = hl_hw_queue_schedule_cs(cs); 2408 if (rc) { 2409 /* In case wait cs failed here, it means the signal cs 2410 * already completed. we want to free all it's related objects 2411 * but we don't want to fail the ioctl. 2412 */ 2413 if (is_wait_cs) 2414 rc = 0; 2415 else if (rc != -EAGAIN) 2416 dev_err(hdev->dev, 2417 "Failed to submit CS %d.%llu to H/W queues, error %d\n", 2418 ctx->asid, cs->sequence, rc); 2419 goto free_cs_object; 2420 } 2421 2422 *signal_sob_addr_offset = cs->sob_addr_offset; 2423 *signal_initial_sob_count = cs->initial_sob_count; 2424 2425 rc = HL_CS_STATUS_SUCCESS; 2426 if (is_wait_cs) 2427 wait_cs_submitted = true; 2428 goto put_cs; 2429 2430 free_cs_object: 2431 cs_rollback(hdev, cs); 2432 *cs_seq = ULLONG_MAX; 2433 /* The path below is both for good and erroneous exits */ 2434 put_cs: 2435 /* We finished with the CS in this function, so put the ref */ 2436 cs_put(cs); 2437 free_cs_chunk_array: 2438 if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs) 2439 kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); 2440 kfree(cs_chunk_array); 2441 out: 2442 return rc; 2443 } 2444 2445 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores, 2446 u32 num_engine_cores, u32 core_command) 2447 { 2448 int rc; 2449 struct hl_device *hdev = hpriv->hdev; 2450 void __user *engine_cores_arr; 2451 u32 *cores; 2452 2453 if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) { 2454 dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores); 2455 return -EINVAL; 2456 } 2457 2458 if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) { 2459 dev_err(hdev->dev, "Engine core command is invalid\n"); 2460 return -EINVAL; 2461 } 2462 2463 engine_cores_arr = (void __user *) (uintptr_t) engine_cores; 2464 cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL); 2465 if (!cores) 2466 return -ENOMEM; 2467 2468 if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) { 2469 dev_err(hdev->dev, "Failed to copy core-ids array from user\n"); 2470 kfree(cores); 2471 return -EFAULT; 2472 } 2473 2474 rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command); 2475 kfree(cores); 2476 2477 return rc; 2478 } 2479 2480 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv) 2481 { 2482 struct hl_device *hdev = hpriv->hdev; 2483 struct asic_fixed_properties *prop = &hdev->asic_prop; 2484 2485 if (!prop->hbw_flush_reg) { 2486 dev_dbg(hdev->dev, "HBW flush is not supported\n"); 2487 return -EOPNOTSUPP; 2488 } 2489 2490 RREG32(prop->hbw_flush_reg); 2491 2492 return 0; 2493 } 2494 2495 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data) 2496 { 2497 union hl_cs_args *args = data; 2498 enum hl_cs_type cs_type = 0; 2499 u64 cs_seq = ULONG_MAX; 2500 void __user *chunks; 2501 u32 num_chunks, flags, timeout, 2502 signals_count = 0, sob_addr = 0, handle_id = 0; 2503 u16 sob_initial_count = 0; 2504 int rc; 2505 2506 rc = hl_cs_sanity_checks(hpriv, args); 2507 if (rc) 2508 goto out; 2509 2510 rc = hl_cs_ctx_switch(hpriv, args, &cs_seq); 2511 if (rc) 2512 goto out; 2513 2514 cs_type = hl_cs_get_cs_type(args->in.cs_flags & 2515 ~HL_CS_FLAGS_FORCE_RESTORE); 2516 chunks = (void __user *) (uintptr_t) args->in.chunks_execute; 2517 num_chunks = args->in.num_chunks_execute; 2518 flags = args->in.cs_flags; 2519 2520 /* In case this is a staged CS, user should supply the CS sequence */ 2521 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 2522 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) 2523 cs_seq = args->in.seq; 2524 2525 timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT 2526 ? msecs_to_jiffies(args->in.timeout * 1000) 2527 : hpriv->hdev->timeout_jiffies; 2528 2529 switch (cs_type) { 2530 case CS_TYPE_SIGNAL: 2531 case CS_TYPE_WAIT: 2532 case CS_TYPE_COLLECTIVE_WAIT: 2533 rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks, 2534 &cs_seq, args->in.cs_flags, timeout, 2535 &sob_addr, &sob_initial_count); 2536 break; 2537 case CS_RESERVE_SIGNALS: 2538 rc = cs_ioctl_reserve_signals(hpriv, 2539 args->in.encaps_signals_q_idx, 2540 args->in.encaps_signals_count, 2541 &handle_id, &sob_addr, &signals_count); 2542 break; 2543 case CS_UNRESERVE_SIGNALS: 2544 rc = cs_ioctl_unreserve_signals(hpriv, 2545 args->in.encaps_sig_handle_id); 2546 break; 2547 case CS_TYPE_ENGINE_CORE: 2548 rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores, 2549 args->in.num_engine_cores, args->in.core_command); 2550 break; 2551 case CS_TYPE_FLUSH_PCI_HBW_WRITES: 2552 rc = cs_ioctl_flush_pci_hbw_writes(hpriv); 2553 break; 2554 default: 2555 rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq, 2556 args->in.cs_flags, 2557 args->in.encaps_sig_handle_id, 2558 timeout, &sob_initial_count); 2559 break; 2560 } 2561 out: 2562 if (rc != -EAGAIN) { 2563 memset(args, 0, sizeof(*args)); 2564 2565 switch (cs_type) { 2566 case CS_RESERVE_SIGNALS: 2567 args->out.handle_id = handle_id; 2568 args->out.sob_base_addr_offset = sob_addr; 2569 args->out.count = signals_count; 2570 break; 2571 case CS_TYPE_SIGNAL: 2572 args->out.sob_base_addr_offset = sob_addr; 2573 args->out.sob_count_before_submission = sob_initial_count; 2574 args->out.seq = cs_seq; 2575 break; 2576 case CS_TYPE_DEFAULT: 2577 args->out.sob_count_before_submission = sob_initial_count; 2578 args->out.seq = cs_seq; 2579 break; 2580 default: 2581 args->out.seq = cs_seq; 2582 break; 2583 } 2584 2585 args->out.status = rc; 2586 } 2587 2588 return rc; 2589 } 2590 2591 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence, 2592 enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp) 2593 { 2594 struct hl_device *hdev = ctx->hdev; 2595 ktime_t timestamp_kt; 2596 long completion_rc; 2597 int rc = 0, error; 2598 2599 if (IS_ERR(fence)) { 2600 rc = PTR_ERR(fence); 2601 if (rc == -EINVAL) 2602 dev_notice_ratelimited(hdev->dev, 2603 "Can't wait on CS %llu because current CS is at seq %llu\n", 2604 seq, ctx->cs_sequence); 2605 return rc; 2606 } 2607 2608 if (!fence) { 2609 if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, ×tamp_kt, &error)) { 2610 dev_dbg(hdev->dev, 2611 "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n", 2612 seq, ctx->cs_sequence); 2613 *status = CS_WAIT_STATUS_GONE; 2614 return 0; 2615 } 2616 2617 completion_rc = 1; 2618 goto report_results; 2619 } 2620 2621 if (!timeout_us) { 2622 completion_rc = completion_done(&fence->completion); 2623 } else { 2624 unsigned long timeout; 2625 2626 timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ? 2627 timeout_us : usecs_to_jiffies(timeout_us); 2628 completion_rc = 2629 wait_for_completion_interruptible_timeout( 2630 &fence->completion, timeout); 2631 } 2632 2633 error = fence->error; 2634 timestamp_kt = fence->timestamp; 2635 2636 report_results: 2637 if (completion_rc > 0) { 2638 *status = CS_WAIT_STATUS_COMPLETED; 2639 if (timestamp) 2640 *timestamp = ktime_to_ns(timestamp_kt); 2641 } else { 2642 *status = CS_WAIT_STATUS_BUSY; 2643 } 2644 2645 if (completion_rc == -ERESTARTSYS) 2646 rc = completion_rc; 2647 else if (error == -ETIMEDOUT || error == -EIO) 2648 rc = error; 2649 2650 return rc; 2651 } 2652 2653 /* 2654 * hl_cs_poll_fences - iterate CS fences to check for CS completion 2655 * 2656 * @mcs_data: multi-CS internal data 2657 * @mcs_compl: multi-CS completion structure 2658 * 2659 * @return 0 on success, otherwise non 0 error code 2660 * 2661 * The function iterates on all CS sequence in the list and set bit in 2662 * completion_bitmap for each completed CS. 2663 * While iterating, the function sets the stream map of each fence in the fence 2664 * array in the completion QID stream map to be used by CSs to perform 2665 * completion to the multi-CS context. 2666 * This function shall be called after taking context ref 2667 */ 2668 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl) 2669 { 2670 struct hl_fence **fence_ptr = mcs_data->fence_arr; 2671 struct hl_device *hdev = mcs_data->ctx->hdev; 2672 int i, rc, arr_len = mcs_data->arr_len; 2673 u64 *seq_arr = mcs_data->seq_arr; 2674 ktime_t max_ktime, first_cs_time; 2675 enum hl_cs_wait_status status; 2676 2677 memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *)); 2678 2679 /* get all fences under the same lock */ 2680 rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len); 2681 if (rc) 2682 return rc; 2683 2684 /* 2685 * re-initialize the completion here to handle 2 possible cases: 2686 * 1. CS will complete the multi-CS prior clearing the completion. in which 2687 * case the fence iteration is guaranteed to catch the CS completion. 2688 * 2. the completion will occur after re-init of the completion. 2689 * in which case we will wake up immediately in wait_for_completion. 2690 */ 2691 reinit_completion(&mcs_compl->completion); 2692 2693 /* 2694 * set to maximum time to verify timestamp is valid: if at the end 2695 * this value is maintained- no timestamp was updated 2696 */ 2697 max_ktime = ktime_set(KTIME_SEC_MAX, 0); 2698 first_cs_time = max_ktime; 2699 2700 for (i = 0; i < arr_len; i++, fence_ptr++) { 2701 struct hl_fence *fence = *fence_ptr; 2702 2703 /* 2704 * In order to prevent case where we wait until timeout even though a CS associated 2705 * with the multi-CS actually completed we do things in the below order: 2706 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way 2707 * any CS can, potentially, complete the multi CS for the specific QID (note 2708 * that once completion is initialized, calling complete* and then wait on the 2709 * completion will cause it to return at once) 2710 * 2. only after allowing multi-CS completion for the specific QID we check whether 2711 * the specific CS already completed (and thus the wait for completion part will 2712 * be skipped). if the CS not completed it is guaranteed that completing CS will 2713 * wake up the completion. 