1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2021 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include <uapi/drm/habanalabs_accel.h> 9 #include "habanalabs.h" 10 11 #include <linux/uaccess.h> 12 #include <linux/slab.h> 13 14 #define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \ 15 HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \ 16 HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \ 17 HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) 18 19 20 #define MAX_TS_ITER_NUM 100 21 22 /** 23 * enum hl_cs_wait_status - cs wait status 24 * @CS_WAIT_STATUS_BUSY: cs was not completed yet 25 * @CS_WAIT_STATUS_COMPLETED: cs completed 26 * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone 27 */ 28 enum hl_cs_wait_status { 29 CS_WAIT_STATUS_BUSY, 30 CS_WAIT_STATUS_COMPLETED, 31 CS_WAIT_STATUS_GONE 32 }; 33 34 static void job_wq_completion(struct work_struct *work); 35 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, 36 enum hl_cs_wait_status *status, s64 *timestamp); 37 static void cs_do_release(struct kref *ref); 38 39 static void hl_push_cs_outcome(struct hl_device *hdev, 40 struct hl_cs_outcome_store *outcome_store, 41 u64 seq, ktime_t ts, int error) 42 { 43 struct hl_cs_outcome *node; 44 unsigned long flags; 45 46 /* 47 * CS outcome store supports the following operations: 48 * push outcome - store a recent CS outcome in the store 49 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store 50 * It uses 2 lists: used list and free list. 51 * It has a pre-allocated amount of nodes, each node stores 52 * a single CS outcome. 53 * Initially, all the nodes are in the free list. 54 * On push outcome, a node (any) is taken from the free list, its 55 * information is filled in, and the node is moved to the used list. 56 * It is possible, that there are no nodes left in the free list. 57 * In this case, we will lose some information about old outcomes. We 58 * will pop the OLDEST node from the used list, and make it free. 59 * On pop, the node is searched for in the used list (using a search 60 * index). 61 * If found, the node is then removed from the used list, and moved 62 * back to the free list. The outcome data that the node contained is 63 * returned back to the user. 64 */ 65 66 spin_lock_irqsave(&outcome_store->db_lock, flags); 67 68 if (list_empty(&outcome_store->free_list)) { 69 node = list_last_entry(&outcome_store->used_list, 70 struct hl_cs_outcome, list_link); 71 hash_del(&node->map_link); 72 dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq); 73 } else { 74 node = list_last_entry(&outcome_store->free_list, 75 struct hl_cs_outcome, list_link); 76 } 77 78 list_del_init(&node->list_link); 79 80 node->seq = seq; 81 node->ts = ts; 82 node->error = error; 83 84 list_add(&node->list_link, &outcome_store->used_list); 85 hash_add(outcome_store->outcome_map, &node->map_link, node->seq); 86 87 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 88 } 89 90 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store, 91 u64 seq, ktime_t *ts, int *error) 92 { 93 struct hl_cs_outcome *node; 94 unsigned long flags; 95 96 spin_lock_irqsave(&outcome_store->db_lock, flags); 97 98 hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq) 99 if (node->seq == seq) { 100 *ts = node->ts; 101 *error = node->error; 102 103 hash_del(&node->map_link); 104 list_del_init(&node->list_link); 105 list_add(&node->list_link, &outcome_store->free_list); 106 107 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 108 109 return true; 110 } 111 112 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 113 114 return false; 115 } 116 117 static void hl_sob_reset(struct kref *ref) 118 { 119 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, 120 kref); 121 struct hl_device *hdev = hw_sob->hdev; 122 123 dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id); 124 125 hdev->asic_funcs->reset_sob(hdev, hw_sob); 126 127 hw_sob->need_reset = false; 128 } 129 130 void hl_sob_reset_error(struct kref *ref) 131 { 132 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, 133 kref); 134 struct hl_device *hdev = hw_sob->hdev; 135 136 dev_crit(hdev->dev, 137 "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n", 138 hw_sob->q_idx, hw_sob->sob_id); 139 } 140 141 void hw_sob_put(struct hl_hw_sob *hw_sob) 142 { 143 if (hw_sob) 144 kref_put(&hw_sob->kref, hl_sob_reset); 145 } 146 147 static void hw_sob_put_err(struct hl_hw_sob *hw_sob) 148 { 149 if (hw_sob) 150 kref_put(&hw_sob->kref, hl_sob_reset_error); 151 } 152 153 void hw_sob_get(struct hl_hw_sob *hw_sob) 154 { 155 if (hw_sob) 156 kref_get(&hw_sob->kref); 157 } 158 159 /** 160 * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet 161 * @sob_base: sob base id 162 * @sob_mask: sob user mask, each bit represents a sob offset from sob base 163 * @mask: generated mask 164 * 165 * Return: 0 if given parameters are valid 166 */ 167 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask) 168 { 169 int i; 170 171 if (sob_mask == 0) 172 return -EINVAL; 173 174 if (sob_mask == 0x1) { 175 *mask = ~(1 << (sob_base & 0x7)); 176 } else { 177 /* find msb in order to verify sob range is valid */ 178 for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--) 179 if (BIT(i) & sob_mask) 180 break; 181 182 if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1)) 183 return -EINVAL; 184 185 *mask = ~sob_mask; 186 } 187 188 return 0; 189 } 190 191 static void hl_fence_release(struct kref *kref) 192 { 193 struct hl_fence *fence = 194 container_of(kref, struct hl_fence, refcount); 195 struct hl_cs_compl *hl_cs_cmpl = 196 container_of(fence, struct hl_cs_compl, base_fence); 197 198 kfree(hl_cs_cmpl); 199 } 200 201 void hl_fence_put(struct hl_fence *fence) 202 { 203 if (IS_ERR_OR_NULL(fence)) 204 return; 205 kref_put(&fence->refcount, hl_fence_release); 206 } 207 208 void hl_fences_put(struct hl_fence **fence, int len) 209 { 210 int i; 211 212 for (i = 0; i < len; i++, fence++) 213 hl_fence_put(*fence); 214 } 215 216 void hl_fence_get(struct hl_fence *fence) 217 { 218 if (fence) 219 kref_get(&fence->refcount); 220 } 221 222 static void hl_fence_init(struct hl_fence *fence, u64 sequence) 223 { 224 kref_init(&fence->refcount); 225 fence->cs_sequence = sequence; 226 fence->error = 0; 227 fence->timestamp = ktime_set(0, 0); 228 fence->mcs_handling_done = false; 229 init_completion(&fence->completion); 230 } 231 232 void cs_get(struct hl_cs *cs) 233 { 234 kref_get(&cs->refcount); 235 } 236 237 static int cs_get_unless_zero(struct hl_cs *cs) 238 { 239 return kref_get_unless_zero(&cs->refcount); 240 } 241 242 static void cs_put(struct hl_cs *cs) 243 { 244 kref_put(&cs->refcount, cs_do_release); 245 } 246 247 static void cs_job_do_release(struct kref *ref) 248 { 249 struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount); 250 251 kfree(job); 252 } 253 254 static void hl_cs_job_put(struct hl_cs_job *job) 255 { 256 kref_put(&job->refcount, cs_job_do_release); 257 } 258 259 bool cs_needs_completion(struct hl_cs *cs) 260 { 261 /* In case this is a staged CS, only the last CS in sequence should 262 * get a completion, any non staged CS will always get a completion 263 */ 264 if (cs->staged_cs && !cs->staged_last) 265 return false; 266 267 return true; 268 } 269 270 bool cs_needs_timeout(struct hl_cs *cs) 271 { 272 /* In case this is a staged CS, only the first CS in sequence should 273 * get a timeout, any non staged CS will always get a timeout 274 */ 275 if (cs->staged_cs && !cs->staged_first) 276 return false; 277 278 return true; 279 } 280 281 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job) 282 { 283 /* 284 * Patched CB is created for external queues jobs, and for H/W queues 285 * jobs if the user CB was allocated by driver and MMU is disabled. 286 */ 287 return (job->queue_type == QUEUE_TYPE_EXT || 288 (job->queue_type == QUEUE_TYPE_HW && 289 job->is_kernel_allocated_cb && 290 !hdev->mmu_enable)); 291 } 292 293 /* 294 * cs_parser - parse the user command submission 295 * 296 * @hpriv : pointer to the private data of the fd 297 * @job : pointer to the job that holds the command submission info 298 * 299 * The function parses the command submission of the user. It calls the 300 * ASIC specific parser, which returns a list of memory blocks to send 301 * to the device as different command buffers 302 * 303 */ 304 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job) 305 { 306 struct hl_device *hdev = hpriv->hdev; 307 struct hl_cs_parser parser; 308 int rc; 309 310 parser.ctx_id = job->cs->ctx->asid; 311 parser.cs_sequence = job->cs->sequence; 312 parser.job_id = job->id; 313 314 parser.hw_queue_id = job->hw_queue_id; 315 parser.job_userptr_list = &job->userptr_list; 316 parser.patched_cb = NULL; 317 parser.user_cb = job->user_cb; 318 parser.user_cb_size = job->user_cb_size; 319 parser.queue_type = job->queue_type; 320 parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb; 321 job->patched_cb = NULL; 322 parser.completion = cs_needs_completion(job->cs); 323 324 rc = hdev->asic_funcs->cs_parser(hdev, &parser); 325 326 if (is_cb_patched(hdev, job)) { 327 if (!rc) { 328 job->patched_cb = parser.patched_cb; 329 job->job_cb_size = parser.patched_cb_size; 330 job->contains_dma_pkt = parser.contains_dma_pkt; 331 atomic_inc(&job->patched_cb->cs_cnt); 332 } 333 334 /* 335 * Whether the parsing worked or not, we don't need the 336 * original CB anymore because it was already parsed and 337 * won't be accessed again for this CS 338 */ 339 atomic_dec(&job->user_cb->cs_cnt); 340 hl_cb_put(job->user_cb); 341 job->user_cb = NULL; 342 } else if (!rc) { 343 job->job_cb_size = job->user_cb_size; 344 } 345 346 return rc; 347 } 348 349 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job) 350 { 351 struct hl_cs *cs = job->cs; 352 353 if (is_cb_patched(hdev, job)) { 354 hl_userptr_delete_list(hdev, &job->userptr_list); 355 356 /* 357 * We might arrive here from rollback and patched CB wasn't 358 * created, so we need to check it's not NULL 359 */ 360 if (job->patched_cb) { 361 atomic_dec(&job->patched_cb->cs_cnt); 362 hl_cb_put(job->patched_cb); 363 } 364 } 365 366 /* For H/W queue jobs, if a user CB was allocated by driver and MMU is 367 * enabled, the user CB isn't released in cs_parser() and thus should be 368 * released here. This is also true for INT queues jobs which were 369 * allocated by driver. 370 */ 371 if ((job->is_kernel_allocated_cb && 372 ((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) || 373 job->queue_type == QUEUE_TYPE_INT))) { 374 atomic_dec(&job->user_cb->cs_cnt); 375 hl_cb_put(job->user_cb); 376 } 377 378 /* 379 * This is the only place where there can be multiple threads 380 * modifying the list at the same time 381 */ 382 spin_lock(&cs->job_lock); 383 list_del(&job->cs_node); 384 spin_unlock(&cs->job_lock); 385 386 hl_debugfs_remove_job(hdev, job); 387 388 /* We decrement reference only for a CS that gets completion 389 * because the reference was incremented only for this kind of CS 390 * right before it was scheduled. 391 * 392 * In staged submission, only the last CS marked as 'staged_last' 393 * gets completion, hence its release function will be called from here. 394 * As for all the rest CS's in the staged submission which do not get 395 * completion, their CS reference will be decremented by the 396 * 'staged_last' CS during the CS release flow. 397 * All relevant PQ CI counters will be incremented during the CS release 398 * flow by calling 'hl_hw_queue_update_ci'. 399 */ 400 if (cs_needs_completion(cs) && 401 (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) { 402 403 /* In CS based completions, the timestamp is already available, 404 * so no need to extract it from job 405 */ 406 if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB) 407 cs->completion_timestamp = job->timestamp; 408 409 cs_put(cs); 410 } 411 412 hl_cs_job_put(job); 413 } 414 415 /* 416 * hl_staged_cs_find_first - locate the first CS in this staged submission 417 * 418 * @hdev: pointer to device structure 419 * @cs_seq: staged submission sequence number 420 * 421 * @note: This function must be called under 'hdev->cs_mirror_lock' 422 * 423 * Find and return a CS pointer with the given sequence 424 */ 425 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq) 426 { 427 struct hl_cs *cs; 428 429 list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node) 430 if (cs->staged_cs && cs->staged_first && 431 cs->sequence == cs_seq) 432 return cs; 433 434 return NULL; 435 } 436 437 /* 438 * is_staged_cs_last_exists - returns true if the last CS in sequence exists 439 * 440 * @hdev: pointer to device structure 441 * @cs: staged submission member 442 * 443 */ 444 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs) 445 { 446 struct hl_cs *last_entry; 447 448 last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs, 449 staged_cs_node); 450 451 if (last_entry->staged_last) 452 return true; 453 454 return false; 455 } 456 457 /* 458 * staged_cs_get - get CS reference if this CS is a part of a staged CS 459 * 460 * @hdev: pointer to device structure 461 * @cs: current CS 462 * @cs_seq: staged submission sequence number 463 * 464 * Increment CS reference for every CS in this staged submission except for 465 * the CS which get completion. 466 */ 467 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs) 468 { 469 /* Only the last CS in this staged submission will get a completion. 470 * We must increment the reference for all other CS's in this 471 * staged submission. 472 * Once we get a completion we will release the whole staged submission. 