1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2021 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include <uapi/drm/habanalabs_accel.h> 9 #include "habanalabs.h" 10 11 #include <linux/uaccess.h> 12 #include <linux/slab.h> 13 14 #define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \ 15 HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \ 16 HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \ 17 HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) 18 19 20 #define MAX_TS_ITER_NUM 100 21 22 /** 23 * enum hl_cs_wait_status - cs wait status 24 * @CS_WAIT_STATUS_BUSY: cs was not completed yet 25 * @CS_WAIT_STATUS_COMPLETED: cs completed 26 * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone 27 */ 28 enum hl_cs_wait_status { 29 CS_WAIT_STATUS_BUSY, 30 CS_WAIT_STATUS_COMPLETED, 31 CS_WAIT_STATUS_GONE 32 }; 33 34 static void job_wq_completion(struct work_struct *work); 35 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, 36 enum hl_cs_wait_status *status, s64 *timestamp); 37 static void cs_do_release(struct kref *ref); 38 39 static void hl_push_cs_outcome(struct hl_device *hdev, 40 struct hl_cs_outcome_store *outcome_store, 41 u64 seq, ktime_t ts, int error) 42 { 43 struct hl_cs_outcome *node; 44 unsigned long flags; 45 46 /* 47 * CS outcome store supports the following operations: 48 * push outcome - store a recent CS outcome in the store 49 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store 50 * It uses 2 lists: used list and free list. 51 * It has a pre-allocated amount of nodes, each node stores 52 * a single CS outcome. 53 * Initially, all the nodes are in the free list. 54 * On push outcome, a node (any) is taken from the free list, its 55 * information is filled in, and the node is moved to the used list. 56 * It is possible, that there are no nodes left in the free list. 57 * In this case, we will lose some information about old outcomes. We 58 * will pop the OLDEST node from the used list, and make it free. 59 * On pop, the node is searched for in the used list (using a search 60 * index). 61 * If found, the node is then removed from the used list, and moved 62 * back to the free list. The outcome data that the node contained is 63 * returned back to the user. 64 */ 65 66 spin_lock_irqsave(&outcome_store->db_lock, flags); 67 68 if (list_empty(&outcome_store->free_list)) { 69 node = list_last_entry(&outcome_store->used_list, 70 struct hl_cs_outcome, list_link); 71 hash_del(&node->map_link); 72 dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq); 73 } else { 74 node = list_last_entry(&outcome_store->free_list, 75 struct hl_cs_outcome, list_link); 76 } 77 78 list_del_init(&node->list_link); 79 80 node->seq = seq; 81 node->ts = ts; 82 node->error = error; 83 84 list_add(&node->list_link, &outcome_store->used_list); 85 hash_add(outcome_store->outcome_map, &node->map_link, node->seq); 86 87 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 88 } 89 90 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store, 91 u64 seq, ktime_t *ts, int *error) 92 { 93 struct hl_cs_outcome *node; 94 unsigned long flags; 95 96 spin_lock_irqsave(&outcome_store->db_lock, flags); 97 98 hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq) 99 if (node->seq == seq) { 100 *ts = node->ts; 101 *error = node->error; 102 103 hash_del(&node->map_link); 104 list_del_init(&node->list_link); 105 list_add(&node->list_link, &outcome_store->free_list); 106 107 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 108 109 return true; 110 } 111 112 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 113 114 return false; 115 } 116 117 static void hl_sob_reset(struct kref *ref) 118 { 119 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, 120 kref); 121 struct hl_device *hdev = hw_sob->hdev; 122 123 dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id); 124 125 hdev->asic_funcs->reset_sob(hdev, hw_sob); 