1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2021 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 
11 #include <linux/uaccess.h>
12 #include <linux/slab.h>
13 
14 #define HL_CS_FLAGS_TYPE_MASK	(HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
15 			HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \
16 			HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \
17 			HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
18 
19 
20 #define MAX_TS_ITER_NUM 100
21 
22 /**
23  * enum hl_cs_wait_status - cs wait status
24  * @CS_WAIT_STATUS_BUSY: cs was not completed yet
25  * @CS_WAIT_STATUS_COMPLETED: cs completed
26  * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
27  */
28 enum hl_cs_wait_status {
29 	CS_WAIT_STATUS_BUSY,
30 	CS_WAIT_STATUS_COMPLETED,
31 	CS_WAIT_STATUS_GONE
32 };
33 
34 static void job_wq_completion(struct work_struct *work);
35 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
36 				enum hl_cs_wait_status *status, s64 *timestamp);
37 static void cs_do_release(struct kref *ref);
38 
39 static void hl_push_cs_outcome(struct hl_device *hdev,
40 			       struct hl_cs_outcome_store *outcome_store,
41 			       u64 seq, ktime_t ts, int error)
42 {
43 	struct hl_cs_outcome *node;
44 	unsigned long flags;
45 
46 	/*
47 	 * CS outcome store supports the following operations:
48 	 * push outcome - store a recent CS outcome in the store
49 	 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store
50 	 * It uses 2 lists: used list and free list.
51 	 * It has a pre-allocated amount of nodes, each node stores
52 	 * a single CS outcome.
53 	 * Initially, all the nodes are in the free list.
54 	 * On push outcome, a node (any) is taken from the free list, its
55 	 * information is filled in, and the node is moved to the used list.
56 	 * It is possible, that there are no nodes left in the free list.
57 	 * In this case, we will lose some information about old outcomes. We
58 	 * will pop the OLDEST node from the used list, and make it free.
59 	 * On pop, the node is searched for in the used list (using a search
60 	 * index).
61 	 * If found, the node is then removed from the used list, and moved
62 	 * back to the free list. The outcome data that the node contained is
63 	 * returned back to the user.
64 	 */
65 
66 	spin_lock_irqsave(&outcome_store->db_lock, flags);
67 
68 	if (list_empty(&outcome_store->free_list)) {
69 		node = list_last_entry(&outcome_store->used_list,
70 				       struct hl_cs_outcome, list_link);
71 		hash_del(&node->map_link);
72 		dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq);
73 	} else {
74 		node = list_last_entry(&outcome_store->free_list,
75 				       struct hl_cs_outcome, list_link);
76 	}
77 
78 	list_del_init(&node->list_link);
79 
80 	node->seq = seq;
81 	node->ts = ts;
82 	node->error = error;
83 
84 	list_add(&node->list_link, &outcome_store->used_list);
85 	hash_add(outcome_store->outcome_map, &node->map_link, node->seq);
86 
87 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
88 }
89 
90 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store,
91 			       u64 seq, ktime_t *ts, int *error)
92 {
93 	struct hl_cs_outcome *node;
94 	unsigned long flags;
95 
96 	spin_lock_irqsave(&outcome_store->db_lock, flags);
97 
98 	hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq)
99 		if (node->seq == seq) {
100 			*ts = node->ts;
101 			*error = node->error;
102 
103 			hash_del(&node->map_link);
104 			list_del_init(&node->list_link);
105 			list_add(&node->list_link, &outcome_store->free_list);
106 
107 			spin_unlock_irqrestore(&outcome_store->db_lock, flags);
108 
109 			return true;
110 		}
111 
112 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
113 
114 	return false;
115 }
116 
117 static void hl_sob_reset(struct kref *ref)
118 {
119 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
120 							kref);
121 	struct hl_device *hdev = hw_sob->hdev;
122 
123 	dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
124 
125 	hdev->asic_funcs->reset_sob(hdev, hw_sob);
126 
127 	hw_sob->need_reset = false;
128 }
129 
130 void hl_sob_reset_error(struct kref *ref)
131 {
132 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
133 							kref);
134 	struct hl_device *hdev = hw_sob->hdev;
135 
136 	dev_crit(hdev->dev,
137 		"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
138 		hw_sob->q_idx, hw_sob->sob_id);
139 }
140 
141 void hw_sob_put(struct hl_hw_sob *hw_sob)
142 {
143 	if (hw_sob)
144 		kref_put(&hw_sob->kref, hl_sob_reset);
145 }
146 
147 static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
148 {
149 	if (hw_sob)
150 		kref_put(&hw_sob->kref, hl_sob_reset_error);
151 }
152 
153 void hw_sob_get(struct hl_hw_sob *hw_sob)
154 {
155 	if (hw_sob)
156 		kref_get(&hw_sob->kref);
157 }
158 
159 /**
160  * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
161  * @sob_base: sob base id
162  * @sob_mask: sob user mask, each bit represents a sob offset from sob base
163  * @mask: generated mask
164  *
165  * Return: 0 if given parameters are valid
166  */
167 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
168 {
169 	int i;
170 
171 	if (sob_mask == 0)
172 		return -EINVAL;
173 
174 	if (sob_mask == 0x1) {
175 		*mask = ~(1 << (sob_base & 0x7));
176 	} else {
177 		/* find msb in order to verify sob range is valid */
178 		for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
179 			if (BIT(i) & sob_mask)
180 				break;
181 
182 		if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
183 			return -EINVAL;
184 
185 		*mask = ~sob_mask;
186 	}
187 
188 	return 0;
189 }
190 
191 static void hl_fence_release(struct kref *kref)
192 {
193 	struct hl_fence *fence =
194 		container_of(kref, struct hl_fence, refcount);
195 	struct hl_cs_compl *hl_cs_cmpl =
196 		container_of(fence, struct hl_cs_compl, base_fence);
197 
198 	kfree(hl_cs_cmpl);
199 }
200 
201 void hl_fence_put(struct hl_fence *fence)
202 {
203 	if (IS_ERR_OR_NULL(fence))
204 		return;
205 	kref_put(&fence->refcount, hl_fence_release);
206 }
207 
208 void hl_fences_put(struct hl_fence **fence, int len)
209 {
210 	int i;
211 
212 	for (i = 0; i < len; i++, fence++)
213 		hl_fence_put(*fence);
214 }
215 
216 void hl_fence_get(struct hl_fence *fence)
217 {
218 	if (fence)
219 		kref_get(&fence->refcount);
220 }
221 
222 static void hl_fence_init(struct hl_fence *fence, u64 sequence)
223 {
224 	kref_init(&fence->refcount);
225 	fence->cs_sequence = sequence;
226 	fence->error = 0;
227 	fence->timestamp = ktime_set(0, 0);
228 	fence->mcs_handling_done = false;
229 	init_completion(&fence->completion);
230 }
231 
232 void cs_get(struct hl_cs *cs)
233 {
234 	kref_get(&cs->refcount);
235 }
236 
237 static int cs_get_unless_zero(struct hl_cs *cs)
238 {
239 	return kref_get_unless_zero(&cs->refcount);
240 }
241 
242 static void cs_put(struct hl_cs *cs)
243 {
244 	kref_put(&cs->refcount, cs_do_release);
245 }
246 
247 static void cs_job_do_release(struct kref *ref)
248 {
249 	struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
250 
251 	kfree(job);
252 }
253 
254 static void hl_cs_job_put(struct hl_cs_job *job)
255 {
256 	kref_put(&job->refcount, cs_job_do_release);
257 }
258 
259 bool cs_needs_completion(struct hl_cs *cs)
260 {
261 	/* In case this is a staged CS, only the last CS in sequence should
262 	 * get a completion, any non staged CS will always get a completion
263 	 */
264 	if (cs->staged_cs && !cs->staged_last)
265 		return false;
266 
267 	return true;
268 }
269 
270 bool cs_needs_timeout(struct hl_cs *cs)
271 {
272 	/* In case this is a staged CS, only the first CS in sequence should
273 	 * get a timeout, any non staged CS will always get a timeout
274 	 */
275 	if (cs->staged_cs && !cs->staged_first)
276 		return false;
277 
278 	return true;
279 }
280 
281 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
282 {
283 	/*
284 	 * Patched CB is created for external queues jobs, and for H/W queues
285 	 * jobs if the user CB was allocated by driver and MMU is disabled.
286 	 */
287 	return (job->queue_type == QUEUE_TYPE_EXT ||
288 			(job->queue_type == QUEUE_TYPE_HW &&
289 					job->is_kernel_allocated_cb &&
290 					!hdev->mmu_enable));
291 }
292 
293 /*
294  * cs_parser - parse the user command submission
295  *
296  * @hpriv	: pointer to the private data of the fd
297  * @job        : pointer to the job that holds the command submission info
298  *
299  * The function parses the command submission of the user. It calls the
300  * ASIC specific parser, which returns a list of memory blocks to send
301  * to the device as different command buffers
302  *
303  */
304 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
305 {
306 	struct hl_device *hdev = hpriv->hdev;
307 	struct hl_cs_parser parser;
308 	int rc;
309 
310 	parser.ctx_id = job->cs->ctx->asid;
311 	parser.cs_sequence = job->cs->sequence;
312 	parser.job_id = job->id;
313 
314 	parser.hw_queue_id = job->hw_queue_id;
315 	parser.job_userptr_list = &job->userptr_list;
316 	parser.patched_cb = NULL;
317 	parser.user_cb = job->user_cb;
318 	parser.user_cb_size = job->user_cb_size;
319 	parser.queue_type = job->queue_type;
320 	parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
321 	job->patched_cb = NULL;
322 	parser.completion = cs_needs_completion(job->cs);
323 
324 	rc = hdev->asic_funcs->cs_parser(hdev, &parser);
325 
326 	if (is_cb_patched(hdev, job)) {
327 		if (!rc) {
328 			job->patched_cb = parser.patched_cb;
329 			job->job_cb_size = parser.patched_cb_size;
330 			job->contains_dma_pkt = parser.contains_dma_pkt;
331 			atomic_inc(&job->patched_cb->cs_cnt);
332 		}
333 
334 		/*
335 		 * Whether the parsing worked or not, we don't need the
336 		 * original CB anymore because it was already parsed and
337 		 * won't be accessed again for this CS
338 		 */
339 		atomic_dec(&job->user_cb->cs_cnt);
340 		hl_cb_put(job->user_cb);
341 		job->user_cb = NULL;
342 	} else if (!rc) {
343 		job->job_cb_size = job->user_cb_size;
344 	}
345 
346 	return rc;
347 }
348 
349 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job)
350 {
351 	struct hl_cs *cs = job->cs;
352 
353 	if (is_cb_patched(hdev, job)) {
354 		hl_userptr_delete_list(hdev, &job->userptr_list);
355 
356 		/*
357 		 * We might arrive here from rollback and patched CB wasn't
358 		 * created, so we need to check it's not NULL
359 		 */
360 		if (job->patched_cb) {
361 			atomic_dec(&job->patched_cb->cs_cnt);
362 			hl_cb_put(job->patched_cb);
363 		}
364 	}
365 
366 	/* For H/W queue jobs, if a user CB was allocated by driver and MMU is
367 	 * enabled, the user CB isn't released in cs_parser() and thus should be
368 	 * released here. This is also true for INT queues jobs which were
369 	 * allocated by driver.
370 	 */
371 	if ((job->is_kernel_allocated_cb &&
372 		((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) ||
373 				job->queue_type == QUEUE_TYPE_INT))) {
374 		atomic_dec(&job->user_cb->cs_cnt);
375 		hl_cb_put(job->user_cb);
376 	}
377 
378 	/*
379 	 * This is the only place where there can be multiple threads
380 	 * modifying the list at the same time
381 	 */
382 	spin_lock(&cs->job_lock);
383 	list_del(&job->cs_node);
384 	spin_unlock(&cs->job_lock);
385 
386 	hl_debugfs_remove_job(hdev, job);
387 
388 	/* We decrement reference only for a CS that gets completion
389 	 * because the reference was incremented only for this kind of CS
390 	 * right before it was scheduled.
391 	 *
392 	 * In staged submission, only the last CS marked as 'staged_last'
393 	 * gets completion, hence its release function will be called from here.
394 	 * As for all the rest CS's in the staged submission which do not get
395 	 * completion, their CS reference will be decremented by the
396 	 * 'staged_last' CS during the CS release flow.
397 	 * All relevant PQ CI counters will be incremented during the CS release
398 	 * flow by calling 'hl_hw_queue_update_ci'.
399 	 */
400 	if (cs_needs_completion(cs) &&
401 			(job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) {
402 
403 		/* In CS based completions, the timestamp is already available,
404 		 * so no need to extract it from job
405 		 */
406 		if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB)
407 			cs->completion_timestamp = job->timestamp;
408 
409 		cs_put(cs);
410 	}
411 
412 	hl_cs_job_put(job);
413 }
414 
415 /*
416  * hl_staged_cs_find_first - locate the first CS in this staged submission
417  *
418  * @hdev: pointer to device structure
419  * @cs_seq: staged submission sequence number
420  *
421  * @note: This function must be called under 'hdev->cs_mirror_lock'
422  *
423  * Find and return a CS pointer with the given sequence
424  */
425 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
426 {
427 	struct hl_cs *cs;
428 
429 	list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
430 		if (cs->staged_cs && cs->staged_first &&
431 				cs->sequence == cs_seq)
432 			return cs;
433 
434 	return NULL;
435 }
436 
437 /*
438  * is_staged_cs_last_exists - returns true if the last CS in sequence exists
439  *
440  * @hdev: pointer to device structure
441  * @cs: staged submission member
442  *
443  */
444 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
445 {
446 	struct hl_cs *last_entry;
447 
448 	last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
449 								staged_cs_node);
450 
451 	if (last_entry->staged_last)
452 		return true;
453 
454 	return false;
455 }
456 
457 /*
458  * staged_cs_get - get CS reference if this CS is a part of a staged CS
459  *
460  * @hdev: pointer to device structure
461  * @cs: current CS
462  * @cs_seq: staged submission sequence number
463  *
464  * Increment CS reference for every CS in this staged submission except for
465  * the CS which get completion.
466  */
467 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
468 {
469 	/* Only the last CS in this staged submission will get a completion.
470 	 * We must increment the reference for all other CS's in this
471 	 * staged submission.
472 	 * Once we get a completion we will release the whole staged submission.
473 	 */
474 	if (!cs->staged_last)
475 		cs_get(cs);
476 }
477 
478 /*
479  * staged_cs_put - put a CS in case it is part of staged submission
480  *
481  * @hdev: pointer to device structure
482  * @cs: CS to put
483  *
484  * This function decrements a CS reference (for a non completion CS)
485  */
486 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
487 {
488 	/* We release all CS's in a staged submission except the last
489 	 * CS which we have never incremented its reference.
490 	 */
491 	if (!cs_needs_completion(cs))
492 		cs_put(cs);
493 }
494 
495 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
496 {
497 	struct hl_cs *next = NULL, *iter, *first_cs;
498 
499 	if (!cs_needs_timeout(cs))
500 		return;
501 
502 	spin_lock(&hdev->cs_mirror_lock);
503 
504 	/* We need to handle tdr only once for the complete staged submission.