473 */ 474 if (!cs->staged_last) 475 cs_get(cs); 476 } 477 478 /* 479 * staged_cs_put - put a CS in case it is part of staged submission 480 * 481 * @hdev: pointer to device structure 482 * @cs: CS to put 483 * 484 * This function decrements a CS reference (for a non completion CS) 485 */ 486 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs) 487 { 488 /* We release all CS's in a staged submission except the last 489 * CS which we have never incremented its reference. 490 */ 491 if (!cs_needs_completion(cs)) 492 cs_put(cs); 493 } 494 495 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs) 496 { 497 struct hl_cs *next = NULL, *iter, *first_cs; 498 499 if (!cs_needs_timeout(cs)) 500 return; 501 502 spin_lock(&hdev->cs_mirror_lock); 503 504 /* We need to handle tdr only once for the complete staged submission. 505 * Hence, we choose the CS that reaches this function first which is 506 * the CS marked as 'staged_last'. 507 * In case single staged cs was submitted which has both first and last 508 * indications, then "cs_find_first" below will return NULL, since we 509 * removed the cs node from the list before getting here, 510 * in such cases just continue with the cs to cancel it's TDR work. 511 */ 512 if (cs->staged_cs && cs->staged_last) { 513 first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence); 514 if (first_cs) 515 cs = first_cs; 516 } 517 518 spin_unlock(&hdev->cs_mirror_lock); 519 520 /* Don't cancel TDR in case this CS was timedout because we might be 521 * running from the TDR context 522 */ 523 if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT) 524 return; 525 526 if (cs->tdr_active) 527 cancel_delayed_work_sync(&cs->work_tdr); 528 529 spin_lock(&hdev->cs_mirror_lock); 530 531 /* queue TDR for next CS */ 532 list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node) 533 if (cs_needs_timeout(iter)) { 534 next = iter; 535 break; 536 } 537 538 if (next && !next->tdr_active) { 539 next->tdr_active = true; 540 schedule_delayed_work(&next->work_tdr, next->timeout_jiffies); 541 } 542 543 spin_unlock(&hdev->cs_mirror_lock); 544 } 545 546 /* 547 * force_complete_multi_cs - complete all contexts that wait on multi-CS 548 * 549 * @hdev: pointer to habanalabs device structure 550 */ 551 static void force_complete_multi_cs(struct hl_device *hdev) 552 { 553 int i; 554 555 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 556 struct multi_cs_completion *mcs_compl; 557 558 mcs_compl = &hdev->multi_cs_completion[i]; 559 560 spin_lock(&mcs_compl->lock); 561 562 if (!mcs_compl->used) { 563 spin_unlock(&mcs_compl->lock); 564 continue; 565 } 566 567 /* when calling force complete no context should be waiting on 568 * multi-cS. 569 * We are calling the function as a protection for such case 570 * to free any pending context and print error message 571 */ 572 dev_err(hdev->dev, 573 "multi-CS completion context %d still waiting when calling force completion\n", 574 i); 575 complete_all(&mcs_compl->completion); 576 spin_unlock(&mcs_compl->lock); 577 } 578 } 579 580 /* 581 * complete_multi_cs - complete all waiting entities on multi-CS 582 * 583 * @hdev: pointer to habanalabs device structure 584 * @cs: CS structure 585 * The function signals a waiting entity that has an overlapping stream masters 586 * with the completed CS. 587 * For example: 588 * - a completed CS worked on stream master QID 4, multi CS completion 589 * is actively waiting on stream master QIDs 3, 5. don't send signal as no 590 * common stream master QID 591 * - a completed CS worked on stream master QID 4, multi CS completion 592 * is actively waiting on stream master QIDs 3, 4. send signal as stream 593 * master QID 4 is common 594 */ 595 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs) 596 { 597 struct hl_fence *fence = cs->fence; 598 int i; 599 600 /* in case of multi CS check for completion only for the first CS */ 601 if (cs->staged_cs && !cs->staged_first) 602 return; 603 604 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 605 struct multi_cs_completion *mcs_compl; 606 607 mcs_compl = &hdev->multi_cs_completion[i]; 608 if (!mcs_compl->used) 609 continue; 610 611 spin_lock(&mcs_compl->lock); 612 613 /* 614 * complete if: 615 * 1. still waiting for completion 616 * 2. the completed CS has at least one overlapping stream 617 * master with the stream masters in the completion 618 */ 619 if (mcs_compl->used && 620 (fence->stream_master_qid_map & 621 mcs_compl->stream_master_qid_map)) { 622 /* extract the timestamp only of first completed CS */ 623 if (!mcs_compl->timestamp) 624 mcs_compl->timestamp = ktime_to_ns(fence->timestamp); 625 626 complete_all(&mcs_compl->completion); 627 628 /* 629 * Setting mcs_handling_done inside the lock ensures 630 * at least one fence have mcs_handling_done set to 631 * true before wait for mcs finish. This ensures at 632 * least one CS will be set as completed when polling 633 * mcs fences. 634 */ 635 fence->mcs_handling_done = true; 636 } 637 638 spin_unlock(&mcs_compl->lock); 639 } 640 /* In case CS completed without mcs completion initialized */ 641 fence->mcs_handling_done = true; 642 } 643 644 static inline void cs_release_sob_reset_handler(struct hl_device *hdev, 645 struct hl_cs *cs, 646 struct hl_cs_compl *hl_cs_cmpl) 647 { 648 /* Skip this handler if the cs wasn't submitted, to avoid putting 649 * the hw_sob twice, since this case already handled at this point, 650 * also skip if the hw_sob pointer wasn't set. 651 */ 652 if (!hl_cs_cmpl->hw_sob || !cs->submitted) 653 return; 654 655 spin_lock(&hl_cs_cmpl->lock); 656 657 /* 658 * we get refcount upon reservation of signals or signal/wait cs for the 659 * hw_sob object, and need to put it when the first staged cs 660 * (which cotains the encaps signals) or cs signal/wait is completed. 661 */ 662 if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) || 663 (hl_cs_cmpl->type == CS_TYPE_WAIT) || 664 (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) || 665 (!!hl_cs_cmpl->encaps_signals)) { 666 dev_dbg(hdev->dev, 667 "CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n", 668 hl_cs_cmpl->cs_seq, 669 hl_cs_cmpl->type, 670 hl_cs_cmpl->hw_sob->sob_id, 671 hl_cs_cmpl->sob_val); 672 673 hw_sob_put(hl_cs_cmpl->hw_sob); 674 675 if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) 676 hdev->asic_funcs->reset_sob_group(hdev, 677 hl_cs_cmpl->sob_group); 678 } 679 680 spin_unlock(&hl_cs_cmpl->lock); 681 } 682 683 static void cs_do_release(struct kref *ref) 684 { 685 struct hl_cs *cs = container_of(ref, struct hl_cs, refcount); 686 struct hl_device *hdev = cs->ctx->hdev; 687 struct hl_cs_job *job, *tmp; 688 struct hl_cs_compl *hl_cs_cmpl = 689 container_of(cs->fence, struct hl_cs_compl, base_fence); 690 691 cs->completed = true; 692 693 /* 694 * Although if we reached here it means that all external jobs have 695 * finished, because each one of them took refcnt to CS, we still 696 * need to go over the internal jobs and complete them. Otherwise, we 697 * will have leaked memory and what's worse, the CS object (and 698 * potentially the CTX object) could be released, while the JOB 699 * still holds a pointer to them (but no reference). 700 */ 701 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 702 hl_complete_job(hdev, job); 703 704 if (!cs->submitted) { 705 /* 706 * In case the wait for signal CS was submitted, the fence put 707 * occurs in init_signal_wait_cs() or collective_wait_init_cs() 708 * right before hanging on the PQ. 709 */ 710 if (cs->type == CS_TYPE_WAIT || 711 cs->type == CS_TYPE_COLLECTIVE_WAIT) 712 hl_fence_put(cs->signal_fence); 713 714 goto out; 715 } 716 717 /* Need to update CI for all queue jobs that does not get completion */ 718 hl_hw_queue_update_ci(cs); 719 720 /* remove CS from CS mirror list */ 721 spin_lock(&hdev->cs_mirror_lock); 722 list_del_init(&cs->mirror_node); 723 spin_unlock(&hdev->cs_mirror_lock); 724 725 cs_handle_tdr(hdev, cs); 726 727 if (cs->staged_cs) { 728 /* the completion CS decrements reference for the entire 729 * staged submission 730 */ 731 if (cs->staged_last) { 732 struct hl_cs *staged_cs, *tmp_cs; 733 734 list_for_each_entry_safe(staged_cs, tmp_cs, 735 &cs->staged_cs_node, staged_cs_node) 736 staged_cs_put(hdev, staged_cs); 737 } 738 739 /* A staged CS will be a member in the list only after it 740 * was submitted. We used 'cs_mirror_lock' when inserting 741 * it to list so we will use it again when removing it 742 */ 743 if (cs->submitted) { 744 spin_lock(&hdev->cs_mirror_lock); 745 list_del(&cs->staged_cs_node); 746 spin_unlock(&hdev->cs_mirror_lock); 747 } 748 749 /* decrement refcount to handle when first staged cs 750 * with encaps signals is completed. 751 */ 752 if (hl_cs_cmpl->encaps_signals) 753 kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount, 754 hl_encaps_release_handle_and_put_ctx); 755 } 756 757 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals) 758 kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); 759 760 out: 761 /* Must be called before hl_ctx_put because inside we use ctx to get 762 * the device 763 */ 764 hl_debugfs_remove_cs(cs); 765 766 hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL; 767 768 /* We need to mark an error for not submitted because in that case 769 * the hl fence release flow is different. Mainly, we don't need 770 * to handle hw_sob for signal/wait 771 */ 772 if (cs->timedout) 773 cs->fence->error = -ETIMEDOUT; 774 else if (cs->aborted) 775 cs->fence->error = -EIO; 776 else if (!cs->submitted) 777 cs->fence->error = -EBUSY; 778 779 if (unlikely(cs->skip_reset_on_timeout)) { 780 dev_err(hdev->dev, 781 "Command submission %llu completed after %llu (s)\n", 782 cs->sequence, 783 div_u64(jiffies - cs->submission_time_jiffies, HZ)); 784 } 785 786 if (cs->timestamp) { 787 cs->fence->timestamp = cs->completion_timestamp; 788 hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence, 789 cs->fence->timestamp, cs->fence->error); 790 } 791 792 hl_ctx_put(cs->ctx); 793 794 complete_all(&cs->fence->completion); 795 complete_multi_cs(hdev, cs); 796 797 cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl); 798 799 hl_fence_put(cs->fence); 800 801 kfree(cs->jobs_in_queue_cnt); 802 kfree(cs); 803 } 804 805 static void cs_timedout(struct work_struct *work) 806 { 807 struct hl_device *hdev; 808 u64 event_mask = 0x0; 809 int rc; 810 struct hl_cs *cs = container_of(work, struct hl_cs, 811 work_tdr.work); 812 bool skip_reset_on_timeout = cs->skip_reset_on_timeout, device_reset = false; 813 814 rc = cs_get_unless_zero(cs); 815 if (!rc) 816 return; 817 818 if ((!cs->submitted) || (cs->completed)) { 819 cs_put(cs); 820 return; 821 } 822 823 hdev = cs->ctx->hdev; 824 825 if (likely(!skip_reset_on_timeout)) { 826 if (hdev->reset_on_lockup) 827 device_reset = true; 828 else 829 hdev->reset_info.needs_reset = true; 830 831 /* Mark the CS is timed out so we won't try to cancel its TDR */ 832 cs->timedout = true; 833 } 834 835 /* Save only the first CS timeout parameters */ 836 rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0); 837 if (rc) { 838 hdev->captured_err_info.cs_timeout.timestamp = ktime_get(); 839 hdev->captured_err_info.cs_timeout.seq = cs->sequence; 840 event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT; 841 } 842 843 switch (cs->type) { 844 case CS_TYPE_SIGNAL: 845 dev_err(hdev->dev, 846 "Signal command submission %llu has not finished in time!\n", 847 cs->sequence); 848 break; 849 850 case CS_TYPE_WAIT: 851 dev_err(hdev->dev, 852 "Wait command submission %llu has not finished in time!\n", 853 cs->sequence); 854 break; 855 856 case CS_TYPE_COLLECTIVE_WAIT: 857 dev_err(hdev->dev, 858 "Collective Wait command submission %llu has not finished in time!\n", 859 cs->sequence); 860 break; 861 862 default: 863 dev_err(hdev->dev, 864 "Command submission %llu has not finished in time!\n", 865 cs->sequence); 866 break; 867 } 868 869 rc = hl_state_dump(hdev); 870 if (rc) 871 dev_err(hdev->dev, "Error during system state dump %d\n", rc); 872 873 cs_put(cs); 874 875 if (device_reset) { 876 event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET; 877 hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask); 878 } else if (event_mask) { 879 hl_notifier_event_send_all(hdev, event_mask); 880 } 881 } 882 883 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx, 884 enum hl_cs_type cs_type, u64 user_sequence, 885 struct hl_cs **cs_new, u32 flags, u32 timeout) 886 { 887 struct hl_cs_counters_atomic *cntr; 888 struct hl_fence *other = NULL; 889 struct hl_cs_compl *cs_cmpl; 890 struct hl_cs *cs; 891 int rc; 892 893 cntr = &hdev->aggregated_cs_counters; 894 895 cs = kzalloc(sizeof(*cs), GFP_ATOMIC); 896 if (!cs) 897 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 898 899 if (!cs) { 900 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 901 atomic64_inc(&cntr->out_of_mem_drop_cnt); 902 return -ENOMEM; 903 } 904 905 /* increment refcnt for context */ 906 hl_ctx_get(ctx); 907 908 cs->ctx = ctx; 909 cs->submitted = false; 910 cs->completed = false; 911 cs->type = cs_type; 912 cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP); 913 cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); 914 cs->timeout_jiffies = timeout; 915 cs->skip_reset_on_timeout = 916 hdev->reset_info.skip_reset_on_timeout || 917 !