126 127 hw_sob->need_reset = false; 128 } 129 130 void hl_sob_reset_error(struct kref *ref) 131 { 132 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, 133 kref); 134 struct hl_device *hdev = hw_sob->hdev; 135 136 dev_crit(hdev->dev, 137 "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n", 138 hw_sob->q_idx, hw_sob->sob_id); 139 } 140 141 void hw_sob_put(struct hl_hw_sob *hw_sob) 142 { 143 if (hw_sob) 144 kref_put(&hw_sob->kref, hl_sob_reset); 145 } 146 147 static void hw_sob_put_err(struct hl_hw_sob *hw_sob) 148 { 149 if (hw_sob) 150 kref_put(&hw_sob->kref, hl_sob_reset_error); 151 } 152 153 void hw_sob_get(struct hl_hw_sob *hw_sob) 154 { 155 if (hw_sob) 156 kref_get(&hw_sob->kref); 157 } 158 159 /** 160 * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet 161 * @sob_base: sob base id 162 * @sob_mask: sob user mask, each bit represents a sob offset from sob base 163 * @mask: generated mask 164 * 165 * Return: 0 if given parameters are valid 166 */ 167 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask) 168 { 169 int i; 170 171 if (sob_mask == 0) 172 return -EINVAL; 173 174 if (sob_mask == 0x1) { 175 *mask = ~(1 << (sob_base & 0x7)); 176 } else { 177 /* find msb in order to verify sob range is valid */ 178 for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--) 179 if (BIT(i) & sob_mask) 180 break; 181 182 if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1)) 183 return -EINVAL; 184 185 *mask = ~sob_mask; 186 } 187 188 return 0; 189 } 190 191 static void hl_fence_release(struct kref *kref) 192 { 193 struct hl_fence *fence = 194 container_of(kref, struct hl_fence, refcount); 195 struct hl_cs_compl *hl_cs_cmpl = 196 container_of(fence, struct hl_cs_compl, base_fence); 197 198 kfree(hl_cs_cmpl); 199 } 200 201 void hl_fence_put(struct hl_fence *fence) 202 { 203 if (IS_ERR_OR_NULL(fence)) 204 return; 205 kref_put(&fence->refcount, hl_fence_release); 206 } 207 208 void hl_fences_put(struct hl_fence **fence, int len) 209 { 210 int i; 211 212 for (i = 0; i < len; i++, fence++) 213 hl_fence_put(*fence); 214 } 215 216 void hl_fence_get(struct hl_fence *fence) 217 { 218 if (fence) 219 kref_get(&fence->refcount); 220 } 221 222 static void hl_fence_init(struct hl_fence *fence, u64 sequence) 223 { 224 kref_init(&fence->refcount); 225 fence->cs_sequence = sequence; 226 fence->error = 0; 227 fence->timestamp = ktime_set(0, 0); 228 fence->mcs_handling_done = false; 229 init_completion(&fence->completion); 230 } 231 232 void cs_get(struct hl_cs *cs) 233 { 234 kref_get(&cs->refcount); 235 } 236 237 static int cs_get_unless_zero(struct hl_cs *cs) 238 { 239 return kref_get_unless_zero(&cs->refcount); 240 } 241 242 static void cs_put(struct hl_cs *cs) 243 { 244 kref_put(&cs->refcount, cs_do_release); 245 } 246 247 static void cs_job_do_release(struct kref *ref) 248 { 249 struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount); 250 251 kfree(job); 252 } 253 254 static void hl_cs_job_put(struct hl_cs_job *job) 255 { 256 kref_put(&job->refcount, cs_job_do_release); 257 } 258 259 bool cs_needs_completion(struct hl_cs *cs) 260 { 261 /* In case this is a staged CS, only the last CS in sequence should 262 * get a completion, any non staged CS will always get a completion 263 */ 264 if (cs->staged_cs && !cs->staged_last) 265 return false; 266 267 return true; 268 } 269 270 bool cs_needs_timeout(struct hl_cs *cs) 271 { 272 /* In case this is a staged CS, only the first CS in sequence should 273 * get a timeout, any non staged CS will always get a timeout 274 */ 275 if (cs->staged_cs && !cs->staged_first) 276 return false; 277 278 return true; 279 } 280 281 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job) 282 { 283 /* 284 * Patched CB is created for external queues jobs, and for H/W queues 285 * jobs if the user CB was allocated by driver and MMU is disabled. 