1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2021 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include <uapi/drm/habanalabs_accel.h> 9 #include "habanalabs.h" 10 11 #include <linux/uaccess.h> 12 #include <linux/slab.h> 13 14 #define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \ 15 HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \ 16 HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \ 17 HL_CS_FLAGS_ENGINES_COMMAND | HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) 18 19 20 #define MAX_TS_ITER_NUM 100 21 22 /** 23 * enum hl_cs_wait_status - cs wait status 24 * @CS_WAIT_STATUS_BUSY: cs was not completed yet 25 * @CS_WAIT_STATUS_COMPLETED: cs completed 26 * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone 27 */ 28 enum hl_cs_wait_status { 29 CS_WAIT_STATUS_BUSY, 30 CS_WAIT_STATUS_COMPLETED, 31 CS_WAIT_STATUS_GONE 32 }; 33 34 static void job_wq_completion(struct work_struct *work); 35 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, 36 enum hl_cs_wait_status *status, s64 *timestamp); 37 static void cs_do_release(struct kref *ref); 38 39 static void hl_push_cs_outcome(struct hl_device *hdev, 40 struct hl_cs_outcome_store *outcome_store, 41 u64 seq, ktime_t ts, int error) 42 { 43 struct hl_cs_outcome *node; 44 unsigned long flags; 45 46 /* 47 * CS outcome store supports the following operations: 48 * push outcome - store a recent CS outcome in the store 49 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store 50 * It uses 2 lists: used list and free list. 51 * It has a pre-allocated amount of nodes, each node stores 52 * a single CS outcome. 53 * Initially, all the nodes are in the free list. 54 * On push outcome, a node (any) is taken from the free list, its 55 * information is filled in, and the node is moved to the used list. 56 * It is possible, that there are no nodes left in the free list. 57 * In this case, we will lose some information about old outcomes. We 58 * will pop the OLDEST node from the used list, and make it free. 59 * On pop, the node is searched for in the used list (using a search 60 * index). 61 * If found, the node is then removed from the used list, and moved 62 * back to the free list. The outcome data that the node contained is 63 * returned back to the user. 64 */ 65 66 spin_lock_irqsave(&outcome_store->db_lock, flags); 67 68 if (list_empty(&outcome_store->free_list)) { 69 node = list_last_entry(&outcome_store->used_list, 70 struct hl_cs_outcome, list_link); 71 hash_del(&node->map_link); 72 dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq); 73 } else { 74 node = list_last_entry(&outcome_store->free_list, 75 struct hl_cs_outcome, list_link); 76 } 77 78 list_del_init(&node->list_link); 79 80 node->seq = seq; 81 node->ts = ts; 82 node->error = error; 83 84 list_add(&node->list_link, &outcome_store->used_list); 85 hash_add(outcome_store->outcome_map, &node->map_link, node->seq); 86 87 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 88 } 89 90 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store, 91 u64 seq, ktime_t *ts, int *error) 92 { 93 struct hl_cs_outcome *node; 94 unsigned long flags; 95 96 spin_lock_irqsave(&outcome_store->db_lock, flags); 97 98 hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq) 99 if (node->seq == seq) { 100 *ts = node->ts; 101 *error = node->error; 102 103 hash_del(&node->map_link); 104 list_del_init(&node->list_link); 105 list_add(&node->list_link, &outcome_store->free_list); 106 107 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 108 109 return true; 110 } 111 112 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 113 114 return false; 115 } 116 117 static void hl_sob_reset(struct kref *ref) 118 { 119 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, 120 kref); 121 struct hl_device *hdev = hw_sob->hdev; 122 123 dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id); 124 125 hdev->asic_funcs->reset_sob(hdev, hw_sob); 126 127 hw_sob->need_reset = false; 128 } 129 130 void hl_sob_reset_error(struct kref *ref) 131 { 132 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, 133 kref); 134 struct hl_device *hdev = hw_sob->hdev; 135 136 dev_crit(hdev->dev, 137 "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n", 138 hw_sob->q_idx, hw_sob->sob_id); 139 } 140 141 void hw_sob_put(struct hl_hw_sob *hw_sob) 142 { 143 if (hw_sob) 144 kref_put(&hw_sob->kref, hl_sob_reset); 145 } 146 147 static void hw_sob_put_err(struct hl_hw_sob *hw_sob) 148 { 149 if (hw_sob) 150 kref_put(&hw_sob->kref, hl_sob_reset_error); 151 } 152 153 void hw_sob_get(struct hl_hw_sob *hw_sob) 154 { 155 if (hw_sob) 156 kref_get(&hw_sob->kref); 157 } 158 159 /** 160 * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet 161 * @sob_base: sob base id 162 * @sob_mask: sob user mask, each bit represents a sob offset from sob base 163 * @mask: generated mask 164 * 165 * Return: 0 if given parameters are valid 166 */ 167 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask) 168 { 169 int i; 170 171 if (sob_mask == 0) 172 return -EINVAL; 173 174 if (sob_mask == 0x1) { 175 *mask = ~(1 << (sob_base & 0x7)); 176 } else { 177 /* find msb in order to verify sob range is valid */ 178 for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--) 179 if (BIT(i) & sob_mask) 180 break; 181 182 if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1)) 183 return -EINVAL; 184 185 *mask = ~sob_mask; 186 } 187 188 return 0; 189 } 190 191 static void hl_fence_release(struct kref *kref) 192 { 193 struct hl_fence *fence = 194 container_of(kref, struct hl_fence, refcount); 195 struct hl_cs_compl *hl_cs_cmpl = 196 container_of(fence, struct hl_cs_compl, base_fence); 197 198 kfree(hl_cs_cmpl); 199 } 200 201 void hl_fence_put(struct hl_fence *fence) 202 { 203 if (IS_ERR_OR_NULL(fence)) 204 return; 205 kref_put(&fence->refcount, hl_fence_release); 206 } 207 208 void hl_fences_put(struct hl_fence **fence, int len) 209 { 210 int i; 211 212 for (i = 0; i < len; i++, fence++) 213 hl_fence_put(*fence); 214 } 215 216 void hl_fence_get(struct hl_fence *fence) 217 { 218 if (fence) 219 kref_get(&fence->refcount); 220 } 221 222 static void hl_fence_init(struct hl_fence *fence, u64 sequence) 223 { 224 kref_init(&fence->refcount); 225 fence->cs_sequence = sequence; 226 fence->error = 0; 227 fence->timestamp = ktime_set(0, 0); 228 fence->mcs_handling_done = false; 229 init_completion(&fence->completion); 230 } 231 232 void cs_get(struct hl_cs *cs) 233 { 234 kref_get(&cs->refcount); 235 } 236 237 static int cs_get_unless_zero(struct hl_cs *cs) 238 { 239 return kref_get_unless_zero(&cs->refcount); 240 } 241 242 static void cs_put(struct hl_cs *cs) 243 { 244 kref_put(&cs->refcount, cs_do_release); 245 } 246 247 static void cs_job_do_release(struct kref *ref) 248 { 249 struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount); 250 251 kfree(job); 252 } 253 254 static void hl_cs_job_put(struct hl_cs_job *job) 255 { 256 kref_put(&job->refcount, cs_job_do_release); 257 } 258 259 bool cs_needs_completion(struct hl_cs *cs) 260 { 261 /* In case this is a staged CS, only the last CS in sequence should 262 * get a completion, any non staged CS will always get a completion 263 */ 264 if (cs->staged_cs && !cs->staged_last) 265 return false; 266 267 return true; 268 } 269 270 bool cs_needs_timeout(struct hl_cs *cs) 271 { 272 /* In case this is a staged CS, only the first CS in sequence should 273 * get a timeout, any non staged CS will always get a timeout 274 */ 275 if (cs->staged_cs && !cs->staged_first) 276 return false; 277 278 return true; 279 } 280 281 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job) 282 { 283 /* Patched CB is created for external queues jobs */ 284 return (job->queue_type == QUEUE_TYPE_EXT); 285 } 286 287 /* 288 * cs_parser - parse the user command submission 289 * 290 * @hpriv : pointer to the private data of the fd 291 * @job : pointer to the job that holds the command submission info 292 * 293 * The function parses the command submission of the user. It calls the 294 * ASIC specific parser, which returns a list of memory blocks to send 295 * to the device as different command buffers 296 * 297 */ 298 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job) 299 { 300 struct hl_device *hdev = hpriv->hdev; 301 struct hl_cs_parser parser; 302 int rc; 303 304 parser.ctx_id = job->cs->ctx->asid; 305 parser.cs_sequence = job->cs->sequence; 306 parser.job_id = job->id; 307 308 parser.hw_queue_id = job->hw_queue_id; 309 parser.job_userptr_list = &job->userptr_list; 310 parser.patched_cb = NULL; 311 parser.user_cb = job->user_cb; 312 parser.user_cb_size = job->user_cb_size; 313 parser.queue_type = job->queue_type; 314 parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb; 315 job->patched_cb = NULL; 316 parser.completion = cs_needs_completion(job->cs); 317 318 rc = hdev->asic_funcs->cs_parser(hdev, &parser); 319 320 if (is_cb_patched(hdev, job)) { 321 if (!rc) { 322 job->patched_cb = parser.patched_cb; 323 job->job_cb_size = parser.patched_cb_size; 324 job->contains_dma_pkt = parser.contains_dma_pkt; 325 atomic_inc(&job->patched_cb->cs_cnt); 326 } 327 328 /* 329 * Whether the parsing worked or not, we don't need the 330 * original CB anymore because it was already parsed and 331 * won't be accessed again for this CS 332 */ 333 atomic_dec(&job->user_cb->cs_cnt); 334 hl_cb_put(job->user_cb); 335 job->user_cb = NULL; 336 } else if (!rc) { 337 job->job_cb_size = job->user_cb_size; 338 } 339 340 return rc; 341 } 342 343 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job) 344 { 345 struct hl_cs *cs = job->cs; 346 347 if (is_cb_patched(hdev, job)) { 348 hl_userptr_delete_list(hdev, &job->userptr_list); 349 350 /* 351 * We might arrive here from rollback and patched CB wasn't 352 * created, so we need to check it's not NULL 353 */ 354 if (job->patched_cb) { 355 atomic_dec(&job->patched_cb->cs_cnt); 356 hl_cb_put(job->patched_cb); 357 } 358 } 359 360 /* For H/W queue jobs, if a user CB was allocated by driver, 361 * the user CB isn't released in cs_parser() and thus should be 362 * released here. This is also true for INT queues jobs which were 363 * allocated by driver. 364 */ 365 if (job->is_kernel_allocated_cb && 366 (job->queue_type == QUEUE_TYPE_HW || job->queue_type == QUEUE_TYPE_INT)) { 367 atomic_dec(&job->user_cb->cs_cnt); 368 hl_cb_put(job->user_cb); 369 } 370 371 /* 372 * This is the only place where there can be multiple threads 373 * modifying the list at the same time 374 */ 375 spin_lock(&cs->job_lock); 376 list_del(&job->cs_node); 377 spin_unlock(&cs->job_lock); 378 379 hl_debugfs_remove_job(hdev, job); 380 381 /* We decrement reference only for a CS that gets completion 382 * because the reference was incremented only for this kind of CS 383 * right before it was scheduled. 384 * 385 * In staged submission, only the last CS marked as 'staged_last' 386 * gets completion, hence its release function will be called from here. 387 * As for all the rest CS's in the staged submission which do not get 388 * completion, their CS reference will be decremented by the 389 * 'staged_last' CS during the CS release flow. 390 * All relevant PQ CI counters will be incremented during the CS release 391 * flow by calling 'hl_hw_queue_update_ci'. 392 */ 393 if (cs_needs_completion(cs) && 394 (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) { 395 396 /* In CS based completions, the timestamp is already available, 397 * so no need to extract it from job 398 */ 399 if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB) 400 cs->completion_timestamp = job->timestamp; 401 402 cs_put(cs); 403 } 404 405 hl_cs_job_put(job); 406 } 407 408 /* 409 * hl_staged_cs_find_first - locate the first CS in this staged submission 410 * 411 * @hdev: pointer to device structure 412 * @cs_seq: staged submission sequence number 413 * 414 * @note: This function must be called under 'hdev->cs_mirror_lock' 415 * 416 * Find and return a CS pointer with the given sequence 417 */ 418 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq) 419 { 420 struct hl_cs *cs; 421 422 list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node) 423 if (cs->staged_cs && cs->staged_first && 424 cs->sequence == cs_seq) 425 return cs; 426 427 return NULL; 428 } 429 430 /* 431 * is_staged_cs_last_exists - returns true if the last CS in sequence exists 432 * 433 * @hdev: pointer to device structure 434 * @cs: staged submission member 435 * 436 */ 437 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs) 438 { 439 struct hl_cs *last_entry; 440 441 last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs, 442 staged_cs_node); 443 444 if (last_entry->staged_last) 445 return true; 446 447 return false; 448 } 449 450 /* 451 * staged_cs_get - get CS reference if this CS is a part of a staged CS 452 * 453 * @hdev: pointer to device structure 454 * @cs: current CS 455 * @cs_seq: staged submission sequence number 456 * 457 * Increment CS reference for every CS in this staged submission except for 458 * the CS which get completion. 459 */ 460 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs) 461 { 462 /* Only the last CS in this staged submission will get a completion. 463 * We must increment the reference for all other CS's in this 464 * staged submission. 465 * Once we get a completion we will release the whole staged submission. 466 */ 467 if (!cs->staged_last) 468 cs_get(cs); 469 } 470 471 /* 472 * staged_cs_put - put a CS in case it is part of staged submission 473 * 474 * @hdev: pointer to device structure 475 * @cs: CS to put 476 * 477 * This function decrements a CS reference (for a non completion CS) 478 */ 479 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs) 480 { 481 /* We release all CS's in a staged submission except the last 482 * CS which we have never incremented its reference. 