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT); 918 cs->submission_time_jiffies = jiffies; 919 INIT_LIST_HEAD(&cs->job_list); 920 INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout); 921 kref_init(&cs->refcount); 922 spin_lock_init(&cs->job_lock); 923 924 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC); 925 if (!cs_cmpl) 926 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL); 927 928 if (!cs_cmpl) { 929 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 930 atomic64_inc(&cntr->out_of_mem_drop_cnt); 931 rc = -ENOMEM; 932 goto free_cs; 933 } 934 935 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, 936 sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC); 937 if (!cs->jobs_in_queue_cnt) 938 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, 939 sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL); 940 941 if (!cs->jobs_in_queue_cnt) { 942 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 943 atomic64_inc(&cntr->out_of_mem_drop_cnt); 944 rc = -ENOMEM; 945 goto free_cs_cmpl; 946 } 947 948 cs_cmpl->hdev = hdev; 949 cs_cmpl->type = cs->type; 950 spin_lock_init(&cs_cmpl->lock); 951 cs->fence = &cs_cmpl->base_fence; 952 953 spin_lock(&ctx->cs_lock); 954 955 cs_cmpl->cs_seq = ctx->cs_sequence; 956 other = ctx->cs_pending[cs_cmpl->cs_seq & 957 (hdev->asic_prop.max_pending_cs - 1)]; 958 959 if (other && !completion_done(&other->completion)) { 960 /* If the following statement is true, it means we have reached 961 * a point in which only part of the staged submission was 962 * submitted and we don't have enough room in the 'cs_pending' 963 * array for the rest of the submission. 964 * This causes a deadlock because this CS will never be 965 * completed as it depends on future CS's for completion. 966 */ 967 if (other->cs_sequence == user_sequence) 968 dev_crit_ratelimited(hdev->dev, 969 "Staged CS %llu deadlock due to lack of resources", 970 user_sequence); 971 972 dev_dbg_ratelimited(hdev->dev, 973 "Rejecting CS because of too many in-flights CS\n"); 974 atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt); 975 atomic64_inc(&cntr->max_cs_in_flight_drop_cnt); 976 rc = -EAGAIN; 977 goto free_fence; 978 } 979 980 /* init hl_fence */ 981 hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq); 982 983 cs->sequence = cs_cmpl->cs_seq; 984 985 ctx->cs_pending[cs_cmpl->cs_seq & 986 (hdev->asic_prop.max_pending_cs - 1)] = 987 &cs_cmpl->base_fence; 988 ctx->cs_sequence++; 989 990 hl_fence_get(&cs_cmpl->base_fence); 991 992 hl_fence_put(other); 993 994 spin_unlock(&ctx->cs_lock); 995 996 *cs_new = cs; 997 998 return 0; 999 1000 free_fence: 1001 spin_unlock(&ctx->cs_lock); 1002 kfree(cs->jobs_in_queue_cnt); 1003 free_cs_cmpl: 1004 kfree(cs_cmpl); 1005 free_cs: 1006 kfree(cs); 1007 hl_ctx_put(ctx); 1008 return rc; 1009 } 1010 1011 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs) 1012 { 1013 struct hl_cs_job *job, *tmp; 1014 1015 staged_cs_put(hdev, cs); 1016 1017 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 1018 hl_complete_job(hdev, job); 1019 } 1020 1021 /* 1022 * release_reserved_encaps_signals() - release reserved encapsulated signals. 1023 * @hdev: pointer to habanalabs device structure 1024 * 1025 * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with 1026 * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back. 1027 * For these signals need also to put the refcount of the H/W SOB which was taken at the 1028 * reservation. 1029 */ 1030 static void release_reserved_encaps_signals(struct hl_device *hdev) 1031 { 1032 struct hl_ctx *ctx = hl_get_compute_ctx(hdev); 1033 struct hl_cs_encaps_sig_handle *handle; 1034 struct hl_encaps_signals_mgr *mgr; 1035 u32 id; 1036 1037 if (!ctx) 1038 return; 1039 1040 mgr = &ctx->sig_mgr; 1041 1042 idr_for_each_entry(&mgr->handles, handle, id) 1043 if (handle->cs_seq == ULLONG_MAX) 1044 kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx); 1045 1046 hl_ctx_put(ctx); 1047 } 1048 1049 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush) 1050 { 1051 int i; 1052 struct hl_cs *cs, *tmp; 1053 1054 if (!skip_wq_flush) { 1055 flush_workqueue(hdev->ts_free_obj_wq); 1056 1057 /* flush all completions before iterating over the CS mirror list in 1058 * order to avoid a race with the release functions 1059 */ 1060 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) 1061 flush_workqueue(hdev->cq_wq[i]); 1062 1063 flush_workqueue(hdev->cs_cmplt_wq); 1064 } 1065 1066 /* Make sure we don't have leftovers in the CS mirror list */ 1067 list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) { 1068 cs_get(cs); 1069 cs->aborted = true; 1070 dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n", 1071 cs->ctx->asid, cs->sequence); 1072 cs_rollback(hdev, cs); 1073 cs_put(cs); 1074 } 1075 1076 force_complete_multi_cs(hdev); 1077 1078 release_reserved_encaps_signals(hdev); 1079 } 1080 1081 static void 1082 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt) 1083 { 1084 struct hl_user_pending_interrupt *pend, *temp; 1085 unsigned long flags; 1086 1087 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 1088 list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) { 1089 if (pend->ts_reg_info.buf) { 1090 list_del(&pend->wait_list_node); 1091 hl_mmap_mem_buf_put(pend->ts_reg_info.buf); 1092 hl_cb_put(pend->ts_reg_info.cq_cb); 1093 } else { 1094 pend->fence.error = -EIO; 1095 complete_all(&pend->fence.completion); 1096 } 1097 } 1098 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 1099 } 1100 1101 void hl_release_pending_user_interrupts(struct hl_device *hdev) 1102 { 1103 struct asic_fixed_properties *prop = &hdev->asic_prop; 1104 struct hl_user_interrupt *interrupt; 1105 int i; 1106 1107 if (!prop->user_interrupt_count) 1108 return; 1109 1110 /* We iterate through the user interrupt requests and waking up all 1111 * user threads waiting for interrupt completion. We iterate the 1112 * list under a lock, this is why all user threads, once awake, 1113 * will wait on the same lock and will release the waiting object upon 1114 * unlock. 1115 */ 1116 1117 for (i = 0 ; i < prop->user_interrupt_count ; i++) { 1118 interrupt = &hdev->user_interrupt[i]; 1119 wake_pending_user_interrupt_threads(interrupt); 1120 } 1121 1122 interrupt = &hdev->common_user_cq_interrupt; 1123 wake_pending_user_interrupt_threads(interrupt); 1124 1125 interrupt = &hdev->common_decoder_interrupt; 1126 wake_pending_user_interrupt_threads(interrupt); 1127 } 1128 1129 static void force_complete_cs(struct hl_device *hdev) 1130 { 1131 struct hl_cs *cs; 1132 1133 spin_lock(&hdev->cs_mirror_lock); 1134 1135 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) { 1136 cs->fence->error = -EIO; 1137 complete_all(&cs->fence->completion); 1138 } 1139 1140 spin_unlock(&hdev->cs_mirror_lock); 1141 } 1142 1143 void hl_abort_waitings_for_completion(struct hl_device *hdev) 1144 { 1145 force_complete_cs(hdev); 1146 force_complete_multi_cs(hdev); 1147 hl_release_pending_user_interrupts(hdev); 1148 } 1149 1150 static void job_wq_completion(struct work_struct *work) 1151 { 1152 struct hl_cs_job *job = container_of(work, struct hl_cs_job, 1153 finish_work); 1154 struct hl_cs *cs = job->cs; 1155 struct hl_device *hdev = cs->ctx->hdev; 1156 1157 /* job is no longer needed */ 1158 hl_complete_job(hdev, job); 1159 } 1160 1161 static void cs_completion(struct work_struct *work) 1162 { 1163 struct hl_cs *cs = container_of(work, struct hl_cs, finish_work); 1164 struct hl_device *hdev = cs->ctx->hdev; 1165 struct hl_cs_job *job, *tmp; 1166 1167 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 1168 hl_complete_job(hdev, job); 1169 } 1170 1171 static int validate_queue_index(struct hl_device *hdev, 1172 struct hl_cs_chunk *chunk, 1173 enum hl_queue_type *queue_type, 1174 bool *is_kernel_allocated_cb) 1175 { 1176 struct asic_fixed_properties *asic = &hdev->asic_prop; 1177 struct hw_queue_properties *hw_queue_prop; 1178 1179 /* This must be checked here to prevent out-of-bounds access to 1180 * hw_queues_props array 1181 */ 1182 if (chunk->queue_index >= asic->max_queues) { 1183 dev_err(hdev->dev, "Queue index %d is invalid\n", 1184 chunk->queue_index); 1185 return -EINVAL; 1186 } 1187 1188 hw_queue_prop = &asic->hw_queues_props[chunk->queue_index]; 1189 1190 if (hw_queue_prop->type == QUEUE_TYPE_NA) { 1191 dev_err(hdev->dev, "Queue index %d is not applicable\n", 1192 chunk->queue_index); 1193 return -EINVAL; 1194 } 1195 1196 if (hw_queue_prop->binned) { 1197 dev_err(hdev->dev, "Queue index %d is binned out\n", 1198 chunk->queue_index); 1199 return -EINVAL; 1200 } 1201 1202 if (hw_queue_prop->driver_only) { 1203 dev_err(hdev->dev, 1204 "Queue index %d is restricted for the kernel driver\n", 1205 chunk->queue_index); 1206 return -EINVAL; 1207 } 1208 1209 /* When hw queue type isn't QUEUE_TYPE_HW, 1210 * USER_ALLOC_CB flag shall be referred as "don't care". 1211 */ 1212 if (hw_queue_prop->type == QUEUE_TYPE_HW) { 1213 if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) { 1214 if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) { 1215 dev_err(hdev->dev, 1216 "Queue index %d doesn't support user CB\n", 1217 chunk->queue_index); 1218 return -EINVAL; 1219 } 1220 1221 *is_kernel_allocated_cb = false; 1222 } else { 1223 if (!(hw_queue_prop->cb_alloc_flags & 1224 CB_ALLOC_KERNEL)) { 1225 dev_err(hdev->dev, 1226 "Queue index %d doesn't support kernel CB\n", 1227 chunk->queue_index); 1228 return -EINVAL; 1229 } 1230 1231 *is_kernel_allocated_cb = true; 1232 } 1233 } else { 1234 *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags 1235 & CB_ALLOC_KERNEL); 1236 } 1237 1238 *queue_type = hw_queue_prop->type; 1239 return 0; 1240 } 1241 1242 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev, 1243 struct hl_mem_mgr *mmg, 1244 struct hl_cs_chunk *chunk) 1245 { 1246 struct hl_cb *cb; 1247 1248 cb = hl_cb_get(mmg, chunk->cb_handle); 1249 if (!cb) { 1250 dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle); 1251 return NULL; 1252 } 1253 1254 if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) { 1255 dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size); 1256 goto release_cb; 1257 } 1258 1259 atomic_inc(&cb->cs_cnt); 1260 1261 return cb; 1262 1263 release_cb: 1264 hl_cb_put(cb); 1265 return NULL; 1266 } 1267 1268 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 1269 enum hl_queue_type queue_type, bool is_kernel_allocated_cb) 1270 { 1271 struct hl_cs_job *job; 1272 1273 job = kzalloc(sizeof(*job), GFP_ATOMIC); 1274 if (!job) 1275 job = kzalloc(sizeof(*job), GFP_KERNEL); 1276 1277 if (!job) 1278 return NULL; 1279 1280 kref_init(&job->refcount); 1281 job->queue_type = queue_type; 1282 job->is_kernel_allocated_cb = is_kernel_allocated_cb; 1283 1284 if (is_cb_patched(hdev, job)) 1285 INIT_LIST_HEAD(&job->userptr_list); 1286 1287 if (job->queue_type == QUEUE_TYPE_EXT) 1288 INIT_WORK(&job->finish_work, job_wq_completion); 1289 1290 return job; 1291 } 1292 1293 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags) 1294 { 1295 if (cs_type_flags & HL_CS_FLAGS_SIGNAL) 1296 return CS_TYPE_SIGNAL; 1297 else if (cs_type_flags & HL_CS_FLAGS_WAIT) 1298 return CS_TYPE_WAIT; 1299 else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT) 1300 return CS_TYPE_COLLECTIVE_WAIT; 1301 else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY) 1302 return CS_RESERVE_SIGNALS; 1303 else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY) 1304 return CS_UNRESERVE_SIGNALS; 1305 else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND) 1306 return CS_TYPE_ENGINE_CORE; 1307 else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) 1308 return CS_TYPE_FLUSH_PCI_HBW_WRITES; 1309 else 1310 return CS_TYPE_DEFAULT; 1311 } 1312 1313 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args) 1314 { 1315 struct hl_device *hdev = hpriv->hdev; 1316 struct hl_ctx *ctx = hpriv->ctx; 1317 u32 cs_type_flags, num_chunks; 1318 enum hl_device_status status; 1319 enum hl_cs_type cs_type; 1320 bool is_sync_stream; 1321 int i; 1322 1323 for (i = 0 ; i < sizeof(args->in.pad) ; i++) 1324 if (args->in.pad[i]) { 1325 dev_dbg(hdev->dev, "Padding bytes must be 0\n"); 1326 return -EINVAL; 1327 } 1328 1329 if (!hl_device_operational(hdev, &status)) { 1330 return -EBUSY; 1331 } 1332 1333 if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 1334 !hdev->supports_staged_submission) { 1335 dev_err(hdev->dev, "staged submission not supported"); 1336 return -EPERM; 1337 } 1338 1339 cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK; 1340 1341 if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) { 1342 dev_err(hdev->dev, 1343 "CS type flags are mutually exclusive, context %d\n", 1344 ctx->asid); 1345 return -EINVAL; 1346 } 1347 1348 cs_type = hl_cs_get_cs_type(cs_type_flags); 1349 num_chunks = args->in.num_chunks_execute; 1350 1351 is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT || 1352 cs_type == CS_TYPE_COLLECTIVE_WAIT); 1353 1354 if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) { 1355 dev_err(hdev->dev, "Sync stream CS is not supported\n"); 1356 return -EINVAL; 1357 } 1358 1359 if (cs_type == CS_TYPE_DEFAULT) { 1360 if (!num_chunks) { 1361 dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid); 1362 return -EINVAL; 1363 } 1364 } else if (is_sync_stream && num_chunks != 1) { 1365 dev_err(hdev->dev, 1366 "Sync stream CS mandates one chunk only, context %d\n", 1367 ctx->asid); 1368 return -EINVAL; 1369 } 1370 1371 return 0; 1372 } 1373 1374 static int hl_cs_copy_chunk_array(struct hl_device *hdev, 1375 struct hl_cs_chunk **cs_chunk_array, 1376 void __user *chunks, u32 num_chunks, 1377 struct hl_ctx *ctx) 1378 { 1379 u32 size_to_copy; 1380 1381 if (num_chunks > HL_MAX_JOBS_PER_CS) { 1382 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1383 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1384 dev_err(hdev->dev, 1385 "Number of chunks can NOT be larger than %d\n", 1386 HL_MAX_JOBS_PER_CS); 1387 return -EINVAL; 1388 } 1389 1390 *cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array), 1391 GFP_ATOMIC); 1392 if (!