2714 */ 2715 if (fence) 2716 mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map; 2717 2718 /* 2719 * function won't sleep as it is called with timeout 0 (i.e. 2720 * poll the fence) 2721 */ 2722 rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL); 2723 if (rc) { 2724 dev_err(hdev->dev, 2725 "wait_for_fence error :%d for CS seq %llu\n", 2726 rc, seq_arr[i]); 2727 break; 2728 } 2729 2730 switch (status) { 2731 case CS_WAIT_STATUS_BUSY: 2732 /* CS did not finished, QID to wait on already stored */ 2733 break; 2734 case CS_WAIT_STATUS_COMPLETED: 2735 /* 2736 * Using mcs_handling_done to avoid possibility of mcs_data 2737 * returns to user indicating CS completed before it finished 2738 * all of its mcs handling, to avoid race the next time the 2739 * user waits for mcs. 2740 * note: when reaching this case fence is definitely not NULL 2741 * but NULL check was added to overcome static analysis 2742 */ 2743 if (fence && !fence->mcs_handling_done) { 2744 /* 2745 * in case multi CS is completed but MCS handling not done 2746 * we "complete" the multi CS to prevent it from waiting 2747 * until time-out and the "multi-CS handling done" will have 2748 * another chance at the next iteration 2749 */ 2750 complete_all(&mcs_compl->completion); 2751 break; 2752 } 2753 2754 mcs_data->completion_bitmap |= BIT(i); 2755 /* 2756 * For all completed CSs we take the earliest timestamp. 2757 * For this we have to validate that the timestamp is 2758 * earliest of all timestamps so far. 2759 */ 2760 if (fence && mcs_data->update_ts && 2761 (ktime_compare(fence->timestamp, first_cs_time) < 0)) 2762 first_cs_time = fence->timestamp; 2763 break; 2764 case CS_WAIT_STATUS_GONE: 2765 mcs_data->update_ts = false; 2766 mcs_data->gone_cs = true; 2767 /* 2768 * It is possible to get an old sequence numbers from user 2769 * which related to already completed CSs and their fences 2770 * already gone. In this case, CS set as completed but 2771 * no need to consider its QID for mcs completion. 2772 */ 2773 mcs_data->completion_bitmap |= BIT(i); 2774 break; 2775 default: 2776 dev_err(hdev->dev, "Invalid fence status\n"); 2777 rc = -EINVAL; 2778 break; 2779 } 2780 2781 } 2782 2783 hl_fences_put(mcs_data->fence_arr, arr_len); 2784 2785 if (mcs_data->update_ts && 2786 (ktime_compare(first_cs_time, max_ktime) != 0)) 2787 mcs_data->timestamp = ktime_to_ns(first_cs_time); 2788 2789 return rc; 2790 } 2791 2792 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, 2793 enum hl_cs_wait_status *status, s64 *timestamp) 2794 { 2795 struct hl_fence *fence; 2796 int rc = 0; 2797 2798 if (timestamp) 2799 *timestamp = 0; 2800 2801 hl_ctx_get(ctx); 2802 2803 fence = hl_ctx_get_fence(ctx, seq); 2804 2805 rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp); 2806 hl_fence_put(fence); 2807 hl_ctx_put(ctx); 2808 2809 return rc; 2810 } 2811 2812 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs) 2813 { 2814 if (usecs <= U32_MAX) 2815 return usecs_to_jiffies(usecs); 2816 2817 /* 2818 * If the value in nanoseconds is larger than 64 bit, use the largest 2819 * 64 bit value. 2820 */ 2821 if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC))) 2822 return nsecs_to_jiffies(U64_MAX); 2823 2824 return nsecs_to_jiffies(usecs * NSEC_PER_USEC); 2825 } 2826 2827 /* 2828 * hl_wait_multi_cs_completion_init - init completion structure 2829 * 2830 * @hdev: pointer to habanalabs device structure 2831 * @stream_master_bitmap: stream master QIDs map, set bit indicates stream 2832 * master QID to wait on 2833 * 2834 * @return valid completion struct pointer on success, otherwise error pointer 2835 * 2836 * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver. 2837 * the function gets the first available completion (by marking it "used") 2838 * and initialize its values. 2839 */ 2840 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev) 2841 { 2842 struct multi_cs_completion *mcs_compl; 2843 int i; 2844 2845 /* find free multi_cs completion structure */ 2846 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 2847 mcs_compl = &hdev->multi_cs_completion[i]; 2848 spin_lock(&mcs_compl->lock); 2849 if (!mcs_compl->used) { 2850 mcs_compl->used = 1; 2851 mcs_compl->timestamp = 0; 2852 /* 2853 * init QID map to 0 to avoid completion by CSs. the actual QID map 2854 * to multi-CS CSs will be set incrementally at a later stage 2855 */ 2856 mcs_compl->stream_master_qid_map = 0; 2857 spin_unlock(&mcs_compl->lock); 2858 break; 2859 } 2860 spin_unlock(&mcs_compl->lock); 2861 } 2862 2863 if (i == MULTI_CS_MAX_USER_CTX) { 2864 dev_err(hdev->dev, "no available