286 */ 287 return (job->queue_type == QUEUE_TYPE_EXT || 288 (job->queue_type == QUEUE_TYPE_HW && 289 job->is_kernel_allocated_cb && 290 !hdev->mmu_enable)); 291 } 292 293 /* 294 * cs_parser - parse the user command submission 295 * 296 * @hpriv : pointer to the private data of the fd 297 * @job : pointer to the job that holds the command submission info 298 * 299 * The function parses the command submission of the user. It calls the 300 * ASIC specific parser, which returns a list of memory blocks to send 301 * to the device as different command buffers 302 * 303 */ 304 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job) 305 { 306 struct hl_device *hdev = hpriv->hdev; 307 struct hl_cs_parser parser; 308 int rc; 309 310 parser.ctx_id = job->cs->ctx->asid; 311 parser.cs_sequence = job->cs->sequence; 312 parser.job_id = job->id; 313 314 parser.hw_queue_id = job->hw_queue_id; 315 parser.job_userptr_list = &job->userptr_list; 316 parser.patched_cb = NULL; 317 parser.user_cb = job->user_cb; 318 parser.user_cb_size = job->user_cb_size; 319 parser.queue_type = job->queue_type; 320 parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb; 321 job->patched_cb = NULL; 322 parser.completion = cs_needs_completion(job->cs); 323 324 rc = hdev->asic_funcs->cs_parser(hdev, &parser); 325 326 if (is_cb_patched(hdev, job)) { 327 if (!rc) { 328 job->patched_cb = parser.patched_cb; 329 job->job_cb_size = parser.patched_cb_size; 330 job->contains_dma_pkt = parser.contains_dma_pkt; 331 atomic_inc(&job->patched_cb->cs_cnt); 332 } 333 334 /* 335 * Whether the parsing worked or not, we don't need the 336 * original CB anymore because it was already parsed and 337 * won't be accessed again for this CS 338 */ 339 atomic_dec(&job->user_cb->cs_cnt); 340 hl_cb_put(job->user_cb); 341 job->user_cb = NULL; 342 } else if (!rc) { 343 job->job_cb_size = job->user_cb_size; 344 } 345 346 return rc; 347 } 348 349 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job) 350 { 351 struct hl_cs *cs = job->cs; 352 353 if (is_cb_patched(hdev, job)) { 354 hl_userptr_delete_list(hdev, &job->userptr_list); 355 356 /* 357 * We might arrive here from rollback and patched CB wasn't 358 * created, so we need to check it's not NULL 359 */ 360 if (job->patched_cb) { 361 atomic_dec(&job->patched_cb->cs_cnt); 362 hl_cb_put(job->patched_cb); 363 } 364 } 365 366 /* For H/W queue jobs, if a user CB was allocated by driver and MMU is 367 * enabled, the user CB isn't released in cs_parser() and thus should be 368 * released here. This is also true for INT queues jobs which were 369 * allocated by driver. 370 */ 371 if ((job->is_kernel_allocated_cb && 372 ((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) || 373 job->queue_type == QUEUE_TYPE_INT))) { 374 atomic_dec(&job->user_cb->cs_cnt); 375 hl_cb_put(job->user_cb); 376 } 377 378 /* 379 * This is the only place where there can be multiple threads 380 * modifying the list at the same time 381 */ 382 spin_lock(&cs->job_lock); 383 list_del(&job->cs_node); 384 spin_unlock(&cs->job_lock); 385 386 hl_debugfs_remove_job(hdev, job); 387 388 /* We decrement reference only for a CS that gets completion 389 * because the reference was incremented only for this kind of CS 390 * right before it was scheduled. 391 * 392 * In staged submission, only the last CS marked as 'staged_last' 393 * gets completion, hence its release function will be called from here. 394 * As for all the rest CS's in the staged submission which do not get 395 * completion, their CS reference will be decremented by the 396 * 'staged_last' CS during the CS release flow. 397 * All relevant PQ CI counters will be incremented during the CS release 398 * flow by calling 'hl_hw_queue_update_ci'. 