483 */ 484 if (!cs_needs_completion(cs)) 485 cs_put(cs); 486 } 487 488 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs) 489 { 490 struct hl_cs *next = NULL, *iter, *first_cs; 491 492 if (!cs_needs_timeout(cs)) 493 return; 494 495 spin_lock(&hdev->cs_mirror_lock); 496 497 /* We need to handle tdr only once for the complete staged submission. 498 * Hence, we choose the CS that reaches this function first which is 499 * the CS marked as 'staged_last'. 500 * In case single staged cs was submitted which has both first and last 501 * indications, then "cs_find_first" below will return NULL, since we 502 * removed the cs node from the list before getting here, 503 * in such cases just continue with the cs to cancel it's TDR work. 504 */ 505 if (cs->staged_cs && cs->staged_last) { 506 first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence); 507 if (first_cs) 508 cs = first_cs; 509 } 510 511 spin_unlock(&hdev->cs_mirror_lock); 512 513 /* Don't cancel TDR in case this CS was timedout because we might be 514 * running from the TDR context 515 */ 516 if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT) 517 return; 518 519 if (cs->tdr_active) 520 cancel_delayed_work_sync(&cs->work_tdr); 521 522 spin_lock(&hdev->cs_mirror_lock); 523 524 /* queue TDR for next CS */ 525 list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node) 526 if (cs_needs_timeout(iter)) { 527 next = iter; 528 break; 529 } 530 531 if (next && !next->tdr_active) { 532 next->tdr_active = true; 533 schedule_delayed_work(&next->work_tdr, next->timeout_jiffies); 534 } 535 536 spin_unlock(&hdev->cs_mirror_lock); 537 } 538 539 /* 540 * force_complete_multi_cs - complete all contexts that wait on multi-CS 541 * 542 * @hdev: pointer to habanalabs device structure 543 */ 544 static void force_complete_multi_cs(struct hl_device *hdev) 545 { 546 int i; 547 548 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 549 struct multi_cs_completion *mcs_compl; 550 551 mcs_compl = &hdev->multi_cs_completion[i]; 552 553 spin_lock(&mcs_compl->lock); 554 555 if (!mcs_compl->used) { 556 spin_unlock(&mcs_compl->lock); 557 continue; 558 } 559 560 /* when calling force complete no context should be waiting on 561 * multi-cS. 562 * We are calling the function as a protection for such case 563 * to free any pending context and print error message 564 */ 565 dev_err(hdev->dev, 566 "multi-CS completion context %d still waiting when calling force completion\n", 567 i); 568 complete_all(&mcs_compl->completion); 569 spin_unlock(&mcs_compl->lock); 570 } 571 } 572 573 /* 574 * complete_multi_cs - complete all waiting entities on multi-CS 575 * 576 * @hdev: pointer to habanalabs device structure 577 * @cs: CS structure 578 * The function signals a waiting entity that has an overlapping stream masters 579 * with the completed CS. 580 * For example: 581 * - a completed CS worked on stream master QID 4, multi CS completion 582 * is actively waiting on stream master QIDs 3, 5. don't send signal as no 583 * common stream master QID 584 * - a completed CS worked on stream master QID 4, multi CS completion 585 * is actively waiting on stream master QIDs 3, 4. send signal as stream 586 * master QID 4 is common 587 */ 588 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs) 589 { 590 struct hl_fence *fence = cs->fence; 591 int i; 592 593 /* in case of multi CS check for completion only for the first CS */ 594 if (cs->staged_cs && !cs->staged_first) 595 return; 596 597 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 598 struct multi_cs_completion *mcs_compl; 599 600 mcs_compl = &hdev->multi_cs_completion[i]; 601 if (!mcs_compl->used) 602 continue; 603 604 spin_lock(&mcs_compl->lock); 605 606 /* 607 * complete if: 608 * 1. still waiting for completion 609 * 2. the completed CS has at least one overlapping stream 610 * master with the stream masters in the completion 611 */ 612 if (mcs_compl->used && 613 (fence->stream_master_qid_map & 614 mcs_compl->stream_master_qid_map)) { 615 /* extract the timestamp only of first completed CS */ 616 if (!mcs_compl->timestamp) 617 mcs_compl->timestamp = ktime_to_ns(fence->timestamp); 618 619 complete_all(&mcs_compl->completion); 620 621 /* 622 * Setting mcs_handling_done inside the lock ensures 623 * at least one fence have mcs_handling_done set to 624 * true before wait for mcs finish. This ensures at 625 * least one CS will be set as completed when polling 626 * mcs fences. 627 */ 628 fence->mcs_handling_done = true; 629 } 630 631 spin_unlock(&mcs_compl->lock); 632 } 633 /* In case CS completed without mcs completion initialized */ 634 fence->mcs_handling_done = true; 635 } 636 637 static inline void cs_release_sob_reset_handler(struct hl_device *hdev, 638 struct hl_cs *cs, 639 struct hl_cs_compl *hl_cs_cmpl) 640 { 641 /* Skip this handler if the cs wasn't submitted, to avoid putting 642 * the hw_sob twice, since this case already handled at this point, 643 * also skip if the hw_sob pointer wasn't set. 644 */ 645 if (!hl_cs_cmpl->hw_sob || !cs->submitted) 646 return; 647 648 spin_lock(&hl_cs_cmpl->lock); 649 650 /* 651 * we get refcount upon reservation of signals or signal/wait cs for the 652 * hw_sob object, and need to put it when the first staged cs 653 * (which contains the encaps signals) or cs signal/wait is completed. 654 */ 655 if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) || 656 (hl_cs_cmpl->type == CS_TYPE_WAIT) || 657 (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) || 658 (!!hl_cs_cmpl->encaps_signals)) { 659 dev_dbg(hdev->dev, 660 "CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n", 661 hl_cs_cmpl->cs_seq, 662 hl_cs_cmpl->type, 663 hl_cs_cmpl->hw_sob->sob_id, 664 hl_cs_cmpl->sob_val); 665 666 hw_sob_put(hl_cs_cmpl->hw_sob); 667 668 if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) 669 hdev->asic_funcs->reset_sob_group(hdev, 670 hl_cs_cmpl->sob_group); 671 } 672 673 spin_unlock(&hl_cs_cmpl->lock); 674 } 675 676 static void cs_do_release(struct kref *ref) 677 { 678 struct hl_cs *cs = container_of(ref, struct hl_cs, refcount); 679 struct hl_device *hdev = cs->ctx->hdev; 680 struct hl_cs_job *job, *tmp; 681 struct hl_cs_compl *hl_cs_cmpl = 682 container_of(cs->fence, struct hl_cs_compl, base_fence); 683 684 cs->completed = true; 685 686 /* 687 * Although if we reached here it means that all external jobs have 688 * finished, because each one of them took refcnt to CS, we still 689 * need to go over the internal jobs and complete them. Otherwise, we 690 * will have leaked memory and what's worse, the CS object (and 691 * potentially the CTX object) could be released, while the JOB 692 * still holds a pointer to them (but no reference). 693 */ 694 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 695 hl_complete_job(hdev, job); 696 697 if (!cs->submitted) { 698 /* 699 * In case the wait for signal CS was submitted, the fence put 700 * occurs in init_signal_wait_cs() or collective_wait_init_cs() 701 * right before hanging on the PQ. 702 */ 703 if (cs->type == CS_TYPE_WAIT || 704 cs->type == CS_TYPE_COLLECTIVE_WAIT) 705 hl_fence_put(cs->signal_fence); 706 707 goto out; 708 } 709 710 /* Need to update CI for all queue jobs that does not get completion */ 711 hl_hw_queue_update_ci(cs); 712 713 /* remove CS from CS mirror list */ 714 spin_lock(&hdev->cs_mirror_lock); 715 list_del_init(&cs->mirror_node); 716 spin_unlock(&hdev->cs_mirror_lock); 717 718 cs_handle_tdr(hdev, cs); 719 720 if (cs->staged_cs) { 721 /* the completion CS decrements reference for the entire 722 * staged submission 723 */ 724 if (cs->staged_last) { 725 struct hl_cs *staged_cs, *tmp_cs; 726 727 list_for_each_entry_safe(staged_cs, tmp_cs, 728 &cs->staged_cs_node, staged_cs_node) 729 staged_cs_put(hdev, staged_cs); 730 } 731 732 /* A staged CS will be a member in the list only after it 733 * was submitted. We used 'cs_mirror_lock' when inserting 734 * it to list so we will use it again when removing it 735 */ 736 if (cs->submitted) { 737 spin_lock(&hdev->cs_mirror_lock); 738 list_del(&cs->staged_cs_node); 739 spin_unlock(&hdev->cs_mirror_lock); 740 } 741 742 /* decrement refcount to handle when first staged cs 743 * with encaps signals is completed. 744 */ 745 if (hl_cs_cmpl->encaps_signals) 746 kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount, 747 hl_encaps_release_handle_and_put_ctx); 748 } 749 750 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals) 751 kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); 752 753 out: 754 /* Must be called before hl_ctx_put because inside we use ctx to get 755 * the device 756 */ 757 hl_debugfs_remove_cs(cs); 758 759 hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL; 760 761 /* We need to mark an error for not submitted because in that case 762 * the hl fence release flow is different. Mainly, we don't need 763 * to handle hw_sob for signal/wait 764 */ 765 if (cs->timedout) 766 cs->fence->error = -ETIMEDOUT; 767 else if (cs->aborted) 768 cs->fence->error = -EIO; 769 else if (!cs->submitted) 770 cs->fence->error = -EBUSY; 771 772 if (unlikely(cs->skip_reset_on_timeout)) { 773 dev_err(hdev->dev, 774 "Command submission %llu completed after %llu (s)\n", 775 cs->sequence, 776 div_u64(jiffies - cs->submission_time_jiffies, HZ)); 777 } 778 779 if (cs->timestamp) { 780 cs->fence->timestamp = cs->completion_timestamp; 781 hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence, 782 cs->fence->timestamp, cs->fence->error); 783 } 784 785 hl_ctx_put(cs->ctx); 786 787 complete_all(&cs->fence->completion); 788 complete_multi_cs(hdev, cs); 789 790 cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl); 791 792 hl_fence_put(cs->fence); 793 794 kfree(cs->jobs_in_queue_cnt); 795 kfree(cs); 796 } 797 798 static void cs_timedout(struct work_struct *work) 799 { 800 struct hl_cs *cs = container_of(work, struct hl_cs, work_tdr.work); 801 bool skip_reset_on_timeout, device_reset = false; 802 struct hl_device *hdev; 803 u64 event_mask = 0x0; 804 uint timeout_sec; 805 int rc; 806 807 skip_reset_on_timeout = cs->skip_reset_on_timeout; 808 809 rc = cs_get_unless_zero(cs); 810 if (!rc) 811 return; 812 813 if ((!cs->submitted) || (cs->completed)) { 814 cs_put(cs); 815 return; 816 } 817 818 hdev = cs->ctx->hdev; 819 820 if (likely(!skip_reset_on_timeout)) { 821 if (hdev->reset_on_lockup) 822 device_reset = true; 823 else 824 hdev->reset_info.needs_reset = true; 825 826 /* Mark the CS is timed out so we won't try to cancel its TDR */ 827 cs->timedout = true; 828 } 829 830 /* Save only the first CS timeout parameters */ 831 rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0); 832 if (rc) { 833 hdev->captured_err_info.cs_timeout.timestamp = ktime_get(); 834 hdev->captured_err_info.cs_timeout.seq = cs->sequence; 835 event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT; 836 } 837 838 timeout_sec = jiffies_to_msecs(hdev->timeout_jiffies) / 1000; 839 840 switch (cs->type) { 841 case CS_TYPE_SIGNAL: 842 dev_err(hdev->dev, 843 "Signal command submission %llu has not finished in %u seconds!\n", 844 cs->sequence, timeout_sec); 845 break; 846 847 case CS_TYPE_WAIT: 848 dev_err(hdev->dev, 849 "Wait command submission %llu has not finished in %u seconds!\n", 850 cs->sequence, timeout_sec); 851 break; 852 853 case CS_TYPE_COLLECTIVE_WAIT: 854 dev_err(hdev->dev, 855 "Collective Wait command submission %llu has not finished in %u seconds!\n", 856 cs->sequence, timeout_sec); 857 break; 858 859 default: 860 dev_err(hdev->dev, 861 "Command submission %llu has not finished in %u seconds!\n", 862 cs->sequence, timeout_sec); 863 break; 864 } 865 866 rc = hl_state_dump(hdev); 867 if (rc) 868 dev_err(hdev->dev, "Error during system state dump %d\n", rc); 869 870 cs_put(cs); 871 872 if (device_reset) { 873 event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET; 874 hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask); 875 } else if (event_mask) { 876 hl_notifier_event_send_all(hdev, event_mask); 877 } 878 } 879 880 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx, 881 enum hl_cs_type cs_type, u64 user_sequence, 882 struct hl_cs **cs_new, u32 flags, u32 timeout) 883 { 884 struct hl_cs_counters_atomic *cntr; 885 struct hl_fence *other = NULL; 886 struct hl_cs_compl *cs_cmpl; 887 struct hl_cs *cs; 888 int rc; 889 890 cntr = &hdev->aggregated_cs_counters; 891 892 cs = kzalloc(sizeof(*cs), GFP_ATOMIC); 893 if (!cs) 894 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 895 896 if (!cs) { 897 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 898 atomic64_inc(&cntr->out_of_mem_drop_cnt); 899 return -ENOMEM; 900 } 901 902 /* increment refcnt for context */ 903 hl_ctx_get(ctx); 904 905 cs->ctx = ctx; 906 cs->submitted = false; 907 cs->completed = false; 908 cs->type = cs_type; 909 cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP); 910 cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); 911 cs->timeout_jiffies = timeout; 912 cs->skip_reset_on_timeout = 913 hdev->reset_info.skip_reset_on_timeout || 914 !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT); 915 cs->submission_time_jiffies = jiffies; 916 INIT_LIST_HEAD(&cs->job_list); 917 INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout); 918 kref_init(&cs->refcount); 919 spin_lock_init(&cs->job_lock); 920 921 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC); 922 if (!cs_cmpl) 923 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL); 924 925 if (!cs_cmpl) { 926 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 927 atomic64_inc(&cntr->out_of_mem_drop_cnt); 928 rc = -ENOMEM; 929 goto free_cs; 930 } 931 932 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, 933 sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC); 934 if (!cs->jobs_in_queue_cnt) 935 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, 936 sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL); 937 938 if (!cs->jobs_in_queue_cnt) { 939 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 940 atomic64_inc(&cntr->out_of_mem_drop_cnt); 941 rc = -ENOMEM; 942 goto free_cs_cmpl; 943 } 944 945 cs_cmpl->hdev = hdev; 946 cs_cmpl->type = cs->type; 947 spin_lock_init(&cs_cmpl->lock); 948 cs->fence = &cs_cmpl->base_fence; 949 950 spin_lock(&ctx->cs_lock); 951 952 cs_cmpl->cs_seq = ctx->cs_sequence; 953 other = ctx->cs_pending[cs_cmpl->cs_seq & 954 (hdev->asic_prop.max_pending_cs - 1)]; 955 956 if (other && !completion_done(&other->completion)) { 957 /* If the following statement is true, it means we have reached 958 * a point in which only part of the staged submission was 959 * submitted and we don't have enough room in the 'cs_pending' 960 * array for the rest of the submission. 