*cs_chunk_array) 1393 *cs_chunk_array = kmalloc_array(num_chunks, 1394 sizeof(**cs_chunk_array), GFP_KERNEL); 1395 if (!*cs_chunk_array) { 1396 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1397 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); 1398 return -ENOMEM; 1399 } 1400 1401 size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); 1402 if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) { 1403 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1404 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1405 dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); 1406 kfree(*cs_chunk_array); 1407 return -EFAULT; 1408 } 1409 1410 return 0; 1411 } 1412 1413 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs, 1414 u64 sequence, u32 flags, 1415 u32 encaps_signal_handle) 1416 { 1417 if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION)) 1418 return 0; 1419 1420 cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST); 1421 cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST); 1422 1423 if (cs->staged_first) { 1424 /* Staged CS sequence is the first CS sequence */ 1425 INIT_LIST_HEAD(&cs->staged_cs_node); 1426 cs->staged_sequence = cs->sequence; 1427 1428 if (cs->encaps_signals) 1429 cs->encaps_sig_hdl_id = encaps_signal_handle; 1430 } else { 1431 /* User sequence will be validated in 'hl_hw_queue_schedule_cs' 1432 * under the cs_mirror_lock 1433 */ 1434 cs->staged_sequence = sequence; 1435 } 1436 1437 /* Increment CS reference if needed */ 1438 staged_cs_get(hdev, cs); 1439 1440 cs->staged_cs = true; 1441 1442 return 0; 1443 } 1444 1445 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid) 1446 { 1447 int i; 1448 1449 for (i = 0; i < hdev->stream_master_qid_arr_size; i++) 1450 if (qid == hdev->stream_master_qid_arr[i]) 1451 return BIT(i); 1452 1453 return 0; 1454 } 1455 1456 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks, 1457 u32 num_chunks, u64 *cs_seq, u32 flags, 1458 u32 encaps_signals_handle, u32 timeout, 1459 u16 *signal_initial_sob_count) 1460 { 1461 bool staged_mid, int_queues_only = true, using_hw_queues = false; 1462 struct hl_device *hdev = hpriv->hdev; 1463 struct hl_cs_chunk *cs_chunk_array; 1464 struct hl_cs_counters_atomic *cntr; 1465 struct hl_ctx *ctx = hpriv->ctx; 1466 struct hl_cs_job *job; 1467 struct hl_cs *cs; 1468 struct hl_cb *cb; 1469 u64 user_sequence; 1470 u8 stream_master_qid_map = 0; 1471 int rc, i; 1472 1473 cntr = &hdev->aggregated_cs_counters; 1474 user_sequence = *cs_seq; 1475 *cs_seq = ULLONG_MAX; 1476 1477 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, 1478 hpriv->ctx); 1479 if (rc) 1480 goto out; 1481 1482 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 1483 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) 1484 staged_mid = true; 1485 else 1486 staged_mid = false; 1487 1488 rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, 1489 staged_mid ? user_sequence : ULLONG_MAX, &cs, flags, 1490 timeout); 1491 if (rc) 1492 goto free_cs_chunk_array; 1493 1494 *cs_seq = cs->sequence; 1495 1496 hl_debugfs_add_cs(cs); 1497 1498 rc = cs_staged_submission(hdev, cs, user_sequence, flags, 1499 encaps_signals_handle); 1500 if (rc) 1501 goto free_cs_object; 1502 1503 /* If this is a staged submission we must return the staged sequence 1504 * rather than the internal CS sequence 1505 */ 1506 if (cs->staged_cs) 1507 *cs_seq = cs->staged_sequence; 1508 1509 /* Validate ALL the CS chunks before submitting the CS */ 1510 for (i = 0 ; i < num_chunks ; i++) { 1511 struct hl_cs_chunk *chunk = &cs_chunk_array[i]; 1512 enum hl_queue_type queue_type; 1513 bool is_kernel_allocated_cb; 1514 1515 rc = validate_queue_index(hdev, chunk, &queue_type, 1516 &is_kernel_allocated_cb); 1517 if (rc) { 1518 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1519 atomic64_inc(&cntr->validation_drop_cnt); 1520 goto free_cs_object; 1521 } 1522 1523 if (is_kernel_allocated_cb) { 1524 cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk); 1525 if (!cb) { 1526 atomic64_inc( 1527 &ctx->cs_counters.validation_drop_cnt); 1528 atomic64_inc(&cntr->validation_drop_cnt); 1529 rc = -EINVAL; 1530 goto free_cs_object; 1531 } 1532 } else { 1533 cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle; 1534 } 1535 1536 if (queue_type == QUEUE_TYPE_EXT || 1537 queue_type == QUEUE_TYPE_HW) { 1538 int_queues_only = false; 1539 1540 /* 1541 * store which stream are being used for external/HW 1542 * queues of this CS 1543 */ 1544 if (hdev->supports_wait_for_multi_cs) 1545 stream_master_qid_map |= 1546 get_stream_master_qid_mask(hdev, 1547 chunk->queue_index); 1548 } 1549 1550 if (queue_type == QUEUE_TYPE_HW) 1551 using_hw_queues = true; 1552 1553 job = hl_cs_allocate_job(hdev, queue_type, 1554 is_kernel_allocated_cb); 1555 if (!job) { 1556 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1557 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1558 dev_err(hdev->dev, "Failed to allocate a new job\n"); 1559 rc = -ENOMEM; 1560 if (is_kernel_allocated_cb) 1561 goto release_cb; 1562 1563 goto free_cs_object; 1564 } 1565 1566 job->id = i + 1; 1567 job->cs = cs; 1568 job->user_cb = cb; 1569 job->user_cb_size = chunk->cb_size; 1570 job->hw_queue_id = chunk->queue_index; 1571 1572 cs->jobs_in_queue_cnt[job->hw_queue_id]++; 1573 cs->jobs_cnt++; 1574 1575 list_add_tail(&job->cs_node, &cs->job_list); 1576 1577 /* 1578 * Increment CS reference. When CS reference is 0, CS is 1579 * done and can be signaled to user and free all its resources 1580 * Only increment for JOB on external or H/W queues, because 1581 * only for those JOBs we get completion 1582 */ 1583 if (cs_needs_completion(cs) && 1584 (job->queue_type == QUEUE_TYPE_EXT || 1585 job->queue_type == QUEUE_TYPE_HW)) 1586 cs_get(cs); 1587 1588 hl_debugfs_add_job(hdev, job); 1589 1590 rc = cs_parser(hpriv, job); 1591 if (rc) { 1592 atomic64_inc(&ctx->cs_counters.parsing_drop_cnt); 1593 atomic64_inc(&cntr->parsing_drop_cnt); 1594 dev_err(hdev->dev, 1595 "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n", 1596 cs->ctx->asid, cs->sequence, job->id, rc); 1597 goto free_cs_object; 1598 } 1599 } 1600 1601 /* We allow a CS with any queue type combination as long as it does 1602 * not get a completion 1603 */ 1604 if (int_queues_only && cs_needs_completion(cs)) { 1605 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1606 atomic64_inc(&cntr->validation_drop_cnt); 1607 dev_err(hdev->dev, 1608 "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n", 1609 cs->ctx->asid, cs->sequence); 1610 rc = -EINVAL; 1611 goto free_cs_object; 1612 } 1613 1614 if (using_hw_queues) 1615 INIT_WORK(&cs->finish_work, cs_completion); 1616 1617 /* 1618 * store the (external/HW queues) streams used by the CS in the 1619 * fence object for multi-CS completion 1620 */ 1621 if (hdev->supports_wait_for_multi_cs) 1622 cs->fence->stream_master_qid_map = stream_master_qid_map; 1623 1624 rc = hl_hw_queue_schedule_cs(cs); 1625 if (rc) { 1626 if (rc != -EAGAIN) 1627 dev_err(hdev->dev, 1628 "Failed to submit CS %d.%llu to H/W queues, error %d\n", 1629 cs->ctx->asid, cs->sequence, rc); 1630 goto free_cs_object; 1631 } 1632 1633 *signal_initial_sob_count = cs->initial_sob_count; 1634 1635 rc = HL_CS_STATUS_SUCCESS; 1636 goto put_cs; 1637 1638 release_cb: 1639 atomic_dec(&cb->cs_cnt); 1640 hl_cb_put(cb); 1641 free_cs_object: 1642 cs_rollback(hdev, cs); 1643 *cs_seq = ULLONG_MAX; 1644 /* The path below is both for good and erroneous exits */ 1645 put_cs: 1646 /* We finished with the CS in this function, so put the ref */ 1647 cs_put(cs); 1648 free_cs_chunk_array: 1649 kfree(cs_chunk_array); 1650 out: 1651 return rc; 1652 } 1653 1654 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args, 1655 u64 *cs_seq) 1656 { 1657 struct hl_device *hdev = hpriv->hdev; 1658 struct hl_ctx *ctx = hpriv->ctx; 1659 bool need_soft_reset = false; 1660 int rc = 0, do_ctx_switch = 0; 1661 void __user *chunks; 1662 u32 num_chunks, tmp; 1663 u16 sob_count; 1664 int ret; 1665 1666 if (hdev->supports_ctx_switch) 1667 do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0); 1668 1669 if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) { 1670 mutex_lock(&hpriv->restore_phase_mutex); 1671 1672 if (do_ctx_switch) { 1673 rc = hdev->asic_funcs->context_switch(hdev, ctx->asid); 1674 if (rc) { 1675 dev_err_ratelimited(hdev->dev, 1676 "Failed to switch to context %d, rejecting CS! %d\n", 1677 ctx->asid, rc); 1678 /* 1679 * If we timedout, or if the device is not IDLE 1680 * while we want to do context-switch (-EBUSY), 1681 * we need to soft-reset because QMAN is 1682 * probably stuck. However, we can't call to 1683 * reset here directly because of deadlock, so 1684 * need to do it at the very end of this 1685 * function 1686 */ 1687 if ((rc == -ETIMEDOUT) || (rc == -EBUSY)) 1688 need_soft_reset = true; 1689 mutex_unlock(&hpriv->restore_phase_mutex); 1690 goto out; 1691 } 1692 } 1693 1694 hdev->asic_funcs->restore_phase_topology(hdev); 1695 1696 chunks = (void __user *) (uintptr_t) args->in.chunks_restore; 1697 num_chunks = args->in.num_chunks_restore; 1698 1699 if (!num_chunks) { 1700 dev_dbg(hdev->dev, 1701 "Need to run restore phase but restore CS is empty\n"); 1702 rc = 0; 1703 } else { 1704 rc = cs_ioctl_default(hpriv, chunks, num_chunks, 1705 cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count); 1706 } 1707 1708 mutex_unlock(&hpriv->restore_phase_mutex); 1709 1710 if (rc) { 1711 dev_err(hdev->dev, 1712 "Failed to submit restore CS for context %d (%d)\n", 1713 ctx->asid, rc); 1714 goto out; 1715 } 1716 1717 /* Need to wait for restore completion before execution phase */ 1718 if (num_chunks) { 1719 enum hl_cs_wait_status status; 1720 wait_again: 1721 ret = _hl_cs_wait_ioctl(hdev, ctx, 1722 jiffies_to_usecs(hdev->timeout_jiffies), 1723 *cs_seq, &status, NULL); 1724 if (ret) { 1725 if (ret == -ERESTARTSYS) { 1726 usleep_range(100, 200); 1727 goto wait_again; 1728 } 1729 1730 dev_err(hdev->dev, 1731 "Restore CS for context %d failed to complete %d\n", 1732 ctx->asid, ret); 1733 rc = -ENOEXEC; 1734 goto out; 1735 } 1736 } 1737 1738 if (hdev->supports_ctx_switch) 1739 ctx->thread_ctx_switch_wait_token = 1; 1740 1741 } else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) { 1742 rc = hl_poll_timeout_memory(hdev, 1743 &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1), 1744 100, jiffies_to_usecs(hdev->timeout_jiffies), false); 1745 1746 if (rc == -ETIMEDOUT) { 1747 dev_err(hdev->dev, 1748 "context switch phase timeout (%d)\n", tmp); 1749 goto out; 1750 } 1751 } 1752 1753 out: 1754 if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset)) 1755 hl_device_reset(hdev, 0); 1756 1757 return rc; 1758 } 1759 1760 /* 1761 * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case. 1762 * if the SOB value reaches the max value move to the other SOB reserved 1763 * to the queue. 1764 * @hdev: pointer to device structure 1765 * @q_idx: stream queue index 1766 * @hw_sob: the H/W SOB used in this signal CS. 1767 * @count: signals count 1768 * @encaps_sig: tells whether it's reservation for encaps signals or not. 1769 * 1770 * Note that this function must be called while hw_queues_lock is taken. 1771 */ 1772 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 1773 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig) 1774 1775 { 1776 struct hl_sync_stream_properties *prop; 1777 struct hl_hw_sob *sob = *hw_sob, *other_sob; 1778 u8 other_sob_offset; 1779 1780 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 1781 1782 hw_sob_get(sob); 1783 1784 /* check for wraparound */ 1785 if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) { 1786 /* 1787 * Decrement as we reached the max value. 1788 * The release function won't be called here as we've 1789 * just incremented the refcount right before calling this 1790 * function. 1791 */ 1792 hw_sob_put_err(sob); 1793 1794 /* 1795 * check the other sob value, if it still in use then fail 1796 * otherwise make the switch 1797 */ 1798 other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS; 1799 other_sob = &prop->hw_sob[other_sob_offset]; 1800 1801 if (kref_read(&other_sob->kref) != 1) { 1802 dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n", 1803 q_idx); 1804 return -EINVAL; 1805 } 1806 1807 /* 1808 * next_sob_val always points to the next available signal 1809 * in the sob, so in encaps signals it will be the next one 1810 * after reserving the required amount. 1811 */ 1812 if (encaps_sig) 1813 prop->next_sob_val = count + 1; 1814 else 1815 prop->next_sob_val = count; 1816 1817 /* only two SOBs are currently in use */ 1818 prop->curr_sob_offset = other_sob_offset; 1819 *hw_sob = other_sob; 1820 1821 /* 1822 * check if other_sob needs reset, then do it before using it 1823 * for the reservation or the next signal cs. 1824 * we do it here, and for both encaps and regular signal cs 1825 * cases in order to avoid possible races of two kref_put 1826 * of the sob which can occur at the same time if we move the 1827 * sob reset(kref_put) to cs_do_release function. 