multi-CS completion structure\n"); 2865 return ERR_PTR(-ENOMEM); 2866 } 2867 return mcs_compl; 2868 } 2869 2870 /* 2871 * hl_wait_multi_cs_completion_fini - return completion structure and set as 2872 * unused 2873 * 2874 * @mcs_compl: pointer to the completion structure 2875 */ 2876 static void hl_wait_multi_cs_completion_fini( 2877 struct multi_cs_completion *mcs_compl) 2878 { 2879 /* 2880 * free completion structure, do it under lock to be in-sync with the 2881 * thread that signals completion 2882 */ 2883 spin_lock(&mcs_compl->lock); 2884 mcs_compl->used = 0; 2885 spin_unlock(&mcs_compl->lock); 2886 } 2887 2888 /* 2889 * hl_wait_multi_cs_completion - wait for first CS to complete 2890 * 2891 * @mcs_data: multi-CS internal data 2892 * 2893 * @return 0 on success, otherwise non 0 error code 2894 */ 2895 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data, 2896 struct multi_cs_completion *mcs_compl) 2897 { 2898 long completion_rc; 2899 2900 completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion, 2901 mcs_data->timeout_jiffies); 2902 2903 /* update timestamp */ 2904 if (completion_rc > 0) 2905 mcs_data->timestamp = mcs_compl->timestamp; 2906 2907 if (completion_rc == -ERESTARTSYS) 2908 return completion_rc; 2909 2910 mcs_data->wait_status = completion_rc; 2911 2912 return 0; 2913 } 2914 2915 /* 2916 * hl_multi_cs_completion_init - init array of multi-CS completion structures 2917 * 2918 * @hdev: pointer to habanalabs device structure 2919 */ 2920 void hl_multi_cs_completion_init(struct hl_device *hdev) 2921 { 2922 struct multi_cs_completion *mcs_cmpl; 2923 int i; 2924 2925 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 2926 mcs_cmpl = &hdev->multi_cs_completion[i]; 2927 mcs_cmpl->used = 0; 2928 spin_lock_init(&mcs_cmpl->lock); 2929 init_completion(&mcs_cmpl->completion); 2930 } 2931 } 2932 2933 /* 2934 * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl 2935 * 2936 * @hpriv: pointer to the private data of the fd 2937 * @data: pointer to multi-CS wait ioctl in/out args 2938 * 2939 */ 2940 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) 2941 { 2942 struct multi_cs_completion *mcs_compl; 2943 struct hl_device *hdev = hpriv->hdev; 2944 struct multi_cs_data mcs_data = {}; 2945 union hl_wait_cs_args *args = data; 2946 struct hl_ctx *ctx = hpriv->ctx; 2947 struct hl_fence **fence_arr; 2948 void __user *seq_arr; 2949 u32 size_to_copy; 2950 u64 *cs_seq_arr; 2951 u8 seq_arr_len; 2952 int rc, i; 2953 2954 for (i = 0 ; i < sizeof(args->in.pad) ; i++) 2955 if (args->in.pad[i]) { 2956 dev_dbg(hdev->dev, "Padding bytes must be 0\n"); 2957 return -EINVAL; 2958 } 2959 2960 if (!hdev->supports_wait_for_multi_cs) { 2961 dev_err(hdev->dev, "Wait for multi CS is not supported\n"); 2962 return -EPERM; 2963 } 2964 2965 seq_arr_len = args->in.seq_arr_len; 2966 2967 if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) { 2968 dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n", 2969 HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len); 2970 return -EINVAL; 2971 } 2972 2973 /* allocate memory for sequence array */ 2974 cs_seq_arr = 2975 kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL); 2976 if (!cs_seq_arr) 2977 return -ENOMEM; 2978 2979 /* copy CS sequence array from user */ 2980 seq_arr = (void __user *) (uintptr_t) args->in.seq; 2981 size_to_copy = seq_arr_len * sizeof(*cs_seq_arr); 2982 if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) { 2983 dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n"); 2984 rc = -EFAULT; 2985 goto free_seq_arr; 2986 } 2987 2988 /* allocate array for the fences */ 2989 fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL); 2990 if (!fence_arr) { 2991 rc = -ENOMEM; 2992 goto free_seq_arr; 2993 } 2994 2995 /* initialize the multi-CS internal data */ 2996 mcs_data.ctx = ctx; 2997 mcs_data.seq_arr = cs_seq_arr; 2998 mcs_data.fence_arr = fence_arr; 2999 mcs_data.arr_len = seq_arr_len; 3000 3001 hl_ctx_get(ctx); 3002 3003 /* wait (with timeout) for the first CS to be completed */ 3004 mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us); 3005 mcs_compl = hl_wait_multi_cs_completion_init(hdev); 3006 if (IS_ERR(mcs_compl)) { 3007 rc = PTR_ERR(mcs_compl); 3008 goto put_ctx; 3009 } 3010 3011 /* poll all CS fences, extract timestamp */ 3012 mcs_data.update_ts = true; 3013 rc = hl_cs_poll_fences(&mcs_data, mcs_compl); 3014 /* 3015 * skip wait for CS completion when one of the below is true: 3016 * - an error on the poll function 3017 * - one or more CS in the list completed 3018 * - the user called ioctl with timeout 0 3019 */ 3020 if (rc || mcs_data.completion_bitmap || !args->in.timeout_us) 3021 goto completion_fini; 3022 3023 while (true) { 3024 rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl); 3025 if (rc || (mcs_data.wait_status == 0)) 3026 break; 3027 3028 /* 3029 * poll fences once again to update the CS map. 3030 * no timestamp should be updated this time. 3031 */ 3032 mcs_data.update_ts = false; 3033 rc = hl_cs_poll_fences(&mcs_data, mcs_compl); 3034 3035 if (rc || mcs_data.completion_bitmap) 3036 break; 3037 3038 /* 3039 * if hl_wait_multi_cs_completion returned before timeout (i.e. 3040 * it got a completion) it either got completed by CS in the multi CS list 3041 * (in which case the indication will be non empty completion_bitmap) or it 3042 * got completed by CS submitted to one of the shared stream master but 3043 * not in the multi CS list (in which case we should wait again but modify 3044 * the timeout and set timestamp as zero to let a CS related to the current 3045 * multi-CS set a new, relevant, timestamp) 3046 */ 3047 mcs_data.timeout_jiffies = mcs_data.wait_status; 3048 mcs_compl->timestamp = 0; 3049 } 3050 3051 completion_fini: 3052 hl_wait_multi_cs_completion_fini(mcs_compl); 3053 3054 put_ctx: 3055 hl_ctx_put(ctx); 3056 kfree(fence_arr); 3057 3058 free_seq_arr: 3059 kfree(cs_seq_arr); 3060 3061 if (rc == -ERESTARTSYS) { 3062 dev_err_ratelimited(hdev->dev, 3063 "user process got signal while waiting for Multi-CS\n"); 3064 rc = -EINTR; 3065 } 3066 3067 if (rc) 3068 return rc; 3069 3070 /* update output args */ 3071 memset(args, 0, sizeof(*args)); 3072 3073 if (mcs_data.completion_bitmap) { 3074 args->out.status = HL_WAIT_CS_STATUS_COMPLETED; 3075 args->out.cs_completion_map = mcs_data.completion_bitmap; 3076 3077 /* if timestamp not 0- it's valid */ 3078 if (mcs_data.timestamp) { 3079 args->out.timestamp_nsec = mcs_data.timestamp; 3080 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3081 } 3082 3083 /* update if some CS was gone */ 3084 if (!mcs_data.timestamp) 3085 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; 3086 } else { 3087 args->out.status = HL_WAIT_CS_STATUS_BUSY; 3088 } 3089 3090 return 0; 3091 } 3092 3093 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3094 { 3095 struct hl_device *hdev = hpriv->hdev; 3096 union hl_wait_cs_args *args = data; 3097 enum hl_cs_wait_status status; 3098 u64 seq = args->in.seq; 3099 s64 timestamp; 3100 int rc; 3101 3102 rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, ×tamp); 3103 3104 if (rc == -ERESTARTSYS) { 3105 dev_err_ratelimited(hdev->dev, 3106 "user process got signal while waiting for CS handle %llu\n", 3107 seq); 3108 return -EINTR; 3109 } 3110 3111 memset(args, 0, sizeof(*args)); 3112 3113 if (rc) { 3114 if (rc == -ETIMEDOUT) { 3115 dev_err_ratelimited(hdev->dev, 3116 "CS %llu has timed-out while user process is waiting for it\n", 3117 seq); 3118 args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT; 3119 } else if (rc == -EIO) { 3120 dev_err_ratelimited(hdev->dev, 3121 "CS %llu has been aborted while user process is waiting for it\n", 3122 seq); 3123 args->out.status = HL_WAIT_CS_STATUS_ABORTED; 3124 } 3125 return rc; 3126 } 3127 3128 if (timestamp) { 3129 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3130 args->out.timestamp_nsec = timestamp; 3131 } 3132 3133 switch (status) { 3134 case CS_WAIT_STATUS_GONE: 3135 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; 3136 fallthrough; 3137 case CS_WAIT_STATUS_COMPLETED: 3138 args->out.status = HL_WAIT_CS_STATUS_COMPLETED; 3139 break; 3140 case CS_WAIT_STATUS_BUSY: 3141 default: 3142 args->out.status = HL_WAIT_CS_STATUS_BUSY; 3143 break; 3144 } 3145 3146 return 0; 3147 } 3148 3149 static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf, 3150 struct hl_cb *cq_cb, 3151 u64 ts_offset, u64 cq_offset, u64 target_value, 3152 spinlock_t *wait_list_lock, 3153 struct hl_user_pending_interrupt **pend) 3154 { 3155 struct hl_ts_buff *ts_buff = buf->private; 3156 struct hl_user_pending_interrupt *requested_offset_record = 3157 (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + 3158 ts_offset; 3159 struct hl_user_pending_interrupt *cb_last = 3160 (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + 3161 (ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt)); 3162 unsigned long flags, iter_counter = 0; 3163 u64 current_cq_counter; 3164 ktime_t timestamp; 3165 3166 /* Validate ts_offset not exceeding last max */ 3167 if (requested_offset_record >= cb_last) { 3168 dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n", 3169 (u64)(uintptr_t)cb_last); 3170 return -EINVAL; 3171 } 3172 3173 timestamp = ktime_get(); 3174 3175 start_over: 3176 spin_lock_irqsave(wait_list_lock, flags); 3177 3178 /* Unregister only if we didn't reach the target value 3179 * since in this case there will be no handling in irq context 3180 * and then it's safe to delete the node out of the interrupt list 3181 * then re-use it on other interrupt 3182 */ 3183 if (requested_offset_record->ts_reg_info.in_use) { 3184 current_cq_counter = *requested_offset_record->cq_kernel_addr; 3185 if (current_cq_counter < requested_offset_record->cq_target_value) { 3186 list_del(&requested_offset_record->wait_list_node); 3187 spin_unlock_irqrestore(wait_list_lock, flags); 3188 3189 hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf); 3190 hl_cb_put(requested_offset_record->ts_reg_info.cq_cb); 3191 3192 dev_dbg(buf->mmg->dev, 3193 "ts node removed from interrupt list now can re-use\n"); 3194 } else { 3195 dev_dbg(buf->mmg->dev, 3196 "ts node in middle of irq handling\n"); 3197 3198 /* irq handling in the middle give it time to finish */ 3199 spin_unlock_irqrestore(wait_list_lock, flags); 3200 usleep_range(100, 1000); 3201 if (++iter_counter == MAX_TS_ITER_NUM) { 3202 dev_err(buf->mmg->dev, 3203 "Timestamp offset processing reached timeout of %lld ms\n", 3204 ktime_ms_delta(ktime_get(), timestamp)); 3205 return -EAGAIN; 3206 } 3207 3208 goto start_over; 3209 } 3210 } else { 3211 /* Fill up the new registration node info */ 3212 requested_offset_record->ts_reg_info.buf = buf; 3213 requested_offset_record->ts_reg_info.cq_cb = cq_cb; 3214 requested_offset_record->ts_reg_info.timestamp_kernel_addr = 3215 (u64 *) ts_buff->user_buff_address + ts_offset; 3216 requested_offset_record->cq_kernel_addr = 3217 (u64 *) cq_cb->kernel_address + cq_offset; 3218 requested_offset_record->cq_target_value = target_value; 3219 3220 spin_unlock_irqrestore(wait_list_lock, flags); 3221 } 3222 3223 *pend = requested_offset_record; 3224 3225 dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n", 3226 requested_offset_record); 3227 return 0; 3228 } 3229 3230 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, 3231 struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg, 3232 u64 timeout_us, u64 cq_counters_handle, u64 cq_counters_offset, 3233 u64 target_value, struct hl_user_interrupt *interrupt, 3234 bool register_ts_record, u64 ts_handle, u64 ts_offset, 3235 u32 *status, u64 *timestamp) 3236 { 3237 struct hl_user_pending_interrupt *pend; 3238 struct hl_mmap_mem_buf *buf; 3239 struct hl_cb *cq_cb; 3240 unsigned long timeout, flags; 3241 long completion_rc; 3242 int rc = 0; 3243 3244 timeout = hl_usecs64_to_jiffies(timeout_us); 3245 3246 hl_ctx_get(ctx); 3247 3248 cq_cb = hl_cb_get(cb_mmg, cq_counters_handle); 3249 if (!cq_cb) { 3250 rc = -EINVAL; 3251 goto put_ctx; 3252 } 3253 3254 /* Validate the cq offset */ 3255 if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >= 3256 ((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) { 3257 rc = -EINVAL; 3258 goto put_cq_cb; 3259 } 3260 3261 if (register_ts_record) { 3262 dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n", 3263 interrupt->interrupt_id, ts_offset, cq_counters_offset); 3264 buf = hl_mmap_mem_buf_get(mmg, ts_handle); 3265 if (!buf) { 3266 rc = -EINVAL; 3267 goto put_cq_cb; 3268 } 3269 3270 /* get ts buffer record */ 3271 rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset, 3272 cq_counters_offset, target_value, 3273 &interrupt->wait_list_lock, &pend); 3274 if (rc) 3275 goto put_ts_buff; 3276 } else { 3277 pend = kzalloc(sizeof(*pend), GFP_KERNEL); 3278 if (!pend) { 3279 rc = -ENOMEM; 3280 goto put_cq_cb; 3281 } 3282 hl_fence_init(&pend->fence, ULONG_MAX); 3283 pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset; 3284 pend->cq_target_value = target_value; 3285 } 3286 3287 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3288 3289 /* We check for completion value as interrupt could have been received 3290 * before we added the node to the wait list 3291 */ 3292 if (*pend->cq_kernel_addr >= target_value) { 3293 if (register_ts_record) 3294 pend->ts_reg_info.in_use = 0; 3295 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3296 3297 *status = HL_WAIT_CS_STATUS_COMPLETED; 3298 3299 if (register_ts_record) { 3300 *pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns(); 3301 goto put_ts_buff; 3302 } else { 3303 pend->fence.timestamp = ktime_get(); 3304 goto set_timestamp; 3305 } 3306 } else if (!timeout_us) { 3307 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3308 *status = HL_WAIT_CS_STATUS_BUSY; 3309 pend->fence.timestamp = ktime_get(); 3310 goto set_timestamp; 3311 } 3312 3313 /* Add pending user interrupt to relevant list for the interrupt 3314 * handler to monitor. 3315 * Note that we cannot have sorted list by target value, 3316 * in order to shorten the list pass loop, since 3317 * same list could have nodes for different cq counter handle. 