961 * This causes a deadlock because this CS will never be 962 * completed as it depends on future CS's for completion. 963 */ 964 if (other->cs_sequence == user_sequence) 965 dev_crit_ratelimited(hdev->dev, 966 "Staged CS %llu deadlock due to lack of resources", 967 user_sequence); 968 969 dev_dbg_ratelimited(hdev->dev, 970 "Rejecting CS because of too many in-flights CS\n"); 971 atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt); 972 atomic64_inc(&cntr->max_cs_in_flight_drop_cnt); 973 rc = -EAGAIN; 974 goto free_fence; 975 } 976 977 /* init hl_fence */ 978 hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq); 979 980 cs->sequence = cs_cmpl->cs_seq; 981 982 ctx->cs_pending[cs_cmpl->cs_seq & 983 (hdev->asic_prop.max_pending_cs - 1)] = 984 &cs_cmpl->base_fence; 985 ctx->cs_sequence++; 986 987 hl_fence_get(&cs_cmpl->base_fence); 988 989 hl_fence_put(other); 990 991 spin_unlock(&ctx->cs_lock); 992 993 *cs_new = cs; 994 995 return 0; 996 997 free_fence: 998 spin_unlock(&ctx->cs_lock); 999 kfree(cs->jobs_in_queue_cnt); 1000 free_cs_cmpl: 1001 kfree(cs_cmpl); 1002 free_cs: 1003 kfree(cs); 1004 hl_ctx_put(ctx); 1005 return rc; 1006 } 1007 1008 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs) 1009 { 1010 struct hl_cs_job *job, *tmp; 1011 1012 staged_cs_put(hdev, cs); 1013 1014 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 1015 hl_complete_job(hdev, job); 1016 } 1017 1018 /* 1019 * release_reserved_encaps_signals() - release reserved encapsulated signals. 1020 * @hdev: pointer to habanalabs device structure 1021 * 1022 * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with 1023 * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back. 1024 * For these signals need also to put the refcount of the H/W SOB which was taken at the 1025 * reservation. 1026 */ 1027 static void release_reserved_encaps_signals(struct hl_device *hdev) 1028 { 1029 struct hl_ctx *ctx = hl_get_compute_ctx(hdev); 1030 struct hl_cs_encaps_sig_handle *handle; 1031 struct hl_encaps_signals_mgr *mgr; 1032 u32 id; 1033 1034 if (!ctx) 1035 return; 1036 1037 mgr = &ctx->sig_mgr; 1038 1039 idr_for_each_entry(&mgr->handles, handle, id) 1040 if (handle->cs_seq == ULLONG_MAX) 1041 kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx); 1042 1043 hl_ctx_put(ctx); 1044 } 1045 1046 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush) 1047 { 1048 int i; 1049 struct hl_cs *cs, *tmp; 1050 1051 if (!skip_wq_flush) { 1052 flush_workqueue(hdev->ts_free_obj_wq); 1053 1054 /* flush all completions before iterating over the CS mirror list in 1055 * order to avoid a race with the release functions 1056 */ 1057 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) 1058 flush_workqueue(hdev->cq_wq[i]); 1059 1060 flush_workqueue(hdev->cs_cmplt_wq); 1061 } 1062 1063 /* Make sure we don't have leftovers in the CS mirror list */ 1064 list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) { 1065 cs_get(cs); 1066 cs->aborted = true; 1067 dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n", 1068 cs->ctx->asid, cs->sequence); 1069 cs_rollback(hdev, cs); 1070 cs_put(cs); 1071 } 1072 1073 force_complete_multi_cs(hdev); 1074 1075 release_reserved_encaps_signals(hdev); 1076 } 1077 1078 static void 1079 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt) 1080 { 1081 struct hl_user_pending_interrupt *pend, *temp; 1082 1083 spin_lock(&interrupt->wait_list_lock); 1084 list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) { 1085 if (pend->ts_reg_info.buf) { 1086 list_del(&pend->wait_list_node); 1087 hl_mmap_mem_buf_put(pend->ts_reg_info.buf); 1088 hl_cb_put(pend->ts_reg_info.cq_cb); 1089 } else { 1090 pend->fence.error = -EIO; 1091 complete_all(&pend->fence.completion); 1092 } 1093 } 1094 spin_unlock(&interrupt->wait_list_lock); 1095 } 1096 1097 void hl_release_pending_user_interrupts(struct hl_device *hdev) 1098 { 1099 struct asic_fixed_properties *prop = &hdev->asic_prop; 1100 struct hl_user_interrupt *interrupt; 1101 int i; 1102 1103 if (!prop->user_interrupt_count) 1104 return; 1105 1106 /* We iterate through the user interrupt requests and waking up all 1107 * user threads waiting for interrupt completion. We iterate the 1108 * list under a lock, this is why all user threads, once awake, 1109 * will wait on the same lock and will release the waiting object upon 1110 * unlock. 1111 */ 1112 1113 for (i = 0 ; i < prop->user_interrupt_count ; i++) { 1114 interrupt = &hdev->user_interrupt[i]; 1115 wake_pending_user_interrupt_threads(interrupt); 1116 } 1117 1118 interrupt = &hdev->common_user_cq_interrupt; 1119 wake_pending_user_interrupt_threads(interrupt); 1120 1121 interrupt = &hdev->common_decoder_interrupt; 1122 wake_pending_user_interrupt_threads(interrupt); 1123 } 1124 1125 static void force_complete_cs(struct hl_device *hdev) 1126 { 1127 struct hl_cs *cs; 1128 1129 spin_lock(&hdev->cs_mirror_lock); 1130 1131 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) { 1132 cs->fence->error = -EIO; 1133 complete_all(&cs->fence->completion); 1134 } 1135 1136 spin_unlock(&hdev->cs_mirror_lock); 1137 } 1138 1139 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev) 1140 { 1141 force_complete_cs(hdev); 1142 force_complete_multi_cs(hdev); 1143 } 1144 1145 static void job_wq_completion(struct work_struct *work) 1146 { 1147 struct hl_cs_job *job = container_of(work, struct hl_cs_job, 1148 finish_work); 1149 struct hl_cs *cs = job->cs; 1150 struct hl_device *hdev = cs->ctx->hdev; 1151 1152 /* job is no longer needed */ 1153 hl_complete_job(hdev, job); 1154 } 1155 1156 static void cs_completion(struct work_struct *work) 1157 { 1158 struct hl_cs *cs = container_of(work, struct hl_cs, finish_work); 1159 struct hl_device *hdev = cs->ctx->hdev; 1160 struct hl_cs_job *job, *tmp; 1161 1162 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 1163 hl_complete_job(hdev, job); 1164 } 1165 1166 u32 hl_get_active_cs_num(struct hl_device *hdev) 1167 { 1168 u32 active_cs_num = 0; 1169 struct hl_cs *cs; 1170 1171 spin_lock(&hdev->cs_mirror_lock); 1172 1173 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) 1174 if (!cs->completed) 1175 active_cs_num++; 1176 1177 spin_unlock(&hdev->cs_mirror_lock); 1178 1179 return active_cs_num; 1180 } 1181 1182 static int validate_queue_index(struct hl_device *hdev, 1183 struct hl_cs_chunk *chunk, 1184 enum hl_queue_type *queue_type, 1185 bool *is_kernel_allocated_cb) 1186 { 1187 struct asic_fixed_properties *asic = &hdev->asic_prop; 1188 struct hw_queue_properties *hw_queue_prop; 1189 1190 /* This must be checked here to prevent out-of-bounds access to 1191 * hw_queues_props array 1192 */ 1193 if (chunk->queue_index >= asic->max_queues) { 1194 dev_err(hdev->dev, "Queue index %d is invalid\n", 1195 chunk->queue_index); 1196 return -EINVAL; 1197 } 1198 1199 hw_queue_prop = &asic->hw_queues_props[chunk->queue_index]; 1200 1201 if (hw_queue_prop->type == QUEUE_TYPE_NA) { 1202 dev_err(hdev->dev, "Queue index %d is not applicable\n", 1203 chunk->queue_index); 1204 return -EINVAL; 1205 } 1206 1207 if (hw_queue_prop->binned) { 1208 dev_err(hdev->dev, "Queue index %d is binned out\n", 1209 chunk->queue_index); 1210 return -EINVAL; 1211 } 1212 1213 if (hw_queue_prop->driver_only) { 1214 dev_err(hdev->dev, 1215 "Queue index %d is restricted for the kernel driver\n", 1216 chunk->queue_index); 1217 return -EINVAL; 1218 } 1219 1220 /* When hw queue type isn't QUEUE_TYPE_HW, 1221 * USER_ALLOC_CB flag shall be referred as "don't care". 1222 */ 1223 if (hw_queue_prop->type == QUEUE_TYPE_HW) { 1224 if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) { 1225 if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) { 1226 dev_err(hdev->dev, 1227 "Queue index %d doesn't support user CB\n", 1228 chunk->queue_index); 1229 return -EINVAL; 1230 } 1231 1232 *is_kernel_allocated_cb = false; 1233 } else { 1234 if (!(hw_queue_prop->cb_alloc_flags & 1235 CB_ALLOC_KERNEL)) { 1236 dev_err(hdev->dev, 1237 "Queue index %d doesn't support kernel CB\n", 1238 chunk->queue_index); 1239 return -EINVAL; 1240 } 1241 1242 *is_kernel_allocated_cb = true; 1243 } 1244 } else { 1245 *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags 1246 & CB_ALLOC_KERNEL); 1247 } 1248 1249 *queue_type = hw_queue_prop->type; 1250 return 0; 1251 } 1252 1253 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev, 1254 struct hl_mem_mgr *mmg, 1255 struct hl_cs_chunk *chunk) 1256 { 1257 struct hl_cb *cb; 1258 1259 cb = hl_cb_get(mmg, chunk->cb_handle); 1260 if (!cb) { 1261 dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle); 1262 return NULL; 1263 } 1264 1265 if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) { 1266 dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size); 1267 goto release_cb; 1268 } 1269 1270 atomic_inc(&cb->cs_cnt); 1271 1272 return cb; 1273 1274 release_cb: 1275 hl_cb_put(cb); 1276 return NULL; 1277 } 1278 1279 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 1280 enum hl_queue_type queue_type, bool is_kernel_allocated_cb) 1281 { 1282 struct hl_cs_job *job; 1283 1284 job = kzalloc(sizeof(*job), GFP_ATOMIC); 1285 if (!job) 1286 job = kzalloc(sizeof(*job), GFP_KERNEL); 1287 1288 if (!job) 1289 return NULL; 1290 1291 kref_init(&job->refcount); 1292 job->queue_type = queue_type; 1293 job->is_kernel_allocated_cb = is_kernel_allocated_cb; 1294 1295 if (is_cb_patched(hdev, job)) 1296 INIT_LIST_HEAD(&job->userptr_list); 1297 1298 if (job->queue_type == QUEUE_TYPE_EXT) 1299 INIT_WORK(&job->finish_work, job_wq_completion); 1300 1301 return job; 1302 } 1303 1304 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags) 1305 { 1306 if (cs_type_flags & HL_CS_FLAGS_SIGNAL) 1307 return CS_TYPE_SIGNAL; 1308 else if (cs_type_flags & HL_CS_FLAGS_WAIT) 1309 return CS_TYPE_WAIT; 1310 else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT) 1311 return CS_TYPE_COLLECTIVE_WAIT; 1312 else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY) 1313 return CS_RESERVE_SIGNALS; 1314 else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY) 1315 return CS_UNRESERVE_SIGNALS; 1316 else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND) 1317 return CS_TYPE_ENGINE_CORE; 1318 else if (cs_type_flags & HL_CS_FLAGS_ENGINES_COMMAND) 1319 return CS_TYPE_ENGINES; 1320 else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) 1321 return CS_TYPE_FLUSH_PCI_HBW_WRITES; 1322 else 1323 return CS_TYPE_DEFAULT; 1324 } 1325 1326 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args) 1327 { 1328 struct hl_device *hdev = hpriv->hdev; 1329 struct hl_ctx *ctx = hpriv->ctx; 1330 u32 cs_type_flags, num_chunks; 1331 enum hl_device_status status; 1332 enum hl_cs_type cs_type; 1333 bool is_sync_stream; 1334 int i; 1335 1336 for (i = 0 ; i < sizeof(args->in.pad) ; i++) 1337 if (args->in.pad[i]) { 1338 dev_dbg(hdev->dev, "Padding bytes must be 0\n"); 1339 return -EINVAL; 1340 } 1341 1342 if (!hl_device_operational(hdev, &status)) { 1343 return -EBUSY; 1344 } 1345 1346 if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 1347 !hdev->supports_staged_submission) { 1348 dev_err(hdev->dev, "staged submission not supported"); 1349 return -EPERM; 1350 } 1351 1352 cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK; 1353 1354 if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) { 1355 dev_err(hdev->dev, 1356 "CS type flags are mutually exclusive, context %d\n", 1357 ctx->asid); 1358 return -EINVAL; 1359 } 1360 1361 cs_type = hl_cs_get_cs_type(cs_type_flags); 1362 num_chunks = args->in.num_chunks_execute; 1363 1364 is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT || 1365 cs_type == CS_TYPE_COLLECTIVE_WAIT); 1366 1367 if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) { 1368 dev_err(hdev->dev, "Sync stream CS is not supported\n"); 1369 return -EINVAL; 1370 } 1371 1372 if (cs_type == CS_TYPE_DEFAULT) { 1373 if (!num_chunks) { 1374 dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid); 1375 return -EINVAL; 1376 } 1377 } else if (is_sync_stream && num_chunks != 1) { 1378 dev_err(hdev->dev, 1379 "Sync stream CS mandates one chunk only, context %d\n", 1380 ctx->asid); 1381 return -EINVAL; 1382 } 1383 1384 return 0; 1385 } 1386 1387 static int hl_cs_copy_chunk_array(struct hl_device *hdev, 1388 struct hl_cs_chunk **cs_chunk_array, 1389 void __user *chunks, u32 num_chunks, 1390 struct hl_ctx *ctx) 1391 { 1392 u32 size_to_copy; 1393 1394 if (num_chunks > HL_MAX_JOBS_PER_CS) { 1395 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1396 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1397 dev_err(hdev->dev, 1398 "Number of chunks can NOT be larger than %d\n", 1399 HL_MAX_JOBS_PER_CS); 1400 return -EINVAL; 1401 } 1402 1403 *cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array), 1404 GFP_ATOMIC); 1405 if (!*cs_chunk_array) 1406 *cs_chunk_array = kmalloc_array(num_chunks, 1407 sizeof(**cs_chunk_array), GFP_KERNEL); 1408 if (!