1828 * in addition, if we have combination of cs signal and 1829 * encaps, and at the point we need to reset the sob there was 1830 * no more reservations and only signal cs keep coming, 1831 * in such case we need signal_cs to put the refcount and 1832 * reset the sob. 1833 */ 1834 if (other_sob->need_reset) 1835 hw_sob_put(other_sob); 1836 1837 if (encaps_sig) { 1838 /* set reset indication for the sob */ 1839 sob->need_reset = true; 1840 hw_sob_get(other_sob); 1841 } 1842 1843 dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n", 1844 prop->curr_sob_offset, q_idx); 1845 } else { 1846 prop->next_sob_val += count; 1847 } 1848 1849 return 0; 1850 } 1851 1852 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev, 1853 struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx, 1854 bool encaps_signals) 1855 { 1856 u64 *signal_seq_arr = NULL; 1857 u32 size_to_copy, signal_seq_arr_len; 1858 int rc = 0; 1859 1860 if (encaps_signals) { 1861 *signal_seq = chunk->encaps_signal_seq; 1862 return 0; 1863 } 1864 1865 signal_seq_arr_len = chunk->num_signal_seq_arr; 1866 1867 /* currently only one signal seq is supported */ 1868 if (signal_seq_arr_len != 1) { 1869 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1870 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1871 dev_err(hdev->dev, 1872 "Wait for signal CS supports only one signal CS seq\n"); 1873 return -EINVAL; 1874 } 1875 1876 signal_seq_arr = kmalloc_array(signal_seq_arr_len, 1877 sizeof(*signal_seq_arr), 1878 GFP_ATOMIC); 1879 if (!signal_seq_arr) 1880 signal_seq_arr = kmalloc_array(signal_seq_arr_len, 1881 sizeof(*signal_seq_arr), 1882 GFP_KERNEL); 1883 if (!signal_seq_arr) { 1884 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1885 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); 1886 return -ENOMEM; 1887 } 1888 1889 size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr); 1890 if (copy_from_user(signal_seq_arr, 1891 u64_to_user_ptr(chunk->signal_seq_arr), 1892 size_to_copy)) { 1893 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1894 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1895 dev_err(hdev->dev, 1896 "Failed to copy signal seq array from user\n"); 1897 rc = -EFAULT; 1898 goto out; 1899 } 1900 1901 /* currently it is guaranteed to have only one signal seq */ 1902 *signal_seq = signal_seq_arr[0]; 1903 1904 out: 1905 kfree(signal_seq_arr); 1906 1907 return rc; 1908 } 1909 1910 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev, 1911 struct hl_ctx *ctx, struct hl_cs *cs, 1912 enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset) 1913 { 1914 struct hl_cs_counters_atomic *cntr; 1915 struct hl_cs_job *job; 1916 struct hl_cb *cb; 1917 u32 cb_size; 1918 1919 cntr = &hdev->aggregated_cs_counters; 1920 1921 job = hl_cs_allocate_job(hdev, q_type, true); 1922 if (!job) { 1923 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1924 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1925 dev_err(hdev->dev, "Failed to allocate a new job\n"); 1926 return -ENOMEM; 1927 } 1928 1929 if (cs->type == CS_TYPE_WAIT) 1930 cb_size = hdev->asic_funcs->get_wait_cb_size(hdev); 1931 else 1932 cb_size = hdev->asic_funcs->get_signal_cb_size(hdev); 1933 1934 cb = hl_cb_kernel_create(hdev, cb_size, 1935 q_type == QUEUE_TYPE_HW && hdev->mmu_enable); 1936 if (!cb) { 1937 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1938 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1939 kfree(job); 1940 return -EFAULT; 1941 } 1942 1943 job->id = 0; 1944 job->cs = cs; 1945 job->user_cb = cb; 1946 atomic_inc(&job->user_cb->cs_cnt); 1947 job->user_cb_size = cb_size; 1948 job->hw_queue_id = q_idx; 1949 1950 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) 1951 && cs->encaps_signals) 1952 job->encaps_sig_wait_offset = encaps_signal_offset; 1953 /* 1954 * No need in parsing, user CB is the patched CB. 1955 * We call hl_cb_destroy() out of two reasons - we don't need the CB in 1956 * the CB idr anymore and to decrement its refcount as it was 1957 * incremented inside hl_cb_kernel_create(). 1958 */ 1959 job->patched_cb = job->user_cb; 1960 job->job_cb_size = job->user_cb_size; 1961 hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle); 1962 1963 /* increment refcount as for external queues we get completion */ 1964 cs_get(cs); 1965 1966 cs->jobs_in_queue_cnt[job->hw_queue_id]++; 1967 cs->jobs_cnt++; 1968 1969 list_add_tail(&job->cs_node, &cs->job_list); 1970 1971 hl_debugfs_add_job(hdev, job); 1972 1973 return 0; 1974 } 1975 1976 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv, 1977 u32 q_idx, u32 count, 1978 u32 *handle_id, u32 *sob_addr, 1979 u32 *signals_count) 1980 { 1981 struct hw_queue_properties *hw_queue_prop; 1982 struct hl_sync_stream_properties *prop; 1983 struct hl_device *hdev = hpriv->hdev; 1984 struct hl_cs_encaps_sig_handle *handle; 1985 struct hl_encaps_signals_mgr *mgr; 1986 struct hl_hw_sob *hw_sob; 1987 int hdl_id; 1988 int rc = 0; 1989 1990 if (count >= HL_MAX_SOB_VAL) { 1991 dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n", 1992 count); 1993 rc = -EINVAL; 1994 goto out; 1995 } 1996 1997 if (q_idx >= hdev->asic_prop.max_queues) { 1998 dev_err(hdev->dev, "Queue index %d is invalid\n", 1999 q_idx); 2000 rc = -EINVAL; 2001 goto out; 2002 } 2003 2004 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; 2005 2006 if (!hw_queue_prop->supports_sync_stream) { 2007 dev_err(hdev->dev, 2008 "Queue index %d does not support sync stream operations\n", 2009 q_idx); 2010 rc = -EINVAL; 2011 goto out; 2012 } 2013 2014 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 2015 2016 handle = kzalloc(sizeof(*handle), GFP_KERNEL); 2017 if (!handle) { 2018 rc = -ENOMEM; 2019 goto out; 2020 } 2021 2022 handle->count = count; 2023 2024 hl_ctx_get(hpriv->ctx); 2025 handle->ctx = hpriv->ctx; 2026 mgr = &hpriv->ctx->sig_mgr; 2027 2028 spin_lock(&mgr->lock); 2029 hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC); 2030 spin_unlock(&mgr->lock); 2031 2032 if (hdl_id < 0) { 2033 dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n"); 2034 rc = -EINVAL; 2035 goto put_ctx; 2036 } 2037 2038 handle->id = hdl_id; 2039 handle->q_idx = q_idx; 2040 handle->hdev = hdev; 2041 kref_init(&handle->refcount); 2042 2043 hdev->asic_funcs->hw_queues_lock(hdev); 2044 2045 hw_sob = &prop->hw_sob[prop->curr_sob_offset]; 2046 2047 /* 2048 * Increment the SOB value by count by user request 2049 * to reserve those signals 2050 * check if the signals amount to reserve is not exceeding the max sob 2051 * value, if yes then switch sob. 2052 */ 2053 rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count, 2054 true); 2055 if (rc) { 2056 dev_err(hdev->dev, "Failed to switch SOB\n"); 2057 hdev->asic_funcs->hw_queues_unlock(hdev); 2058 rc = -EINVAL; 2059 goto remove_idr; 2060 } 2061 /* set the hw_sob to the handle after calling the sob wraparound handler 2062 * since sob could have changed. 2063 */ 2064 handle->hw_sob = hw_sob; 2065 2066 /* store the current sob value for unreserve validity check, and 2067 * signal offset support 2068 */ 2069 handle->pre_sob_val = prop->next_sob_val - handle->count; 2070 2071 handle->cs_seq = ULLONG_MAX; 2072 2073 *signals_count = prop->next_sob_val; 2074 hdev->asic_funcs->hw_queues_unlock(hdev); 2075 2076 *sob_addr = handle->hw_sob->sob_addr; 2077 *handle_id = hdl_id; 2078 2079 dev_dbg(hdev->dev, 2080 "Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n", 2081 hw_sob->sob_id, handle->hw_sob->sob_addr, 2082 prop->next_sob_val - 1, q_idx, hdl_id); 2083 goto out; 2084 2085 remove_idr: 2086 spin_lock(&mgr->lock); 2087 idr_remove(&mgr->handles, hdl_id); 2088 spin_unlock(&mgr->lock); 2089 2090 put_ctx: 2091 hl_ctx_put(handle->ctx); 2092 kfree(handle); 2093 2094 out: 2095 return rc; 2096 } 2097 2098 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id) 2099 { 2100 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 2101 struct hl_sync_stream_properties *prop; 2102 struct hl_device *hdev = hpriv->hdev; 2103 struct hl_encaps_signals_mgr *mgr; 2104 struct hl_hw_sob *hw_sob; 2105 u32 q_idx, sob_addr; 2106 int rc = 0; 2107 2108 mgr = &hpriv->ctx->sig_mgr; 2109 2110 spin_lock(&mgr->lock); 2111 encaps_sig_hdl = idr_find(&mgr->handles, handle_id); 2112 if (encaps_sig_hdl) { 2113 dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n", 2114 handle_id, encaps_sig_hdl->hw_sob->sob_addr, 2115 encaps_sig_hdl->count); 2116 2117 hdev->asic_funcs->hw_queues_lock(hdev); 2118 2119 q_idx = encaps_sig_hdl->q_idx; 2120 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 2121 hw_sob = &prop->hw_sob[prop->curr_sob_offset]; 2122 sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id); 2123 2124 /* Check if sob_val got out of sync due to other 2125 * signal submission requests which were handled 2126 * between the reserve-unreserve calls or SOB switch 2127 * upon reaching SOB max value. 2128 */ 2129 if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count 2130 != prop->next_sob_val || 2131 sob_addr != encaps_sig_hdl->hw_sob->sob_addr) { 2132 dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n", 2133 encaps_sig_hdl->pre_sob_val, 2134 (prop->next_sob_val - encaps_sig_hdl->count)); 2135 2136 hdev->asic_funcs->hw_queues_unlock(hdev); 2137 rc = -EINVAL; 2138 goto out; 2139 } 2140 2141 /* 2142 * Decrement the SOB value by count by user request 2143 * to unreserve those signals 2144 */ 2145 prop->next_sob_val -= encaps_sig_hdl->count; 2146 2147 hdev->asic_funcs->hw_queues_unlock(hdev); 2148 2149 hw_sob_put(hw_sob); 2150 2151 /* Release the id and free allocated memory of the handle */ 2152 idr_remove(&mgr->handles, handle_id); 2153 hl_ctx_put(encaps_sig_hdl->ctx); 2154 kfree(encaps_sig_hdl); 2155 } else { 2156 rc = -EINVAL; 2157 dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n"); 2158 } 2159 out: 2160 spin_unlock(&mgr->lock); 2161 2162 return rc; 2163 } 2164 2165 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type, 2166 void __user *chunks, u32 num_chunks, 2167 u64 *cs_seq, u32 flags, u32 timeout, 2168 u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count) 2169 { 2170 struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL; 2171 bool handle_found = false, is_wait_cs = false, 2172 wait_cs_submitted = false, 2173 cs_encaps_signals = false; 2174 struct hl_cs_chunk *cs_chunk_array, *chunk; 2175 bool staged_cs_with_encaps_signals = false; 2176 struct hw_queue_properties *hw_queue_prop; 2177 struct hl_device *hdev = hpriv->hdev; 2178 struct hl_cs_compl *sig_waitcs_cmpl; 2179 u32 q_idx, collective_engine_id = 0; 2180 struct hl_cs_counters_atomic *cntr; 2181 struct hl_fence *sig_fence = NULL; 2182 struct hl_ctx *ctx = hpriv->ctx; 2183 enum hl_queue_type q_type; 2184 struct hl_cs *cs; 2185 u64 signal_seq; 2186 int rc; 2187 2188 cntr = &hdev->aggregated_cs_counters; 2189 *cs_seq = ULLONG_MAX; 2190 2191 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, 2192 ctx); 2193 if (rc) 2194 goto out; 2195 2196 /* currently it is guaranteed to have only one chunk */ 2197 chunk = &cs_chunk_array[0]; 2198 2199 if (chunk->queue_index >= hdev->asic_prop.max_queues) { 2200 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2201 atomic64_inc(&cntr->validation_drop_cnt); 2202 dev_err(hdev->dev, "Queue index %d is invalid\n", 2203 chunk->queue_index); 2204 rc = -EINVAL; 2205 goto free_cs_chunk_array; 2206 } 2207 2208 q_idx = chunk->queue_index; 2209 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; 2210 q_type = hw_queue_prop->type; 2211 2212 if (!hw_queue_prop->supports_sync_stream) { 2213 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2214 atomic64_inc(&cntr->validation_drop_cnt); 2215 dev_err(hdev->dev, 2216 "Queue index %d does not support sync stream operations\n", 2217 q_idx); 2218 rc = -EINVAL; 2219 goto free_cs_chunk_array; 2220 } 2221 2222 if (cs_type == CS_TYPE_COLLECTIVE_WAIT) { 2223 if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) { 2224 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2225 atomic64_inc(&cntr->validation_drop_cnt); 2226 dev_err(hdev->dev, 2227 "Queue index %d is invalid\n", q_idx); 2228 rc = -EINVAL; 2229 goto free_cs_chunk_array; 2230 } 2231 2232 if (!hdev->nic_ports_mask) { 2233 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2234 atomic64_inc(&cntr->validation_drop_cnt); 2235 dev_err(hdev->dev, 2236 "Collective operations not supported when NIC ports are disabled"); 2237 rc = -EINVAL; 2238 goto free_cs_chunk_array; 2239 } 2240 2241 collective_engine_id = chunk->collective_engine_id; 2242 } 2243 2244 is_wait_cs = !!(cs_type == CS_TYPE_WAIT || 2245 cs_type == CS_TYPE_COLLECTIVE_WAIT); 2246 2247 cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); 2248 2249 if (is_wait_cs) { 2250 rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq, 2251 ctx, cs_encaps_signals); 2252 if (rc) 2253 goto free_cs_chunk_array; 2254 2255 if (cs_encaps_signals) { 2256 /* check if cs sequence has encapsulated 2257 * signals handle 2258 */ 2259 struct idr *idp; 2260 u32 id; 2261 2262 spin_lock(&ctx->sig_mgr.lock); 2263 idp = &ctx->sig_mgr.handles; 2264 idr_for_each_entry(idp, encaps_sig_hdl, id) { 2265 if (encaps_sig_hdl->cs_seq == signal_seq) { 2266 /* get refcount to protect removing this handle from idr, 2267 * needed when multiple wait cs are used with offset 2268 * to wait on reserved encaps signals. 2269 * Since kref_put of this handle is executed outside the 2270 * current lock, it is possible that the handle refcount 2271 * is 0 but it yet to be removed from the list. In this 2272 * case need to consider the handle as not valid. 2273 */ 2274 if (kref_get_unless_zero(&encaps_sig_hdl->refcount)) 2275 handle_found = true; 2276 break; 2277 } 2278 } 2279 spin_unlock(&ctx->sig_mgr.lock); 2280 2281 if (!handle_found) { 2282 /* treat as signal CS already finished */ 2283 dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n", 2284 signal_seq); 2285 rc = 0; 2286 goto free_cs_chunk_array; 2287 } 2288 2289 /* validate also the signal offset value */ 2290 if (chunk->encaps_signal_offset > 2291 encaps_sig_hdl->count) { 2292 dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n", 2293 chunk->encaps_signal_offset, 2294 encaps_sig_hdl->count); 2295 rc = -EINVAL; 2296 goto free_cs_chunk_array; 2297 } 2298 } 2299 2300 sig_fence = hl_ctx_get_fence(ctx, signal_seq); 2301 if (IS_ERR(sig_fence)) { 2302 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2303 atomic64_inc(&cntr->validation_drop_cnt); 2304 dev_err(hdev->dev, 2305 "Failed to get signal CS with seq 0x%llx\n", 2306 signal_seq); 2307 rc = PTR_ERR(sig_fence); 2308 goto free_cs_chunk_array; 2309 } 2310 2311 if (!sig_fence) { 2312 /* signal CS already finished */ 2313 rc = 0; 2314 goto free_cs_chunk_array; 2315 } 2316 2317 sig_waitcs_cmpl = 2318 container_of(sig_fence, struct hl_cs_compl, base_fence); 2319 2320 staged_cs_with_encaps_signals = !! 