399 */ 400 if (cs_needs_completion(cs) && 401 (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) { 402 403 /* In CS based completions, the timestamp is already available, 404 * so no need to extract it from job 405 */ 406 if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB) 407 cs->completion_timestamp = job->timestamp; 408 409 cs_put(cs); 410 } 411 412 hl_cs_job_put(job); 413 } 414 415 /* 416 * hl_staged_cs_find_first - locate the first CS in this staged submission 417 * 418 * @hdev: pointer to device structure 419 * @cs_seq: staged submission sequence number 420 * 421 * @note: This function must be called under 'hdev->cs_mirror_lock' 422 * 423 * Find and return a CS pointer with the given sequence 424 */ 425 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq) 426 { 427 struct hl_cs *cs; 428 429 list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node) 430 if (cs->staged_cs && cs->staged_first && 431 cs->sequence == cs_seq) 432 return cs; 433 434 return NULL; 435 } 436 437 /* 438 * is_staged_cs_last_exists - returns true if the last CS in sequence exists 439 * 440 * @hdev: pointer to device structure 441 * @cs: staged submission member 442 * 443 */ 444 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs) 445 { 446 struct hl_cs *last_entry; 447 448 last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs, 449 staged_cs_node); 450 451 if (last_entry->staged_last) 452 return true; 453 454 return false; 455 } 456 457 /* 458 * staged_cs_get - get CS reference if this CS is a part of a staged CS 459 * 460 * @hdev: pointer to device structure 461 * @cs: current CS 462 * @cs_seq: staged submission sequence number 463 * 464 * Increment CS reference for every CS in this staged submission except for 465 * the CS which get completion. 466 */ 467 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs) 468 { 469 /* Only the last CS in this staged submission will get a completion. 470 * We must increment the reference for all other CS's in this 471 * staged submission. 472 * Once we get a completion we will release the whole staged submission. 473 */ 474 if (!cs->staged_last) 475 cs_get(cs); 476 } 477 478 /* 479 * staged_cs_put - put a CS in case it is part of staged submission 480 * 481 * @hdev: pointer to device structure 482 * @cs: CS to put 483 * 484 * This function decrements a CS reference (for a non completion CS) 485 */ 486 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs) 487 { 488 /* We release all CS's in a staged submission except the last 489 * CS which we have never incremented its reference. 490 */ 491 if (!cs_needs_completion(cs)) 492 cs_put(cs); 493 } 494 495 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs) 496 { 497 struct hl_cs *next = NULL, *iter, *first_cs; 498 499 if (!cs_needs_timeout(cs)) 500 return; 501 502 spin_lock(&hdev->cs_mirror_lock); 503 504 /* We need to handle tdr only once for the complete staged submission. 505 * Hence, we choose the CS that reaches this function first which is 506 * the CS marked as 'staged_last'. 507 * In case single staged cs was submitted which has both first and last 508 * indications, then "cs_find_first" below will return NULL, since we 509 * removed the cs node from the list before getting here, 510 * in such cases just continue with the cs to cancel it's TDR work. 511 */ 512 if (cs->staged_cs && cs->staged_last) { 513 first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence); 514 if (first_cs) 515 cs = first_cs; 516 } 517 518 spin_unlock(&hdev->cs_mirror_lock); 519 520 /* Don't cancel TDR in case this CS was timedout because we might be 521 * running from the TDR context 522 */ 523 if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT) 524 return; 525 526 if (cs->tdr_active) 527 cancel_delayed_work_sync(&cs->work_tdr); 528 529 spin_lock(&hdev->cs_mirror_lock); 530 531 /* queue TDR for next CS */ 532 list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node) 533 if (cs_needs_timeout(iter)) { 534 next = iter; 535 break; 536 } 537 538 if (next && !next->tdr_active) { 539 next->tdr_active = true; 540 