*cs_chunk_array) { 1409 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1410 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); 1411 return -ENOMEM; 1412 } 1413 1414 size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); 1415 if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) { 1416 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1417 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1418 dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); 1419 kfree(*cs_chunk_array); 1420 return -EFAULT; 1421 } 1422 1423 return 0; 1424 } 1425 1426 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs, 1427 u64 sequence, u32 flags, 1428 u32 encaps_signal_handle) 1429 { 1430 if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION)) 1431 return 0; 1432 1433 cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST); 1434 cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST); 1435 1436 if (cs->staged_first) { 1437 /* Staged CS sequence is the first CS sequence */ 1438 INIT_LIST_HEAD(&cs->staged_cs_node); 1439 cs->staged_sequence = cs->sequence; 1440 1441 if (cs->encaps_signals) 1442 cs->encaps_sig_hdl_id = encaps_signal_handle; 1443 } else { 1444 /* User sequence will be validated in 'hl_hw_queue_schedule_cs' 1445 * under the cs_mirror_lock 1446 */ 1447 cs->staged_sequence = sequence; 1448 } 1449 1450 /* Increment CS reference if needed */ 1451 staged_cs_get(hdev, cs); 1452 1453 cs->staged_cs = true; 1454 1455 return 0; 1456 } 1457 1458 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid) 1459 { 1460 int i; 1461 1462 for (i = 0; i < hdev->stream_master_qid_arr_size; i++) 1463 if (qid == hdev->stream_master_qid_arr[i]) 1464 return BIT(i); 1465 1466 return 0; 1467 } 1468 1469 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks, 1470 u32 num_chunks, u64 *cs_seq, u32 flags, 1471 u32 encaps_signals_handle, u32 timeout, 1472 u16 *signal_initial_sob_count) 1473 { 1474 bool staged_mid, int_queues_only = true, using_hw_queues = false; 1475 struct hl_device *hdev = hpriv->hdev; 1476 struct hl_cs_chunk *cs_chunk_array; 1477 struct hl_cs_counters_atomic *cntr; 1478 struct hl_ctx *ctx = hpriv->ctx; 1479 struct hl_cs_job *job; 1480 struct hl_cs *cs; 1481 struct hl_cb *cb; 1482 u64 user_sequence; 1483 u8 stream_master_qid_map = 0; 1484 int rc, i; 1485 1486 cntr = &hdev->aggregated_cs_counters; 1487 user_sequence = *cs_seq; 1488 *cs_seq = ULLONG_MAX; 1489 1490 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, 1491 hpriv->ctx); 1492 if (rc) 1493 goto out; 1494 1495 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 1496 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) 1497 staged_mid = true; 1498 else 1499 staged_mid = false; 1500 1501 rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, 1502 staged_mid ? user_sequence : ULLONG_MAX, &cs, flags, 1503 timeout); 1504 if (rc) 1505 goto free_cs_chunk_array; 1506 1507 *cs_seq = cs->sequence; 1508 1509 hl_debugfs_add_cs(cs); 1510 1511 rc = cs_staged_submission(hdev, cs, user_sequence, flags, 1512 encaps_signals_handle); 1513 if (rc) 1514 goto free_cs_object; 1515 1516 /* If this is a staged submission we must return the staged sequence 1517 * rather than the internal CS sequence 1518 */ 1519 if (cs->staged_cs) 1520 *cs_seq = cs->staged_sequence; 1521 1522 /* Validate ALL the CS chunks before submitting the CS */ 1523 for (i = 0 ; i < num_chunks ; i++) { 1524 struct hl_cs_chunk *chunk = &cs_chunk_array[i]; 1525 enum hl_queue_type queue_type; 1526 bool is_kernel_allocated_cb; 1527 1528 rc = validate_queue_index(hdev, chunk, &queue_type, 1529 &is_kernel_allocated_cb); 1530 if (rc) { 1531 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1532 atomic64_inc(&cntr->validation_drop_cnt); 1533 goto free_cs_object; 1534 } 1535 1536 if (is_kernel_allocated_cb) { 1537 cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk); 1538 if (!cb) { 1539 atomic64_inc( 1540 &ctx->cs_counters.validation_drop_cnt); 1541 atomic64_inc(&cntr->validation_drop_cnt); 1542 rc = -EINVAL; 1543 goto free_cs_object; 1544 } 1545 } else { 1546 cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle; 1547 } 1548 1549 if (queue_type == QUEUE_TYPE_EXT || 1550 queue_type == QUEUE_TYPE_HW) { 1551 int_queues_only = false; 1552 1553 /* 1554 * store which stream are being used for external/HW 1555 * queues of this CS 1556 */ 1557 if (hdev->supports_wait_for_multi_cs) 1558 stream_master_qid_map |= 1559 get_stream_master_qid_mask(hdev, 1560 chunk->queue_index); 1561 } 1562 1563 if (queue_type == QUEUE_TYPE_HW) 1564 using_hw_queues = true; 1565 1566 job = hl_cs_allocate_job(hdev, queue_type, 1567 is_kernel_allocated_cb); 1568 if (!job) { 1569 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1570 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1571 dev_err(hdev->dev, "Failed to allocate a new job\n"); 1572 rc = -ENOMEM; 1573 if (is_kernel_allocated_cb) 1574 goto release_cb; 1575 1576 goto free_cs_object; 1577 } 1578 1579 job->id = i + 1; 1580 job->cs = cs; 1581 job->user_cb = cb; 1582 job->user_cb_size = chunk->cb_size; 1583 job->hw_queue_id = chunk->queue_index; 1584 1585 cs->jobs_in_queue_cnt[job->hw_queue_id]++; 1586 cs->jobs_cnt++; 1587 1588 list_add_tail(&job->cs_node, &cs->job_list); 1589 1590 /* 1591 * Increment CS reference. When CS reference is 0, CS is 1592 * done and can be signaled to user and free all its resources 1593 * Only increment for JOB on external or H/W queues, because 1594 * only for those JOBs we get completion 1595 */ 1596 if (cs_needs_completion(cs) && 1597 (job->queue_type == QUEUE_TYPE_EXT || 1598 job->queue_type == QUEUE_TYPE_HW)) 1599 cs_get(cs); 1600 1601 hl_debugfs_add_job(hdev, job); 1602 1603 rc = cs_parser(hpriv, job); 1604 if (rc) { 1605 atomic64_inc(&ctx->cs_counters.parsing_drop_cnt); 1606 atomic64_inc(&cntr->parsing_drop_cnt); 1607 dev_err(hdev->dev, 1608 "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n", 1609 cs->ctx->asid, cs->sequence, job->id, rc); 1610 goto free_cs_object; 1611 } 1612 } 1613 1614 /* We allow a CS with any queue type combination as long as it does 1615 * not get a completion 1616 */ 1617 if (int_queues_only && cs_needs_completion(cs)) { 1618 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1619 atomic64_inc(&cntr->validation_drop_cnt); 1620 dev_err(hdev->dev, 1621 "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n", 1622 cs->ctx->asid, cs->sequence); 1623 rc = -EINVAL; 1624 goto free_cs_object; 1625 } 1626 1627 if (using_hw_queues) 1628 INIT_WORK(&cs->finish_work, cs_completion); 1629 1630 /* 1631 * store the (external/HW queues) streams used by the CS in the 1632 * fence object for multi-CS completion 1633 */ 1634 if (hdev->supports_wait_for_multi_cs) 1635 cs->fence->stream_master_qid_map = stream_master_qid_map; 1636 1637 rc = hl_hw_queue_schedule_cs(cs); 1638 if (rc) { 1639 if (rc != -EAGAIN) 1640 dev_err(hdev->dev, 1641 "Failed to submit CS %d.%llu to H/W queues, error %d\n", 1642 cs->ctx->asid, cs->sequence, rc); 1643 goto free_cs_object; 1644 } 1645 1646 *signal_initial_sob_count = cs->initial_sob_count; 1647 1648 rc = HL_CS_STATUS_SUCCESS; 1649 goto put_cs; 1650 1651 release_cb: 1652 atomic_dec(&cb->cs_cnt); 1653 hl_cb_put(cb); 1654 free_cs_object: 1655 cs_rollback(hdev, cs); 1656 *cs_seq = ULLONG_MAX; 1657 /* The path below is both for good and erroneous exits */ 1658 put_cs: 1659 /* We finished with the CS in this function, so put the ref */ 1660 cs_put(cs); 1661 free_cs_chunk_array: 1662 kfree(cs_chunk_array); 1663 out: 1664 return rc; 1665 } 1666 1667 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args, 1668 u64 *cs_seq) 1669 { 1670 struct hl_device *hdev = hpriv->hdev; 1671 struct hl_ctx *ctx = hpriv->ctx; 1672 bool need_soft_reset = false; 1673 int rc = 0, do_ctx_switch = 0; 1674 void __user *chunks; 1675 u32 num_chunks, tmp; 1676 u16 sob_count; 1677 int ret; 1678 1679 if (hdev->supports_ctx_switch) 1680 do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0); 1681 1682 if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) { 1683 mutex_lock(&hpriv->restore_phase_mutex); 1684 1685 if (do_ctx_switch) { 1686 rc = hdev->asic_funcs->context_switch(hdev, ctx->asid); 1687 if (rc) { 1688 dev_err_ratelimited(hdev->dev, 1689 "Failed to switch to context %d, rejecting CS! %d\n", 1690 ctx->asid, rc); 1691 /* 1692 * If we timedout, or if the device is not IDLE 1693 * while we want to do context-switch (-EBUSY), 1694 * we need to soft-reset because QMAN is 1695 * probably stuck. However, we can't call to 1696 * reset here directly because of deadlock, so 1697 * need to do it at the very end of this 1698 * function 1699 */ 1700 if ((rc == -ETIMEDOUT) || (rc == -EBUSY)) 1701 need_soft_reset = true; 1702 mutex_unlock(&hpriv->restore_phase_mutex); 1703 goto out; 1704 } 1705 } 1706 1707 hdev->asic_funcs->restore_phase_topology(hdev); 1708 1709 chunks = (void __user *) (uintptr_t) args->in.chunks_restore; 1710 num_chunks = args->in.num_chunks_restore; 1711 1712 if (!num_chunks) { 1713 dev_dbg(hdev->dev, 1714 "Need to run restore phase but restore CS is empty\n"); 1715 rc = 0; 1716 } else { 1717 rc = cs_ioctl_default(hpriv, chunks, num_chunks, 1718 cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count); 1719 } 1720 1721 mutex_unlock(&hpriv->restore_phase_mutex); 1722 1723 if (rc) { 1724 dev_err(hdev->dev, 1725 "Failed to submit restore CS for context %d (%d)\n", 1726 ctx->asid, rc); 1727 goto out; 1728 } 1729 1730 /* Need to wait for restore completion before execution phase */ 1731 if (num_chunks) { 1732 enum hl_cs_wait_status status; 1733 wait_again: 1734 ret = _hl_cs_wait_ioctl(hdev, ctx, 1735 jiffies_to_usecs(hdev->timeout_jiffies), 1736 *cs_seq, &status, NULL); 1737 if (ret) { 1738 if (ret == -ERESTARTSYS) { 1739 usleep_range(100, 200); 1740 goto wait_again; 1741 } 1742 1743 dev_err(hdev->dev, 1744 "Restore CS for context %d failed to complete %d\n", 1745 ctx->asid, ret); 1746 rc = -ENOEXEC; 1747 goto out; 1748 } 1749 } 1750 1751 if (hdev->supports_ctx_switch) 1752 ctx->thread_ctx_switch_wait_token = 1; 1753 1754 } else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) { 1755 rc = hl_poll_timeout_memory(hdev, 1756 &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1), 1757 100, jiffies_to_usecs(hdev->timeout_jiffies), false); 1758 1759 if (rc == -ETIMEDOUT) { 1760 dev_err(hdev->dev, 1761 "context switch phase timeout (%d)\n", tmp); 1762 goto out; 1763 } 1764 } 1765 1766 out: 1767 if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset)) 1768 hl_device_reset(hdev, 0); 1769 1770 return rc; 1771 } 1772 1773 /* 1774 * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case. 1775 * if the SOB value reaches the max value move to the other SOB reserved 1776 * to the queue. 1777 * @hdev: pointer to device structure 1778 * @q_idx: stream queue index 1779 * @hw_sob: the H/W SOB used in this signal CS. 1780 * @count: signals count 1781 * @encaps_sig: tells whether it's reservation for encaps signals or not. 1782 * 1783 * Note that this function must be called while hw_queues_lock is taken. 1784 */ 1785 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 1786 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig) 1787 1788 { 1789 struct hl_sync_stream_properties *prop; 1790 struct hl_hw_sob *sob = *hw_sob, *other_sob; 1791 u8 other_sob_offset; 1792 1793 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 1794 1795 hw_sob_get(sob); 1796 1797 /* check for wraparound */ 1798 if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) { 1799 /* 1800 * Decrement as we reached the max value. 1801 * The release function won't be called here as we've 1802 * just incremented the refcount right before calling this 1803 * function. 1804 */ 1805 hw_sob_put_err(sob); 1806 1807 /* 1808 * check the other sob value, if it still in use then fail 1809 * otherwise make the switch 1810 */ 1811 other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS; 1812 other_sob = &prop->hw_sob[other_sob_offset]; 1813 1814 if (kref_read(&other_sob->kref) != 1) { 1815 dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n", 1816 q_idx); 1817 return -EINVAL; 1818 } 1819 1820 /* 1821 * next_sob_val always points to the next available signal 1822 * in the sob, so in encaps signals it will be the next one 1823 * after reserving the required amount. 1824 */ 1825 if (encaps_sig) 1826 prop->next_sob_val = count + 1; 1827 else 1828 prop->next_sob_val = count; 1829 1830 /* only two SOBs are currently in use */ 1831 prop->curr_sob_offset = other_sob_offset; 1832 *hw_sob = other_sob; 1833 1834 /* 1835 * check if other_sob needs reset, then do it before using it 1836 * for the reservation or the next signal cs. 1837 * we do it here, and for both encaps and regular signal cs 1838 * cases in order to avoid possible races of two kref_put 1839 * of the sob which can occur at the same time if we move the 1840 * sob reset(kref_put) to cs_do_release function. 