505 	 * Hence, we choose the CS that reaches this function first which is
506 	 * the CS marked as 'staged_last'.
507 	 * In case single staged cs was submitted which has both first and last
508 	 * indications, then "cs_find_first" below will return NULL, since we
509 	 * removed the cs node from the list before getting here,
510 	 * in such cases just continue with the cs to cancel it's TDR work.
511 	 */
512 	if (cs->staged_cs && cs->staged_last) {
513 		first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
514 		if (first_cs)
515 			cs = first_cs;
516 	}
517 
518 	spin_unlock(&hdev->cs_mirror_lock);
519 
520 	/* Don't cancel TDR in case this CS was timedout because we might be
521 	 * running from the TDR context
522 	 */
523 	if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
524 		return;
525 
526 	if (cs->tdr_active)
527 		cancel_delayed_work_sync(&cs->work_tdr);
528 
529 	spin_lock(&hdev->cs_mirror_lock);
530 
531 	/* queue TDR for next CS */
532 	list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node)
533 		if (cs_needs_timeout(iter)) {
534 			next = iter;
535 			break;
536 		}
537 
538 	if (next && !next->tdr_active) {
539 		next->tdr_active = true;
540 		schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
541 	}
542 
543 	spin_unlock(&hdev->cs_mirror_lock);
544 }
545 
546 /*
547  * force_complete_multi_cs - complete all contexts that wait on multi-CS
548  *
549  * @hdev: pointer to habanalabs device structure
550  */
551 static void force_complete_multi_cs(struct hl_device *hdev)
552 {
553 	int i;
554 
555 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
556 		struct multi_cs_completion *mcs_compl;
557 
558 		mcs_compl = &hdev->multi_cs_completion[i];
559 
560 		spin_lock(&mcs_compl->lock);
561 
562 		if (!mcs_compl->used) {
563 			spin_unlock(&mcs_compl->lock);
564 			continue;
565 		}
566 
567 		/* when calling force complete no context should be waiting on
568 		 * multi-cS.
569 		 * We are calling the function as a protection for such case
570 		 * to free any pending context and print error message
571 		 */
572 		dev_err(hdev->dev,
573 				"multi-CS completion context %d still waiting when calling force completion\n",
574 				i);
575 		complete_all(&mcs_compl->completion);
576 		spin_unlock(&mcs_compl->lock);
577 	}
578 }
579 
580 /*
581  * complete_multi_cs - complete all waiting entities on multi-CS
582  *
583  * @hdev: pointer to habanalabs device structure
584  * @cs: CS structure
585  * The function signals a waiting entity that has an overlapping stream masters
586  * with the completed CS.
587  * For example:
588  * - a completed CS worked on stream master QID 4, multi CS completion
589  *   is actively waiting on stream master QIDs 3, 5. don't send signal as no
590  *   common stream master QID
591  * - a completed CS worked on stream master QID 4, multi CS completion
592  *   is actively waiting on stream master QIDs 3, 4. send signal as stream
593  *   master QID 4 is common
594  */
595 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
596 {
597 	struct hl_fence *fence = cs->fence;
598 	int i;
599 
600 	/* in case of multi CS check for completion only for the first CS */
601 	if (cs->staged_cs && !cs->staged_first)
602 		return;
603 
604 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
605 		struct multi_cs_completion *mcs_compl;
606 
607 		mcs_compl = &hdev->multi_cs_completion[i];
608 		if (!mcs_compl->used)
609 			continue;
610 
611 		spin_lock(&mcs_compl->lock);
612 
613 		/*
614 		 * complete if:
615 		 * 1. still waiting for completion
616 		 * 2. the completed CS has at least one overlapping stream
617 		 *    master with the stream masters in the completion
618 		 */
619 		if (mcs_compl->used &&
620 				(fence->stream_master_qid_map &
621 					mcs_compl->stream_master_qid_map)) {
622 			/* extract the timestamp only of first completed CS */
623 			if (!mcs_compl->timestamp)
624 				mcs_compl->timestamp = ktime_to_ns(fence->timestamp);
625 
626 			complete_all(&mcs_compl->completion);
627 
628 			/*
629 			 * Setting mcs_handling_done inside the lock ensures
630 			 * at least one fence have mcs_handling_done set to
631 			 * true before wait for mcs finish. This ensures at
632 			 * least one CS will be set as completed when polling
633 			 * mcs fences.
634 			 */
635 			fence->mcs_handling_done = true;
636 		}
637 
638 		spin_unlock(&mcs_compl->lock);
639 	}
640 	/* In case CS completed without mcs completion initialized */
641 	fence->mcs_handling_done = true;
642 }
643 
644 static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
645 					struct hl_cs *cs,
646 					struct hl_cs_compl *hl_cs_cmpl)
647 {
648 	/* Skip this handler if the cs wasn't submitted, to avoid putting
649 	 * the hw_sob twice, since this case already handled at this point,
650 	 * also skip if the hw_sob pointer wasn't set.
651 	 */
652 	if (!hl_cs_cmpl->hw_sob || !cs->submitted)
653 		return;
654 
655 	spin_lock(&hl_cs_cmpl->lock);
656 
657 	/*
658 	 * we get refcount upon reservation of signals or signal/wait cs for the
659 	 * hw_sob object, and need to put it when the first staged cs
660 	 * (which cotains the encaps signals) or cs signal/wait is completed.
661 	 */
662 	if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
663 			(hl_cs_cmpl->type == CS_TYPE_WAIT) ||
664 			(hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
665 			(!!hl_cs_cmpl->encaps_signals)) {
666 		dev_dbg(hdev->dev,
667 				"CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
668 				hl_cs_cmpl->cs_seq,
669 				hl_cs_cmpl->type,
670 				hl_cs_cmpl->hw_sob->sob_id,
671 				hl_cs_cmpl->sob_val);
672 
673 		hw_sob_put(hl_cs_cmpl->hw_sob);
674 
675 		if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
676 			hdev->asic_funcs->reset_sob_group(hdev,
677 					hl_cs_cmpl->sob_group);
678 	}
679 
680 	spin_unlock(&hl_cs_cmpl->lock);
681 }
682 
683 static void cs_do_release(struct kref *ref)
684 {
685 	struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
686 	struct hl_device *hdev = cs->ctx->hdev;
687 	struct hl_cs_job *job, *tmp;
688 	struct hl_cs_compl *hl_cs_cmpl =
689 			container_of(cs->fence, struct hl_cs_compl, base_fence);
690 
691 	cs->completed = true;
692 
693 	/*
694 	 * Although if we reached here it means that all external jobs have
695 	 * finished, because each one of them took refcnt to CS, we still
696 	 * need to go over the internal jobs and complete them. Otherwise, we
697 	 * will have leaked memory and what's worse, the CS object (and
698 	 * potentially the CTX object) could be released, while the JOB
699 	 * still holds a pointer to them (but no reference).
700 	 */
701 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
702 		hl_complete_job(hdev, job);
703 
704 	if (!cs->submitted) {
705 		/*
706 		 * In case the wait for signal CS was submitted, the fence put
707 		 * occurs in init_signal_wait_cs() or collective_wait_init_cs()
708 		 * right before hanging on the PQ.
709 		 */
710 		if (cs->type == CS_TYPE_WAIT ||
711 				cs->type == CS_TYPE_COLLECTIVE_WAIT)
712 			hl_fence_put(cs->signal_fence);
713 
714 		goto out;
715 	}
716 
717 	/* Need to update CI for all queue jobs that does not get completion */
718 	hl_hw_queue_update_ci(cs);
719 
720 	/* remove CS from CS mirror list */
721 	spin_lock(&hdev->cs_mirror_lock);
722 	list_del_init(&cs->mirror_node);
723 	spin_unlock(&hdev->cs_mirror_lock);
724 
725 	cs_handle_tdr(hdev, cs);
726 
727 	if (cs->staged_cs) {
728 		/* the completion CS decrements reference for the entire
729 		 * staged submission
730 		 */
731 		if (cs->staged_last) {
732 			struct hl_cs *staged_cs, *tmp_cs;
733 
734 			list_for_each_entry_safe(staged_cs, tmp_cs,
735 					&cs->staged_cs_node, staged_cs_node)
736 				staged_cs_put(hdev, staged_cs);
737 		}
738 
739 		/* A staged CS will be a member in the list only after it
740 		 * was submitted. We used 'cs_mirror_lock' when inserting
741 		 * it to list so we will use it again when removing it
742 		 */
743 		if (cs->submitted) {
744 			spin_lock(&hdev->cs_mirror_lock);
745 			list_del(&cs->staged_cs_node);
746 			spin_unlock(&hdev->cs_mirror_lock);
747 		}
748 
749 		/* decrement refcount to handle when first staged cs
750 		 * with encaps signals is completed.
751 		 */
752 		if (hl_cs_cmpl->encaps_signals)
753 			kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
754 					hl_encaps_release_handle_and_put_ctx);
755 	}
756 
757 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals)
758 		kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
759 
760 out:
761 	/* Must be called before hl_ctx_put because inside we use ctx to get
762 	 * the device
763 	 */
764 	hl_debugfs_remove_cs(cs);
765 
766 	hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL;
767 
768 	/* We need to mark an error for not submitted because in that case
769 	 * the hl fence release flow is different. Mainly, we don't need
770 	 * to handle hw_sob for signal/wait
771 	 */
772 	if (cs->timedout)
773 		cs->fence->error = -ETIMEDOUT;
774 	else if (cs->aborted)
775 		cs->fence->error = -EIO;
776 	else if (!cs->submitted)
777 		cs->fence->error = -EBUSY;
778 
779 	if (unlikely(cs->skip_reset_on_timeout)) {
780 		dev_err(hdev->dev,
781 			"Command submission %llu completed after %llu (s)\n",
782 			cs->sequence,
783 			div_u64(jiffies - cs->submission_time_jiffies, HZ));
784 	}
785 
786 	if (cs->timestamp) {
787 		cs->fence->timestamp = cs->completion_timestamp;
788 		hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence,
789 				   cs->fence->timestamp, cs->fence->error);
790 	}
791 
792 	hl_ctx_put(cs->ctx);
793 
794 	complete_all(&cs->fence->completion);
795 	complete_multi_cs(hdev, cs);
796 
797 	cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
798 
799 	hl_fence_put(cs->fence);
800 
801 	kfree(cs->jobs_in_queue_cnt);
802 	kfree(cs);
803 }
804 
805 static void cs_timedout(struct work_struct *work)
806 {
807 	struct hl_device *hdev;
808 	u64 event_mask = 0x0;
809 	int rc;
810 	struct hl_cs *cs = container_of(work, struct hl_cs,
811 						 work_tdr.work);
812 	bool skip_reset_on_timeout = cs->skip_reset_on_timeout, device_reset = false;
813 
814 	rc = cs_get_unless_zero(cs);
815 	if (!rc)
816 		return;
817 
818 	if ((!cs->submitted) || (cs->completed)) {
819 		cs_put(cs);
820 		return;
821 	}
822 
823 	hdev = cs->ctx->hdev;
824 
825 	if (likely(!skip_reset_on_timeout)) {
826 		if (hdev->reset_on_lockup)
827 			device_reset = true;
828 		else
829 			hdev->reset_info.needs_reset = true;
830 
831 		/* Mark the CS is timed out so we won't try to cancel its TDR */
832 		cs->timedout = true;
833 	}
834 
835 	/* Save only the first CS timeout parameters */
836 	rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0);
837 	if (rc) {
838 		hdev->captured_err_info.cs_timeout.timestamp = ktime_get();
839 		hdev->captured_err_info.cs_timeout.seq = cs->sequence;
840 		event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT;
841 	}
842 
843 	switch (cs->type) {
844 	case CS_TYPE_SIGNAL:
845 		dev_err(hdev->dev,
846 			"Signal command submission %llu has not finished in time!\n",
847 			cs->sequence);
848 		break;
849 
850 	case CS_TYPE_WAIT:
851 		dev_err(hdev->dev,
852 			"Wait command submission %llu has not finished in time!\n",
853 			cs->sequence);
854 		break;
855 
856 	case CS_TYPE_COLLECTIVE_WAIT:
857 		dev_err(hdev->dev,
858 			"Collective Wait command submission %llu has not finished in time!\n",
859 			cs->sequence);
860 		break;
861 
862 	default:
863 		dev_err(hdev->dev,
864 			"Command submission %llu has not finished in time!\n",
865 			cs->sequence);
866 		break;
867 	}
868 
869 	rc = hl_state_dump(hdev);
870 	if (rc)
871 		dev_err(hdev->dev, "Error during system state dump %d\n", rc);
872 
873 	cs_put(cs);
874 
875 	if (device_reset) {
876 		event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
877 		hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask);
878 	} else if (event_mask) {
879 		hl_notifier_event_send_all(hdev, event_mask);
880 	}
881 }
882 
883 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
884 			enum hl_cs_type cs_type, u64 user_sequence,
885 			struct hl_cs **cs_new, u32 flags, u32 timeout)
886 {
887 	struct hl_cs_counters_atomic *cntr;
888 	struct hl_fence *other = NULL;
889 	struct hl_cs_compl *cs_cmpl;
890 	struct hl_cs *cs;
891 	int rc;
892 
893 	cntr = &hdev->aggregated_cs_counters;
894 
895 	cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
896 	if (!cs)
897 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
898 
899 	if (!cs) {
900 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
901 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
902 		return -ENOMEM;
903 	}
904 
905 	/* increment refcnt for context */
906 	hl_ctx_get(ctx);
907 
908 	cs->ctx = ctx;
909 	cs->submitted = false;
910 	cs->completed = false;
911 	cs->type = cs_type;
912 	cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
913 	cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
914 	cs->timeout_jiffies = timeout;
915 	cs->skip_reset_on_timeout =
916 		hdev->reset_info.skip_reset_on_timeout ||
917 		!!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
918 	cs->submission_time_jiffies = jiffies;
919 	INIT_LIST_HEAD(&cs->job_list);
920 	INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
921 	kref_init(&cs->refcount);
922 	spin_lock_init(&cs->job_lock);
923 
924 	cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
925 	if (!cs_cmpl)
926 		cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
927 
928 	if (!cs_cmpl) {
929 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
930 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
931 		rc = -ENOMEM;
932 		goto free_cs;
933 	}
934 
935 	cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
936 			sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
937 	if (!cs->jobs_in_queue_cnt)
938 		cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
939 				sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
940 
941 	if (!cs->jobs_in_queue_cnt) {
942 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
943 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
944 		rc = -ENOMEM;
945 		goto free_cs_cmpl;
946 	}
947 
948 	cs_cmpl->hdev = hdev;
949 	cs_cmpl->type = cs->type;
950 	spin_lock_init(&cs_cmpl->lock);
951 	cs->fence = &cs_cmpl->base_fence;
952 
953 	spin_lock(&ctx->cs_lock);
954 
955 	cs_cmpl->cs_seq = ctx->cs_sequence;
956 	other = ctx->cs_pending[cs_cmpl->cs_seq &
957 				(hdev->asic_prop.max_pending_cs - 1)];
958 
959 	if (other && !completion_done(&other->completion)) {
960 		/* If the following statement is true, it means we have reached
961 		 * a point in which only part of the staged submission was
962 		 * submitted and we don't have enough room in the 'cs_pending'
963 		 * array for the rest of the submission.