3318 * Note: 3319 * Mark ts buff offset as in use here in the spinlock protection area 3320 * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record 3321 * before adding the node to the list. this scenario might happen when 3322 * multiple threads are racing on same offset and one thread could 3323 * set the ts buff in ts_buff_get_kernel_ts_record then the other thread 3324 * takes over and get to ts_buff_get_kernel_ts_record and then we will try 3325 * to re-use the same ts buff offset, and will try to delete a non existing 3326 * node from the list. 3327 */ 3328 if (register_ts_record) 3329 pend->ts_reg_info.in_use = 1; 3330 3331 list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); 3332 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3333 3334 if (register_ts_record) { 3335 rc = *status = HL_WAIT_CS_STATUS_COMPLETED; 3336 goto ts_registration_exit; 3337 } 3338 3339 /* Wait for interrupt handler to signal completion */ 3340 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, 3341 timeout); 3342 if (completion_rc > 0) { 3343 *status = HL_WAIT_CS_STATUS_COMPLETED; 3344 } else { 3345 if (completion_rc == -ERESTARTSYS) { 3346 dev_err_ratelimited(hdev->dev, 3347 "user process got signal while waiting for interrupt ID %d\n", 3348 interrupt->interrupt_id); 3349 rc = -EINTR; 3350 *status = HL_WAIT_CS_STATUS_ABORTED; 3351 } else { 3352 if (pend->fence.error == -EIO) { 3353 dev_err_ratelimited(hdev->dev, 3354 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", 3355 pend->fence.error); 3356 rc = -EIO; 3357 *status = HL_WAIT_CS_STATUS_ABORTED; 3358 } else { 3359 /* The wait has timed-out. We don't know anything beyond that 3360 * because the workload wasn't submitted through the driver. 3361 * Therefore, from driver's perspective, the workload is still 3362 * executing. 3363 */ 3364 rc = 0; 3365 *status = HL_WAIT_CS_STATUS_BUSY; 3366 } 3367 } 3368 } 3369 3370 /* 3371 * We keep removing the node from list here, and not at the irq handler 3372 * for completion timeout case. and if it's a registration 3373 * for ts record, the node will be deleted in the irq handler after 3374 * we reach the target value. 3375 */ 3376 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3377 list_del(&pend->wait_list_node); 3378 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3379 3380 set_timestamp: 3381 *timestamp = ktime_to_ns(pend->fence.timestamp); 3382 kfree(pend); 3383 hl_cb_put(cq_cb); 3384 ts_registration_exit: 3385 hl_ctx_put(ctx); 3386 3387 return rc; 3388 3389 put_ts_buff: 3390 hl_mmap_mem_buf_put(buf); 3391 put_cq_cb: 3392 hl_cb_put(cq_cb); 3393 put_ctx: 3394 hl_ctx_put(ctx); 3395 3396 return rc; 3397 } 3398 3399 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx, 3400 u64 timeout_us, u64 user_address, 3401 u64 target_value, struct hl_user_interrupt *interrupt, 3402 u32 *status, 3403 u64 *timestamp) 3404 { 3405 struct hl_user_pending_interrupt *pend; 3406 unsigned long timeout, flags; 3407 u64 completion_value; 3408 long completion_rc; 3409 int rc = 0; 3410 3411 timeout = hl_usecs64_to_jiffies(timeout_us); 3412 3413 hl_ctx_get(ctx); 3414 3415 pend = kzalloc(sizeof(*pend), GFP_KERNEL); 3416 if (!pend) { 3417 hl_ctx_put(ctx); 3418 return -ENOMEM; 3419 } 3420 3421 hl_fence_init(&pend->fence, ULONG_MAX); 3422 3423 /* Add pending user interrupt to relevant list for the interrupt 3424 * handler to monitor 3425 */ 3426 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3427 list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); 3428 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3429 3430 /* We check for completion value as interrupt could have been received 3431 * before we added the node to the wait list 3432 */ 3433 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { 3434 dev_err(hdev->dev, "Failed to copy completion value from user\n"); 3435 rc = -EFAULT; 3436 goto remove_pending_user_interrupt; 3437 } 3438 3439 if (completion_value >= target_value) { 3440 *status = HL_WAIT_CS_STATUS_COMPLETED; 3441 /* There was no interrupt, we assume the completion is now. */ 3442 pend->fence.timestamp = ktime_get(); 3443 } else { 3444 *status = HL_WAIT_CS_STATUS_BUSY; 3445 } 3446 3447 if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED)) 3448 goto remove_pending_user_interrupt; 3449 3450 wait_again: 3451 /* Wait for interrupt handler to signal completion */ 3452 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, 3453 timeout); 3454 3455 /* If timeout did not expire we need to perform the comparison. 