1841 * in addition, if we have combination of cs signal and 1842 * encaps, and at the point we need to reset the sob there was 1843 * no more reservations and only signal cs keep coming, 1844 * in such case we need signal_cs to put the refcount and 1845 * reset the sob. 1846 */ 1847 if (other_sob->need_reset) 1848 hw_sob_put(other_sob); 1849 1850 if (encaps_sig) { 1851 /* set reset indication for the sob */ 1852 sob->need_reset = true; 1853 hw_sob_get(other_sob); 1854 } 1855 1856 dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n", 1857 prop->curr_sob_offset, q_idx); 1858 } else { 1859 prop->next_sob_val += count; 1860 } 1861 1862 return 0; 1863 } 1864 1865 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev, 1866 struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx, 1867 bool encaps_signals) 1868 { 1869 u64 *signal_seq_arr = NULL; 1870 u32 size_to_copy, signal_seq_arr_len; 1871 int rc = 0; 1872 1873 if (encaps_signals) { 1874 *signal_seq = chunk->encaps_signal_seq; 1875 return 0; 1876 } 1877 1878 signal_seq_arr_len = chunk->num_signal_seq_arr; 1879 1880 /* currently only one signal seq is supported */ 1881 if (signal_seq_arr_len != 1) { 1882 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1883 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1884 dev_err(hdev->dev, 1885 "Wait for signal CS supports only one signal CS seq\n"); 1886 return -EINVAL; 1887 } 1888 1889 signal_seq_arr = kmalloc_array(signal_seq_arr_len, 1890 sizeof(*signal_seq_arr), 1891 GFP_ATOMIC); 1892 if (!signal_seq_arr) 1893 signal_seq_arr = kmalloc_array(signal_seq_arr_len, 1894 sizeof(*signal_seq_arr), 1895 GFP_KERNEL); 1896 if (!signal_seq_arr) { 1897 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1898 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); 1899 return -ENOMEM; 1900 } 1901 1902 size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr); 1903 if (copy_from_user(signal_seq_arr, 1904 u64_to_user_ptr(chunk->signal_seq_arr), 1905 size_to_copy)) { 1906 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1907 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1908 dev_err(hdev->dev, 1909 "Failed to copy signal seq array from user\n"); 1910 rc = -EFAULT; 1911 goto out; 1912 } 1913 1914 /* currently it is guaranteed to have only one signal seq */ 1915 *signal_seq = signal_seq_arr[0]; 1916 1917 out: 1918 kfree(signal_seq_arr); 1919 1920 return rc; 1921 } 1922 1923 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev, 1924 struct hl_ctx *ctx, struct hl_cs *cs, 1925 enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset) 1926 { 1927 struct hl_cs_counters_atomic *cntr; 1928 struct hl_cs_job *job; 1929 struct hl_cb *cb; 1930 u32 cb_size; 1931 1932 cntr = &hdev->aggregated_cs_counters; 1933 1934 job = hl_cs_allocate_job(hdev, q_type, true); 1935 if (!job) { 1936 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1937 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1938 dev_err(hdev->dev, "Failed to allocate a new job\n"); 1939 return -ENOMEM; 1940 } 1941 1942 if (cs->type == CS_TYPE_WAIT) 1943 cb_size = hdev->asic_funcs->get_wait_cb_size(hdev); 1944 else 1945 cb_size = hdev->asic_funcs->get_signal_cb_size(hdev); 1946 1947 cb = hl_cb_kernel_create(hdev, cb_size, q_type == QUEUE_TYPE_HW); 1948 if (!cb) { 1949 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1950 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1951 kfree(job); 1952 return -EFAULT; 1953 } 1954 1955 job->id = 0; 1956 job->cs = cs; 1957 job->user_cb = cb; 1958 atomic_inc(&job->user_cb->cs_cnt); 1959 job->user_cb_size = cb_size; 1960 job->hw_queue_id = q_idx; 1961 1962 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) 1963 && cs->encaps_signals) 1964 job->encaps_sig_wait_offset = encaps_signal_offset; 1965 /* 1966 * No need in parsing, user CB is the patched CB. 1967 * We call hl_cb_destroy() out of two reasons - we don't need the CB in 1968 * the CB idr anymore and to decrement its refcount as it was 1969 * incremented inside hl_cb_kernel_create(). 1970 */ 1971 job->patched_cb = job->user_cb; 1972 job->job_cb_size = job->user_cb_size; 1973 hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle); 1974 1975 /* increment refcount as for external queues we get completion */ 1976 cs_get(cs); 1977 1978 cs->jobs_in_queue_cnt[job->hw_queue_id]++; 1979 cs->jobs_cnt++; 1980 1981 list_add_tail(&job->cs_node, &cs->job_list); 1982 1983 hl_debugfs_add_job(hdev, job); 1984 1985 return 0; 1986 } 1987 1988 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv, 1989 u32 q_idx, u32 count, 1990 u32 *handle_id, u32 *sob_addr, 1991 u32 *signals_count) 1992 { 1993 struct hw_queue_properties *hw_queue_prop; 1994 struct hl_sync_stream_properties *prop; 1995 struct hl_device *hdev = hpriv->hdev; 1996 struct hl_cs_encaps_sig_handle *handle; 1997 struct hl_encaps_signals_mgr *mgr; 1998 struct hl_hw_sob *hw_sob; 1999 int hdl_id; 2000 int rc = 0; 2001 2002 if (count >= HL_MAX_SOB_VAL) { 2003 dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n", 2004 count); 2005 rc = -EINVAL; 2006 goto out; 2007 } 2008 2009 if (q_idx >= hdev->asic_prop.max_queues) { 2010 dev_err(hdev->dev, "Queue index %d is invalid\n", 2011 q_idx); 2012 rc = -EINVAL; 2013 goto out; 2014 } 2015 2016 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; 2017 2018 if (!hw_queue_prop->supports_sync_stream) { 2019 dev_err(hdev->dev, 2020 "Queue index %d does not support sync stream operations\n", 2021 q_idx); 2022 rc = -EINVAL; 2023 goto out; 2024 } 2025 2026 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 2027 2028 handle = kzalloc(sizeof(*handle), GFP_KERNEL); 2029 if (!handle) { 2030 rc = -ENOMEM; 2031 goto out; 2032 } 2033 2034 handle->count = count; 2035 2036 hl_ctx_get(hpriv->ctx); 2037 handle->ctx = hpriv->ctx; 2038 mgr = &hpriv->ctx->sig_mgr; 2039 2040 spin_lock(&mgr->lock); 2041 hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC); 2042 spin_unlock(&mgr->lock); 2043 2044 if (hdl_id < 0) { 2045 dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n"); 2046 rc = -EINVAL; 2047 goto put_ctx; 2048 } 2049 2050 handle->id = hdl_id; 2051 handle->q_idx = q_idx; 2052 handle->hdev = hdev; 2053 kref_init(&handle->refcount); 2054 2055 hdev->asic_funcs->hw_queues_lock(hdev); 2056 2057 hw_sob = &prop->hw_sob[prop->curr_sob_offset]; 2058 2059 /* 2060 * Increment the SOB value by count by user request 2061 * to reserve those signals 2062 * check if the signals amount to reserve is not exceeding the max sob 2063 * value, if yes then switch sob. 2064 */ 2065 rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count, 2066 true); 2067 if (rc) { 2068 dev_err(hdev->dev, "Failed to switch SOB\n"); 2069 hdev->asic_funcs->hw_queues_unlock(hdev); 2070 rc = -EINVAL; 2071 goto remove_idr; 2072 } 2073 /* set the hw_sob to the handle after calling the sob wraparound handler 2074 * since sob could have changed. 2075 */ 2076 handle->hw_sob = hw_sob; 2077 2078 /* store the current sob value for unreserve validity check, and 2079 * signal offset support 2080 */ 2081 handle->pre_sob_val = prop->next_sob_val - handle->count; 2082 2083 handle->cs_seq = ULLONG_MAX; 2084 2085 *signals_count = prop->next_sob_val; 2086 hdev->asic_funcs->hw_queues_unlock(hdev); 2087 2088 *sob_addr = handle->hw_sob->sob_addr; 2089 *handle_id = hdl_id; 2090 2091 dev_dbg(hdev->dev, 2092 "Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n", 2093 hw_sob->sob_id, handle->hw_sob->sob_addr, 2094 prop->next_sob_val - 1, q_idx, hdl_id); 2095 goto out; 2096 2097 remove_idr: 2098 spin_lock(&mgr->lock); 2099 idr_remove(&mgr->handles, hdl_id); 2100 spin_unlock(&mgr->lock); 2101 2102 put_ctx: 2103 hl_ctx_put(handle->ctx); 2104 kfree(handle); 2105 2106 out: 2107 return rc; 2108 } 2109 2110 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id) 2111 { 2112 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 2113 struct hl_sync_stream_properties *prop; 2114 struct hl_device *hdev = hpriv->hdev; 2115 struct hl_encaps_signals_mgr *mgr; 2116 struct hl_hw_sob *hw_sob; 2117 u32 q_idx, sob_addr; 2118 int rc = 0; 2119 2120 mgr = &hpriv->ctx->sig_mgr; 2121 2122 spin_lock(&mgr->lock); 2123 encaps_sig_hdl = idr_find(&mgr->handles, handle_id); 2124 if (encaps_sig_hdl) { 2125 dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n", 2126 handle_id, encaps_sig_hdl->hw_sob->sob_addr, 2127 encaps_sig_hdl->count); 2128 2129 hdev->asic_funcs->hw_queues_lock(hdev); 2130 2131 q_idx = encaps_sig_hdl->q_idx; 2132 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 2133 hw_sob = &prop->hw_sob[prop->curr_sob_offset]; 2134 sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id); 2135 2136 /* Check if sob_val got out of sync due to other 2137 * signal submission requests which were handled 2138 * between the reserve-unreserve calls or SOB switch 2139 * upon reaching SOB max value. 2140 */ 2141 if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count 2142 != prop->next_sob_val || 2143 sob_addr != encaps_sig_hdl->hw_sob->sob_addr) { 2144 dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n", 2145 encaps_sig_hdl->pre_sob_val, 2146 (prop->next_sob_val - encaps_sig_hdl->count)); 2147 2148 hdev->asic_funcs->hw_queues_unlock(hdev); 2149 rc = -EINVAL; 2150 goto out_unlock; 2151 } 2152 2153 /* 2154 * Decrement the SOB value by count by user request 2155 * to unreserve those signals 2156 */ 2157 prop->next_sob_val -= encaps_sig_hdl->count; 2158 2159 hdev->asic_funcs->hw_queues_unlock(hdev); 2160 2161 hw_sob_put(hw_sob); 2162 2163 /* Release the id and free allocated memory of the handle */ 2164 idr_remove(&mgr->handles, handle_id); 2165 2166 /* unlock before calling ctx_put, where we might sleep */ 2167 spin_unlock(&mgr->lock); 2168 hl_ctx_put(encaps_sig_hdl->ctx); 2169 kfree(encaps_sig_hdl); 2170 goto out; 2171 } else { 2172 rc = -EINVAL; 2173 dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n"); 2174 } 2175 2176 out_unlock: 2177 spin_unlock(&mgr->lock); 2178 2179 out: 2180 return rc; 2181 } 2182 2183 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type, 2184 void __user *chunks, u32 num_chunks, 2185 u64 *cs_seq, u32 flags, u32 timeout, 2186 u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count) 2187 { 2188 struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL; 2189 bool handle_found = false, is_wait_cs = false, 2190 wait_cs_submitted = false, 2191 cs_encaps_signals = false; 2192 struct hl_cs_chunk *cs_chunk_array, *chunk; 2193 bool staged_cs_with_encaps_signals = false; 2194 struct hw_queue_properties *hw_queue_prop; 2195 struct hl_device *hdev = hpriv->hdev; 2196 struct hl_cs_compl *sig_waitcs_cmpl; 2197 u32 q_idx, collective_engine_id = 0; 2198 struct hl_cs_counters_atomic *cntr; 2199 struct hl_fence *sig_fence = NULL; 2200 struct hl_ctx *ctx = hpriv->ctx; 2201 enum hl_queue_type q_type; 2202 struct hl_cs *cs; 2203 u64 signal_seq; 2204 int rc; 2205 2206 cntr = &hdev->aggregated_cs_counters; 2207 *cs_seq = ULLONG_MAX; 2208 2209 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, 2210 ctx); 2211 if (rc) 2212 goto out; 2213 2214 /* currently it is guaranteed to have only one chunk */ 2215 chunk = &cs_chunk_array[0]; 2216 2217 if (chunk->queue_index >= hdev->asic_prop.max_queues) { 2218 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2219 atomic64_inc(&cntr->validation_drop_cnt); 2220 dev_err(hdev->dev, "Queue index %d is invalid\n", 2221 chunk->queue_index); 2222 rc = -EINVAL; 2223 goto free_cs_chunk_array; 2224 } 2225 2226 q_idx = chunk->queue_index; 2227 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; 2228 q_type = hw_queue_prop->type; 2229 2230 if (!hw_queue_prop->supports_sync_stream) { 2231 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2232 atomic64_inc(&cntr->validation_drop_cnt); 2233 dev_err(hdev->dev, 2234 "Queue index %d does not support sync stream operations\n", 2235 q_idx); 2236 rc = -EINVAL; 2237 goto free_cs_chunk_array; 2238 } 2239 2240 if (cs_type == CS_TYPE_COLLECTIVE_WAIT) { 2241 if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) { 2242 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2243 atomic64_inc(&cntr->validation_drop_cnt); 2244 dev_err(hdev->dev, 2245 "Queue index %d is invalid\n", q_idx); 2246 rc = -EINVAL; 2247 goto free_cs_chunk_array; 2248 } 2249 2250 if (!hdev->nic_ports_mask) { 2251 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2252 atomic64_inc(&cntr->validation_drop_cnt); 2253 dev_err(hdev->dev, 2254 "Collective operations not supported when NIC ports are disabled"); 2255 rc = -EINVAL; 2256 goto free_cs_chunk_array; 2257 } 2258 2259 collective_engine_id = chunk->collective_engine_id; 2260 } 2261 2262 is_wait_cs = !!(cs_type == CS_TYPE_WAIT || 2263 cs_type == CS_TYPE_COLLECTIVE_WAIT); 2264 2265 cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); 2266 2267 if (is_wait_cs) { 2268 rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq, 2269 ctx, cs_encaps_signals); 2270 if (rc) 2271 goto free_cs_chunk_array; 2272 2273 if (cs_encaps_signals) { 2274 /* check if cs sequence has encapsulated 2275 * signals handle 2276 */ 2277 struct idr *idp; 2278 u32 id; 2279 2280 spin_lock(&ctx->sig_mgr.lock); 2281 idp = &ctx->sig_mgr.handles; 2282 idr_for_each_entry(idp, encaps_sig_hdl, id) { 2283 if (encaps_sig_hdl->cs_seq == signal_seq) { 2284 /* get refcount to protect removing this handle from idr, 2285 * needed when multiple wait cs are used with offset 2286 * to wait on reserved encaps signals. 2287 * Since kref_put of this handle is executed outside the 2288 * current lock, it is possible that the handle refcount 2289 * is 0 but it yet to be removed from the list. In this 2290 * case need to consider the handle as not valid. 2291 */ 2292 if (kref_get_unless_zero(&encaps_sig_hdl->refcount)) 2293 handle_found = true; 2294 break; 2295 } 2296 } 2297 spin_unlock(&ctx->sig_mgr.lock); 2298 2299 if (!handle_found) { 2300 /* treat as signal CS already finished */ 2301 dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n", 2302 signal_seq); 2303 rc = 0; 2304 goto free_cs_chunk_array; 2305 } 2306 2307 /* validate also the signal offset value */ 2308 if (chunk->encaps_signal_offset > 2309 encaps_sig_hdl->count) { 2310 dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n", 2311 chunk->encaps_signal_offset, 2312 encaps_sig_hdl->count); 2313 rc = -EINVAL; 2314 goto free_cs_chunk_array; 2315 } 2316 } 2317 2318 sig_fence = hl_ctx_get_fence(ctx, signal_seq); 2319 if (IS_ERR(sig_fence)) { 2320 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2321 atomic64_inc(&cntr->validation_drop_cnt); 2322 dev_err(hdev->dev, 2323 "Failed to get signal CS with seq 0x%llx\n", 2324 signal_seq); 2325 rc = PTR_ERR(sig_fence); 2326 goto free_cs_chunk_array; 2327 } 2328 2329 if (!sig_fence) { 2330 /* signal CS already finished */ 2331 rc = 0; 2332 goto free_cs_chunk_array; 2333 } 2334 2335 sig_waitcs_cmpl = 2336 container_of(sig_fence, struct hl_cs_compl, base_fence); 2337 2338 staged_cs_with_encaps_signals = !! 