964 		 * This causes a deadlock because this CS will never be
965 		 * completed as it depends on future CS's for completion.
966 		 */
967 		if (other->cs_sequence == user_sequence)
968 			dev_crit_ratelimited(hdev->dev,
969 				"Staged CS %llu deadlock due to lack of resources",
970 				user_sequence);
971 
972 		dev_dbg_ratelimited(hdev->dev,
973 			"Rejecting CS because of too many in-flights CS\n");
974 		atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
975 		atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
976 		rc = -EAGAIN;
977 		goto free_fence;
978 	}
979 
980 	/* init hl_fence */
981 	hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
982 
983 	cs->sequence = cs_cmpl->cs_seq;
984 
985 	ctx->cs_pending[cs_cmpl->cs_seq &
986 			(hdev->asic_prop.max_pending_cs - 1)] =
987 							&cs_cmpl->base_fence;
988 	ctx->cs_sequence++;
989 
990 	hl_fence_get(&cs_cmpl->base_fence);
991 
992 	hl_fence_put(other);
993 
994 	spin_unlock(&ctx->cs_lock);
995 
996 	*cs_new = cs;
997 
998 	return 0;
999 
1000 free_fence:
1001 	spin_unlock(&ctx->cs_lock);
1002 	kfree(cs->jobs_in_queue_cnt);
1003 free_cs_cmpl:
1004 	kfree(cs_cmpl);
1005 free_cs:
1006 	kfree(cs);
1007 	hl_ctx_put(ctx);
1008 	return rc;
1009 }
1010 
1011 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
1012 {
1013 	struct hl_cs_job *job, *tmp;
1014 
1015 	staged_cs_put(hdev, cs);
1016 
1017 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1018 		hl_complete_job(hdev, job);
1019 }
1020 
1021 /*
1022  * release_reserved_encaps_signals() - release reserved encapsulated signals.
1023  * @hdev: pointer to habanalabs device structure
1024  *
1025  * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with
1026  * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back.
1027  * For these signals need also to put the refcount of the H/W SOB which was taken at the
1028  * reservation.
1029  */
1030 static void release_reserved_encaps_signals(struct hl_device *hdev)
1031 {
1032 	struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
1033 	struct hl_cs_encaps_sig_handle *handle;
1034 	struct hl_encaps_signals_mgr *mgr;
1035 	u32 id;
1036 
1037 	if (!ctx)
1038 		return;
1039 
1040 	mgr = &ctx->sig_mgr;
1041 
1042 	idr_for_each_entry(&mgr->handles, handle, id)
1043 		if (handle->cs_seq == ULLONG_MAX)
1044 			kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx);
1045 
1046 	hl_ctx_put(ctx);
1047 }
1048 
1049 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush)
1050 {
1051 	int i;
1052 	struct hl_cs *cs, *tmp;
1053 
1054 	if (!skip_wq_flush) {
1055 		flush_workqueue(hdev->ts_free_obj_wq);
1056 
1057 		/* flush all completions before iterating over the CS mirror list in
1058 		 * order to avoid a race with the release functions
1059 		 */
1060 		for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1061 			flush_workqueue(hdev->cq_wq[i]);
1062 
1063 		flush_workqueue(hdev->cs_cmplt_wq);
1064 	}
1065 
1066 	/* Make sure we don't have leftovers in the CS mirror list */
1067 	list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
1068 		cs_get(cs);
1069 		cs->aborted = true;
1070 		dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
1071 					cs->ctx->asid, cs->sequence);
1072 		cs_rollback(hdev, cs);
1073 		cs_put(cs);
1074 	}
1075 
1076 	force_complete_multi_cs(hdev);
1077 
1078 	release_reserved_encaps_signals(hdev);
1079 }
1080 
1081 static void
1082 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
1083 {
1084 	struct hl_user_pending_interrupt *pend, *temp;
1085 
1086 	spin_lock(&interrupt->wait_list_lock);
1087 	list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) {
1088 		if (pend->ts_reg_info.buf) {
1089 			list_del(&pend->wait_list_node);
1090 			hl_mmap_mem_buf_put(pend->ts_reg_info.buf);
1091 			hl_cb_put(pend->ts_reg_info.cq_cb);
1092 		} else {
1093 			pend->fence.error = -EIO;
1094 			complete_all(&pend->fence.completion);
1095 		}
1096 	}
1097 	spin_unlock(&interrupt->wait_list_lock);
1098 }
1099 
1100 void hl_release_pending_user_interrupts(struct hl_device *hdev)
1101 {
1102 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1103 	struct hl_user_interrupt *interrupt;
1104 	int i;
1105 
1106 	if (!prop->user_interrupt_count)
1107 		return;
1108 
1109 	/* We iterate through the user interrupt requests and waking up all
1110 	 * user threads waiting for interrupt completion. We iterate the
1111 	 * list under a lock, this is why all user threads, once awake,
1112 	 * will wait on the same lock and will release the waiting object upon
1113 	 * unlock.
1114 	 */
1115 
1116 	for (i = 0 ; i < prop->user_interrupt_count ; i++) {
1117 		interrupt = &hdev->user_interrupt[i];
1118 		wake_pending_user_interrupt_threads(interrupt);
1119 	}
1120 
1121 	interrupt = &hdev->common_user_cq_interrupt;
1122 	wake_pending_user_interrupt_threads(interrupt);
1123 
1124 	interrupt = &hdev->common_decoder_interrupt;
1125 	wake_pending_user_interrupt_threads(interrupt);
1126 }
1127 
1128 static void force_complete_cs(struct hl_device *hdev)
1129 {
1130 	struct hl_cs *cs;
1131 
1132 	spin_lock(&hdev->cs_mirror_lock);
1133 
1134 	list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) {
1135 		cs->fence->error = -EIO;
1136 		complete_all(&cs->fence->completion);
1137 	}
1138 
1139 	spin_unlock(&hdev->cs_mirror_lock);
1140 }
1141 
1142 void hl_abort_waitings_for_completion(struct hl_device *hdev)
1143 {
1144 	force_complete_cs(hdev);
1145 	force_complete_multi_cs(hdev);
1146 	hl_release_pending_user_interrupts(hdev);
1147 }
1148 
1149 static void job_wq_completion(struct work_struct *work)
1150 {
1151 	struct hl_cs_job *job = container_of(work, struct hl_cs_job,
1152 						finish_work);
1153 	struct hl_cs *cs = job->cs;
1154 	struct hl_device *hdev = cs->ctx->hdev;
1155 
1156 	/* job is no longer needed */
1157 	hl_complete_job(hdev, job);
1158 }
1159 
1160 static void cs_completion(struct work_struct *work)
1161 {
1162 	struct hl_cs *cs = container_of(work, struct hl_cs, finish_work);
1163 	struct hl_device *hdev = cs->ctx->hdev;
1164 	struct hl_cs_job *job, *tmp;
1165 
1166 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1167 		hl_complete_job(hdev, job);
1168 }
1169 
1170 u32 hl_get_active_cs_num(struct hl_device *hdev)
1171 {
1172 	u32 active_cs_num = 0;
1173 	struct hl_cs *cs;
1174 
1175 	spin_lock(&hdev->cs_mirror_lock);
1176 
1177 	list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node)
1178 		if (!cs->completed)
1179 			active_cs_num++;
1180 
1181 	spin_unlock(&hdev->cs_mirror_lock);
1182 
1183 	return active_cs_num;
1184 }
1185 
1186 static int validate_queue_index(struct hl_device *hdev,
1187 				struct hl_cs_chunk *chunk,
1188 				enum hl_queue_type *queue_type,
1189 				bool *is_kernel_allocated_cb)
1190 {
1191 	struct asic_fixed_properties *asic = &hdev->asic_prop;
1192 	struct hw_queue_properties *hw_queue_prop;
1193 
1194 	/* This must be checked here to prevent out-of-bounds access to
1195 	 * hw_queues_props array
1196 	 */
1197 	if (chunk->queue_index >= asic->max_queues) {
1198 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1199 			chunk->queue_index);
1200 		return -EINVAL;
1201 	}
1202 
1203 	hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
1204 
1205 	if (hw_queue_prop->type == QUEUE_TYPE_NA) {
1206 		dev_err(hdev->dev, "Queue index %d is not applicable\n",
1207 			chunk->queue_index);
1208 		return -EINVAL;
1209 	}
1210 
1211 	if (hw_queue_prop->binned) {
1212 		dev_err(hdev->dev, "Queue index %d is binned out\n",
1213 			chunk->queue_index);
1214 		return -EINVAL;
1215 	}
1216 
1217 	if (hw_queue_prop->driver_only) {
1218 		dev_err(hdev->dev,
1219 			"Queue index %d is restricted for the kernel driver\n",
1220 			chunk->queue_index);
1221 		return -EINVAL;
1222 	}
1223 
1224 	/* When hw queue type isn't QUEUE_TYPE_HW,
1225 	 * USER_ALLOC_CB flag shall be referred as "don't care".
1226 	 */
1227 	if (hw_queue_prop->type == QUEUE_TYPE_HW) {
1228 		if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
1229 			if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
1230 				dev_err(hdev->dev,
1231 					"Queue index %d doesn't support user CB\n",
1232 					chunk->queue_index);
1233 				return -EINVAL;
1234 			}
1235 
1236 			*is_kernel_allocated_cb = false;
1237 		} else {
1238 			if (!(hw_queue_prop->cb_alloc_flags &
1239 					CB_ALLOC_KERNEL)) {
1240 				dev_err(hdev->dev,
1241 					"Queue index %d doesn't support kernel CB\n",
1242 					chunk->queue_index);
1243 				return -EINVAL;
1244 			}
1245 
1246 			*is_kernel_allocated_cb = true;
1247 		}
1248 	} else {
1249 		*is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
1250 						& CB_ALLOC_KERNEL);
1251 	}
1252 
1253 	*queue_type = hw_queue_prop->type;
1254 	return 0;
1255 }
1256 
1257 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
1258 					struct hl_mem_mgr *mmg,
1259 					struct hl_cs_chunk *chunk)
1260 {
1261 	struct hl_cb *cb;
1262 
1263 	cb = hl_cb_get(mmg, chunk->cb_handle);
1264 	if (!cb) {
1265 		dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle);
1266 		return NULL;
1267 	}
1268 
1269 	if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
1270 		dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
1271 		goto release_cb;
1272 	}
1273 
1274 	atomic_inc(&cb->cs_cnt);
1275 
1276 	return cb;
1277 
1278 release_cb:
1279 	hl_cb_put(cb);
1280 	return NULL;
1281 }
1282 
1283 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1284 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
1285 {
1286 	struct hl_cs_job *job;
1287 
1288 	job = kzalloc(sizeof(*job), GFP_ATOMIC);
1289 	if (!job)
1290 		job = kzalloc(sizeof(*job), GFP_KERNEL);
1291 
1292 	if (!job)
1293 		return NULL;
1294 
1295 	kref_init(&job->refcount);
1296 	job->queue_type = queue_type;
1297 	job->is_kernel_allocated_cb = is_kernel_allocated_cb;
1298 
1299 	if (is_cb_patched(hdev, job))
1300 		INIT_LIST_HEAD(&job->userptr_list);
1301 
1302 	if (job->queue_type == QUEUE_TYPE_EXT)
1303 		INIT_WORK(&job->finish_work, job_wq_completion);
1304 
1305 	return job;
1306 }
1307 
1308 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
1309 {
1310 	if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
1311 		return CS_TYPE_SIGNAL;
1312 	else if (cs_type_flags & HL_CS_FLAGS_WAIT)
1313 		return CS_TYPE_WAIT;
1314 	else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
1315 		return CS_TYPE_COLLECTIVE_WAIT;
1316 	else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
1317 		return CS_RESERVE_SIGNALS;
1318 	else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
1319 		return CS_UNRESERVE_SIGNALS;
1320 	else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND)
1321 		return CS_TYPE_ENGINE_CORE;
1322 	else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
1323 		return CS_TYPE_FLUSH_PCI_HBW_WRITES;
1324 	else
1325 		return CS_TYPE_DEFAULT;
1326 }
1327 
1328 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
1329 {
1330 	struct hl_device *hdev = hpriv->hdev;
1331 	struct hl_ctx *ctx = hpriv->ctx;
1332 	u32 cs_type_flags, num_chunks;
1333 	enum hl_device_status status;
1334 	enum hl_cs_type cs_type;
1335 	bool is_sync_stream;
1336 	int i;
1337 
1338 	for (i = 0 ; i < sizeof(args->in.pad) ; i++)
1339 		if (args->in.pad[i]) {
1340 			dev_dbg(hdev->dev, "Padding bytes must be 0\n");
1341 			return -EINVAL;
1342 		}
1343 
1344 	if (!hl_device_operational(hdev, &status)) {
1345 		return -EBUSY;
1346 	}
1347 
1348 	if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1349 			!hdev->supports_staged_submission) {
1350 		dev_err(hdev->dev, "staged submission not supported");
1351 		return -EPERM;
1352 	}
1353 
1354 	cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
1355 
1356 	if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
1357 		dev_err(hdev->dev,
1358 			"CS type flags are mutually exclusive, context %d\n",
1359 			ctx->asid);
1360 		return -EINVAL;
1361 	}
1362 
1363 	cs_type = hl_cs_get_cs_type(cs_type_flags);
1364 	num_chunks = args->in.num_chunks_execute;
1365 
1366 	is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT ||
1367 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
1368 
1369 	if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) {
1370 		dev_err(hdev->dev, "Sync stream CS is not supported\n");
1371 		return -EINVAL;
1372 	}
1373 
1374 	if (cs_type == CS_TYPE_DEFAULT) {
1375 		if (!num_chunks) {
1376 			dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid);
1377 			return -EINVAL;
1378 		}
1379 	} else if (is_sync_stream && num_chunks != 1) {
1380 		dev_err(hdev->dev,
1381 			"Sync stream CS mandates one chunk only, context %d\n",
1382 			ctx->asid);
1383 		return -EINVAL;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static int hl_cs_copy_chunk_array(struct hl_device *hdev,
1390 					struct hl_cs_chunk **cs_chunk_array,
1391 					void __user *chunks, u32 num_chunks,
1392 					struct hl_ctx *ctx)
1393 {
1394 	u32 size_to_copy;
1395 
1396 	if (num_chunks > HL_MAX_JOBS_PER_CS) {
1397 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1398 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1399 		dev_err(hdev->dev,
1400 			"Number of chunks can NOT be larger than %d\n",
1401 			HL_MAX_JOBS_PER_CS);
1402 		return -EINVAL;
1403 	}
1404 
1405 	*cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
1406 					GFP_ATOMIC);
1407 	if (!*cs_chunk_array)
1408 		*cs_chunk_array = kmalloc_array(num_chunks,
1409 					sizeof(**cs_chunk_array), GFP_KERNEL);
1410 	if (!*cs_chunk_array) {
1411 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1412 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1413 		return -ENOMEM;
1414 	}
1415 
1416 	size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