3456 * If comparison fails, keep waiting until timeout expires 3457 */ 3458 if (completion_rc > 0) { 3459 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3460 /* reinit_completion must be called before we check for user 3461 * completion value, otherwise, if interrupt is received after 3462 * the comparison and before the next wait_for_completion, 3463 * we will reach timeout and fail 3464 */ 3465 reinit_completion(&pend->fence.completion); 3466 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3467 3468 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { 3469 dev_err(hdev->dev, "Failed to copy completion value from user\n"); 3470 rc = -EFAULT; 3471 3472 goto remove_pending_user_interrupt; 3473 } 3474 3475 if (completion_value >= target_value) { 3476 *status = HL_WAIT_CS_STATUS_COMPLETED; 3477 } else if (pend->fence.error) { 3478 dev_err_ratelimited(hdev->dev, 3479 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", 3480 pend->fence.error); 3481 /* set the command completion status as ABORTED */ 3482 *status = HL_WAIT_CS_STATUS_ABORTED; 3483 } else { 3484 timeout = completion_rc; 3485 goto wait_again; 3486 } 3487 } else if (completion_rc == -ERESTARTSYS) { 3488 dev_err_ratelimited(hdev->dev, 3489 "user process got signal while waiting for interrupt ID %d\n", 3490 interrupt->interrupt_id); 3491 rc = -EINTR; 3492 } else { 3493 /* The wait has timed-out. We don't know anything beyond that 3494 * because the workload wasn't submitted through the driver. 3495 * Therefore, from driver's perspective, the workload is still 3496 * executing. 3497 */ 3498 rc = 0; 3499 *status = HL_WAIT_CS_STATUS_BUSY; 3500 } 3501 3502 remove_pending_user_interrupt: 3503 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3504 list_del(&pend->wait_list_node); 3505 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3506 3507 *timestamp = ktime_to_ns(pend->fence.timestamp); 3508 3509 kfree(pend); 3510 hl_ctx_put(ctx); 3511 3512 return rc; 3513 } 3514 3515 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3516 { 3517 u16 interrupt_id, first_interrupt, last_interrupt; 3518 struct hl_device *hdev = hpriv->hdev; 3519 struct asic_fixed_properties *prop; 3520 struct hl_user_interrupt *interrupt; 3521 union hl_wait_cs_args *args = data; 3522 u32 status = HL_WAIT_CS_STATUS_BUSY; 3523 u64 timestamp = 0; 3524 int rc, int_idx; 3525 3526 prop = &hdev->asic_prop; 3527 3528 if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) { 3529 dev_err(hdev->dev, "no user interrupts allowed"); 3530 return -EPERM; 3531 } 3532 3533 interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags); 3534 3535 first_interrupt = prop->first_available_user_interrupt; 3536 last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1; 3537 3538 if (interrupt_id < prop->user_dec_intr_count) { 3539 3540 /* Check if the requested core is enabled */ 3541 if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) { 3542 dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed", 3543 interrupt_id); 3544 return -EINVAL; 3545 } 3546 3547 interrupt = &hdev->user_interrupt[interrupt_id]; 3548 3549 } else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) { 3550 3551 int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count; 3552 interrupt = &hdev->user_interrupt[int_idx]; 3553 3554 } else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) { 3555 interrupt = &hdev->common_user_cq_interrupt; 3556 } else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) { 3557 interrupt = &hdev->common_decoder_interrupt; 3558 } else { 3559 dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id); 3560 return -EINVAL; 3561 } 3562 3563 if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) 3564 rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr, 3565 args->in.interrupt_timeout_us, args->in.cq_counters_handle, 3566 args->in.cq_counters_offset, 3567 args->in.target, interrupt, 3568 !!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT), 3569 args->in.timestamp_handle, args->in.timestamp_offset, 3570 &status, ×tamp); 3571 else 3572 rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx, 3573 args->in.interrupt_timeout_us, args->in.addr, 3574 args->in.target, interrupt, &status, 3575 ×tamp); 3576 if (rc) 3577 return rc; 3578 3579 memset(args, 0, sizeof(*args)); 3580 args->out.status = status; 3581 3582 if (timestamp) { 3583 args->out.timestamp_nsec = timestamp; 3584 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3585 } 3586 3587 return 0; 3588 } 3589 3590 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3591 { 3592 struct hl_device *hdev = hpriv->hdev; 3593 union hl_wait_cs_args *args = data; 3594 u32 flags = args->in.flags; 3595 int rc; 3596 3597 /* If the device is not operational, or if an error has happened and user should release the 3598 * device, there is no point in waiting for any command submission or user interrupt. 3599 */ 3600 if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active) 3601 return -EBUSY; 3602 3603 if (flags & HL_WAIT_CS_FLAGS_INTERRUPT) 3604 rc = hl_interrupt_wait_ioctl(hpriv, data); 3605 else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS) 3606 rc = hl_multi_cs_wait_ioctl(hpriv, data); 3607 else 3608 rc = hl_cs_wait_ioctl(hpriv, data); 3609 3610 return rc; 3611 } 3612