2339 (sig_waitcs_cmpl->type == CS_TYPE_DEFAULT && 2340 (flags & HL_CS_FLAGS_ENCAP_SIGNALS)); 2341 2342 if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL && 2343 !staged_cs_with_encaps_signals) { 2344 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2345 atomic64_inc(&cntr->validation_drop_cnt); 2346 dev_err(hdev->dev, 2347 "CS seq 0x%llx is not of a signal/encaps-signal CS\n", 2348 signal_seq); 2349 hl_fence_put(sig_fence); 2350 rc = -EINVAL; 2351 goto free_cs_chunk_array; 2352 } 2353 2354 if (completion_done(&sig_fence->completion)) { 2355 /* signal CS already finished */ 2356 hl_fence_put(sig_fence); 2357 rc = 0; 2358 goto free_cs_chunk_array; 2359 } 2360 } 2361 2362 rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout); 2363 if (rc) { 2364 if (is_wait_cs) 2365 hl_fence_put(sig_fence); 2366 2367 goto free_cs_chunk_array; 2368 } 2369 2370 /* 2371 * Save the signal CS fence for later initialization right before 2372 * hanging the wait CS on the queue. 2373 * for encaps signals case, we save the cs sequence and handle pointer 2374 * for later initialization. 2375 */ 2376 if (is_wait_cs) { 2377 cs->signal_fence = sig_fence; 2378 /* store the handle pointer, so we don't have to 2379 * look for it again, later on the flow 2380 * when we need to set SOB info in hw_queue. 2381 */ 2382 if (cs->encaps_signals) 2383 cs->encaps_sig_hdl = encaps_sig_hdl; 2384 } 2385 2386 hl_debugfs_add_cs(cs); 2387 2388 *cs_seq = cs->sequence; 2389 2390 if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL) 2391 rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type, 2392 q_idx, chunk->encaps_signal_offset); 2393 else if (cs_type == CS_TYPE_COLLECTIVE_WAIT) 2394 rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx, 2395 cs, q_idx, collective_engine_id, 2396 chunk->encaps_signal_offset); 2397 else { 2398 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2399 atomic64_inc(&cntr->validation_drop_cnt); 2400 rc = -EINVAL; 2401 } 2402 2403 if (rc) 2404 goto free_cs_object; 2405 2406 if (q_type == QUEUE_TYPE_HW) 2407 INIT_WORK(&cs->finish_work, cs_completion); 2408 2409 rc = hl_hw_queue_schedule_cs(cs); 2410 if (rc) { 2411 /* In case wait cs failed here, it means the signal cs 2412 * already completed. we want to free all it's related objects 2413 * but we don't want to fail the ioctl. 2414 */ 2415 if (is_wait_cs) 2416 rc = 0; 2417 else if (rc != -EAGAIN) 2418 dev_err(hdev->dev, 2419 "Failed to submit CS %d.%llu to H/W queues, error %d\n", 2420 ctx->asid, cs->sequence, rc); 2421 goto free_cs_object; 2422 } 2423 2424 *signal_sob_addr_offset = cs->sob_addr_offset; 2425 *signal_initial_sob_count = cs->initial_sob_count; 2426 2427 rc = HL_CS_STATUS_SUCCESS; 2428 if (is_wait_cs) 2429 wait_cs_submitted = true; 2430 goto put_cs; 2431 2432 free_cs_object: 2433 cs_rollback(hdev, cs); 2434 *cs_seq = ULLONG_MAX; 2435 /* The path below is both for good and erroneous exits */ 2436 put_cs: 2437 /* We finished with the CS in this function, so put the ref */ 2438 cs_put(cs); 2439 free_cs_chunk_array: 2440 if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs) 2441 kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); 2442 kfree(cs_chunk_array); 2443 out: 2444 return rc; 2445 } 2446 2447 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores, 2448 u32 num_engine_cores, u32 core_command) 2449 { 2450 struct hl_device *hdev = hpriv->hdev; 2451 void __user *engine_cores_arr; 2452 u32 *cores; 2453 int rc; 2454 2455 if (!hdev->asic_prop.supports_engine_modes) 2456 return -EPERM; 2457 2458 if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) { 2459 dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores); 2460 return -EINVAL; 2461 } 2462 2463 if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) { 2464 dev_err(hdev->dev, "Engine core command is invalid\n"); 2465 return -EINVAL; 2466 } 2467 2468 engine_cores_arr = (void __user *) (uintptr_t) engine_cores; 2469 cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL); 2470 if (!cores) 2471 return -ENOMEM; 2472 2473 if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) { 2474 dev_err(hdev->dev, "Failed to copy core-ids array from user\n"); 2475 kfree(cores); 2476 return -EFAULT; 2477 } 2478 2479 rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command); 2480 kfree(cores); 2481 2482 return rc; 2483 } 2484 2485 static int cs_ioctl_engines(struct hl_fpriv *hpriv, u64 engines_arr_user_addr, 2486 u32 num_engines, enum hl_engine_command command) 2487 { 2488 struct hl_device *hdev = hpriv->hdev; 2489 u32 *engines, max_num_of_engines; 2490 void __user *engines_arr; 2491 int rc; 2492 2493 if (!hdev->asic_prop.supports_engine_modes) 2494 return -EPERM; 2495 2496 if (command >= HL_ENGINE_COMMAND_MAX) { 2497 dev_err(hdev->dev, "Engine command is invalid\n"); 2498 return -EINVAL; 2499 } 2500 2501 max_num_of_engines = hdev->asic_prop.max_num_of_engines; 2502 if (command == HL_ENGINE_CORE_RUN || command == HL_ENGINE_CORE_HALT) 2503 max_num_of_engines = hdev->asic_prop.num_engine_cores; 2504 2505 if (!num_engines || num_engines > max_num_of_engines) { 2506 dev_err(hdev->dev, "Number of engines %d is invalid\n", num_engines); 2507 return -EINVAL; 2508 } 2509 2510 engines_arr = (void __user *) (uintptr_t) engines_arr_user_addr; 2511 engines = kmalloc_array(num_engines, sizeof(u32), GFP_KERNEL); 2512 if (!engines) 2513 return -ENOMEM; 2514 2515 if (copy_from_user(engines, engines_arr, num_engines * sizeof(u32))) { 2516 dev_err(hdev->dev, "Failed to copy engine-ids array from user\n"); 2517 kfree(engines); 2518 return -EFAULT; 2519 } 2520 2521 rc = hdev->asic_funcs->set_engines(hdev, engines, num_engines, command); 2522 kfree(engines); 2523 2524 return rc; 2525 } 2526 2527 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv) 2528 { 2529 struct hl_device *hdev = hpriv->hdev; 2530 struct asic_fixed_properties *prop = &hdev->asic_prop; 2531 2532 if (!prop->hbw_flush_reg) { 2533 dev_dbg(hdev->dev, "HBW flush is not supported\n"); 2534 return -EOPNOTSUPP; 2535 } 2536 2537 RREG32(prop->hbw_flush_reg); 2538 2539 return 0; 2540 } 2541 2542 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data) 2543 { 2544 union hl_cs_args *args = data; 2545 enum hl_cs_type cs_type = 0; 2546 u64 cs_seq = ULONG_MAX; 2547 void __user *chunks; 2548 u32 num_chunks, flags, timeout, 2549 signals_count = 0, sob_addr = 0, handle_id = 0; 2550 u16 sob_initial_count = 0; 2551 int rc; 2552 2553 rc = hl_cs_sanity_checks(hpriv, args); 2554 if (rc) 2555 goto out; 2556 2557 rc = hl_cs_ctx_switch(hpriv, args, &cs_seq); 2558 if (rc) 2559 goto out; 2560 2561 cs_type = hl_cs_get_cs_type(args->in.cs_flags & 2562 ~HL_CS_FLAGS_FORCE_RESTORE); 2563 chunks = (void __user *) (uintptr_t) args->in.chunks_execute; 2564 num_chunks = args->in.num_chunks_execute; 2565 flags = args->in.cs_flags; 2566 2567 /* In case this is a staged CS, user should supply the CS sequence */ 2568 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 2569 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) 2570 cs_seq = args->in.seq; 2571 2572 timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT 2573 ? msecs_to_jiffies(args->in.timeout * 1000) 2574 : hpriv->hdev->timeout_jiffies; 2575 2576 switch (cs_type) { 2577 case CS_TYPE_SIGNAL: 2578 case CS_TYPE_WAIT: 2579 case CS_TYPE_COLLECTIVE_WAIT: 2580 rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks, 2581 &cs_seq, args->in.cs_flags, timeout, 2582 &sob_addr, &sob_initial_count); 2583 break; 2584 case CS_RESERVE_SIGNALS: 2585 rc = cs_ioctl_reserve_signals(hpriv, 2586 args->in.encaps_signals_q_idx, 2587 args->in.encaps_signals_count, 2588 &handle_id, &sob_addr, &signals_count); 2589 break; 2590 case CS_UNRESERVE_SIGNALS: 2591 rc = cs_ioctl_unreserve_signals(hpriv, 2592 args->in.encaps_sig_handle_id); 2593 break; 2594 case CS_TYPE_ENGINE_CORE: 2595 rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores, 2596 args->in.num_engine_cores, args->in.core_command); 2597 break; 2598 case CS_TYPE_ENGINES: 2599 rc = cs_ioctl_engines(hpriv, args->in.engines, 2600 args->in.num_engines, args->in.engine_command); 2601 break; 2602 case CS_TYPE_FLUSH_PCI_HBW_WRITES: 2603 rc = cs_ioctl_flush_pci_hbw_writes(hpriv); 2604 break; 2605 default: 2606 rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq, 2607 args->in.cs_flags, 2608 args->in.encaps_sig_handle_id, 2609 timeout, &sob_initial_count); 2610 break; 2611 } 2612 out: 2613 if (rc != -EAGAIN) { 2614 memset(args, 0, sizeof(*args)); 2615 2616 switch (cs_type) { 2617 case CS_RESERVE_SIGNALS: 2618 args->out.handle_id = handle_id; 2619 args->out.sob_base_addr_offset = sob_addr; 2620 args->out.count = signals_count; 2621 break; 2622 case CS_TYPE_SIGNAL: 2623 args->out.sob_base_addr_offset = sob_addr; 2624 args->out.sob_count_before_submission = sob_initial_count; 2625 args->out.seq = cs_seq; 2626 break; 2627 case CS_TYPE_DEFAULT: 2628 args->out.sob_count_before_submission = sob_initial_count; 2629 args->out.seq = cs_seq; 2630 break; 2631 default: 2632 args->out.seq = cs_seq; 2633 break; 2634 } 2635 2636 args->out.status = rc; 2637 } 2638 2639 return rc; 2640 } 2641 2642 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence, 2643 enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp) 2644 { 2645 struct hl_device *hdev = ctx->hdev; 2646 ktime_t timestamp_kt; 2647 long completion_rc; 2648 int rc = 0, error; 2649 2650 if (IS_ERR(fence)) { 2651 rc = PTR_ERR(fence); 2652 if (rc == -EINVAL) 2653 dev_notice_ratelimited(hdev->dev, 2654 "Can't wait on CS %llu because current CS is at seq %llu\n", 2655 seq, ctx->cs_sequence); 2656 return rc; 2657 } 2658 2659 if (!fence) { 2660 if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, ×tamp_kt, &error)) { 2661 dev_dbg(hdev->dev, 2662 "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n", 2663 seq, ctx->cs_sequence); 2664 *status = CS_WAIT_STATUS_GONE; 2665 return 0; 2666 } 2667 2668 completion_rc = 1; 2669 goto report_results; 2670 } 2671 2672 if (!timeout_us) { 2673 completion_rc = completion_done(&fence->completion); 2674 } else { 2675 unsigned long timeout; 2676 2677 timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ? 2678 timeout_us : usecs_to_jiffies(timeout_us); 2679 completion_rc = 2680 wait_for_completion_interruptible_timeout( 2681 &fence->completion, timeout); 2682 } 2683 2684 error = fence->error; 2685 timestamp_kt = fence->timestamp; 2686 2687 report_results: 2688 if (completion_rc > 0) { 2689 *status = CS_WAIT_STATUS_COMPLETED; 2690 if (timestamp) 2691 *timestamp = ktime_to_ns(timestamp_kt); 2692 } else { 2693 *status = CS_WAIT_STATUS_BUSY; 2694 } 2695 2696 if (completion_rc == -ERESTARTSYS) 2697 rc = completion_rc; 2698 else if (error == -ETIMEDOUT || error == -EIO) 2699 rc = error; 2700 2701 return rc; 2702 } 2703 2704 /* 2705 * hl_cs_poll_fences - iterate CS fences to check for CS completion 2706 * 2707 * @mcs_data: multi-CS internal data 2708 * @mcs_compl: multi-CS completion structure 2709 * 2710 * @return 0 on success, otherwise non 0 error code 2711 * 2712 * The function iterates on all CS sequence in the list and set bit in 2713 * completion_bitmap for each completed CS. 2714 * While iterating, the function sets the stream map of each fence in the fence 2715 * array in the completion QID stream map to be used by CSs to perform 2716 * completion to the multi-CS context. 2717 * This function shall be called after taking context ref 2718 */ 2719 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl) 2720 { 2721 struct hl_fence **fence_ptr = mcs_data->fence_arr; 2722 struct hl_device *hdev = mcs_data->ctx->hdev; 2723 int i, rc, arr_len = mcs_data->arr_len; 2724 u64 *seq_arr = mcs_data->seq_arr; 2725 ktime_t max_ktime, first_cs_time; 2726 enum hl_cs_wait_status status; 2727 2728 memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *)); 2729 2730 /* get all fences under the same lock */ 2731 rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len); 2732 if (rc) 2733 return rc; 2734 2735 /* 2736 * re-initialize the completion here to handle 2 possible cases: 2737 * 1. CS will complete the multi-CS prior clearing the completion. in which 2738 * case the fence iteration is guaranteed to catch the CS completion. 2739 * 2. the completion will occur after re-init of the completion. 2740 * in which case we will wake up immediately in wait_for_completion. 2741 */ 2742 reinit_completion(&mcs_compl->completion); 2743 2744 /* 2745 * set to maximum time to verify timestamp is valid: if at the end 2746 * this value is maintained- no timestamp was updated 2747 */ 2748 max_ktime = ktime_set(KTIME_SEC_MAX, 0); 2749 first_cs_time = max_ktime; 2750 2751 for (i = 0; i < arr_len; i++, fence_ptr++) { 2752 struct hl_fence *fence = *fence_ptr; 2753 2754 /* 2755 * In order to prevent case where we wait until timeout even though a CS associated 2756 * with the multi-CS actually completed we do things in the below order: 2757 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way 2758 * any CS can, potentially, complete the multi CS for the specific QID (note 2759 * that once completion is initialized, calling complete* and then wait on the 2760 * completion will cause it to return at once) 2761 * 2. only after allowing multi-CS completion for the specific QID we check whether 2762 * the specific CS already completed (and thus the wait for completion part will 2763 * be skipped). if the CS not completed it is guaranteed that completing CS will 2764 * wake up the completion. 