1417 	if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
1418 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1419 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1420 		dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
1421 		kfree(*cs_chunk_array);
1422 		return -EFAULT;
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
1429 				u64 sequence, u32 flags,
1430 				u32 encaps_signal_handle)
1431 {
1432 	if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
1433 		return 0;
1434 
1435 	cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
1436 	cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
1437 
1438 	if (cs->staged_first) {
1439 		/* Staged CS sequence is the first CS sequence */
1440 		INIT_LIST_HEAD(&cs->staged_cs_node);
1441 		cs->staged_sequence = cs->sequence;
1442 
1443 		if (cs->encaps_signals)
1444 			cs->encaps_sig_hdl_id = encaps_signal_handle;
1445 	} else {
1446 		/* User sequence will be validated in 'hl_hw_queue_schedule_cs'
1447 		 * under the cs_mirror_lock
1448 		 */
1449 		cs->staged_sequence = sequence;
1450 	}
1451 
1452 	/* Increment CS reference if needed */
1453 	staged_cs_get(hdev, cs);
1454 
1455 	cs->staged_cs = true;
1456 
1457 	return 0;
1458 }
1459 
1460 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
1461 {
1462 	int i;
1463 
1464 	for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
1465 		if (qid == hdev->stream_master_qid_arr[i])
1466 			return BIT(i);
1467 
1468 	return 0;
1469 }
1470 
1471 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
1472 				u32 num_chunks, u64 *cs_seq, u32 flags,
1473 				u32 encaps_signals_handle, u32 timeout,
1474 				u16 *signal_initial_sob_count)
1475 {
1476 	bool staged_mid, int_queues_only = true, using_hw_queues = false;
1477 	struct hl_device *hdev = hpriv->hdev;
1478 	struct hl_cs_chunk *cs_chunk_array;
1479 	struct hl_cs_counters_atomic *cntr;
1480 	struct hl_ctx *ctx = hpriv->ctx;
1481 	struct hl_cs_job *job;
1482 	struct hl_cs *cs;
1483 	struct hl_cb *cb;
1484 	u64 user_sequence;
1485 	u8 stream_master_qid_map = 0;
1486 	int rc, i;
1487 
1488 	cntr = &hdev->aggregated_cs_counters;
1489 	user_sequence = *cs_seq;
1490 	*cs_seq = ULLONG_MAX;
1491 
1492 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
1493 			hpriv->ctx);
1494 	if (rc)
1495 		goto out;
1496 
1497 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1498 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
1499 		staged_mid = true;
1500 	else
1501 		staged_mid = false;
1502 
1503 	rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
1504 			staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
1505 			timeout);
1506 	if (rc)
1507 		goto free_cs_chunk_array;
1508 
1509 	*cs_seq = cs->sequence;
1510 
1511 	hl_debugfs_add_cs(cs);
1512 
1513 	rc = cs_staged_submission(hdev, cs, user_sequence, flags,
1514 						encaps_signals_handle);
1515 	if (rc)
1516 		goto free_cs_object;
1517 
1518 	/* If this is a staged submission we must return the staged sequence
1519 	 * rather than the internal CS sequence
1520 	 */
1521 	if (cs->staged_cs)
1522 		*cs_seq = cs->staged_sequence;
1523 
1524 	/* Validate ALL the CS chunks before submitting the CS */
1525 	for (i = 0 ; i < num_chunks ; i++) {
1526 		struct hl_cs_chunk *chunk = &cs_chunk_array[i];
1527 		enum hl_queue_type queue_type;
1528 		bool is_kernel_allocated_cb;
1529 
1530 		rc = validate_queue_index(hdev, chunk, &queue_type,
1531 						&is_kernel_allocated_cb);
1532 		if (rc) {
1533 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1534 			atomic64_inc(&cntr->validation_drop_cnt);
1535 			goto free_cs_object;
1536 		}
1537 
1538 		if (is_kernel_allocated_cb) {
1539 			cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk);
1540 			if (!cb) {
1541 				atomic64_inc(
1542 					&ctx->cs_counters.validation_drop_cnt);
1543 				atomic64_inc(&cntr->validation_drop_cnt);
1544 				rc = -EINVAL;
1545 				goto free_cs_object;
1546 			}
1547 		} else {
1548 			cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
1549 		}
1550 
1551 		if (queue_type == QUEUE_TYPE_EXT ||
1552 						queue_type == QUEUE_TYPE_HW) {
1553 			int_queues_only = false;
1554 
1555 			/*
1556 			 * store which stream are being used for external/HW
1557 			 * queues of this CS
1558 			 */
1559 			if (hdev->supports_wait_for_multi_cs)
1560 				stream_master_qid_map |=
1561 					get_stream_master_qid_mask(hdev,
1562 							chunk->queue_index);
1563 		}
1564 
1565 		if (queue_type == QUEUE_TYPE_HW)
1566 			using_hw_queues = true;
1567 
1568 		job = hl_cs_allocate_job(hdev, queue_type,
1569 						is_kernel_allocated_cb);
1570 		if (!job) {
1571 			atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1572 			atomic64_inc(&cntr->out_of_mem_drop_cnt);
1573 			dev_err(hdev->dev, "Failed to allocate a new job\n");
1574 			rc = -ENOMEM;
1575 			if (is_kernel_allocated_cb)
1576 				goto release_cb;
1577 
1578 			goto free_cs_object;
1579 		}
1580 
1581 		job->id = i + 1;
1582 		job->cs = cs;
1583 		job->user_cb = cb;
1584 		job->user_cb_size = chunk->cb_size;
1585 		job->hw_queue_id = chunk->queue_index;
1586 
1587 		cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1588 		cs->jobs_cnt++;
1589 
1590 		list_add_tail(&job->cs_node, &cs->job_list);
1591 
1592 		/*
1593 		 * Increment CS reference. When CS reference is 0, CS is
1594 		 * done and can be signaled to user and free all its resources
1595 		 * Only increment for JOB on external or H/W queues, because
1596 		 * only for those JOBs we get completion
1597 		 */
1598 		if (cs_needs_completion(cs) &&
1599 			(job->queue_type == QUEUE_TYPE_EXT ||
1600 				job->queue_type == QUEUE_TYPE_HW))
1601 			cs_get(cs);
1602 
1603 		hl_debugfs_add_job(hdev, job);
1604 
1605 		rc = cs_parser(hpriv, job);
1606 		if (rc) {
1607 			atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
1608 			atomic64_inc(&cntr->parsing_drop_cnt);
1609 			dev_err(hdev->dev,
1610 				"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
1611 				cs->ctx->asid, cs->sequence, job->id, rc);
1612 			goto free_cs_object;
1613 		}
1614 	}
1615 
1616 	/* We allow a CS with any queue type combination as long as it does
1617 	 * not get a completion
1618 	 */
1619 	if (int_queues_only && cs_needs_completion(cs)) {
1620 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1621 		atomic64_inc(&cntr->validation_drop_cnt);
1622 		dev_err(hdev->dev,
1623 			"Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
1624 			cs->ctx->asid, cs->sequence);
1625 		rc = -EINVAL;
1626 		goto free_cs_object;
1627 	}
1628 
1629 	if (using_hw_queues)
1630 		INIT_WORK(&cs->finish_work, cs_completion);
1631 
1632 	/*
1633 	 * store the (external/HW queues) streams used by the CS in the
1634 	 * fence object for multi-CS completion
1635 	 */
1636 	if (hdev->supports_wait_for_multi_cs)
1637 		cs->fence->stream_master_qid_map = stream_master_qid_map;
1638 
1639 	rc = hl_hw_queue_schedule_cs(cs);
1640 	if (rc) {
1641 		if (rc != -EAGAIN)
1642 			dev_err(hdev->dev,
1643 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
1644 				cs->ctx->asid, cs->sequence, rc);
1645 		goto free_cs_object;
1646 	}
1647 
1648 	*signal_initial_sob_count = cs->initial_sob_count;
1649 
1650 	rc = HL_CS_STATUS_SUCCESS;
1651 	goto put_cs;
1652 
1653 release_cb:
1654 	atomic_dec(&cb->cs_cnt);
1655 	hl_cb_put(cb);
1656 free_cs_object:
1657 	cs_rollback(hdev, cs);
1658 	*cs_seq = ULLONG_MAX;
1659 	/* The path below is both for good and erroneous exits */
1660 put_cs:
1661 	/* We finished with the CS in this function, so put the ref */
1662 	cs_put(cs);
1663 free_cs_chunk_array:
1664 	kfree(cs_chunk_array);
1665 out:
1666 	return rc;
1667 }
1668 
1669 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
1670 				u64 *cs_seq)
1671 {
1672 	struct hl_device *hdev = hpriv->hdev;
1673 	struct hl_ctx *ctx = hpriv->ctx;
1674 	bool need_soft_reset = false;
1675 	int rc = 0, do_ctx_switch = 0;
1676 	void __user *chunks;
1677 	u32 num_chunks, tmp;
1678 	u16 sob_count;
1679 	int ret;
1680 
1681 	if (hdev->supports_ctx_switch)
1682 		do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
1683 
1684 	if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
1685 		mutex_lock(&hpriv->restore_phase_mutex);
1686 
1687 		if (do_ctx_switch) {
1688 			rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
1689 			if (rc) {
1690 				dev_err_ratelimited(hdev->dev,
1691 					"Failed to switch to context %d, rejecting CS! %d\n",
1692 					ctx->asid, rc);
1693 				/*
1694 				 * If we timedout, or if the device is not IDLE
1695 				 * while we want to do context-switch (-EBUSY),
1696 				 * we need to soft-reset because QMAN is
1697 				 * probably stuck. However, we can't call to
1698 				 * reset here directly because of deadlock, so
1699 				 * need to do it at the very end of this
1700 				 * function
1701 				 */
1702 				if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
1703 					need_soft_reset = true;
1704 				mutex_unlock(&hpriv->restore_phase_mutex);
1705 				goto out;
1706 			}
1707 		}
1708 
1709 		hdev->asic_funcs->restore_phase_topology(hdev);
1710 
1711 		chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
1712 		num_chunks = args->in.num_chunks_restore;
1713 
1714 		if (!num_chunks) {
1715 			dev_dbg(hdev->dev,
1716 				"Need to run restore phase but restore CS is empty\n");
1717 			rc = 0;
1718 		} else {
1719 			rc = cs_ioctl_default(hpriv, chunks, num_chunks,
1720 					cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count);
1721 		}
1722 
1723 		mutex_unlock(&hpriv->restore_phase_mutex);
1724 
1725 		if (rc) {
1726 			dev_err(hdev->dev,
1727 				"Failed to submit restore CS for context %d (%d)\n",
1728 				ctx->asid, rc);
1729 			goto out;
1730 		}
1731 
1732 		/* Need to wait for restore completion before execution phase */
1733 		if (num_chunks) {
1734 			enum hl_cs_wait_status status;
1735 wait_again:
1736 			ret = _hl_cs_wait_ioctl(hdev, ctx,
1737 					jiffies_to_usecs(hdev->timeout_jiffies),
1738 					*cs_seq, &status, NULL);
1739 			if (ret) {
1740 				if (ret == -ERESTARTSYS) {
1741 					usleep_range(100, 200);
1742 					goto wait_again;
1743 				}
1744 
1745 				dev_err(hdev->dev,
1746 					"Restore CS for context %d failed to complete %d\n",
1747 					ctx->asid, ret);
1748 				rc = -ENOEXEC;
1749 				goto out;
1750 			}
1751 		}
1752 
1753 		if (hdev->supports_ctx_switch)
1754 			ctx->thread_ctx_switch_wait_token = 1;
1755 
1756 	} else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) {
1757 		rc = hl_poll_timeout_memory(hdev,
1758 			&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
1759 			100, jiffies_to_usecs(hdev->timeout_jiffies), false);
1760 
1761 		if (rc == -ETIMEDOUT) {
1762 			dev_err(hdev->dev,
1763 				"context switch phase timeout (%d)\n", tmp);
1764 			goto out;
1765 		}
1766 	}
1767 
1768 out:
1769 	if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
1770 		hl_device_reset(hdev, 0);
1771 
1772 	return rc;
1773 }
1774 
1775 /*
1776  * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
1777  * if the SOB value reaches the max value move to the other SOB reserved
1778  * to the queue.
1779  * @hdev: pointer to device structure
1780  * @q_idx: stream queue index
1781  * @hw_sob: the H/W SOB used in this signal CS.
1782  * @count: signals count
1783  * @encaps_sig: tells whether it's reservation for encaps signals or not.
1784  *
1785  * Note that this function must be called while hw_queues_lock is taken.
1786  */
1787 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
1788 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
1789 
1790 {
1791 	struct hl_sync_stream_properties *prop;
1792 	struct hl_hw_sob *sob = *hw_sob, *other_sob;
1793 	u8 other_sob_offset;
1794 
1795 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1796 
1797 	hw_sob_get(sob);
1798 
1799 	/* check for wraparound */
1800 	if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
1801 		/*
1802 		 * Decrement as we reached the max value.
1803 		 * The release function won't be called here as we've
1804 		 * just incremented the refcount right before calling this
1805 		 * function.
1806 		 */
1807 		hw_sob_put_err(sob);
1808 
1809 		/*
1810 		 * check the other sob value, if it still in use then fail
1811 		 * otherwise make the switch
1812 		 */
1813 		other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
1814 		other_sob = &prop->hw_sob[other_sob_offset];
1815 
1816 		if (kref_read(&other_sob->kref) != 1) {
1817 			dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
1818 								q_idx);
1819 			return -EINVAL;
1820 		}
1821 
1822 		/*
1823 		 * next_sob_val always points to the next available signal
1824 		 * in the sob, so in encaps signals it will be the next one
1825 		 * after reserving the required amount.
1826 		 */
1827 		if (encaps_sig)
1828 			prop->next_sob_val = count + 1;
1829 		else
1830 			prop->next_sob_val = count;
1831 
1832 		/* only two SOBs are currently in use */
1833 		prop->curr_sob_offset = other_sob_offset;
1834 		*hw_sob = other_sob;
1835 
1836 		/*
1837 		 * check if other_sob needs reset, then do it before using it
1838 		 * for the reservation or the next signal cs.
1839 		 * we do it here, and for both encaps and regular signal cs
1840 		 * cases in order to avoid possible races of two kref_put
1841 		 * of the sob which can occur at the same time if we move the
1842 		 * sob reset(kref_put) to cs_do_release function.
1843 		 * in addition, if we have combination of cs signal and
1844 		 * encaps, and at the point we need to reset the sob there was
1845 		 * no more reservations and only signal cs keep coming,
1846 		 * in such case we need signal_cs to put the refcount and
1847 		 * reset the sob.