schedule_delayed_work(&next->work_tdr, next->timeout_jiffies); 541 } 542 543 spin_unlock(&hdev->cs_mirror_lock); 544 } 545 546 /* 547 * force_complete_multi_cs - complete all contexts that wait on multi-CS 548 * 549 * @hdev: pointer to habanalabs device structure 550 */ 551 static void force_complete_multi_cs(struct hl_device *hdev) 552 { 553 int i; 554 555 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 556 struct multi_cs_completion *mcs_compl; 557 558 mcs_compl = &hdev->multi_cs_completion[i]; 559 560 spin_lock(&mcs_compl->lock); 561 562 if (!mcs_compl->used) { 563 spin_unlock(&mcs_compl->lock); 564 continue; 565 } 566 567 /* when calling force complete no context should be waiting on 568 * multi-cS. 569 * We are calling the function as a protection for such case 570 * to free any pending context and print error message 571 */ 572 dev_err(hdev->dev, 573 "multi-CS completion context %d still waiting when calling force completion\n", 574 i); 575 complete_all(&mcs_compl->completion); 576 spin_unlock(&mcs_compl->lock); 577 } 578 } 579 580 /* 581 * complete_multi_cs - complete all waiting entities on multi-CS 582 * 583 * @hdev: pointer to habanalabs device structure 584 * @cs: CS structure 585 * The function signals a waiting entity that has an overlapping stream masters 586 * with the completed CS. 587 * For example: 588 * - a completed CS worked on stream master QID 4, multi CS completion 589 * is actively waiting on stream master QIDs 3, 5. don't send signal as no 590 * common stream master QID 591 * - a completed CS worked on stream master QID 4, multi CS completion 592 * is actively waiting on stream master QIDs 3, 4. send signal as stream 593 * master QID 4 is common 594 */ 595 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs) 596 { 597 struct hl_fence *fence = cs->fence; 598 int i; 599 600 /* in case of multi CS check for completion only for the first CS */ 601 if (cs->staged_cs && !cs->staged_first) 602 return; 603 604 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 605 struct multi_cs_completion *mcs_compl; 606 607 mcs_compl = &hdev->multi_cs_completion[i]; 608 if (!mcs_compl->used) 609 continue; 610 611 spin_lock(&mcs_compl->lock); 612 613 /* 614 * complete if: 615 * 1. still waiting for completion 616 * 2. the completed CS has at least one overlapping stream 617 * master with the stream masters in the completion 618 */ 619 if (mcs_compl->used && 620 (fence->stream_master_qid_map & 621 mcs_compl->stream_master_qid_map)) { 622 /* extract the timestamp only of first completed CS */ 623 if (!mcs_compl->timestamp) 624 mcs_compl->timestamp = ktime_to_ns(fence->timestamp); 625 626 complete_all(&mcs_compl->completion); 627 628 /* 629 * Setting mcs_handling_done inside the lock ensures 630 * at least one fence have mcs_handling_done set to 631 * true before wait for mcs finish. This ensures at 632 * least one CS will be set as completed when polling 633 * mcs fences. 634 */ 635 fence->mcs_handling_done = true; 636 } 637 638 spin_unlock(&mcs_compl->lock); 639 } 640 /* In case CS completed without mcs completion initialized */ 641 fence->mcs_handling_done = true; 642 } 643 644 static inline void cs_release_sob_reset_handler(struct hl_device *hdev, 645 struct hl_cs *cs, 646 struct hl_cs_compl *hl_cs_cmpl) 647 { 648 /* Skip this handler if the cs wasn't submitted, to avoid putting 649 * the hw_sob twice, since this case already handled at this point, 650 * also skip if the hw_sob pointer wasn't set. 651 */ 652 if (!hl_cs_cmpl->hw_sob || !cs->submitted) 653 return; 654 655 spin_lock(&hl_cs_cmpl->lock); 656 657 /* 658 * we get refcount upon reservation of signals or signal/wait cs for the 659 * hw_sob object, and need to put it when the first staged cs 660 * (which contains the encaps signals) or cs signal/wait is completed. 