2765 */ 2766 if (fence) 2767 mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map; 2768 2769 /* 2770 * function won't sleep as it is called with timeout 0 (i.e. 2771 * poll the fence) 2772 */ 2773 rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL); 2774 if (rc) { 2775 dev_err(hdev->dev, 2776 "wait_for_fence error :%d for CS seq %llu\n", 2777 rc, seq_arr[i]); 2778 break; 2779 } 2780 2781 switch (status) { 2782 case CS_WAIT_STATUS_BUSY: 2783 /* CS did not finished, QID to wait on already stored */ 2784 break; 2785 case CS_WAIT_STATUS_COMPLETED: 2786 /* 2787 * Using mcs_handling_done to avoid possibility of mcs_data 2788 * returns to user indicating CS completed before it finished 2789 * all of its mcs handling, to avoid race the next time the 2790 * user waits for mcs. 2791 * note: when reaching this case fence is definitely not NULL 2792 * but NULL check was added to overcome static analysis 2793 */ 2794 if (fence && !fence->mcs_handling_done) { 2795 /* 2796 * in case multi CS is completed but MCS handling not done 2797 * we "complete" the multi CS to prevent it from waiting 2798 * until time-out and the "multi-CS handling done" will have 2799 * another chance at the next iteration 2800 */ 2801 complete_all(&mcs_compl->completion); 2802 break; 2803 } 2804 2805 mcs_data->completion_bitmap |= BIT(i); 2806 /* 2807 * For all completed CSs we take the earliest timestamp. 2808 * For this we have to validate that the timestamp is 2809 * earliest of all timestamps so far. 2810 */ 2811 if (fence && mcs_data->update_ts && 2812 (ktime_compare(fence->timestamp, first_cs_time) < 0)) 2813 first_cs_time = fence->timestamp; 2814 break; 2815 case CS_WAIT_STATUS_GONE: 2816 mcs_data->update_ts = false; 2817 mcs_data->gone_cs = true; 2818 /* 2819 * It is possible to get an old sequence numbers from user 2820 * which related to already completed CSs and their fences 2821 * already gone. In this case, CS set as completed but 2822 * no need to consider its QID for mcs completion. 2823 */ 2824 mcs_data->completion_bitmap |= BIT(i); 2825 break; 2826 default: 2827 dev_err(hdev->dev, "Invalid fence status\n"); 2828 rc = -EINVAL; 2829 break; 2830 } 2831 2832 } 2833 2834 hl_fences_put(mcs_data->fence_arr, arr_len); 2835 2836 if (mcs_data->update_ts && 2837 (ktime_compare(first_cs_time, max_ktime) != 0)) 2838 mcs_data->timestamp = ktime_to_ns(first_cs_time); 2839 2840 return rc; 2841 } 2842 2843 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, 2844 enum hl_cs_wait_status *status, s64 *timestamp) 2845 { 2846 struct hl_fence *fence; 2847 int rc = 0; 2848 2849 if (timestamp) 2850 *timestamp = 0; 2851 2852 hl_ctx_get(ctx); 2853 2854 fence = hl_ctx_get_fence(ctx, seq); 2855 2856 rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp); 2857 hl_fence_put(fence); 2858 hl_ctx_put(ctx); 2859 2860 return rc; 2861 } 2862 2863 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs) 2864 { 2865 if (usecs <= U32_MAX) 2866 return usecs_to_jiffies(usecs); 2867 2868 /* 2869 * If the value in nanoseconds is larger than 64 bit, use the largest 2870 * 64 bit value. 2871 */ 2872 if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC))) 2873 return nsecs_to_jiffies(U64_MAX); 2874 2875 return nsecs_to_jiffies(usecs * NSEC_PER_USEC); 2876 } 2877 2878 /* 2879 * hl_wait_multi_cs_completion_init - init completion structure 2880 * 2881 * @hdev: pointer to habanalabs device structure 2882 * @stream_master_bitmap: stream master QIDs map, set bit indicates stream 2883 * master QID to wait on 2884 * 2885 * @return valid completion struct pointer on success, otherwise error pointer 2886 * 2887 * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver. 2888 * the function gets the first available completion (by marking it "used") 2889 * and initialize its values. 2890 */ 2891 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev) 2892 { 2893 struct multi_cs_completion *mcs_compl; 2894 int i; 2895 2896 /* find free multi_cs completion structure */ 2897 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 2898 mcs_compl = &hdev->multi_cs_completion[i]; 2899 spin_lock(&mcs_compl->lock); 2900 if (!mcs_compl->used) { 2901 mcs_compl->used = 1; 2902 mcs_compl->timestamp = 0; 2903 /* 2904 * init QID map to 0 to avoid completion by CSs. the actual QID map 2905 * to multi-CS CSs will be set incrementally at a later stage 2906 */ 2907 mcs_compl->stream_master_qid_map = 0; 2908 spin_unlock(&mcs_compl->lock); 2909 break; 2910 } 2911 spin_unlock(&mcs_compl->lock); 2912 } 2913 2914 if (i == MULTI_CS_MAX_USER_CTX) { 2915 dev_err(hdev->dev, "no available multi-CS completion structure\n"); 2916 return ERR_PTR(-ENOMEM); 2917 } 2918 return mcs_compl; 2919 } 2920 2921 /* 2922 * hl_wait_multi_cs_completion_fini - return completion structure and set as 2923 * unused 2924 * 2925 * @mcs_compl: pointer to the completion structure 2926 */ 2927 static void hl_wait_multi_cs_completion_fini( 2928 struct multi_cs_completion *mcs_compl) 2929 { 2930 /* 2931 * free completion structure, do it under lock to be in-sync with the 2932 * thread that signals completion 2933 */ 2934 spin_lock(&mcs_compl->lock); 2935 mcs_compl->used = 0; 2936 spin_unlock(&mcs_compl->lock); 2937 } 2938 2939 /* 2940 * hl_wait_multi_cs_completion - wait for first CS to complete 2941 * 2942 * @mcs_data: multi-CS internal data 2943 * 2944 * @return 0 on success, otherwise non 0 error code 2945 */ 2946 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data, 2947 struct multi_cs_completion *mcs_compl) 2948 { 2949 long completion_rc; 2950 2951 completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion, 2952 mcs_data->timeout_jiffies); 2953 2954 /* update timestamp */ 2955 if (completion_rc > 0) 2956 mcs_data->timestamp = mcs_compl->timestamp; 2957 2958 if (completion_rc == -ERESTARTSYS) 2959 return completion_rc; 2960 2961 mcs_data->wait_status = completion_rc; 2962 2963 return 0; 2964 } 2965 2966 /* 2967 * hl_multi_cs_completion_init - init array of multi-CS completion structures 2968 * 2969 * @hdev: pointer to habanalabs device structure 2970 */ 2971 void hl_multi_cs_completion_init(struct hl_device *hdev) 2972 { 2973 struct multi_cs_completion *mcs_cmpl; 2974 int i; 2975 2976 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 2977 mcs_cmpl = &hdev->multi_cs_completion[i]; 2978 mcs_cmpl->used = 0; 2979 spin_lock_init(&mcs_cmpl->lock); 2980 init_completion(&mcs_cmpl->completion); 2981 } 2982 } 2983 2984 /* 2985 * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl 2986 * 2987 * @hpriv: pointer to the private data of the fd 2988 * @data: pointer to multi-CS wait ioctl in/out args 2989 * 2990 */ 2991 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) 2992 { 2993 struct multi_cs_completion *mcs_compl; 2994 struct hl_device *hdev = hpriv->hdev; 2995 struct multi_cs_data mcs_data = {}; 2996 union hl_wait_cs_args *args = data; 2997 struct hl_ctx *ctx = hpriv->ctx; 2998 struct hl_fence **fence_arr; 2999 void __user *seq_arr; 3000 u32 size_to_copy; 3001 u64 *cs_seq_arr; 3002 u8 seq_arr_len; 3003 int rc, i; 3004 3005 for (i = 0 ; i < sizeof(args->in.pad) ; i++) 3006 if (args->in.pad[i]) { 3007 dev_dbg(hdev->dev, "Padding bytes must be 0\n"); 3008 return -EINVAL; 3009 } 3010 3011 if (!hdev->supports_wait_for_multi_cs) { 3012 dev_err(hdev->dev, "Wait for multi CS is not supported\n"); 3013 return -EPERM; 3014 } 3015 3016 seq_arr_len = args->in.seq_arr_len; 3017 3018 if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) { 3019 dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n", 3020 HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len); 3021 return -EINVAL; 3022 } 3023 3024 /* allocate memory for sequence array */ 3025 cs_seq_arr = 3026 kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL); 3027 if (!cs_seq_arr) 3028 return -ENOMEM; 3029 3030 /* copy CS sequence array from user */ 3031 seq_arr = (void __user *) (uintptr_t) args->in.seq; 3032 size_to_copy = seq_arr_len * sizeof(*cs_seq_arr); 3033 if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) { 3034 dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n"); 3035 rc = -EFAULT; 3036 goto free_seq_arr; 3037 } 3038 3039 /* allocate array for the fences */ 3040 fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL); 3041 if (!fence_arr) { 3042 rc = -ENOMEM; 3043 goto free_seq_arr; 3044 } 3045 3046 /* initialize the multi-CS internal data */ 3047 mcs_data.ctx = ctx; 3048 mcs_data.seq_arr = cs_seq_arr; 3049 mcs_data.fence_arr = fence_arr; 3050 mcs_data.arr_len = seq_arr_len; 3051 3052 hl_ctx_get(ctx); 3053 3054 /* wait (with timeout) for the first CS to be completed */ 3055 mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us); 3056 mcs_compl = hl_wait_multi_cs_completion_init(hdev); 3057 if (IS_ERR(mcs_compl)) { 3058 rc = PTR_ERR(mcs_compl); 3059 goto put_ctx; 3060 } 3061 3062 /* poll all CS fences, extract timestamp */ 3063 mcs_data.update_ts = true; 3064 rc = hl_cs_poll_fences(&mcs_data, mcs_compl); 3065 /* 3066 * skip wait for CS completion when one of the below is true: 3067 * - an error on the poll function 3068 * - one or more CS in the list completed 3069 * - the user called ioctl with timeout 0 3070 */ 3071 if (rc || mcs_data.completion_bitmap || !args->in.timeout_us) 3072 goto completion_fini; 3073 3074 while (true) { 3075 rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl); 3076 if (rc || (mcs_data.wait_status == 0)) 3077 break; 3078 3079 /* 3080 * poll fences once again to update the CS map. 3081 * no timestamp should be updated this time. 3082 */ 3083 mcs_data.update_ts = false; 3084 rc = hl_cs_poll_fences(&mcs_data, mcs_compl); 3085 3086 if (rc || mcs_data.completion_bitmap) 3087 break; 3088 3089 /* 3090 * if hl_wait_multi_cs_completion returned before timeout (i.e. 3091 * it got a completion) it either got completed by CS in the multi CS list 3092 * (in which case the indication will be non empty completion_bitmap) or it 3093 * got completed by CS submitted to one of the shared stream master but 3094 * not in the multi CS list (in which case we should wait again but modify 3095 * the timeout and set timestamp as zero to let a CS related to the current 3096 * multi-CS set a new, relevant, timestamp) 3097 */ 3098 mcs_data.timeout_jiffies = mcs_data.wait_status; 3099 mcs_compl->timestamp = 0; 3100 } 3101 3102 completion_fini: 3103 hl_wait_multi_cs_completion_fini(mcs_compl); 3104 3105 put_ctx: 3106 hl_ctx_put(ctx); 3107 kfree(fence_arr); 3108 3109 free_seq_arr: 3110 kfree(cs_seq_arr); 3111 3112 if (rc == -ERESTARTSYS) { 3113 dev_err_ratelimited(hdev->dev, 3114 "user process got signal while waiting for Multi-CS\n"); 3115 rc = -EINTR; 3116 } 3117 3118 if (rc) 3119 return rc; 3120 3121 /* update output args */ 3122 memset(args, 0, sizeof(*args)); 3123 3124 if (mcs_data.completion_bitmap) { 3125 args->out.status = HL_WAIT_CS_STATUS_COMPLETED; 3126 args->out.cs_completion_map = mcs_data.completion_bitmap; 3127 3128 /* if timestamp not 0- it's valid */ 3129 if (mcs_data.timestamp) { 3130 args->out.timestamp_nsec = mcs_data.timestamp; 3131 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3132 } 3133 3134 /* update if some CS was gone */ 3135 if (!mcs_data.timestamp) 3136 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; 3137 } else { 3138 args->out.status = HL_WAIT_CS_STATUS_BUSY; 3139 } 3140 3141 return 0; 3142 } 3143 3144 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3145 { 3146 struct hl_device *hdev = hpriv->hdev; 3147 union hl_wait_cs_args *args = data; 3148 enum hl_cs_wait_status status; 3149 u64 seq = args->in.seq; 3150 s64 timestamp; 3151 int rc; 3152 3153 rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, ×tamp); 3154 3155 if (rc == -ERESTARTSYS) { 3156 dev_err_ratelimited(hdev->dev, 3157 "user process got signal while waiting for CS handle %llu\n", 3158 seq); 3159 return -EINTR; 3160 } 3161 3162 memset(args, 0, sizeof(*args)); 3163 3164 if (rc) { 3165 if (rc == -ETIMEDOUT) { 3166 dev_err_ratelimited(hdev->dev, 3167 "CS %llu has timed-out while user process is waiting for it\n", 3168 seq); 3169 args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT; 3170 } else if (rc == -EIO) { 3171 dev_err_ratelimited(hdev->dev, 3172 "CS %llu has been aborted while user process is waiting for it\n", 3173 seq); 3174 args->out.status = HL_WAIT_CS_STATUS_ABORTED; 3175 } 3176 return rc; 3177 } 3178 3179 if (timestamp) { 3180 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3181 args->out.timestamp_nsec = timestamp; 3182 } 3183 3184 switch (status) { 3185 case CS_WAIT_STATUS_GONE: 3186 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; 3187 fallthrough; 3188 case CS_WAIT_STATUS_COMPLETED: 3189 args->out.status = HL_WAIT_CS_STATUS_COMPLETED; 3190 break; 3191 case CS_WAIT_STATUS_BUSY: 3192 default: 3193 args->out.status = HL_WAIT_CS_STATUS_BUSY; 3194 break; 3195 } 3196 3197 return 0; 3198 } 3199 3200 static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf, 3201 struct hl_cb *cq_cb, 3202 u64 ts_offset, u64 cq_offset, u64 target_value, 3203 spinlock_t *wait_list_lock, 3204 struct hl_user_pending_interrupt **pend) 3205 { 3206 struct hl_ts_buff *ts_buff = buf->private; 3207 struct hl_user_pending_interrupt *requested_offset_record = 3208 (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + 3209 ts_offset; 3210 struct hl_user_pending_interrupt *cb_last = 3211 (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + 3212 (ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt)); 3213 unsigned long iter_counter = 0; 3214 u64 current_cq_counter; 3215 ktime_t timestamp; 3216 3217 /* Validate ts_offset not exceeding last max */ 3218 if (requested_offset_record >= cb_last) { 3219 dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n", 3220 (u64)(uintptr_t)cb_last); 3221 return -EINVAL; 3222 } 3223 3224 timestamp = ktime_get(); 3225 3226 start_over: 3227 spin_lock(wait_list_lock); 3228 3229 /* Unregister only if we didn't reach the target value 3230 * since in this case there will be no handling in irq context 3231 * and then it's safe to delete the node out of the interrupt list 3232 * then re-use it on other interrupt 3233 */ 3234 if (requested_offset_record->ts_reg_info.in_use) { 3235 current_cq_counter = *requested_offset_record->cq_kernel_addr; 3236 if (current_cq_counter < requested_offset_record->cq_target_value) { 3237 list_del(&requested_offset_record->wait_list_node); 