1848 		 */
1849 		if (other_sob->need_reset)
1850 			hw_sob_put(other_sob);
1851 
1852 		if (encaps_sig) {
1853 			/* set reset indication for the sob */
1854 			sob->need_reset = true;
1855 			hw_sob_get(other_sob);
1856 		}
1857 
1858 		dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
1859 				prop->curr_sob_offset, q_idx);
1860 	} else {
1861 		prop->next_sob_val += count;
1862 	}
1863 
1864 	return 0;
1865 }
1866 
1867 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
1868 		struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
1869 		bool encaps_signals)
1870 {
1871 	u64 *signal_seq_arr = NULL;
1872 	u32 size_to_copy, signal_seq_arr_len;
1873 	int rc = 0;
1874 
1875 	if (encaps_signals) {
1876 		*signal_seq = chunk->encaps_signal_seq;
1877 		return 0;
1878 	}
1879 
1880 	signal_seq_arr_len = chunk->num_signal_seq_arr;
1881 
1882 	/* currently only one signal seq is supported */
1883 	if (signal_seq_arr_len != 1) {
1884 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1885 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1886 		dev_err(hdev->dev,
1887 			"Wait for signal CS supports only one signal CS seq\n");
1888 		return -EINVAL;
1889 	}
1890 
1891 	signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1892 					sizeof(*signal_seq_arr),
1893 					GFP_ATOMIC);
1894 	if (!signal_seq_arr)
1895 		signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1896 					sizeof(*signal_seq_arr),
1897 					GFP_KERNEL);
1898 	if (!signal_seq_arr) {
1899 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1900 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1901 		return -ENOMEM;
1902 	}
1903 
1904 	size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
1905 	if (copy_from_user(signal_seq_arr,
1906 				u64_to_user_ptr(chunk->signal_seq_arr),
1907 				size_to_copy)) {
1908 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1909 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1910 		dev_err(hdev->dev,
1911 			"Failed to copy signal seq array from user\n");
1912 		rc = -EFAULT;
1913 		goto out;
1914 	}
1915 
1916 	/* currently it is guaranteed to have only one signal seq */
1917 	*signal_seq = signal_seq_arr[0];
1918 
1919 out:
1920 	kfree(signal_seq_arr);
1921 
1922 	return rc;
1923 }
1924 
1925 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
1926 		struct hl_ctx *ctx, struct hl_cs *cs,
1927 		enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
1928 {
1929 	struct hl_cs_counters_atomic *cntr;
1930 	struct hl_cs_job *job;
1931 	struct hl_cb *cb;
1932 	u32 cb_size;
1933 
1934 	cntr = &hdev->aggregated_cs_counters;
1935 
1936 	job = hl_cs_allocate_job(hdev, q_type, true);
1937 	if (!job) {
1938 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1939 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1940 		dev_err(hdev->dev, "Failed to allocate a new job\n");
1941 		return -ENOMEM;
1942 	}
1943 
1944 	if (cs->type == CS_TYPE_WAIT)
1945 		cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
1946 	else
1947 		cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
1948 
1949 	cb = hl_cb_kernel_create(hdev, cb_size,
1950 				q_type == QUEUE_TYPE_HW && hdev->mmu_enable);
1951 	if (!cb) {
1952 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1953 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1954 		kfree(job);
1955 		return -EFAULT;
1956 	}
1957 
1958 	job->id = 0;
1959 	job->cs = cs;
1960 	job->user_cb = cb;
1961 	atomic_inc(&job->user_cb->cs_cnt);
1962 	job->user_cb_size = cb_size;
1963 	job->hw_queue_id = q_idx;
1964 
1965 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
1966 			&& cs->encaps_signals)
1967 		job->encaps_sig_wait_offset = encaps_signal_offset;
1968 	/*
1969 	 * No need in parsing, user CB is the patched CB.
1970 	 * We call hl_cb_destroy() out of two reasons - we don't need the CB in
1971 	 * the CB idr anymore and to decrement its refcount as it was
1972 	 * incremented inside hl_cb_kernel_create().
1973 	 */
1974 	job->patched_cb = job->user_cb;
1975 	job->job_cb_size = job->user_cb_size;
1976 	hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
1977 
1978 	/* increment refcount as for external queues we get completion */
1979 	cs_get(cs);
1980 
1981 	cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1982 	cs->jobs_cnt++;
1983 
1984 	list_add_tail(&job->cs_node, &cs->job_list);
1985 
1986 	hl_debugfs_add_job(hdev, job);
1987 
1988 	return 0;
1989 }
1990 
1991 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
1992 				u32 q_idx, u32 count,
1993 				u32 *handle_id, u32 *sob_addr,
1994 				u32 *signals_count)
1995 {
1996 	struct hw_queue_properties *hw_queue_prop;
1997 	struct hl_sync_stream_properties *prop;
1998 	struct hl_device *hdev = hpriv->hdev;
1999 	struct hl_cs_encaps_sig_handle *handle;
2000 	struct hl_encaps_signals_mgr *mgr;
2001 	struct hl_hw_sob *hw_sob;
2002 	int hdl_id;
2003 	int rc = 0;
2004 
2005 	if (count >= HL_MAX_SOB_VAL) {
2006 		dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
2007 						count);
2008 		rc = -EINVAL;
2009 		goto out;
2010 	}
2011 
2012 	if (q_idx >= hdev->asic_prop.max_queues) {
2013 		dev_err(hdev->dev, "Queue index %d is invalid\n",
2014 			q_idx);
2015 		rc = -EINVAL;
2016 		goto out;
2017 	}
2018 
2019 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2020 
2021 	if (!hw_queue_prop->supports_sync_stream) {
2022 		dev_err(hdev->dev,
2023 			"Queue index %d does not support sync stream operations\n",
2024 									q_idx);
2025 		rc = -EINVAL;
2026 		goto out;
2027 	}
2028 
2029 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2030 
2031 	handle = kzalloc(sizeof(*handle), GFP_KERNEL);
2032 	if (!handle) {
2033 		rc = -ENOMEM;
2034 		goto out;
2035 	}
2036 
2037 	handle->count = count;
2038 
2039 	hl_ctx_get(hpriv->ctx);
2040 	handle->ctx = hpriv->ctx;
2041 	mgr = &hpriv->ctx->sig_mgr;
2042 
2043 	spin_lock(&mgr->lock);
2044 	hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
2045 	spin_unlock(&mgr->lock);
2046 
2047 	if (hdl_id < 0) {
2048 		dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
2049 		rc = -EINVAL;
2050 		goto put_ctx;
2051 	}
2052 
2053 	handle->id = hdl_id;
2054 	handle->q_idx = q_idx;
2055 	handle->hdev = hdev;
2056 	kref_init(&handle->refcount);
2057 
2058 	hdev->asic_funcs->hw_queues_lock(hdev);
2059 
2060 	hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2061 
2062 	/*
2063 	 * Increment the SOB value by count by user request
2064 	 * to reserve those signals
2065 	 * check if the signals amount to reserve is not exceeding the max sob
2066 	 * value, if yes then switch sob.
2067 	 */
2068 	rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
2069 								true);
2070 	if (rc) {
2071 		dev_err(hdev->dev, "Failed to switch SOB\n");
2072 		hdev->asic_funcs->hw_queues_unlock(hdev);
2073 		rc = -EINVAL;
2074 		goto remove_idr;
2075 	}
2076 	/* set the hw_sob to the handle after calling the sob wraparound handler
2077 	 * since sob could have changed.
2078 	 */
2079 	handle->hw_sob = hw_sob;
2080 
2081 	/* store the current sob value for unreserve validity check, and
2082 	 * signal offset support
2083 	 */
2084 	handle->pre_sob_val = prop->next_sob_val - handle->count;
2085 
2086 	handle->cs_seq = ULLONG_MAX;
2087 
2088 	*signals_count = prop->next_sob_val;
2089 	hdev->asic_funcs->hw_queues_unlock(hdev);
2090 
2091 	*sob_addr = handle->hw_sob->sob_addr;
2092 	*handle_id = hdl_id;
2093 
2094 	dev_dbg(hdev->dev,
2095 		"Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
2096 			hw_sob->sob_id, handle->hw_sob->sob_addr,
2097 			prop->next_sob_val - 1, q_idx, hdl_id);
2098 	goto out;
2099 
2100 remove_idr:
2101 	spin_lock(&mgr->lock);
2102 	idr_remove(&mgr->handles, hdl_id);
2103 	spin_unlock(&mgr->lock);
2104 
2105 put_ctx:
2106 	hl_ctx_put(handle->ctx);
2107 	kfree(handle);
2108 
2109 out:
2110 	return rc;
2111 }
2112 
2113 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
2114 {
2115 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2116 	struct hl_sync_stream_properties *prop;
2117 	struct hl_device *hdev = hpriv->hdev;
2118 	struct hl_encaps_signals_mgr *mgr;
2119 	struct hl_hw_sob *hw_sob;
2120 	u32 q_idx, sob_addr;
2121 	int rc = 0;
2122 
2123 	mgr = &hpriv->ctx->sig_mgr;
2124 
2125 	spin_lock(&mgr->lock);
2126 	encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
2127 	if (encaps_sig_hdl) {
2128 		dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
2129 				handle_id, encaps_sig_hdl->hw_sob->sob_addr,
2130 					encaps_sig_hdl->count);
2131 
2132 		hdev->asic_funcs->hw_queues_lock(hdev);
2133 
2134 		q_idx = encaps_sig_hdl->q_idx;
2135 		prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2136 		hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2137 		sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
2138 
2139 		/* Check if sob_val got out of sync due to other
2140 		 * signal submission requests which were handled
2141 		 * between the reserve-unreserve calls or SOB switch
2142 		 * upon reaching SOB max value.
2143 		 */
2144 		if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
2145 				!= prop->next_sob_val ||
2146 				sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
2147 			dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
2148 				encaps_sig_hdl->pre_sob_val,
2149 				(prop->next_sob_val - encaps_sig_hdl->count));
2150 
2151 			hdev->asic_funcs->hw_queues_unlock(hdev);
2152 			rc = -EINVAL;
2153 			goto out;
2154 		}
2155 
2156 		/*
2157 		 * Decrement the SOB value by count by user request
2158 		 * to unreserve those signals
2159 		 */
2160 		prop->next_sob_val -= encaps_sig_hdl->count;
2161 
2162 		hdev->asic_funcs->hw_queues_unlock(hdev);
2163 
2164 		hw_sob_put(hw_sob);
2165 
2166 		/* Release the id and free allocated memory of the handle */
2167 		idr_remove(&mgr->handles, handle_id);
2168 		hl_ctx_put(encaps_sig_hdl->ctx);
2169 		kfree(encaps_sig_hdl);
2170 	} else {
2171 		rc = -EINVAL;
2172 		dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
2173 	}
2174 out:
2175 	spin_unlock(&mgr->lock);
2176 
2177 	return rc;
2178 }
2179 
2180 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
2181 				void __user *chunks, u32 num_chunks,
2182 				u64 *cs_seq, u32 flags, u32 timeout,
2183 				u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
2184 {
2185 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
2186 	bool handle_found = false, is_wait_cs = false,
2187 			wait_cs_submitted = false,
2188 			cs_encaps_signals = false;
2189 	struct hl_cs_chunk *cs_chunk_array, *chunk;
2190 	bool staged_cs_with_encaps_signals = false;
2191 	struct hw_queue_properties *hw_queue_prop;
2192 	struct hl_device *hdev = hpriv->hdev;
2193 	struct hl_cs_compl *sig_waitcs_cmpl;
2194 	u32 q_idx, collective_engine_id = 0;
2195 	struct hl_cs_counters_atomic *cntr;
2196 	struct hl_fence *sig_fence = NULL;
2197 	struct hl_ctx *ctx = hpriv->ctx;
2198 	enum hl_queue_type q_type;
2199 	struct hl_cs *cs;
2200 	u64 signal_seq;
2201 	int rc;
2202 
2203 	cntr = &hdev->aggregated_cs_counters;
2204 	*cs_seq = ULLONG_MAX;
2205 
2206 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
2207 			ctx);
2208 	if (rc)
2209 		goto out;
2210 
2211 	/* currently it is guaranteed to have only one chunk */
2212 	chunk = &cs_chunk_array[0];
2213 
2214 	if (chunk->queue_index >= hdev->asic_prop.max_queues) {
2215 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2216 		atomic64_inc(&cntr->validation_drop_cnt);
2217 		dev_err(hdev->dev, "Queue index %d is invalid\n",
2218 			chunk->queue_index);
2219 		rc = -EINVAL;
2220 		goto free_cs_chunk_array;
2221 	}
2222 
2223 	q_idx = chunk->queue_index;
2224 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2225 	q_type = hw_queue_prop->type;
2226 
2227 	if (!hw_queue_prop->supports_sync_stream) {
2228 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2229 		atomic64_inc(&cntr->validation_drop_cnt);
2230 		dev_err(hdev->dev,
2231 			"Queue index %d does not support sync stream operations\n",
2232 			q_idx);
2233 		rc = -EINVAL;
2234 		goto free_cs_chunk_array;
2235 	}
2236 
2237 	if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
2238 		if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
2239 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2240 			atomic64_inc(&cntr->validation_drop_cnt);
2241 			dev_err(hdev->dev,
2242 				"Queue index %d is invalid\n", q_idx);
2243 			rc = -EINVAL;
2244 			goto free_cs_chunk_array;
2245 		}
2246 
2247 		if (!hdev->nic_ports_mask) {
2248 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2249 			atomic64_inc(&cntr->validation_drop_cnt);
2250 			dev_err(hdev->dev,
2251 				"Collective operations not supported when NIC ports are disabled");
2252 			rc = -EINVAL;
2253 			goto free_cs_chunk_array;
2254 		}
2255 
2256 		collective_engine_id = chunk->collective_engine_id;
2257 	}
2258 
2259 	is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
2260 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
2261 
2262 	cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
2263 
2264 	if (is_wait_cs) {
2265 		rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
2266 				ctx, cs_encaps_signals);
2267 		if (rc)
2268 			goto free_cs_chunk_array;
2269 
2270 		if (cs_encaps_signals) {
2271 			/* check if cs sequence has encapsulated
2272 			 * signals handle
2273 			 */
2274 			struct idr *idp;
2275 			u32 id;
2276 
2277 			spin_lock(&ctx->sig_mgr.lock);
2278 			idp = &ctx->sig_mgr.handles;
2279 			idr_for_each_entry(idp, encaps_sig_hdl, id) {
2280 				if (encaps_sig_hdl->cs_seq == signal_seq) {
2281 					/* get refcount to protect removing this handle from idr,
2282 					 * needed when multiple wait cs are used with offset
2283 					 * to wait on reserved encaps signals.
2284 					 * Since kref_put of this handle is executed outside the
2285 					 * current lock, it is possible that the handle refcount
2286 					 * is 0 but it yet to be removed from the list. In this
2287 					 * case need to consider the handle as not valid.
2288 					 */
2289 					if (kref_get_unless_zero(&encaps_sig_hdl->refcount))
2290 						handle_found = true;
2291 					break;
2292 				}
2293 			}
2294 			spin_unlock(&ctx->sig_mgr.lock);
2295 
2296 			if (!handle_found) {
2297 				/* treat as signal CS already finished */
2298 				dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
2299 						signal_seq);
2300 				rc = 0;
2301 				goto free_cs_chunk_array;
2302 			}
2303 
2304 			/* validate also the signal offset value */
2305 			if (chunk->encaps_signal_offset >
2306 					encaps_sig_hdl->count) {
2307 				dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
2308 						chunk->encaps_signal_offset,
2309 						encaps_sig_hdl->count);
2310 				rc = -EINVAL;
2311 				goto free_cs_chunk_array;
2312 			}
2313 		}
2314 
2315 		sig_fence = hl_ctx_get_fence(ctx, signal_seq);
2316 		if (IS_ERR(sig_fence)) {
2317 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2318 			atomic64_inc(&cntr->validation_drop_cnt);
2319 			dev_err(hdev->dev,
2320 				"Failed to get signal CS with seq 0x%llx\n",
2321 				signal_seq);
2322 			rc = PTR_ERR(sig_fence);
2323 			goto free_cs_chunk_array;
2324 		}
2325 
2326 		if (!sig_fence) {
2327 			/* signal CS already finished */
2328 			rc = 0;
2329 			goto free_cs_chunk_array;
2330 		}
2331 
2332 		sig_waitcs_cmpl =
2333 			container_of(sig_fence, struct hl_cs_compl, base_fence);
2334 
2335 		staged_cs_with_encaps_signals = !!