2321 (sig_waitcs_cmpl->type == CS_TYPE_DEFAULT && 2322 (flags & HL_CS_FLAGS_ENCAP_SIGNALS)); 2323 2324 if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL && 2325 !staged_cs_with_encaps_signals) { 2326 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2327 atomic64_inc(&cntr->validation_drop_cnt); 2328 dev_err(hdev->dev, 2329 "CS seq 0x%llx is not of a signal/encaps-signal CS\n", 2330 signal_seq); 2331 hl_fence_put(sig_fence); 2332 rc = -EINVAL; 2333 goto free_cs_chunk_array; 2334 } 2335 2336 if (completion_done(&sig_fence->completion)) { 2337 /* signal CS already finished */ 2338 hl_fence_put(sig_fence); 2339 rc = 0; 2340 goto free_cs_chunk_array; 2341 } 2342 } 2343 2344 rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout); 2345 if (rc) { 2346 if (is_wait_cs) 2347 hl_fence_put(sig_fence); 2348 2349 goto free_cs_chunk_array; 2350 } 2351 2352 /* 2353 * Save the signal CS fence for later initialization right before 2354 * hanging the wait CS on the queue. 2355 * for encaps signals case, we save the cs sequence and handle pointer 2356 * for later initialization. 2357 */ 2358 if (is_wait_cs) { 2359 cs->signal_fence = sig_fence; 2360 /* store the handle pointer, so we don't have to 2361 * look for it again, later on the flow 2362 * when we need to set SOB info in hw_queue. 2363 */ 2364 if (cs->encaps_signals) 2365 cs->encaps_sig_hdl = encaps_sig_hdl; 2366 } 2367 2368 hl_debugfs_add_cs(cs); 2369 2370 *cs_seq = cs->sequence; 2371 2372 if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL) 2373 rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type, 2374 q_idx, chunk->encaps_signal_offset); 2375 else if (cs_type == CS_TYPE_COLLECTIVE_WAIT) 2376 rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx, 2377 cs, q_idx, collective_engine_id, 2378 chunk->encaps_signal_offset); 2379 else { 2380 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2381 atomic64_inc(&cntr->validation_drop_cnt); 2382 rc = -EINVAL; 2383 } 2384 2385 if (rc) 2386 goto free_cs_object; 2387 2388 if (q_type == QUEUE_TYPE_HW) 2389 INIT_WORK(&cs->finish_work, cs_completion); 2390 2391 rc = hl_hw_queue_schedule_cs(cs); 2392 if (rc) { 2393 /* In case wait cs failed here, it means the signal cs 2394 * already completed. we want to free all it's related objects 2395 * but we don't want to fail the ioctl. 2396 */ 2397 if (is_wait_cs) 2398 rc = 0; 2399 else if (rc != -EAGAIN) 2400 dev_err(hdev->dev, 2401 "Failed to submit CS %d.%llu to H/W queues, error %d\n", 2402 ctx->asid, cs->sequence, rc); 2403 goto free_cs_object; 2404 } 2405 2406 *signal_sob_addr_offset = cs->sob_addr_offset; 2407 *signal_initial_sob_count = cs->initial_sob_count; 2408 2409 rc = HL_CS_STATUS_SUCCESS; 2410 if (is_wait_cs) 2411 wait_cs_submitted = true; 2412 goto put_cs; 2413 2414 free_cs_object: 2415 cs_rollback(hdev, cs); 2416 *cs_seq = ULLONG_MAX; 2417 /* The path below is both for good and erroneous exits */ 2418 put_cs: 2419 /* We finished with the CS in this function, so put the ref */ 2420 cs_put(cs); 2421 free_cs_chunk_array: 2422 if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs) 2423 kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); 2424 kfree(cs_chunk_array); 2425 out: 2426 return rc; 2427 } 2428 2429 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores, 2430 u32 num_engine_cores, u32 core_command) 2431 { 2432 int rc; 2433 struct hl_device *hdev = hpriv->hdev; 2434 void __user *engine_cores_arr; 2435 u32 *cores; 2436 2437 if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) { 2438 dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores); 2439 return -EINVAL; 2440 } 2441 2442 if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) { 2443 dev_err(hdev->dev, "Engine core command is invalid\n"); 2444 return -EINVAL; 2445 } 2446 2447 engine_cores_arr = (void __user *) (uintptr_t) engine_cores; 2448 cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL); 2449 if (!cores) 2450 return -ENOMEM; 2451 2452 if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) { 2453 dev_err(hdev->dev, "Failed to copy core-ids array from user\n"); 2454 kfree(cores); 2455 return -EFAULT; 2456 } 2457 2458 rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command); 2459 kfree(cores); 2460 2461 return rc; 2462 } 2463 2464 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv) 2465 { 2466 struct hl_device *hdev = hpriv->hdev; 2467 struct asic_fixed_properties *prop = &hdev->asic_prop; 2468 2469 if (!prop->hbw_flush_reg) { 2470 dev_dbg(hdev->dev, "HBW flush is not supported\n"); 2471 return -EOPNOTSUPP; 2472 } 2473 2474 RREG32(prop->hbw_flush_reg); 2475 2476 return 0; 2477 } 2478 2479 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data) 2480 { 2481 union hl_cs_args *args = data; 2482 enum hl_cs_type cs_type = 0; 2483 u64 cs_seq = ULONG_MAX; 2484 void __user *chunks; 2485 u32 num_chunks, flags, timeout, 2486 signals_count = 0, sob_addr = 0, handle_id = 0; 2487 u16 sob_initial_count = 0; 2488 int rc; 2489 2490 rc = hl_cs_sanity_checks(hpriv, args); 2491 if (rc) 2492 goto out; 2493 2494 rc = hl_cs_ctx_switch(hpriv, args, &cs_seq); 2495 if (rc) 2496 goto out; 2497 2498 cs_type = hl_cs_get_cs_type(args->in.cs_flags & 2499 ~HL_CS_FLAGS_FORCE_RESTORE); 2500 chunks = (void __user *) (uintptr_t) args->in.chunks_execute; 2501 num_chunks = args->in.num_chunks_execute; 2502 flags = args->in.cs_flags; 2503 2504 /* In case this is a staged CS, user should supply the CS sequence */ 2505 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 2506 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) 2507 cs_seq = args->in.seq; 2508 2509 timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT 2510 ? msecs_to_jiffies(args->in.timeout * 1000) 2511 : hpriv->hdev->timeout_jiffies; 2512 2513 switch (cs_type) { 2514 case CS_TYPE_SIGNAL: 2515 case CS_TYPE_WAIT: 2516 case CS_TYPE_COLLECTIVE_WAIT: 2517 rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks, 2518 &cs_seq, args->in.cs_flags, timeout, 2519 &sob_addr, &sob_initial_count); 2520 break; 2521 case CS_RESERVE_SIGNALS: 2522 rc = cs_ioctl_reserve_signals(hpriv, 2523 args->in.encaps_signals_q_idx, 2524 args->in.encaps_signals_count, 2525 &handle_id, &sob_addr, &signals_count); 2526 break; 2527 case CS_UNRESERVE_SIGNALS: 2528 rc = cs_ioctl_unreserve_signals(hpriv, 2529 args->in.encaps_sig_handle_id); 2530 break; 2531 case CS_TYPE_ENGINE_CORE: 2532 rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores, 2533 args->in.num_engine_cores, args->in.core_command); 2534 break; 2535 case CS_TYPE_FLUSH_PCI_HBW_WRITES: 2536 rc = cs_ioctl_flush_pci_hbw_writes(hpriv); 2537 break; 2538 default: 2539 rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq, 2540 args->in.cs_flags, 2541 args->in.encaps_sig_handle_id, 2542 timeout, &sob_initial_count); 2543 break; 2544 } 2545 out: 2546 if (rc != -EAGAIN) { 2547 memset(args, 0, sizeof(*args)); 2548 2549 switch (cs_type) { 2550 case CS_RESERVE_SIGNALS: 2551 args->out.handle_id = handle_id; 2552 args->out.sob_base_addr_offset = sob_addr; 2553 args->out.count = signals_count; 2554 break; 2555 case CS_TYPE_SIGNAL: 2556 args->out.sob_base_addr_offset = sob_addr; 2557 args->out.sob_count_before_submission = sob_initial_count; 2558 args->out.seq = cs_seq; 2559 break; 2560 case CS_TYPE_DEFAULT: 2561 args->out.sob_count_before_submission = sob_initial_count; 2562 args->out.seq = cs_seq; 2563 break; 2564 default: 2565 args->out.seq = cs_seq; 2566 break; 2567 } 2568 2569 args->out.status = rc; 2570 } 2571 2572 return rc; 2573 } 2574 2575 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence, 2576 enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp) 2577 { 2578 struct hl_device *hdev = ctx->hdev; 2579 ktime_t timestamp_kt; 2580 long completion_rc; 2581 int rc = 0, error; 2582 2583 if (IS_ERR(fence)) { 2584 rc = PTR_ERR(fence); 2585 if (rc == -EINVAL) 2586 dev_notice_ratelimited(hdev->dev, 2587 "Can't wait on CS %llu because current CS is at seq %llu\n", 2588 seq, ctx->cs_sequence); 2589 return rc; 2590 } 2591 2592 if (!fence) { 2593 if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, ×tamp_kt, &error)) { 2594 dev_dbg(hdev->dev, 2595 "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n", 2596 seq, ctx->cs_sequence); 2597 *status = CS_WAIT_STATUS_GONE; 2598 return 0; 2599 } 2600 2601 completion_rc = 1; 2602 goto report_results; 2603 } 2604 2605 if (!timeout_us) { 2606 completion_rc = completion_done(&fence->completion); 2607 } else { 2608 unsigned long timeout; 2609 2610 timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ? 2611 timeout_us : usecs_to_jiffies(timeout_us); 2612 completion_rc = 2613 wait_for_completion_interruptible_timeout( 2614 &fence->completion, timeout); 2615 } 2616 2617 error = fence->error; 2618 timestamp_kt = fence->timestamp; 2619 2620 report_results: 2621 if (completion_rc > 0) { 2622 *status = CS_WAIT_STATUS_COMPLETED; 2623 if (timestamp) 2624 *timestamp = ktime_to_ns(timestamp_kt); 2625 } else { 2626 *status = CS_WAIT_STATUS_BUSY; 2627 } 2628 2629 if (completion_rc == -ERESTARTSYS) 2630 rc = completion_rc; 2631 else if (error == -ETIMEDOUT || error == -EIO) 2632 rc = error; 2633 2634 return rc; 2635 } 2636 2637 /* 2638 * hl_cs_poll_fences - iterate CS fences to check for CS completion 2639 * 2640 * @mcs_data: multi-CS internal data 2641 * @mcs_compl: multi-CS completion structure 2642 * 2643 * @return 0 on success, otherwise non 0 error code 2644 * 2645 * The function iterates on all CS sequence in the list and set bit in 2646 * completion_bitmap for each completed CS. 2647 * While iterating, the function sets the stream map of each fence in the fence 2648 * array in the completion QID stream map to be used by CSs to perform 2649 * completion to the multi-CS context. 2650 * This function shall be called after taking context ref 2651 */ 2652 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl) 2653 { 2654 struct hl_fence **fence_ptr = mcs_data->fence_arr; 2655 struct hl_device *hdev = mcs_data->ctx->hdev; 2656 int i, rc, arr_len = mcs_data->arr_len; 2657 u64 *seq_arr = mcs_data->seq_arr; 2658 ktime_t max_ktime, first_cs_time; 2659 enum hl_cs_wait_status status; 2660 2661 memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *)); 2662 2663 /* get all fences under the same lock */ 2664 rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len); 2665 if (rc) 2666 return rc; 2667 2668 /* 2669 * re-initialize the completion here to handle 2 possible cases: 2670 * 1. CS will complete the multi-CS prior clearing the completion. in which 2671 * case the fence iteration is guaranteed to catch the CS completion. 2672 * 2. the completion will occur after re-init of the completion. 2673 * in which case we will wake up immediately in wait_for_completion. 2674 */ 2675 reinit_completion(&mcs_compl->completion); 2676 2677 /* 2678 * set to maximum time to verify timestamp is valid: if at the end 2679 * this value is maintained- no timestamp was updated 2680 */ 2681 max_ktime = ktime_set(KTIME_SEC_MAX, 0); 2682 first_cs_time = max_ktime; 2683 2684 for (i = 0; i < arr_len; i++, fence_ptr++) { 2685 struct hl_fence *fence = *fence_ptr; 2686 2687 /* 2688 * In order to prevent case where we wait until timeout even though a CS associated 2689 * with the multi-CS actually completed we do things in the below order: 2690 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way 2691 * any CS can, potentially, complete the multi CS for the specific QID (note 2692 * that once completion is initialized, calling complete* and then wait on the 2693 * completion will cause it to return at once) 2694 * 2. only after allowing multi-CS completion for the specific QID we check whether 2695 * the specific CS already completed (and thus the wait for completion part will 2696 * be skipped). if the CS not completed it is guaranteed that completing CS will 2697 * wake up the completion. 2698 */ 2699 if (fence) 2700 mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map; 2701 2702 /* 2703 * function won't sleep as it is called with timeout 0 (i.e. 2704 * poll the fence) 2705 */ 2706 rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL); 2707 if (rc) { 2708 dev_err(hdev->dev, 2709 "wait_for_fence error :%d for CS seq %llu\n", 2710 rc, seq_arr[i]); 2711 break; 2712 } 2713 2714 switch (status) { 2715 case CS_WAIT_STATUS_BUSY: 2716 /* CS did not finished, QID to wait on already stored */ 2717 break; 2718 case CS_WAIT_STATUS_COMPLETED: 2719 /* 2720 * Using mcs_handling_done to avoid possibility of mcs_data 2721 * returns to user indicating CS completed before it finished 2722 * all of its mcs handling, to avoid race the next time the 2723 * user waits for mcs. 2724 * note: when reaching this case fence is definitely not NULL 2725 * but NULL check was added to overcome static analysis 2726 */ 2727 if (fence && !fence->mcs_handling_done) { 2728 /* 2729 * in case multi CS is completed but MCS handling not done 2730 * we "complete" the multi CS to prevent it from waiting 2731 * until time-out and the "multi-CS handling done" will have 2732 * another chance at the next iteration 2733 */ 2734 complete_all(&mcs_compl->completion); 2735 break; 2736 } 2737 2738 mcs_data->completion_bitmap |= BIT(i); 2739 /* 2740 * For all completed CSs we take the earliest timestamp. 