3238 spin_unlock(wait_list_lock); 3239 3240 hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf); 3241 hl_cb_put(requested_offset_record->ts_reg_info.cq_cb); 3242 3243 dev_dbg(buf->mmg->dev, 3244 "ts node removed from interrupt list now can re-use\n"); 3245 } else { 3246 dev_dbg(buf->mmg->dev, 3247 "ts node in middle of irq handling\n"); 3248 3249 /* irq thread handling in the middle give it time to finish */ 3250 spin_unlock(wait_list_lock); 3251 usleep_range(100, 1000); 3252 if (++iter_counter == MAX_TS_ITER_NUM) { 3253 dev_err(buf->mmg->dev, 3254 "Timestamp offset processing reached timeout of %lld ms\n", 3255 ktime_ms_delta(ktime_get(), timestamp)); 3256 return -EAGAIN; 3257 } 3258 3259 goto start_over; 3260 } 3261 } else { 3262 /* Fill up the new registration node info */ 3263 requested_offset_record->ts_reg_info.buf = buf; 3264 requested_offset_record->ts_reg_info.cq_cb = cq_cb; 3265 requested_offset_record->ts_reg_info.timestamp_kernel_addr = 3266 (u64 *) ts_buff->user_buff_address + ts_offset; 3267 requested_offset_record->cq_kernel_addr = 3268 (u64 *) cq_cb->kernel_address + cq_offset; 3269 requested_offset_record->cq_target_value = target_value; 3270 3271 spin_unlock(wait_list_lock); 3272 } 3273 3274 *pend = requested_offset_record; 3275 3276 dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n", 3277 requested_offset_record); 3278 return 0; 3279 } 3280 3281 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, 3282 struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg, 3283 u64 timeout_us, u64 cq_counters_handle, u64 cq_counters_offset, 3284 u64 target_value, struct hl_user_interrupt *interrupt, 3285 bool register_ts_record, u64 ts_handle, u64 ts_offset, 3286 u32 *status, u64 *timestamp) 3287 { 3288 struct hl_user_pending_interrupt *pend; 3289 struct hl_mmap_mem_buf *buf; 3290 struct hl_cb *cq_cb; 3291 unsigned long timeout; 3292 long completion_rc; 3293 int rc = 0; 3294 3295 timeout = hl_usecs64_to_jiffies(timeout_us); 3296 3297 hl_ctx_get(ctx); 3298 3299 cq_cb = hl_cb_get(cb_mmg, cq_counters_handle); 3300 if (!cq_cb) { 3301 rc = -EINVAL; 3302 goto put_ctx; 3303 } 3304 3305 /* Validate the cq offset */ 3306 if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >= 3307 ((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) { 3308 rc = -EINVAL; 3309 goto put_cq_cb; 3310 } 3311 3312 if (register_ts_record) { 3313 dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n", 3314 interrupt->interrupt_id, ts_offset, cq_counters_offset); 3315 buf = hl_mmap_mem_buf_get(mmg, ts_handle); 3316 if (!buf) { 3317 rc = -EINVAL; 3318 goto put_cq_cb; 3319 } 3320 3321 /* get ts buffer record */ 3322 rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset, 3323 cq_counters_offset, target_value, 3324 &interrupt->wait_list_lock, &pend); 3325 if (rc) 3326 goto put_ts_buff; 3327 } else { 3328 pend = kzalloc(sizeof(*pend), GFP_KERNEL); 3329 if (!pend) { 3330 rc = -ENOMEM; 3331 goto put_cq_cb; 3332 } 3333 hl_fence_init(&pend->fence, ULONG_MAX); 3334 pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset; 3335 pend->cq_target_value = target_value; 3336 } 3337 3338 spin_lock(&interrupt->wait_list_lock); 3339 3340 /* We check for completion value as interrupt could have been received 3341 * before we added the node to the wait list 3342 */ 3343 if (*pend->cq_kernel_addr >= target_value) { 3344 if (register_ts_record) 3345 pend->ts_reg_info.in_use = 0; 3346 spin_unlock(&interrupt->wait_list_lock); 3347 3348 *status = HL_WAIT_CS_STATUS_COMPLETED; 3349 3350 if (register_ts_record) { 3351 *pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns(); 3352 goto put_ts_buff; 3353 } else { 3354 pend->fence.timestamp = ktime_get(); 3355 goto set_timestamp; 3356 } 3357 } else if (!timeout_us) { 3358 spin_unlock(&interrupt->wait_list_lock); 3359 *status = HL_WAIT_CS_STATUS_BUSY; 3360 pend->fence.timestamp = ktime_get(); 3361 goto set_timestamp; 3362 } 3363 3364 /* Add pending user interrupt to relevant list for the interrupt 3365 * handler to monitor. 3366 * Note that we cannot have sorted list by target value, 3367 * in order to shorten the list pass loop, since 3368 * same list could have nodes for different cq counter handle. 3369 * Note: 3370 * Mark ts buff offset as in use here in the spinlock protection area 3371 * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record 3372 * before adding the node to the list. this scenario might happen when 3373 * multiple threads are racing on same offset and one thread could 3374 * set the ts buff in ts_buff_get_kernel_ts_record then the other thread 3375 * takes over and get to ts_buff_get_kernel_ts_record and then we will try 3376 * to re-use the same ts buff offset, and will try to delete a non existing 3377 * node from the list. 3378 */ 3379 if (register_ts_record) 3380 pend->ts_reg_info.in_use = 1; 3381 3382 list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); 3383 spin_unlock(&interrupt->wait_list_lock); 3384 3385 if (register_ts_record) { 3386 rc = *status = HL_WAIT_CS_STATUS_COMPLETED; 3387 goto ts_registration_exit; 3388 } 3389 3390 /* Wait for interrupt handler to signal completion */ 3391 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, 3392 timeout); 3393 if (completion_rc > 0) { 3394 *status = HL_WAIT_CS_STATUS_COMPLETED; 3395 } else { 3396 if (completion_rc == -ERESTARTSYS) { 3397 dev_err_ratelimited(hdev->dev, 3398 "user process got signal while waiting for interrupt ID %d\n", 3399 interrupt->interrupt_id); 3400 rc = -EINTR; 3401 *status = HL_WAIT_CS_STATUS_ABORTED; 3402 } else { 3403 if (pend->fence.error == -EIO) { 3404 dev_err_ratelimited(hdev->dev, 3405 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", 3406 pend->fence.error); 3407 rc = -EIO; 3408 *status = HL_WAIT_CS_STATUS_ABORTED; 3409 } else { 3410 /* The wait has timed-out. We don't know anything beyond that 3411 * because the workload wasn't submitted through the driver. 3412 * Therefore, from driver's perspective, the workload is still 3413 * executing. 3414 */ 3415 rc = 0; 3416 *status = HL_WAIT_CS_STATUS_BUSY; 3417 } 3418 } 3419 } 3420 3421 /* 3422 * We keep removing the node from list here, and not at the irq handler 3423 * for completion timeout case. and if it's a registration 3424 * for ts record, the node will be deleted in the irq handler after 3425 * we reach the target value. 3426 */ 3427 spin_lock(&interrupt->wait_list_lock); 3428 list_del(&pend->wait_list_node); 3429 spin_unlock(&interrupt->wait_list_lock); 3430 3431 set_timestamp: 3432 *timestamp = ktime_to_ns(pend->fence.timestamp); 3433 kfree(pend); 3434 hl_cb_put(cq_cb); 3435 ts_registration_exit: 3436 hl_ctx_put(ctx); 3437 3438 return rc; 3439 3440 put_ts_buff: 3441 hl_mmap_mem_buf_put(buf); 3442 put_cq_cb: 3443 hl_cb_put(cq_cb); 3444 put_ctx: 3445 hl_ctx_put(ctx); 3446 3447 return rc; 3448 } 3449 3450 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx, 3451 u64 timeout_us, u64 user_address, 3452 u64 target_value, struct hl_user_interrupt *interrupt, 3453 u32 *status, 3454 u64 *timestamp) 3455 { 3456 struct hl_user_pending_interrupt *pend; 3457 unsigned long timeout; 3458 u64 completion_value; 3459 long completion_rc; 3460 int rc = 0; 3461 3462 timeout = hl_usecs64_to_jiffies(timeout_us); 3463 3464 hl_ctx_get(ctx); 3465 3466 pend = kzalloc(sizeof(*pend), GFP_KERNEL); 3467 if (!pend) { 3468 hl_ctx_put(ctx); 3469 return -ENOMEM; 3470 } 3471 3472 hl_fence_init(&pend->fence, ULONG_MAX); 3473 3474 /* Add pending user interrupt to relevant list for the interrupt 3475 * handler to monitor 3476 */ 3477 spin_lock(&interrupt->wait_list_lock); 3478 list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); 3479 spin_unlock(&interrupt->wait_list_lock); 3480 3481 /* We check for completion value as interrupt could have been received 3482 * before we added the node to the wait list 3483 */ 3484 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { 3485 dev_err(hdev->dev, "Failed to copy completion value from user\n"); 3486 rc = -EFAULT; 3487 goto remove_pending_user_interrupt; 3488 } 3489 3490 if (completion_value >= target_value) { 3491 *status = HL_WAIT_CS_STATUS_COMPLETED; 3492 /* There was no interrupt, we assume the completion is now. */ 3493 pend->fence.timestamp = ktime_get(); 3494 } else { 3495 *status = HL_WAIT_CS_STATUS_BUSY; 3496 } 3497 3498 if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED)) 3499 goto remove_pending_user_interrupt; 3500 3501 wait_again: 3502 /* Wait for interrupt handler to signal completion */ 3503 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, 3504 timeout); 3505 3506 /* If timeout did not expire we need to perform the comparison. 3507 * If comparison fails, keep waiting until timeout expires 3508 */ 3509 if (completion_rc > 0) { 3510 spin_lock(&interrupt->wait_list_lock); 3511 /* reinit_completion must be called before we check for user 3512 * completion value, otherwise, if interrupt is received after 3513 * the comparison and before the next wait_for_completion, 3514 * we will reach timeout and fail 3515 */ 3516 reinit_completion(&pend->fence.completion); 3517 spin_unlock(&interrupt->wait_list_lock); 3518 3519 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { 3520 dev_err(hdev->dev, "Failed to copy completion value from user\n"); 3521 rc = -EFAULT; 3522 3523 goto remove_pending_user_interrupt; 3524 } 3525 3526 if (completion_value >= target_value) { 3527 *status = HL_WAIT_CS_STATUS_COMPLETED; 3528 } else if (pend->fence.error) { 3529 dev_err_ratelimited(hdev->dev, 3530 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", 3531 pend->fence.error); 3532 /* set the command completion status as ABORTED */ 3533 *status = HL_WAIT_CS_STATUS_ABORTED; 3534 } else { 3535 timeout = completion_rc; 3536 goto wait_again; 3537 } 3538 } else if (completion_rc == -ERESTARTSYS) { 3539 dev_err_ratelimited(hdev->dev, 3540 "user process got signal while waiting for interrupt ID %d\n", 3541 interrupt->interrupt_id); 3542 rc = -EINTR; 3543 } else { 3544 /* The wait has timed-out. We don't know anything beyond that 3545 * because the workload wasn't submitted through the driver. 3546 * Therefore, from driver's perspective, the workload is still 3547 * executing. 3548 */ 3549 rc = 0; 3550 *status = HL_WAIT_CS_STATUS_BUSY; 3551 } 3552 3553 remove_pending_user_interrupt: 3554 spin_lock(&interrupt->wait_list_lock); 3555 list_del(&pend->wait_list_node); 3556 spin_unlock(&interrupt->wait_list_lock); 3557 3558 *timestamp = ktime_to_ns(pend->fence.timestamp); 3559 3560 kfree(pend); 3561 hl_ctx_put(ctx); 3562 3563 return rc; 3564 } 3565 3566 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3567 { 3568 u16 interrupt_id, first_interrupt, last_interrupt; 3569 struct hl_device *hdev = hpriv->hdev; 3570 struct asic_fixed_properties *prop; 3571 struct hl_user_interrupt *interrupt; 3572 union hl_wait_cs_args *args = data; 3573 u32 status = HL_WAIT_CS_STATUS_BUSY; 3574 u64 timestamp = 0; 3575 int rc, int_idx; 3576 3577 prop = &hdev->asic_prop; 3578 3579 if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) { 3580 dev_err(hdev->dev, "no user interrupts allowed"); 3581 return -EPERM; 3582 } 3583 3584 interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags); 3585 3586 first_interrupt = prop->first_available_user_interrupt; 3587 last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1; 3588 3589 if (interrupt_id < prop->user_dec_intr_count) { 3590 3591 /* Check if the requested core is enabled */ 3592 if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) { 3593 dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed", 3594 interrupt_id); 3595 return -EINVAL; 3596 } 3597 3598 interrupt = &hdev->user_interrupt[interrupt_id]; 3599 3600 } else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) { 3601 3602 int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count; 3603 interrupt = &hdev->user_interrupt[int_idx]; 3604 3605 } else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) { 3606 interrupt = &hdev->common_user_cq_interrupt; 3607 } else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) { 3608 interrupt = &hdev->common_decoder_interrupt; 3609 } else { 3610 dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id); 3611 return -EINVAL; 3612 } 3613 3614 if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) 3615 rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr, 3616 args->in.interrupt_timeout_us, args->in.cq_counters_handle, 3617 args->in.cq_counters_offset, 3618 args->in.target, interrupt, 3619 !!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT), 3620 args->in.timestamp_handle, args->in.timestamp_offset, 3621 &status, ×tamp); 3622 else 3623 rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx, 3624 args->in.interrupt_timeout_us, args->in.addr, 3625 args->in.target, interrupt, &status, 3626 ×tamp); 3627 if (rc) 3628 return rc; 3629 3630 memset(args, 0, sizeof(*args)); 3631 args->out.status = status; 3632 3633 if (timestamp) { 3634 args->out.timestamp_nsec = timestamp; 3635 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3636 } 3637 3638 return 0; 3639 } 3640 3641 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3642 { 3643 struct hl_device *hdev = hpriv->hdev; 3644 union hl_wait_cs_args *args = data; 3645 u32 flags = args->in.flags; 3646 int rc; 3647 3648 /* If the device is not operational, or if an error has happened and user should release the 3649 * device, there is no point in waiting for any command submission or user interrupt. 3650 */ 3651 if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active) 3652 return -EBUSY; 3653 3654 if (flags & HL_WAIT_CS_FLAGS_INTERRUPT) 3655 rc = hl_interrupt_wait_ioctl(hpriv, data); 3656 else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS) 3657 rc = hl_multi_cs_wait_ioctl(hpriv, data); 3658 else 3659 rc = hl_cs_wait_ioctl(hpriv, data); 3660 3661 return rc; 3662 } 3663