2336 				(sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
2337 				(flags & HL_CS_FLAGS_ENCAP_SIGNALS));
2338 
2339 		if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
2340 				!staged_cs_with_encaps_signals) {
2341 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2342 			atomic64_inc(&cntr->validation_drop_cnt);
2343 			dev_err(hdev->dev,
2344 				"CS seq 0x%llx is not of a signal/encaps-signal CS\n",
2345 				signal_seq);
2346 			hl_fence_put(sig_fence);
2347 			rc = -EINVAL;
2348 			goto free_cs_chunk_array;
2349 		}
2350 
2351 		if (completion_done(&sig_fence->completion)) {
2352 			/* signal CS already finished */
2353 			hl_fence_put(sig_fence);
2354 			rc = 0;
2355 			goto free_cs_chunk_array;
2356 		}
2357 	}
2358 
2359 	rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
2360 	if (rc) {
2361 		if (is_wait_cs)
2362 			hl_fence_put(sig_fence);
2363 
2364 		goto free_cs_chunk_array;
2365 	}
2366 
2367 	/*
2368 	 * Save the signal CS fence for later initialization right before
2369 	 * hanging the wait CS on the queue.
2370 	 * for encaps signals case, we save the cs sequence and handle pointer
2371 	 * for later initialization.
2372 	 */
2373 	if (is_wait_cs) {
2374 		cs->signal_fence = sig_fence;
2375 		/* store the handle pointer, so we don't have to
2376 		 * look for it again, later on the flow
2377 		 * when we need to set SOB info in hw_queue.
2378 		 */
2379 		if (cs->encaps_signals)
2380 			cs->encaps_sig_hdl = encaps_sig_hdl;
2381 	}
2382 
2383 	hl_debugfs_add_cs(cs);
2384 
2385 	*cs_seq = cs->sequence;
2386 
2387 	if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
2388 		rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
2389 				q_idx, chunk->encaps_signal_offset);
2390 	else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
2391 		rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
2392 				cs, q_idx, collective_engine_id,
2393 				chunk->encaps_signal_offset);
2394 	else {
2395 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2396 		atomic64_inc(&cntr->validation_drop_cnt);
2397 		rc = -EINVAL;
2398 	}
2399 
2400 	if (rc)
2401 		goto free_cs_object;
2402 
2403 	if (q_type == QUEUE_TYPE_HW)
2404 		INIT_WORK(&cs->finish_work, cs_completion);
2405 
2406 	rc = hl_hw_queue_schedule_cs(cs);
2407 	if (rc) {
2408 		/* In case wait cs failed here, it means the signal cs
2409 		 * already completed. we want to free all it's related objects
2410 		 * but we don't want to fail the ioctl.
2411 		 */
2412 		if (is_wait_cs)
2413 			rc = 0;
2414 		else if (rc != -EAGAIN)
2415 			dev_err(hdev->dev,
2416 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
2417 				ctx->asid, cs->sequence, rc);
2418 		goto free_cs_object;
2419 	}
2420 
2421 	*signal_sob_addr_offset = cs->sob_addr_offset;
2422 	*signal_initial_sob_count = cs->initial_sob_count;
2423 
2424 	rc = HL_CS_STATUS_SUCCESS;
2425 	if (is_wait_cs)
2426 		wait_cs_submitted = true;
2427 	goto put_cs;
2428 
2429 free_cs_object:
2430 	cs_rollback(hdev, cs);
2431 	*cs_seq = ULLONG_MAX;
2432 	/* The path below is both for good and erroneous exits */
2433 put_cs:
2434 	/* We finished with the CS in this function, so put the ref */
2435 	cs_put(cs);
2436 free_cs_chunk_array:
2437 	if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs)
2438 		kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
2439 	kfree(cs_chunk_array);
2440 out:
2441 	return rc;
2442 }
2443 
2444 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores,
2445 						u32 num_engine_cores, u32 core_command)
2446 {
2447 	int rc;
2448 	struct hl_device *hdev = hpriv->hdev;
2449 	void __user *engine_cores_arr;
2450 	u32 *cores;
2451 
2452 	if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) {
2453 		dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores);
2454 		return -EINVAL;
2455 	}
2456 
2457 	if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) {
2458 		dev_err(hdev->dev, "Engine core command is invalid\n");
2459 		return -EINVAL;
2460 	}
2461 
2462 	engine_cores_arr = (void __user *) (uintptr_t) engine_cores;
2463 	cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL);
2464 	if (!cores)
2465 		return -ENOMEM;
2466 
2467 	if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) {
2468 		dev_err(hdev->dev, "Failed to copy core-ids array from user\n");
2469 		kfree(cores);
2470 		return -EFAULT;
2471 	}
2472 
2473 	rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command);
2474 	kfree(cores);
2475 
2476 	return rc;
2477 }
2478 
2479 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv)
2480 {
2481 	struct hl_device *hdev = hpriv->hdev;
2482 	struct asic_fixed_properties *prop = &hdev->asic_prop;
2483 
2484 	if (!prop->hbw_flush_reg) {
2485 		dev_dbg(hdev->dev, "HBW flush is not supported\n");
2486 		return -EOPNOTSUPP;
2487 	}
2488 
2489 	RREG32(prop->hbw_flush_reg);
2490 
2491 	return 0;
2492 }
2493 
2494 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
2495 {
2496 	union hl_cs_args *args = data;
2497 	enum hl_cs_type cs_type = 0;
2498 	u64 cs_seq = ULONG_MAX;
2499 	void __user *chunks;
2500 	u32 num_chunks, flags, timeout,
2501 		signals_count = 0, sob_addr = 0, handle_id = 0;
2502 	u16 sob_initial_count = 0;
2503 	int rc;
2504 
2505 	rc = hl_cs_sanity_checks(hpriv, args);
2506 	if (rc)
2507 		goto out;
2508 
2509 	rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
2510 	if (rc)
2511 		goto out;
2512 
2513 	cs_type = hl_cs_get_cs_type(args->in.cs_flags &
2514 					~HL_CS_FLAGS_FORCE_RESTORE);
2515 	chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
2516 	num_chunks = args->in.num_chunks_execute;
2517 	flags = args->in.cs_flags;
2518 
2519 	/* In case this is a staged CS, user should supply the CS sequence */
2520 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
2521 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
2522 		cs_seq = args->in.seq;
2523 
2524 	timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
2525 			? msecs_to_jiffies(args->in.timeout * 1000)
2526 			: hpriv->hdev->timeout_jiffies;
2527 
2528 	switch (cs_type) {
2529 	case CS_TYPE_SIGNAL:
2530 	case CS_TYPE_WAIT:
2531 	case CS_TYPE_COLLECTIVE_WAIT:
2532 		rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
2533 					&cs_seq, args->in.cs_flags, timeout,
2534 					&sob_addr, &sob_initial_count);
2535 		break;
2536 	case CS_RESERVE_SIGNALS:
2537 		rc = cs_ioctl_reserve_signals(hpriv,
2538 					args->in.encaps_signals_q_idx,
2539 					args->in.encaps_signals_count,
2540 					&handle_id, &sob_addr, &signals_count);
2541 		break;
2542 	case CS_UNRESERVE_SIGNALS:
2543 		rc = cs_ioctl_unreserve_signals(hpriv,
2544 					args->in.encaps_sig_handle_id);
2545 		break;
2546 	case CS_TYPE_ENGINE_CORE:
2547 		rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores,
2548 				args->in.num_engine_cores, args->in.core_command);
2549 		break;
2550 	case CS_TYPE_FLUSH_PCI_HBW_WRITES:
2551 		rc = cs_ioctl_flush_pci_hbw_writes(hpriv);
2552 		break;
2553 	default:
2554 		rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
2555 						args->in.cs_flags,
2556 						args->in.encaps_sig_handle_id,
2557 						timeout, &sob_initial_count);
2558 		break;
2559 	}
2560 out:
2561 	if (rc != -EAGAIN) {
2562 		memset(args, 0, sizeof(*args));
2563 
2564 		switch (cs_type) {
2565 		case CS_RESERVE_SIGNALS:
2566 			args->out.handle_id = handle_id;
2567 			args->out.sob_base_addr_offset = sob_addr;
2568 			args->out.count = signals_count;
2569 			break;
2570 		case CS_TYPE_SIGNAL:
2571 			args->out.sob_base_addr_offset = sob_addr;
2572 			args->out.sob_count_before_submission = sob_initial_count;
2573 			args->out.seq = cs_seq;
2574 			break;
2575 		case CS_TYPE_DEFAULT:
2576 			args->out.sob_count_before_submission = sob_initial_count;
2577 			args->out.seq = cs_seq;
2578 			break;
2579 		default:
2580 			args->out.seq = cs_seq;
2581 			break;
2582 		}
2583 
2584 		args->out.status = rc;
2585 	}
2586 
2587 	return rc;
2588 }
2589 
2590 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
2591 				enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp)
2592 {
2593 	struct hl_device *hdev = ctx->hdev;
2594 	ktime_t timestamp_kt;
2595 	long completion_rc;
2596 	int rc = 0, error;
2597 
2598 	if (IS_ERR(fence)) {
2599 		rc = PTR_ERR(fence);
2600 		if (rc == -EINVAL)
2601 			dev_notice_ratelimited(hdev->dev,
2602 				"Can't wait on CS %llu because current CS is at seq %llu\n",
2603 				seq, ctx->cs_sequence);
2604 		return rc;
2605 	}
2606 
2607 	if (!fence) {
2608 		if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, &timestamp_kt, &error)) {
2609 			dev_dbg(hdev->dev,
2610 				"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
2611 				seq, ctx->cs_sequence);
2612 			*status = CS_WAIT_STATUS_GONE;
2613 			return 0;
2614 		}
2615 
2616 		completion_rc = 1;
2617 		goto report_results;
2618 	}
2619 
2620 	if (!timeout_us) {
2621 		completion_rc = completion_done(&fence->completion);
2622 	} else {
2623 		unsigned long timeout;
2624 
2625 		timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
2626 				timeout_us : usecs_to_jiffies(timeout_us);
2627 		completion_rc =
2628 			wait_for_completion_interruptible_timeout(
2629 				&fence->completion, timeout);
2630 	}
2631 
2632 	error = fence->error;
2633 	timestamp_kt = fence->timestamp;
2634 
2635 report_results:
2636 	if (completion_rc > 0) {
2637 		*status = CS_WAIT_STATUS_COMPLETED;
2638 		if (timestamp)
2639 			*timestamp = ktime_to_ns(timestamp_kt);
2640 	} else {
2641 		*status = CS_WAIT_STATUS_BUSY;
2642 	}
2643 
2644 	if (completion_rc == -ERESTARTSYS)
2645 		rc = completion_rc;
2646 	else if (error == -ETIMEDOUT || error == -EIO)
2647 		rc = error;
2648 
2649 	return rc;
2650 }
2651 
2652 /*
2653  * hl_cs_poll_fences - iterate CS fences to check for CS completion
2654  *
2655  * @mcs_data: multi-CS internal data
2656  * @mcs_compl: multi-CS completion structure
2657  *
2658  * @return 0 on success, otherwise non 0 error code
2659  *
2660  * The function iterates on all CS sequence in the list and set bit in
2661  * completion_bitmap for each completed CS.
2662  * While iterating, the function sets the stream map of each fence in the fence
2663  * array in the completion QID stream map to be used by CSs to perform
2664  * completion to the multi-CS context.
2665  * This function shall be called after taking context ref
2666  */
2667 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
2668 {
2669 	struct hl_fence **fence_ptr = mcs_data->fence_arr;
2670 	struct hl_device *hdev = mcs_data->ctx->hdev;
2671 	int i, rc, arr_len = mcs_data->arr_len;
2672 	u64 *seq_arr = mcs_data->seq_arr;
2673 	ktime_t max_ktime, first_cs_time;
2674 	enum hl_cs_wait_status status;
2675 
2676 	memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *));
2677 
2678 	/* get all fences under the same lock */
2679 	rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
2680 	if (rc)
2681 		return rc;
2682 
2683 	/*
2684 	 * re-initialize the completion here to handle 2 possible cases:
2685 	 * 1. CS will complete the multi-CS prior clearing the completion. in which
2686 	 *    case the fence iteration is guaranteed to catch the CS completion.
2687 	 * 2. the completion will occur after re-init of the completion.
2688 	 *    in which case we will wake up immediately in wait_for_completion.
2689 	 */
2690 	reinit_completion(&mcs_compl->completion);
2691 
2692 	/*
2693 	 * set to maximum time to verify timestamp is valid: if at the end
2694 	 * this value is maintained- no timestamp was updated
2695 	 */
2696 	max_ktime = ktime_set(KTIME_SEC_MAX, 0);
2697 	first_cs_time = max_ktime;
2698 
2699 	for (i = 0; i < arr_len; i++, fence_ptr++) {
2700 		struct hl_fence *fence = *fence_ptr;
2701 
2702 		/*
2703 		 * In order to prevent case where we wait until timeout even though a CS associated
2704 		 * with the multi-CS actually completed we do things in the below order:
2705 		 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way
2706 		 *    any CS can, potentially, complete the multi CS for the specific QID (note
2707 		 *    that once completion is initialized, calling complete* and then wait on the
2708 		 *    completion will cause it to return at once)
2709 		 * 2. only after allowing multi-CS completion for the specific QID we check whether
2710 		 *    the specific CS already completed (and thus the wait for completion part will
2711 		 *    be skipped). if the CS not completed it is guaranteed that completing CS will
2712 		 *    wake up the completion.
2713 		 */
2714 		if (fence)
2715 			mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
2716 
2717 		/*
2718 		 * function won't sleep as it is called with timeout 0 (i.e.
2719 		 * poll the fence)
2720 		 */
2721 		rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL);
2722 		if (rc) {
2723 			dev_err(hdev->dev,
2724 				"wait_for_fence error :%d for CS seq %llu\n",
2725 								rc, seq_arr[i]);
2726 			break;
2727 		}
2728 
2729 		switch (status) {
2730 		case CS_WAIT_STATUS_BUSY:
2731 			/* CS did not finished, QID to wait on already stored */
2732 			break;
2733 		case CS_WAIT_STATUS_COMPLETED:
2734 			/*
2735 			 * Using mcs_handling_done to avoid possibility of mcs_data
2736 			 * returns to user indicating CS completed before it finished
2737 			 * all of its mcs handling, to avoid race the next time the
2738 			 * user waits for mcs.