661 */ 662 if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) || 663 (hl_cs_cmpl->type == CS_TYPE_WAIT) || 664 (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) || 665 (!!hl_cs_cmpl->encaps_signals)) { 666 dev_dbg(hdev->dev, 667 "CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n", 668 hl_cs_cmpl->cs_seq, 669 hl_cs_cmpl->type, 670 hl_cs_cmpl->hw_sob->sob_id, 671 hl_cs_cmpl->sob_val); 672 673 hw_sob_put(hl_cs_cmpl->hw_sob); 674 675 if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) 676 hdev->asic_funcs->reset_sob_group(hdev, 677 hl_cs_cmpl->sob_group); 678 } 679 680 spin_unlock(&hl_cs_cmpl->lock); 681 } 682 683 static void cs_do_release(struct kref *ref) 684 { 685 struct hl_cs *cs = container_of(ref, struct hl_cs, refcount); 686 struct hl_device *hdev = cs->ctx->hdev; 687 struct hl_cs_job *job, *tmp; 688 struct hl_cs_compl *hl_cs_cmpl = 689 container_of(cs->fence, struct hl_cs_compl, base_fence); 690 691 cs->completed = true; 692 693 /* 694 * Although if we reached here it means that all external jobs have 695 * finished, because each one of them took refcnt to CS, we still 696 * need to go over the internal jobs and complete them. Otherwise, we 697 * will have leaked memory and what's worse, the CS object (and 698 * potentially the CTX object) could be released, while the JOB 699 * still holds a pointer to them (but no reference). 700 */ 701 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 702 hl_complete_job(hdev, job); 703 704 if (!cs->submitted) { 705 /* 706 * In case the wait for signal CS was submitted, the fence put 707 * occurs in init_signal_wait_cs() or collective_wait_init_cs() 708 * right before hanging on the PQ. 709 */ 710 if (cs->type == CS_TYPE_WAIT || 711 cs->type == CS_TYPE_COLLECTIVE_WAIT) 712 hl_fence_put(cs->signal_fence); 713 714 goto out; 715 } 716 717 /* Need to update CI for all queue jobs that does not get completion */ 718 hl_hw_queue_update_ci(cs); 719 720 /* remove CS from CS mirror list */ 721 spin_lock(&hdev->cs_mirror_lock); 722 list_del_init(&cs->mirror_node); 723 spin_unlock(&hdev->cs_mirror_lock); 724 725 cs_handle_tdr(hdev, cs); 726 727 if (cs->staged_cs) { 728 /* the completion CS decrements reference for the entire 729 * staged submission 730 */ 731 if (cs->staged_last) { 732 struct hl_cs *staged_cs, *tmp_cs; 733 734 list_for_each_entry_safe(staged_cs, tmp_cs, 735 &cs->staged_cs_node, staged_cs_node) 736 staged_cs_put(hdev, staged_cs); 737 } 738 739 /* A staged CS will be a member in the list only after it 740 * was submitted. We used 'cs_mirror_lock' when inserting 741 * it to list so we will use it again when removing it 742 */ 743 if (cs->submitted) { 744 spin_lock(&hdev->cs_mirror_lock); 745 list_del(&cs->staged_cs_node); 746 spin_unlock(&hdev->cs_mirror_lock); 747 } 748 749 /* decrement refcount to handle when first staged cs 750 * with encaps signals is completed. 751 */ 752 if (hl_cs_cmpl->encaps_signals) 753 kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount, 754 hl_encaps_release_handle_and_put_ctx); 755 } 756 757 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals) 758 kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); 759 760 out: 761 /* Must be called before hl_ctx_put because inside we use ctx to get 762 * the device 763 */ 764 hl_debugfs_remove_cs(cs); 765 766 hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL; 767 768 /* We need to mark an error for not submitted because in that case 769 * the hl fence release flow is different. Mainly, we don't need 770 * to handle hw_sob for signal/wait 771 */ 772 if (cs->timedout) 773 cs->fence->error = -ETIMEDOUT; 774 else if (cs->aborted) 775 cs->fence->error = -EIO; 776 else if (!cs->submitted) 777 cs->fence->error = -EBUSY; 778 779 if (unlikely(cs->skip_reset_on_timeout)) { 780 dev_err(hdev->dev, 781 "Command submission %llu completed after %llu (s)\n", 782 cs->sequence, 783 div_u64(jiffies - cs->submission_time_jiffies, HZ)); 784 } 785 786 if (cs->timestamp) { 