2741 * For this we have to validate that the timestamp is 2742 * earliest of all timestamps so far. 2743 */ 2744 if (fence && mcs_data->update_ts && 2745 (ktime_compare(fence->timestamp, first_cs_time) < 0)) 2746 first_cs_time = fence->timestamp; 2747 break; 2748 case CS_WAIT_STATUS_GONE: 2749 mcs_data->update_ts = false; 2750 mcs_data->gone_cs = true; 2751 /* 2752 * It is possible to get an old sequence numbers from user 2753 * which related to already completed CSs and their fences 2754 * already gone. In this case, CS set as completed but 2755 * no need to consider its QID for mcs completion. 2756 */ 2757 mcs_data->completion_bitmap |= BIT(i); 2758 break; 2759 default: 2760 dev_err(hdev->dev, "Invalid fence status\n"); 2761 rc = -EINVAL; 2762 break; 2763 } 2764 2765 } 2766 2767 hl_fences_put(mcs_data->fence_arr, arr_len); 2768 2769 if (mcs_data->update_ts && 2770 (ktime_compare(first_cs_time, max_ktime) != 0)) 2771 mcs_data->timestamp = ktime_to_ns(first_cs_time); 2772 2773 return rc; 2774 } 2775 2776 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, 2777 enum hl_cs_wait_status *status, s64 *timestamp) 2778 { 2779 struct hl_fence *fence; 2780 int rc = 0; 2781 2782 if (timestamp) 2783 *timestamp = 0; 2784 2785 hl_ctx_get(ctx); 2786 2787 fence = hl_ctx_get_fence(ctx, seq); 2788 2789 rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp); 2790 hl_fence_put(fence); 2791 hl_ctx_put(ctx); 2792 2793 return rc; 2794 } 2795 2796 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs) 2797 { 2798 if (usecs <= U32_MAX) 2799 return usecs_to_jiffies(usecs); 2800 2801 /* 2802 * If the value in nanoseconds is larger than 64 bit, use the largest 2803 * 64 bit value. 2804 */ 2805 if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC))) 2806 return nsecs_to_jiffies(U64_MAX); 2807 2808 return nsecs_to_jiffies(usecs * NSEC_PER_USEC); 2809 } 2810 2811 /* 2812 * hl_wait_multi_cs_completion_init - init completion structure 2813 * 2814 * @hdev: pointer to habanalabs device structure 2815 * @stream_master_bitmap: stream master QIDs map, set bit indicates stream 2816 * master QID to wait on 2817 * 2818 * @return valid completion struct pointer on success, otherwise error pointer 2819 * 2820 * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver. 2821 * the function gets the first available completion (by marking it "used") 2822 * and initialize its values. 2823 */ 2824 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev) 2825 { 2826 struct multi_cs_completion *mcs_compl; 2827 int i; 2828 2829 /* find free multi_cs completion structure */ 2830 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 2831 mcs_compl = &hdev->multi_cs_completion[i]; 2832 spin_lock(&mcs_compl->lock); 2833 if (!mcs_compl->used) { 2834 mcs_compl->used = 1; 2835 mcs_compl->timestamp = 0; 2836 /* 2837 * init QID map to 0 to avoid completion by CSs. the actual QID map 2838 * to multi-CS CSs will be set incrementally at a later stage 2839 */ 2840 mcs_compl->stream_master_qid_map = 0; 2841 spin_unlock(&mcs_compl->lock); 2842 break; 2843 } 2844 spin_unlock(&mcs_compl->lock); 2845 } 2846 2847 if (i == MULTI_CS_MAX_USER_CTX) { 2848 dev_err(hdev->dev, "no available multi-CS completion structure\n"); 2849 return ERR_PTR(-ENOMEM); 2850 } 2851 return mcs_compl; 2852 } 2853 2854 /* 2855 * hl_wait_multi_cs_completion_fini - return completion structure and set as 2856 * unused 2857 * 2858 * @mcs_compl: pointer to the completion structure 2859 */ 2860 static void hl_wait_multi_cs_completion_fini( 2861 struct multi_cs_completion *mcs_compl) 2862 { 2863 /* 2864 * free completion structure, do it under lock to be in-sync with the 2865 * thread that signals completion 2866 */ 2867 spin_lock(&mcs_compl->lock); 2868 mcs_compl->used = 0; 2869 spin_unlock(&mcs_compl->lock); 2870 } 2871 2872 /* 2873 * hl_wait_multi_cs_completion - wait for first CS to complete 2874 * 2875 * @mcs_data: multi-CS internal data 2876 * 2877 * @return 0 on success, otherwise non 0 error code 2878 */ 2879 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data, 2880 struct multi_cs_completion *mcs_compl) 2881 { 2882 long completion_rc; 2883 2884 completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion, 2885 mcs_data->timeout_jiffies); 2886 2887 /* update timestamp */ 2888 if (completion_rc > 0) 2889 mcs_data->timestamp = mcs_compl->timestamp; 2890 2891 if (completion_rc == -ERESTARTSYS) 2892 return completion_rc; 2893 2894 mcs_data->wait_status = completion_rc; 2895 2896 return 0; 2897 } 2898 2899 /* 2900 * hl_multi_cs_completion_init - init array of multi-CS completion structures 2901 * 2902 * @hdev: pointer to habanalabs device structure 2903 */ 2904 void hl_multi_cs_completion_init(struct hl_device *hdev) 2905 { 2906 struct multi_cs_completion *mcs_cmpl; 2907 int i; 2908 2909 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 2910 mcs_cmpl = &hdev->multi_cs_completion[i]; 2911 mcs_cmpl->used = 0; 2912 spin_lock_init(&mcs_cmpl->lock); 2913 init_completion(&mcs_cmpl->completion); 2914 } 2915 } 2916 2917 /* 2918 * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl 2919 * 2920 * @hpriv: pointer to the private data of the fd 2921 * @data: pointer to multi-CS wait ioctl in/out args 2922 * 2923 */ 2924 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) 2925 { 2926 struct multi_cs_completion *mcs_compl; 2927 struct hl_device *hdev = hpriv->hdev; 2928 struct multi_cs_data mcs_data = {}; 2929 union hl_wait_cs_args *args = data; 2930 struct hl_ctx *ctx = hpriv->ctx; 2931 struct hl_fence **fence_arr; 2932 void __user *seq_arr; 2933 u32 size_to_copy; 2934 u64 *cs_seq_arr; 2935 u8 seq_arr_len; 2936 int rc, i; 2937 2938 for (i = 0 ; i < sizeof(args->in.pad) ; i++) 2939 if (args->in.pad[i]) { 2940 dev_dbg(hdev->dev, "Padding bytes must be 0\n"); 2941 return -EINVAL; 2942 } 2943 2944 if (!hdev->supports_wait_for_multi_cs) { 2945 dev_err(hdev->dev, "Wait for multi CS is not supported\n"); 2946 return -EPERM; 2947 } 2948 2949 seq_arr_len = args->in.seq_arr_len; 2950 2951 if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) { 2952 dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n", 2953 HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len); 2954 return -EINVAL; 2955 } 2956 2957 /* allocate memory for sequence array */ 2958 cs_seq_arr = 2959 kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL); 2960 if (!cs_seq_arr) 2961 return -ENOMEM; 2962 2963 /* copy CS sequence array from user */ 2964 seq_arr = (void __user *) (uintptr_t) args->in.seq; 2965 size_to_copy = seq_arr_len * sizeof(*cs_seq_arr); 2966 if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) { 2967 dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n"); 2968 rc = -EFAULT; 2969 goto free_seq_arr; 2970 } 2971 2972 /* allocate array for the fences */ 2973 fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL); 2974 if (!fence_arr) { 2975 rc = -ENOMEM; 2976 goto free_seq_arr; 2977 } 2978 2979 /* initialize the multi-CS internal data */ 2980 mcs_data.ctx = ctx; 2981 mcs_data.seq_arr = cs_seq_arr; 2982 mcs_data.fence_arr = fence_arr; 2983 mcs_data.arr_len = seq_arr_len; 2984 2985 hl_ctx_get(ctx); 2986 2987 /* wait (with timeout) for the first CS to be completed */ 2988 mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us); 2989 mcs_compl = hl_wait_multi_cs_completion_init(hdev); 2990 if (IS_ERR(mcs_compl)) { 2991 rc = PTR_ERR(mcs_compl); 2992 goto put_ctx; 2993 } 2994 2995 /* poll all CS fences, extract timestamp */ 2996 mcs_data.update_ts = true; 2997 rc = hl_cs_poll_fences(&mcs_data, mcs_compl); 2998 /* 2999 * skip wait for CS completion when one of the below is true: 3000 * - an error on the poll function 3001 * - one or more CS in the list completed 3002 * - the user called ioctl with timeout 0 3003 */ 3004 if (rc || mcs_data.completion_bitmap || !args->in.timeout_us) 3005 goto completion_fini; 3006 3007 while (true) { 3008 rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl); 3009 if (rc || (mcs_data.wait_status == 0)) 3010 break; 3011 3012 /* 3013 * poll fences once again to update the CS map. 3014 * no timestamp should be updated this time. 3015 */ 3016 mcs_data.update_ts = false; 3017 rc = hl_cs_poll_fences(&mcs_data, mcs_compl); 3018 3019 if (rc || mcs_data.completion_bitmap) 3020 break; 3021 3022 /* 3023 * if hl_wait_multi_cs_completion returned before timeout (i.e. 3024 * it got a completion) it either got completed by CS in the multi CS list 3025 * (in which case the indication will be non empty completion_bitmap) or it 3026 * got completed by CS submitted to one of the shared stream master but 3027 * not in the multi CS list (in which case we should wait again but modify 3028 * the timeout and set timestamp as zero to let a CS related to the current 3029 * multi-CS set a new, relevant, timestamp) 3030 */ 3031 mcs_data.timeout_jiffies = mcs_data.wait_status; 3032 mcs_compl->timestamp = 0; 3033 } 3034 3035 completion_fini: 3036 hl_wait_multi_cs_completion_fini(mcs_compl); 3037 3038 put_ctx: 3039 hl_ctx_put(ctx); 3040 kfree(fence_arr); 3041 3042 free_seq_arr: 3043 kfree(cs_seq_arr); 3044 3045 if (rc == -ERESTARTSYS) { 3046 dev_err_ratelimited(hdev->dev, 3047 "user process got signal while waiting for Multi-CS\n"); 3048 rc = -EINTR; 3049 } 3050 3051 if (rc) 3052 return rc; 3053 3054 /* update output args */ 3055 memset(args, 0, sizeof(*args)); 3056 3057 if (mcs_data.completion_bitmap) { 3058 args->out.status = HL_WAIT_CS_STATUS_COMPLETED; 3059 args->out.cs_completion_map = mcs_data.completion_bitmap; 3060 3061 /* if timestamp not 0- it's valid */ 3062 if (mcs_data.timestamp) { 3063 args->out.timestamp_nsec = mcs_data.timestamp; 3064 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3065 } 3066 3067 /* update if some CS was gone */ 3068 if (!mcs_data.timestamp) 3069 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; 3070 } else { 3071 args->out.status = HL_WAIT_CS_STATUS_BUSY; 3072 } 3073 3074 return 0; 3075 } 3076 3077 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3078 { 3079 struct hl_device *hdev = hpriv->hdev; 3080 union hl_wait_cs_args *args = data; 3081 enum hl_cs_wait_status status; 3082 u64 seq = args->in.seq; 3083 s64 timestamp; 3084 int rc; 3085 3086 rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, ×tamp); 3087 3088 if (rc == -ERESTARTSYS) { 3089 dev_err_ratelimited(hdev->dev, 3090 "user process got signal while waiting for CS handle %llu\n", 3091 seq); 3092 return -EINTR; 3093 } 3094 3095 memset(args, 0, sizeof(*args)); 3096 3097 if (rc) { 3098 if (rc == -ETIMEDOUT) { 3099 dev_err_ratelimited(hdev->dev, 3100 "CS %llu has timed-out while user process is waiting for it\n", 3101 seq); 3102 args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT; 3103 } else if (rc == -EIO) { 3104 dev_err_ratelimited(hdev->dev, 3105 "CS %llu has been aborted while user process is waiting for it\n", 3106 seq); 3107 args->out.status = HL_WAIT_CS_STATUS_ABORTED; 3108 } 3109 return rc; 3110 } 3111 3112 if (timestamp) { 3113 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3114 args->out.timestamp_nsec = timestamp; 3115 } 3116 3117 switch (status) { 3118 case CS_WAIT_STATUS_GONE: 3119 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; 3120 fallthrough; 3121 case CS_WAIT_STATUS_COMPLETED: 3122 args->out.status = HL_WAIT_CS_STATUS_COMPLETED; 3123 break; 3124 case CS_WAIT_STATUS_BUSY: 3125 default: 3126 args->out.status = HL_WAIT_CS_STATUS_BUSY; 3127 break; 3128 } 3129 3130 return 0; 3131 } 3132 3133 static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf, 3134 struct hl_cb *cq_cb, 3135 u64 ts_offset, u64 cq_offset, u64 target_value, 3136 spinlock_t *wait_list_lock, 3137 struct hl_user_pending_interrupt **pend) 3138 { 3139 struct hl_ts_buff *ts_buff = buf->private; 3140 struct hl_user_pending_interrupt *requested_offset_record = 3141 (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + 3142 ts_offset; 3143 struct hl_user_pending_interrupt *cb_last = 3144 (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + 3145 (ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt)); 3146 unsigned long flags, iter_counter = 0; 3147 u64 current_cq_counter; 3148 ktime_t timestamp; 3149 3150 /* Validate ts_offset not exceeding last max */ 3151 if (requested_offset_record >= cb_last) { 3152 dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n", 3153 (u64)(uintptr_t)cb_last); 3154 return -EINVAL; 3155 } 3156 3157 timestamp = ktime_get(); 3158 3159 start_over: 3160 spin_lock_irqsave(wait_list_lock, flags); 3161 3162 /* Unregister only if we didn't reach the target value 3163 * since in this case there will be no handling in irq context 3164 * and then it's safe to delete the node out of the interrupt list 3165 * then re-use it on other interrupt 3166 */ 3167 if (requested_offset_record->ts_reg_info.in_use) { 3168 current_cq_counter = *requested_offset_record->cq_kernel_addr; 3169 if (current_cq_counter < requested_offset_record->cq_target_value) { 3170 list_del(&requested_offset_record->wait_list_node); 3171 spin_unlock_irqrestore(wait_list_lock, flags); 3172 3173 hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf); 3174 hl_cb_put(requested_offset_record->ts_reg_info.cq_cb); 3175 3176 dev_dbg(buf->mmg->dev, 3177 "ts node removed from interrupt list now can re-use\n"); 3178 } else { 3179 dev_dbg(buf->mmg->dev, 3180 "ts node in middle of irq handling\n"); 3181 3182 /* irq handling in the middle give it time to finish */ 3183 