2739 			 * note: when reaching this case fence is definitely not NULL
2740 			 *       but NULL check was added to overcome static analysis
2741 			 */
2742 			if (fence && !fence->mcs_handling_done) {
2743 				/*
2744 				 * in case multi CS is completed but MCS handling not done
2745 				 * we "complete" the multi CS to prevent it from waiting
2746 				 * until time-out and the "multi-CS handling done" will have
2747 				 * another chance at the next iteration
2748 				 */
2749 				complete_all(&mcs_compl->completion);
2750 				break;
2751 			}
2752 
2753 			mcs_data->completion_bitmap |= BIT(i);
2754 			/*
2755 			 * For all completed CSs we take the earliest timestamp.
2756 			 * For this we have to validate that the timestamp is
2757 			 * earliest of all timestamps so far.
2758 			 */
2759 			if (fence && mcs_data->update_ts &&
2760 					(ktime_compare(fence->timestamp, first_cs_time) < 0))
2761 				first_cs_time = fence->timestamp;
2762 			break;
2763 		case CS_WAIT_STATUS_GONE:
2764 			mcs_data->update_ts = false;
2765 			mcs_data->gone_cs = true;
2766 			/*
2767 			 * It is possible to get an old sequence numbers from user
2768 			 * which related to already completed CSs and their fences
2769 			 * already gone. In this case, CS set as completed but
2770 			 * no need to consider its QID for mcs completion.
2771 			 */
2772 			mcs_data->completion_bitmap |= BIT(i);
2773 			break;
2774 		default:
2775 			dev_err(hdev->dev, "Invalid fence status\n");
2776 			rc = -EINVAL;
2777 			break;
2778 		}
2779 
2780 	}
2781 
2782 	hl_fences_put(mcs_data->fence_arr, arr_len);
2783 
2784 	if (mcs_data->update_ts &&
2785 			(ktime_compare(first_cs_time, max_ktime) != 0))
2786 		mcs_data->timestamp = ktime_to_ns(first_cs_time);
2787 
2788 	return rc;
2789 }
2790 
2791 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
2792 				enum hl_cs_wait_status *status, s64 *timestamp)
2793 {
2794 	struct hl_fence *fence;
2795 	int rc = 0;
2796 
2797 	if (timestamp)
2798 		*timestamp = 0;
2799 
2800 	hl_ctx_get(ctx);
2801 
2802 	fence = hl_ctx_get_fence(ctx, seq);
2803 
2804 	rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
2805 	hl_fence_put(fence);
2806 	hl_ctx_put(ctx);
2807 
2808 	return rc;
2809 }
2810 
2811 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
2812 {
2813 	if (usecs <= U32_MAX)
2814 		return usecs_to_jiffies(usecs);
2815 
2816 	/*
2817 	 * If the value in nanoseconds is larger than 64 bit, use the largest
2818 	 * 64 bit value.
2819 	 */
2820 	if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
2821 		return nsecs_to_jiffies(U64_MAX);
2822 
2823 	return nsecs_to_jiffies(usecs * NSEC_PER_USEC);
2824 }
2825 
2826 /*
2827  * hl_wait_multi_cs_completion_init - init completion structure
2828  *
2829  * @hdev: pointer to habanalabs device structure
2830  * @stream_master_bitmap: stream master QIDs map, set bit indicates stream
2831  *                        master QID to wait on
2832  *
2833  * @return valid completion struct pointer on success, otherwise error pointer
2834  *
2835  * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
2836  * the function gets the first available completion (by marking it "used")
2837  * and initialize its values.
2838  */
2839 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
2840 {
2841 	struct multi_cs_completion *mcs_compl;
2842 	int i;
2843 
2844 	/* find free multi_cs completion structure */
2845 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2846 		mcs_compl = &hdev->multi_cs_completion[i];
2847 		spin_lock(&mcs_compl->lock);
2848 		if (!mcs_compl->used) {
2849 			mcs_compl->used = 1;
2850 			mcs_compl->timestamp = 0;
2851 			/*
2852 			 * init QID map to 0 to avoid completion by CSs. the actual QID map
2853 			 * to multi-CS CSs will be set incrementally at a later stage
2854 			 */
2855 			mcs_compl->stream_master_qid_map = 0;
2856 			spin_unlock(&mcs_compl->lock);
2857 			break;
2858 		}
2859 		spin_unlock(&mcs_compl->lock);
2860 	}
2861 
2862 	if (i == MULTI_CS_MAX_USER_CTX) {
2863 		dev_err(hdev->dev, "no available multi-CS completion structure\n");
2864 		return ERR_PTR(-ENOMEM);
2865 	}
2866 	return mcs_compl;
2867 }
2868 
2869 /*
2870  * hl_wait_multi_cs_completion_fini - return completion structure and set as
2871  *                                    unused
2872  *
2873  * @mcs_compl: pointer to the completion structure
2874  */
2875 static void hl_wait_multi_cs_completion_fini(
2876 					struct multi_cs_completion *mcs_compl)
2877 {
2878 	/*
2879 	 * free completion structure, do it under lock to be in-sync with the
2880 	 * thread that signals completion
2881 	 */
2882 	spin_lock(&mcs_compl->lock);
2883 	mcs_compl->used = 0;
2884 	spin_unlock(&mcs_compl->lock);
2885 }
2886 
2887 /*
2888  * hl_wait_multi_cs_completion - wait for first CS to complete
2889  *
2890  * @mcs_data: multi-CS internal data
2891  *
2892  * @return 0 on success, otherwise non 0 error code
2893  */
2894 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
2895 						struct multi_cs_completion *mcs_compl)
2896 {
2897 	long completion_rc;
2898 
2899 	completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion,
2900 									mcs_data->timeout_jiffies);
2901 
2902 	/* update timestamp */
2903 	if (completion_rc > 0)
2904 		mcs_data->timestamp = mcs_compl->timestamp;
2905 
2906 	if (completion_rc == -ERESTARTSYS)
2907 		return completion_rc;
2908 
2909 	mcs_data->wait_status = completion_rc;
2910 
2911 	return 0;
2912 }
2913 
2914 /*
2915  * hl_multi_cs_completion_init - init array of multi-CS completion structures
2916  *
2917  * @hdev: pointer to habanalabs device structure
2918  */
2919 void hl_multi_cs_completion_init(struct hl_device *hdev)
2920 {
2921 	struct multi_cs_completion *mcs_cmpl;
2922 	int i;
2923 
2924 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2925 		mcs_cmpl = &hdev->multi_cs_completion[i];
2926 		mcs_cmpl->used = 0;
2927 		spin_lock_init(&mcs_cmpl->lock);
2928 		init_completion(&mcs_cmpl->completion);
2929 	}
2930 }
2931 
2932 /*
2933  * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
2934  *
2935  * @hpriv: pointer to the private data of the fd
2936  * @data: pointer to multi-CS wait ioctl in/out args
2937  *
2938  */
2939 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2940 {
2941 	struct multi_cs_completion *mcs_compl;
2942 	struct hl_device *hdev = hpriv->hdev;
2943 	struct multi_cs_data mcs_data = {};
2944 	union hl_wait_cs_args *args = data;
2945 	struct hl_ctx *ctx = hpriv->ctx;
2946 	struct hl_fence **fence_arr;
2947 	void __user *seq_arr;
2948 	u32 size_to_copy;
2949 	u64 *cs_seq_arr;
2950 	u8 seq_arr_len;
2951 	int rc, i;
2952 
2953 	for (i = 0 ; i < sizeof(args->in.pad) ; i++)
2954 		if (args->in.pad[i]) {
2955 			dev_dbg(hdev->dev, "Padding bytes must be 0\n");
2956 			return -EINVAL;
2957 		}
2958 
2959 	if (!hdev->supports_wait_for_multi_cs) {
2960 		dev_err(hdev->dev, "Wait for multi CS is not supported\n");
2961 		return -EPERM;
2962 	}
2963 
2964 	seq_arr_len = args->in.seq_arr_len;
2965 
2966 	if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
2967 		dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
2968 				HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
2969 		return -EINVAL;
2970 	}
2971 
2972 	/* allocate memory for sequence array */
2973 	cs_seq_arr =
2974 		kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
2975 	if (!cs_seq_arr)
2976 		return -ENOMEM;
2977 
2978 	/* copy CS sequence array from user */
2979 	seq_arr = (void __user *) (uintptr_t) args->in.seq;
2980 	size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
2981 	if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
2982 		dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
2983 		rc = -EFAULT;
2984 		goto free_seq_arr;
2985 	}
2986 
2987 	/* allocate array for the fences */
2988 	fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL);
2989 	if (!fence_arr) {
2990 		rc = -ENOMEM;
2991 		goto free_seq_arr;
2992 	}
2993 
2994 	/* initialize the multi-CS internal data */
2995 	mcs_data.ctx = ctx;
2996 	mcs_data.seq_arr = cs_seq_arr;
2997 	mcs_data.fence_arr = fence_arr;
2998 	mcs_data.arr_len = seq_arr_len;
2999 
3000 	hl_ctx_get(ctx);
3001 
3002 	/* wait (with timeout) for the first CS to be completed */
3003 	mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us);
3004 	mcs_compl = hl_wait_multi_cs_completion_init(hdev);
3005 	if (IS_ERR(mcs_compl)) {
3006 		rc = PTR_ERR(mcs_compl);
3007 		goto put_ctx;
3008 	}
3009 
3010 	/* poll all CS fences, extract timestamp */
3011 	mcs_data.update_ts = true;
3012 	rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3013 	/*
3014 	 * skip wait for CS completion when one of the below is true:
3015 	 * - an error on the poll function
3016 	 * - one or more CS in the list completed
3017 	 * - the user called ioctl with timeout 0
3018 	 */
3019 	if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
3020 		goto completion_fini;
3021 
3022 	while (true) {
3023 		rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl);
3024 		if (rc || (mcs_data.wait_status == 0))
3025 			break;
3026 
3027 		/*
3028 		 * poll fences once again to update the CS map.
3029 		 * no timestamp should be updated this time.
3030 		 */
3031 		mcs_data.update_ts = false;
3032 		rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3033 
3034 		if (rc || mcs_data.completion_bitmap)
3035 			break;
3036 
3037 		/*
3038 		 * if hl_wait_multi_cs_completion returned before timeout (i.e.
3039 		 * it got a completion) it either got completed by CS in the multi CS list
3040 		 * (in which case the indication will be non empty completion_bitmap) or it
3041 		 * got completed by CS submitted to one of the shared stream master but
3042 		 * not in the multi CS list (in which case we should wait again but modify
3043 		 * the timeout and set timestamp as zero to let a CS related to the current
3044 		 * multi-CS set a new, relevant, timestamp)
3045 		 */
3046 		mcs_data.timeout_jiffies = mcs_data.wait_status;
3047 		mcs_compl->timestamp = 0;
3048 	}
3049 
3050 completion_fini:
3051 	hl_wait_multi_cs_completion_fini(mcs_compl);
3052 
3053 put_ctx:
3054 	hl_ctx_put(ctx);
3055 	kfree(fence_arr);
3056 
3057 free_seq_arr:
3058 	kfree(cs_seq_arr);
3059 
3060 	if (rc == -ERESTARTSYS) {
3061 		dev_err_ratelimited(hdev->dev,
3062 				"user process got signal while waiting for Multi-CS\n");
3063 		rc = -EINTR;
3064 	}
3065 
3066 	if (rc)
3067 		return rc;
3068 
3069 	/* update output args */
3070 	memset(args, 0, sizeof(*args));
3071 
3072 	if (mcs_data.completion_bitmap) {
3073 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3074 		args->out.cs_completion_map = mcs_data.completion_bitmap;
3075 
3076 		/* if timestamp not 0- it's valid */
3077 		if (mcs_data.timestamp) {
3078 			args->out.timestamp_nsec = mcs_data.timestamp;
3079 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3080 		}
3081 
3082 		/* update if some CS was gone */
3083 		if (!mcs_data.timestamp)
3084 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3085 	} else {
3086 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3087 	}
3088 
3089 	return 0;
3090 }
3091 
3092 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3093 {
3094 	struct hl_device *hdev = hpriv->hdev;
3095 	union hl_wait_cs_args *args = data;
3096 	enum hl_cs_wait_status status;
3097 	u64 seq = args->in.seq;
3098 	s64 timestamp;
3099 	int rc;
3100 
3101 	rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, &timestamp);
3102 
3103 	if (rc == -ERESTARTSYS) {
3104 		dev_err_ratelimited(hdev->dev,
3105 			"user process got signal while waiting for CS handle %llu\n",
3106 			seq);
3107 		return -EINTR;
3108 	}
3109 
3110 	memset(args, 0, sizeof(*args));
3111 
3112 	if (rc) {
3113 		if (rc == -ETIMEDOUT) {
3114 			dev_err_ratelimited(hdev->dev,
3115 				"CS %llu has timed-out while user process is waiting for it\n",
3116 				seq);
3117 			args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
3118 		} else if (rc == -EIO) {
3119 			dev_err_ratelimited(hdev->dev,
3120 				"CS %llu has been aborted while user process is waiting for it\n",
3121 				seq);
3122 			args->out.status = HL_WAIT_CS_STATUS_ABORTED;
3123 		}
3124 		return rc;
3125 	}
3126 
3127 	if (timestamp) {
3128 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3129 		args->out.timestamp_nsec = timestamp;
3130 	}
3131 
3132 	switch (status) {
3133 	case CS_WAIT_STATUS_GONE:
3134 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3135 		fallthrough;
3136 	case CS_WAIT_STATUS_COMPLETED:
3137 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3138 		break;
3139 	case CS_WAIT_STATUS_BUSY:
3140 	default:
3141 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3142 		break;
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf,
3149 					struct hl_cb *cq_cb,
3150 					u64 ts_offset, u64 cq_offset, u64 target_value,
3151 					spinlock_t *wait_list_lock,
3152 					struct hl_user_pending_interrupt **pend)
3153 {
3154 	struct hl_ts_buff *ts_buff = buf->private;
3155 	struct hl_user_pending_interrupt *requested_offset_record =
3156 				(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3157 				ts_offset;
3158 	struct hl_user_pending_interrupt *cb_last =
3159 			(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3160 			(ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
3161 	unsigned long iter_counter = 0;
3162 	u64 current_cq_counter;
3163 	ktime_t timestamp;
3164 
3165 	/* Validate ts_offset not exceeding last max */
3166 	if (requested_offset_record >= cb_last) {
3167 		dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n",
3168 								(u64)(uintptr_t)cb_last);
3169 		return -EINVAL;
3170 	}
3171 
3172 	timestamp = ktime_get();
3173 
3174 start_over:
3175 	spin_lock(wait_list_lock);
3176 
3177 	/* Unregister only if we didn't reach the target value
3178 	 * since in this case there will be no handling in irq context
3179 	 * and then it's safe to delete the node out of the interrupt list
3180 	 * then re-use it on other interrupt
3181 	 */
3182 	if (requested_offset_record->ts_reg_info.in_use) {
3183 		current_cq_counter = *requested_offset_record->cq_kernel_addr;
3184 		if (current_cq_counter < requested_offset_record->cq_target_value) {
3185 			list_del(&requested_offset_record->wait_list_node);
3186 			spin_unlock(wait_list_lock);
3187 
3188 			hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf);
3189 			hl_cb_put(requested_offset_record->ts_reg_info.cq_cb);
3190 
3191 			dev_dbg(buf->mmg->dev,