787 cs->fence->timestamp = cs->completion_timestamp; 788 hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence, 789 cs->fence->timestamp, cs->fence->error); 790 } 791 792 hl_ctx_put(cs->ctx); 793 794 complete_all(&cs->fence->completion); 795 complete_multi_cs(hdev, cs); 796 797 cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl); 798 799 hl_fence_put(cs->fence); 800 801 kfree(cs->jobs_in_queue_cnt); 802 kfree(cs); 803 } 804 805 static void cs_timedout(struct work_struct *work) 806 { 807 struct hl_device *hdev; 808 u64 event_mask = 0x0; 809 int rc; 810 struct hl_cs *cs = container_of(work, struct hl_cs, 811 work_tdr.work); 812 bool skip_reset_on_timeout = cs->skip_reset_on_timeout, device_reset = false; 813 814 rc = cs_get_unless_zero(cs); 815 if (!rc) 816 return; 817 818 if ((!cs->submitted) || (cs->completed)) { 819 cs_put(cs); 820 return; 821 } 822 823 hdev = cs->ctx->hdev; 824 825 if (likely(!skip_reset_on_timeout)) { 826 if (hdev->reset_on_lockup) 827 device_reset = true; 828 else 829 hdev->reset_info.needs_reset = true; 830 831 /* Mark the CS is timed out so we won't try to cancel its TDR */ 832 cs->timedout = true; 833 } 834 835 /* Save only the first CS timeout parameters */ 836 rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0); 837 if (rc) { 838 hdev->captured_err_info.cs_timeout.timestamp = ktime_get(); 839 hdev->captured_err_info.cs_timeout.seq = cs->sequence; 840 event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT; 841 } 842 843 switch (cs->type) { 844 case CS_TYPE_SIGNAL: 845 dev_err(hdev->dev, 846 "Signal command submission %llu has not finished in time!\n", 847 cs->sequence); 848 break; 849 850 case CS_TYPE_WAIT: 851 dev_err(hdev->dev, 852 "Wait command submission %llu has not finished in time!\n", 853 cs->sequence); 854 break; 855 856 case CS_TYPE_COLLECTIVE_WAIT: 857 dev_err(hdev->dev, 858 "Collective Wait command submission %llu has not finished in time!\n", 859 cs->sequence); 860 break; 861 862 default: 863 dev_err(hdev->dev, 864 "Command submission %llu has not finished in time!\n", 865 cs->sequence); 866 break; 867 } 868 869 rc = hl_state_dump(hdev); 870 if (rc) 871 dev_err(hdev->dev, "Error during system state dump %d\n", rc); 872 873 cs_put(cs); 874 875 if (device_reset) { 876 event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET; 877 hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask); 878 } else if (event_mask) { 879 hl_notifier_event_send_all(hdev, event_mask); 880 } 881 } 882 883 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx, 884 enum hl_cs_type cs_type, u64 user_sequence, 885 struct hl_cs **cs_new, u32 flags, u32 timeout) 886 { 887 struct hl_cs_counters_atomic *cntr; 888 struct hl_fence *other = NULL; 889 struct hl_cs_compl *cs_cmpl; 890 struct hl_cs *cs; 891 int rc; 892 893 cntr = &hdev->aggregated_cs_counters; 894 895 cs = kzalloc(sizeof(*cs), GFP_ATOMIC); 896 if (!cs) 897 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 898 899 if (!cs) { 900 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 901 atomic64_inc(&cntr->out_of_mem_drop_cnt); 902 return -ENOMEM; 903 } 904 905 /* increment refcnt for context */ 906 hl_ctx_get(ctx); 907 908 cs->ctx = ctx; 909 cs->submitted = false; 910 cs->completed = false; 911 cs->type = cs_type; 912 cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP); 913 cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); 914 cs->timeout_jiffies = timeout; 915 cs->skip_reset_on_timeout = 916 hdev->reset_info.skip_reset_on_timeout || 917 !