spin_unlock_irqrestore(wait_list_lock, flags); 3184 usleep_range(100, 1000); 3185 if (++iter_counter == MAX_TS_ITER_NUM) { 3186 dev_err(buf->mmg->dev, 3187 "Timestamp offset processing reached timeout of %lld ms\n", 3188 ktime_ms_delta(ktime_get(), timestamp)); 3189 return -EAGAIN; 3190 } 3191 3192 goto start_over; 3193 } 3194 } else { 3195 /* Fill up the new registration node info */ 3196 requested_offset_record->ts_reg_info.buf = buf; 3197 requested_offset_record->ts_reg_info.cq_cb = cq_cb; 3198 requested_offset_record->ts_reg_info.timestamp_kernel_addr = 3199 (u64 *) ts_buff->user_buff_address + ts_offset; 3200 requested_offset_record->cq_kernel_addr = 3201 (u64 *) cq_cb->kernel_address + cq_offset; 3202 requested_offset_record->cq_target_value = target_value; 3203 3204 spin_unlock_irqrestore(wait_list_lock, flags); 3205 } 3206 3207 *pend = requested_offset_record; 3208 3209 dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n", 3210 requested_offset_record); 3211 return 0; 3212 } 3213 3214 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, 3215 struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg, 3216 u64 timeout_us, u64 cq_counters_handle, u64 cq_counters_offset, 3217 u64 target_value, struct hl_user_interrupt *interrupt, 3218 bool register_ts_record, u64 ts_handle, u64 ts_offset, 3219 u32 *status, u64 *timestamp) 3220 { 3221 struct hl_user_pending_interrupt *pend; 3222 struct hl_mmap_mem_buf *buf; 3223 struct hl_cb *cq_cb; 3224 unsigned long timeout, flags; 3225 long completion_rc; 3226 int rc = 0; 3227 3228 timeout = hl_usecs64_to_jiffies(timeout_us); 3229 3230 hl_ctx_get(ctx); 3231 3232 cq_cb = hl_cb_get(cb_mmg, cq_counters_handle); 3233 if (!cq_cb) { 3234 rc = -EINVAL; 3235 goto put_ctx; 3236 } 3237 3238 /* Validate the cq offset */ 3239 if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >= 3240 ((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) { 3241 rc = -EINVAL; 3242 goto put_cq_cb; 3243 } 3244 3245 if (register_ts_record) { 3246 dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n", 3247 interrupt->interrupt_id, ts_offset, cq_counters_offset); 3248 buf = hl_mmap_mem_buf_get(mmg, ts_handle); 3249 if (!buf) { 3250 rc = -EINVAL; 3251 goto put_cq_cb; 3252 } 3253 3254 /* get ts buffer record */ 3255 rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset, 3256 cq_counters_offset, target_value, 3257 &interrupt->wait_list_lock, &pend); 3258 if (rc) 3259 goto put_ts_buff; 3260 } else { 3261 pend = kzalloc(sizeof(*pend), GFP_KERNEL); 3262 if (!pend) { 3263 rc = -ENOMEM; 3264 goto put_cq_cb; 3265 } 3266 hl_fence_init(&pend->fence, ULONG_MAX); 3267 pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset; 3268 pend->cq_target_value = target_value; 3269 } 3270 3271 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3272 3273 /* We check for completion value as interrupt could have been received 3274 * before we added the node to the wait list 3275 */ 3276 if (*pend->cq_kernel_addr >= target_value) { 3277 if (register_ts_record) 3278 pend->ts_reg_info.in_use = 0; 3279 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3280 3281 *status = HL_WAIT_CS_STATUS_COMPLETED; 3282 3283 if (register_ts_record) { 3284 *pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns(); 3285 goto put_ts_buff; 3286 } else { 3287 pend->fence.timestamp = ktime_get(); 3288 goto set_timestamp; 3289 } 3290 } else if (!timeout_us) { 3291 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3292 *status = HL_WAIT_CS_STATUS_BUSY; 3293 pend->fence.timestamp = ktime_get(); 3294 goto set_timestamp; 3295 } 3296 3297 /* Add pending user interrupt to relevant list for the interrupt 3298 * handler to monitor. 3299 * Note that we cannot have sorted list by target value, 3300 * in order to shorten the list pass loop, since 3301 * same list could have nodes for different cq counter handle. 3302 * Note: 3303 * Mark ts buff offset as in use here in the spinlock protection area 3304 * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record 3305 * before adding the node to the list. this scenario might happen when 3306 * multiple threads are racing on same offset and one thread could 3307 * set the ts buff in ts_buff_get_kernel_ts_record then the other thread 3308 * takes over and get to ts_buff_get_kernel_ts_record and then we will try 3309 * to re-use the same ts buff offset, and will try to delete a non existing 3310 * node from the list. 3311 */ 3312 if (register_ts_record) 3313 pend->ts_reg_info.in_use = 1; 3314 3315 list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); 3316 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3317 3318 if (register_ts_record) { 3319 rc = *status = HL_WAIT_CS_STATUS_COMPLETED; 3320 goto ts_registration_exit; 3321 } 3322 3323 /* Wait for interrupt handler to signal completion */ 3324 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, 3325 timeout); 3326 if (completion_rc > 0) { 3327 *status = HL_WAIT_CS_STATUS_COMPLETED; 3328 } else { 3329 if (completion_rc == -ERESTARTSYS) { 3330 dev_err_ratelimited(hdev->dev, 3331 "user process got signal while waiting for interrupt ID %d\n", 3332 interrupt->interrupt_id); 3333 rc = -EINTR; 3334 *status = HL_WAIT_CS_STATUS_ABORTED; 3335 } else { 3336 if (pend->fence.error == -EIO) { 3337 dev_err_ratelimited(hdev->dev, 3338 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", 3339 pend->fence.error); 3340 rc = -EIO; 3341 *status = HL_WAIT_CS_STATUS_ABORTED; 3342 } else { 3343 /* The wait has timed-out. We don't know anything beyond that 3344 * because the workload wasn't submitted through the driver. 3345 * Therefore, from driver's perspective, the workload is still 3346 * executing. 3347 */ 3348 rc = 0; 3349 *status = HL_WAIT_CS_STATUS_BUSY; 3350 } 3351 } 3352 } 3353 3354 /* 3355 * We keep removing the node from list here, and not at the irq handler 3356 * for completion timeout case. and if it's a registration 3357 * for ts record, the node will be deleted in the irq handler after 3358 * we reach the target value. 3359 */ 3360 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3361 list_del(&pend->wait_list_node); 3362 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3363 3364 set_timestamp: 3365 *timestamp = ktime_to_ns(pend->fence.timestamp); 3366 kfree(pend); 3367 hl_cb_put(cq_cb); 3368 ts_registration_exit: 3369 hl_ctx_put(ctx); 3370 3371 return rc; 3372 3373 put_ts_buff: 3374 hl_mmap_mem_buf_put(buf); 3375 put_cq_cb: 3376 hl_cb_put(cq_cb); 3377 put_ctx: 3378 hl_ctx_put(ctx); 3379 3380 return rc; 3381 } 3382 3383 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx, 3384 u64 timeout_us, u64 user_address, 3385 u64 target_value, struct hl_user_interrupt *interrupt, 3386 u32 *status, 3387 u64 *timestamp) 3388 { 3389 struct hl_user_pending_interrupt *pend; 3390 unsigned long timeout, flags; 3391 u64 completion_value; 3392 long completion_rc; 3393 int rc = 0; 3394 3395 timeout = hl_usecs64_to_jiffies(timeout_us); 3396 3397 hl_ctx_get(ctx); 3398 3399 pend = kzalloc(sizeof(*pend), GFP_KERNEL); 3400 if (!pend) { 3401 hl_ctx_put(ctx); 3402 return -ENOMEM; 3403 } 3404 3405 hl_fence_init(&pend->fence, ULONG_MAX); 3406 3407 /* Add pending user interrupt to relevant list for the interrupt 3408 * handler to monitor 3409 */ 3410 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3411 list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); 3412 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3413 3414 /* We check for completion value as interrupt could have been received 3415 * before we added the node to the wait list 3416 */ 3417 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { 3418 dev_err(hdev->dev, "Failed to copy completion value from user\n"); 3419 rc = -EFAULT; 3420 goto remove_pending_user_interrupt; 3421 } 3422 3423 if (completion_value >= target_value) { 3424 *status = HL_WAIT_CS_STATUS_COMPLETED; 3425 /* There was no interrupt, we assume the completion is now. */ 3426 pend->fence.timestamp = ktime_get(); 3427 } else { 3428 *status = HL_WAIT_CS_STATUS_BUSY; 3429 } 3430 3431 if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED)) 3432 goto remove_pending_user_interrupt; 3433 3434 wait_again: 3435 /* Wait for interrupt handler to signal completion */ 3436 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, 3437 timeout); 3438 3439 /* If timeout did not expire we need to perform the comparison. 3440 * If comparison fails, keep waiting until timeout expires 3441 */ 3442 if (completion_rc > 0) { 3443 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3444 /* reinit_completion must be called before we check for user 3445 * completion value, otherwise, if interrupt is received after 3446 * the comparison and before the next wait_for_completion, 3447 * we will reach timeout and fail 3448 */ 3449 reinit_completion(&pend->fence.completion); 3450 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3451 3452 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { 3453 dev_err(hdev->dev, "Failed to copy completion value from user\n"); 3454 rc = -EFAULT; 3455 3456 goto remove_pending_user_interrupt; 3457 } 3458 3459 if (completion_value >= target_value) { 3460 *status = HL_WAIT_CS_STATUS_COMPLETED; 3461 } else if (pend->fence.error) { 3462 dev_err_ratelimited(hdev->dev, 3463 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", 3464 pend->fence.error); 3465 /* set the command completion status as ABORTED */ 3466 *status = HL_WAIT_CS_STATUS_ABORTED; 3467 } else { 3468 timeout = completion_rc; 3469 goto wait_again; 3470 } 3471 } else if (completion_rc == -ERESTARTSYS) { 3472 dev_err_ratelimited(hdev->dev, 3473 "user process got signal while waiting for interrupt ID %d\n", 3474 interrupt->interrupt_id); 3475 rc = -EINTR; 3476 } else { 3477 /* The wait has timed-out. We don't know anything beyond that 3478 * because the workload wasn't submitted through the driver. 3479 * Therefore, from driver's perspective, the workload is still 3480 * executing. 3481 */ 3482 rc = 0; 3483 *status = HL_WAIT_CS_STATUS_BUSY; 3484 } 3485 3486 remove_pending_user_interrupt: 3487 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3488 list_del(&pend->wait_list_node); 3489 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3490 3491 *timestamp = ktime_to_ns(pend->fence.timestamp); 3492 3493 kfree(pend); 3494 hl_ctx_put(ctx); 3495 3496 return rc; 3497 } 3498 3499 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3500 { 3501 u16 interrupt_id, first_interrupt, last_interrupt; 3502 struct hl_device *hdev = hpriv->hdev; 3503 struct asic_fixed_properties *prop; 3504 struct hl_user_interrupt *interrupt; 3505 union hl_wait_cs_args *args = data; 3506 u32 status = HL_WAIT_CS_STATUS_BUSY; 3507 u64 timestamp = 0; 3508 int rc, int_idx; 3509 3510 prop = &hdev->asic_prop; 3511 3512 if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) { 3513 dev_err(hdev->dev, "no user interrupts allowed"); 3514 return -EPERM; 3515 } 3516 3517 interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags); 3518 3519 first_interrupt = prop->first_available_user_interrupt; 3520 last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1; 3521 3522 if (interrupt_id < prop->user_dec_intr_count) { 3523 3524 /* Check if the requested core is enabled */ 3525 if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) { 3526 dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed", 3527 interrupt_id); 3528 return -EINVAL; 3529 } 3530 3531 interrupt = &hdev->user_interrupt[interrupt_id]; 3532 3533 } else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) { 3534 3535 int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count; 3536 interrupt = &hdev->user_interrupt[int_idx]; 3537 3538 } else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) { 3539 interrupt = &hdev->common_user_cq_interrupt; 3540 } else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) { 3541 interrupt = &hdev->common_decoder_interrupt; 3542 } else { 3543 dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id); 3544 return -EINVAL; 3545 } 3546 3547 if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) 3548 rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr, 3549 args->in.interrupt_timeout_us, args->in.cq_counters_handle, 3550 args->in.cq_counters_offset, 3551 args->in.target, interrupt, 3552 !!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT), 3553 args->in.timestamp_handle, args->in.timestamp_offset, 3554 &status, ×tamp); 3555 else 3556 rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx, 3557 args->in.interrupt_timeout_us, args->in.addr, 3558 args->in.target, interrupt, &status, 3559 ×tamp); 3560 if (rc) 3561 return rc; 3562 3563 memset(args, 0, sizeof(*args)); 3564 args->out.status = status; 3565 3566 if (timestamp) { 3567 args->out.timestamp_nsec = timestamp; 3568 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3569 } 3570 3571 return 0; 3572 } 3573 3574 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3575 { 3576 struct hl_device *hdev = hpriv->hdev; 3577 union hl_wait_cs_args *args = data; 3578 u32 flags = args->in.flags; 3579 int rc; 3580 3581 /* If the device is not operational, or if an error has happened and user should release the 3582 * device, there is no point in waiting for any command submission or user interrupt. 3583 */ 3584 if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active) 3585 return -EBUSY; 3586 3587 if (flags & HL_WAIT_CS_FLAGS_INTERRUPT) 3588 rc = hl_interrupt_wait_ioctl(hpriv, data); 3589 else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS) 3590 rc = hl_multi_cs_wait_ioctl(hpriv, data); 3591 else 3592 rc = hl_cs_wait_ioctl(hpriv, data); 3593 3594 return rc; 3595 } 3596