3192 				"ts node removed from interrupt list now can re-use\n");
3193 		} else {
3194 			dev_dbg(buf->mmg->dev,
3195 				"ts node in middle of irq handling\n");
3196 
3197 			/* irq thread handling in the middle give it time to finish */
3198 			spin_unlock(wait_list_lock);
3199 			usleep_range(100, 1000);
3200 			if (++iter_counter == MAX_TS_ITER_NUM) {
3201 				dev_err(buf->mmg->dev,
3202 					"Timestamp offset processing reached timeout of %lld ms\n",
3203 					ktime_ms_delta(ktime_get(), timestamp));
3204 				return -EAGAIN;
3205 			}
3206 
3207 			goto start_over;
3208 		}
3209 	} else {
3210 		/* Fill up the new registration node info */
3211 		requested_offset_record->ts_reg_info.buf = buf;
3212 		requested_offset_record->ts_reg_info.cq_cb = cq_cb;
3213 		requested_offset_record->ts_reg_info.timestamp_kernel_addr =
3214 				(u64 *) ts_buff->user_buff_address + ts_offset;
3215 		requested_offset_record->cq_kernel_addr =
3216 				(u64 *) cq_cb->kernel_address + cq_offset;
3217 		requested_offset_record->cq_target_value = target_value;
3218 
3219 		spin_unlock(wait_list_lock);
3220 	}
3221 
3222 	*pend = requested_offset_record;
3223 
3224 	dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n",
3225 		requested_offset_record);
3226 	return 0;
3227 }
3228 
3229 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
3230 				struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg,
3231 				u64 timeout_us, u64 cq_counters_handle,	u64 cq_counters_offset,
3232 				u64 target_value, struct hl_user_interrupt *interrupt,
3233 				bool register_ts_record, u64 ts_handle, u64 ts_offset,
3234 				u32 *status, u64 *timestamp)
3235 {
3236 	struct hl_user_pending_interrupt *pend;
3237 	struct hl_mmap_mem_buf *buf;
3238 	struct hl_cb *cq_cb;
3239 	unsigned long timeout;
3240 	long completion_rc;
3241 	int rc = 0;
3242 
3243 	timeout = hl_usecs64_to_jiffies(timeout_us);
3244 
3245 	hl_ctx_get(ctx);
3246 
3247 	cq_cb = hl_cb_get(cb_mmg, cq_counters_handle);
3248 	if (!cq_cb) {
3249 		rc = -EINVAL;
3250 		goto put_ctx;
3251 	}
3252 
3253 	/* Validate the cq offset */
3254 	if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >=
3255 			((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) {
3256 		rc = -EINVAL;
3257 		goto put_cq_cb;
3258 	}
3259 
3260 	if (register_ts_record) {
3261 		dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n",
3262 					interrupt->interrupt_id, ts_offset, cq_counters_offset);
3263 		buf = hl_mmap_mem_buf_get(mmg, ts_handle);
3264 		if (!buf) {
3265 			rc = -EINVAL;
3266 			goto put_cq_cb;
3267 		}
3268 
3269 		/* get ts buffer record */
3270 		rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset,
3271 						cq_counters_offset, target_value,
3272 						&interrupt->wait_list_lock, &pend);
3273 		if (rc)
3274 			goto put_ts_buff;
3275 	} else {
3276 		pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3277 		if (!pend) {
3278 			rc = -ENOMEM;
3279 			goto put_cq_cb;
3280 		}
3281 		hl_fence_init(&pend->fence, ULONG_MAX);
3282 		pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset;
3283 		pend->cq_target_value = target_value;
3284 	}
3285 
3286 	spin_lock(&interrupt->wait_list_lock);
3287 
3288 	/* We check for completion value as interrupt could have been received
3289 	 * before we added the node to the wait list
3290 	 */
3291 	if (*pend->cq_kernel_addr >= target_value) {
3292 		if (register_ts_record)
3293 			pend->ts_reg_info.in_use = 0;
3294 		spin_unlock(&interrupt->wait_list_lock);
3295 
3296 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3297 
3298 		if (register_ts_record) {
3299 			*pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
3300 			goto put_ts_buff;
3301 		} else {
3302 			pend->fence.timestamp = ktime_get();
3303 			goto set_timestamp;
3304 		}
3305 	} else if (!timeout_us) {
3306 		spin_unlock(&interrupt->wait_list_lock);
3307 		*status = HL_WAIT_CS_STATUS_BUSY;
3308 		pend->fence.timestamp = ktime_get();
3309 		goto set_timestamp;
3310 	}
3311 
3312 	/* Add pending user interrupt to relevant list for the interrupt
3313 	 * handler to monitor.
3314 	 * Note that we cannot have sorted list by target value,
3315 	 * in order to shorten the list pass loop, since
3316 	 * same list could have nodes for different cq counter handle.
3317 	 * Note:
3318 	 * Mark ts buff offset as in use here in the spinlock protection area
3319 	 * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record
3320 	 * before adding the node to the list. this scenario might happen when
3321 	 * multiple threads are racing on same offset and one thread could
3322 	 * set the ts buff in ts_buff_get_kernel_ts_record then the other thread
3323 	 * takes over and get to ts_buff_get_kernel_ts_record and then we will try
3324 	 * to re-use the same ts buff offset, and will try to delete a non existing
3325 	 * node from the list.
3326 	 */
3327 	if (register_ts_record)
3328 		pend->ts_reg_info.in_use = 1;
3329 
3330 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3331 	spin_unlock(&interrupt->wait_list_lock);
3332 
3333 	if (register_ts_record) {
3334 		rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
3335 		goto ts_registration_exit;
3336 	}
3337 
3338 	/* Wait for interrupt handler to signal completion */
3339 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3340 								timeout);
3341 	if (completion_rc > 0) {
3342 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3343 	} else {
3344 		if (completion_rc == -ERESTARTSYS) {
3345 			dev_err_ratelimited(hdev->dev,
3346 					"user process got signal while waiting for interrupt ID %d\n",
3347 					interrupt->interrupt_id);
3348 			rc = -EINTR;
3349 			*status = HL_WAIT_CS_STATUS_ABORTED;
3350 		} else {
3351 			if (pend->fence.error == -EIO) {
3352 				dev_err_ratelimited(hdev->dev,
3353 						"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3354 						pend->fence.error);
3355 				rc = -EIO;
3356 				*status = HL_WAIT_CS_STATUS_ABORTED;
3357 			} else {
3358 				/* The wait has timed-out. We don't know anything beyond that
3359 				 * because the workload wasn't submitted through the driver.
3360 				 * Therefore, from driver's perspective, the workload is still
3361 				 * executing.
3362 				 */
3363 				rc = 0;
3364 				*status = HL_WAIT_CS_STATUS_BUSY;
3365 			}
3366 		}
3367 	}
3368 
3369 	/*
3370 	 * We keep removing the node from list here, and not at the irq handler
3371 	 * for completion timeout case. and if it's a registration
3372 	 * for ts record, the node will be deleted in the irq handler after
3373 	 * we reach the target value.
3374 	 */
3375 	spin_lock(&interrupt->wait_list_lock);
3376 	list_del(&pend->wait_list_node);
3377 	spin_unlock(&interrupt->wait_list_lock);
3378 
3379 set_timestamp:
3380 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3381 	kfree(pend);
3382 	hl_cb_put(cq_cb);
3383 ts_registration_exit:
3384 	hl_ctx_put(ctx);
3385 
3386 	return rc;
3387 
3388 put_ts_buff:
3389 	hl_mmap_mem_buf_put(buf);
3390 put_cq_cb:
3391 	hl_cb_put(cq_cb);
3392 put_ctx:
3393 	hl_ctx_put(ctx);
3394 
3395 	return rc;
3396 }
3397 
3398 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
3399 				u64 timeout_us, u64 user_address,
3400 				u64 target_value, struct hl_user_interrupt *interrupt,
3401 				u32 *status,
3402 				u64 *timestamp)
3403 {
3404 	struct hl_user_pending_interrupt *pend;
3405 	unsigned long timeout;
3406 	u64 completion_value;
3407 	long completion_rc;
3408 	int rc = 0;
3409 
3410 	timeout = hl_usecs64_to_jiffies(timeout_us);
3411 
3412 	hl_ctx_get(ctx);
3413 
3414 	pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3415 	if (!pend) {
3416 		hl_ctx_put(ctx);
3417 		return -ENOMEM;
3418 	}
3419 
3420 	hl_fence_init(&pend->fence, ULONG_MAX);
3421 
3422 	/* Add pending user interrupt to relevant list for the interrupt
3423 	 * handler to monitor
3424 	 */
3425 	spin_lock(&interrupt->wait_list_lock);
3426 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3427 	spin_unlock(&interrupt->wait_list_lock);
3428 
3429 	/* We check for completion value as interrupt could have been received
3430 	 * before we added the node to the wait list
3431 	 */
3432 	if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3433 		dev_err(hdev->dev, "Failed to copy completion value from user\n");
3434 		rc = -EFAULT;
3435 		goto remove_pending_user_interrupt;
3436 	}
3437 
3438 	if (completion_value >= target_value) {
3439 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3440 		/* There was no interrupt, we assume the completion is now. */
3441 		pend->fence.timestamp = ktime_get();
3442 	} else {
3443 		*status = HL_WAIT_CS_STATUS_BUSY;
3444 	}
3445 
3446 	if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
3447 		goto remove_pending_user_interrupt;
3448 
3449 wait_again:
3450 	/* Wait for interrupt handler to signal completion */
3451 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3452 										timeout);
3453 
3454 	/* If timeout did not expire we need to perform the comparison.
3455 	 * If comparison fails, keep waiting until timeout expires
3456 	 */
3457 	if (completion_rc > 0) {
3458 		spin_lock(&interrupt->wait_list_lock);
3459 		/* reinit_completion must be called before we check for user
3460 		 * completion value, otherwise, if interrupt is received after
3461 		 * the comparison and before the next wait_for_completion,
3462 		 * we will reach timeout and fail
3463 		 */
3464 		reinit_completion(&pend->fence.completion);
3465 		spin_unlock(&interrupt->wait_list_lock);
3466 
3467 		if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3468 			dev_err(hdev->dev, "Failed to copy completion value from user\n");
3469 			rc = -EFAULT;
3470 
3471 			goto remove_pending_user_interrupt;
3472 		}
3473 
3474 		if (completion_value >= target_value) {
3475 			*status = HL_WAIT_CS_STATUS_COMPLETED;
3476 		} else if (pend->fence.error) {
3477 			dev_err_ratelimited(hdev->dev,
3478 				"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3479 				pend->fence.error);
3480 			/* set the command completion status as ABORTED */
3481 			*status = HL_WAIT_CS_STATUS_ABORTED;
3482 		} else {
3483 			timeout = completion_rc;
3484 			goto wait_again;
3485 		}
3486 	} else if (completion_rc == -ERESTARTSYS) {
3487 		dev_err_ratelimited(hdev->dev,
3488 			"user process got signal while waiting for interrupt ID %d\n",
3489 			interrupt->interrupt_id);
3490 		rc = -EINTR;
3491 	} else {
3492 		/* The wait has timed-out. We don't know anything beyond that
3493 		 * because the workload wasn't submitted through the driver.
3494 		 * Therefore, from driver's perspective, the workload is still
3495 		 * executing.
3496 		 */
3497 		rc = 0;
3498 		*status = HL_WAIT_CS_STATUS_BUSY;
3499 	}
3500 
3501 remove_pending_user_interrupt:
3502 	spin_lock(&interrupt->wait_list_lock);
3503 	list_del(&pend->wait_list_node);
3504 	spin_unlock(&interrupt->wait_list_lock);
3505 
3506 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3507 
3508 	kfree(pend);
3509 	hl_ctx_put(ctx);
3510 
3511 	return rc;
3512 }
3513 
3514 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3515 {
3516 	u16 interrupt_id, first_interrupt, last_interrupt;
3517 	struct hl_device *hdev = hpriv->hdev;
3518 	struct asic_fixed_properties *prop;
3519 	struct hl_user_interrupt *interrupt;
3520 	union hl_wait_cs_args *args = data;
3521 	u32 status = HL_WAIT_CS_STATUS_BUSY;
3522 	u64 timestamp = 0;
3523 	int rc, int_idx;
3524 
3525 	prop = &hdev->asic_prop;
3526 
3527 	if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) {
3528 		dev_err(hdev->dev, "no user interrupts allowed");
3529 		return -EPERM;
3530 	}
3531 
3532 	interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
3533 
3534 	first_interrupt = prop->first_available_user_interrupt;
3535 	last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1;
3536 
3537 	if (interrupt_id < prop->user_dec_intr_count) {
3538 
3539 		/* Check if the requested core is enabled */
3540 		if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) {
3541 			dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed",
3542 				interrupt_id);
3543 			return -EINVAL;
3544 		}
3545 
3546 		interrupt = &hdev->user_interrupt[interrupt_id];
3547 
3548 	} else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) {
3549 
3550 		int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count;
3551 		interrupt = &hdev->user_interrupt[int_idx];
3552 
3553 	} else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) {
3554 		interrupt = &hdev->common_user_cq_interrupt;
3555 	} else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) {
3556 		interrupt = &hdev->common_decoder_interrupt;
3557 	} else {
3558 		dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
3559 		return -EINVAL;
3560 	}
3561 
3562 	if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ)
3563 		rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr,
3564 				args->in.interrupt_timeout_us, args->in.cq_counters_handle,
3565 				args->in.cq_counters_offset,
3566 				args->in.target, interrupt,
3567 				!!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT),
3568 				args->in.timestamp_handle, args->in.timestamp_offset,
3569 				&status, &timestamp);
3570 	else
3571 		rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
3572 				args->in.interrupt_timeout_us, args->in.addr,
3573 				args->in.target, interrupt, &status,
3574 				&timestamp);
3575 	if (rc)
3576 		return rc;
3577 
3578 	memset(args, 0, sizeof(*args));
3579 	args->out.status = status;
3580 
3581 	if (timestamp) {
3582 		args->out.timestamp_nsec = timestamp;
3583 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3584 	}
3585 
3586 	return 0;
3587 }
3588 
3589 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3590 {
3591 	struct hl_device *hdev = hpriv->hdev;
3592 	union hl_wait_cs_args *args = data;
3593 	u32 flags = args->in.flags;
3594 	int rc;
3595 
3596 	/* If the device is not operational, or if an error has happened and user should release the
3597 	 * device, there is no point in waiting for any command submission or user interrupt.
3598 	 */
3599 	if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active)
3600 		return -EBUSY;
3601 
3602 	if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
3603 		rc = hl_interrupt_wait_ioctl(hpriv, data);
3604 	else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
3605 		rc = hl_multi_cs_wait_ioctl(hpriv, data);
3606 	else
3607 		rc = hl_cs_wait_ioctl(hpriv, data);
3608 
3609 	return rc;
3610 }
3611