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT); 918 cs->submission_time_jiffies = jiffies; 919 INIT_LIST_HEAD(&cs->job_list); 920 INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout); 921 kref_init(&cs->refcount); 922 spin_lock_init(&cs->job_lock); 923 924 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC); 925 if (!cs_cmpl) 926 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL); 927 928 if (!cs_cmpl) { 929 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 930 atomic64_inc(&cntr->out_of_mem_drop_cnt); 931 rc = -ENOMEM; 932 goto free_cs; 933 } 934 935 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, 936 sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC); 937 if (!cs->jobs_in_queue_cnt) 938 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, 939 sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL); 940 941 if (!cs->jobs_in_queue_cnt) { 942 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 943 atomic64_inc(&cntr->out_of_mem_drop_cnt); 944 rc = -ENOMEM; 945 goto free_cs_cmpl; 946 } 947 948 cs_cmpl->hdev = hdev; 949 cs_cmpl->type = cs->type; 950 spin_lock_init(&cs_cmpl->lock); 951 cs->fence = &cs_cmpl->base_fence; 952 953 spin_lock(&ctx->cs_lock); 954 955 cs_cmpl->cs_seq = ctx->cs_sequence; 956 other = ctx->cs_pending[cs_cmpl->cs_seq & 957 (hdev->asic_prop.max_pending_cs - 1)]; 958 959 if (other && !completion_done(&other->completion)) { 960 /* If the following statement is true, it means we have reached 961 * a point in which only part of the staged submission was 962 * submitted and we don't have enough room in the 'cs_pending' 963 * array for the rest of the submission. 964 * This causes a deadlock because this CS will never be 965 * completed as it depends on future CS's for completion. 966 */ 967 if (other->cs_sequence == user_sequence) 968 dev_crit_ratelimited(hdev->dev, 969 "Staged CS %llu deadlock due to lack of resources", 970 user_sequence); 971 972 dev_dbg_ratelimited(hdev->dev, 973 "Rejecting CS because of too many in-flights CS\n"); 974 atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt); 975 atomic64_inc(&cntr->max_cs_in_flight_drop_cnt); 976 rc = -EAGAIN; 977 goto free_fence; 978 } 979 980 /* init hl_fence */ 981 hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq); 982 983 cs->sequence = cs_cmpl->cs_seq; 984 985 ctx->cs_pending[cs_cmpl->cs_seq & 986 (hdev->asic_prop.max_pending_cs - 1)] = 987 &cs_cmpl->base_fence; 988 ctx->cs_sequence++; 989 990 hl_fence_get(&cs_cmpl->base_fence); 991 992 hl_fence_put(other); 993 994 spin_unlock(&ctx->cs_lock); 995 996 *cs_new = cs; 997 998 return 0; 999 1000 free_fence: 1001 spin_unlock(&ctx->cs_lock); 1002 kfree(cs->jobs_in_queue_cnt); 1003 free_cs_cmpl: 1004 kfree(cs_cmpl); 1005 free_cs: 1006 kfree(cs); 1007 hl_ctx_put(ctx); 1008 return rc; 1009 } 1010 1011 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs) 1012 { 1013 struct hl_cs_job *job, *tmp; 1014 1015 staged_cs_put(hdev, cs); 1016 1017 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 1018 hl_complete_job(hdev, job); 1019 } 1020 1021 /* 1022 * release_reserved_encaps_signals() - release reserved encapsulated signals. 1023 * @hdev: pointer to habanalabs device structure 1024 * 1025 * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with 1026 * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back. 1027 * For these signals need also to put the refcount of the H/W SOB which was taken at the 1028 * reservation. 1029 */ 1030 static void release_reserved_encaps_signals(struct hl_device *hdev) 1031 { 1032 struct hl_ctx *ctx = hl_get_compute_ctx(hdev); 1033 struct hl_cs_encaps_sig_handle *handle; 1034 struct hl_encaps_signals_mgr *mgr; 1035 u32 id; 1036 1037 if (!ctx) 1038 return; 1039 1040 mgr = &ctx->sig_mgr; 1041 1042 idr_for_each_entry(&mgr->handles, handle, id) 1043 if (handle->cs_seq == ULLONG_MAX) 1044 kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx); 1045 1046 hl_ctx_put(ctx); 1047 } 1048 1049 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush) 1050 { 1051 int i; 1052 struct hl_cs *cs, *tmp; 1053 1054 if (!skip_wq_flush) { 1055 flush_workqueue(hdev->ts_free_obj_wq); 1056 1057 /* flush all completions before iterating over the CS mirror list in 1058 * order to avoid a race with the release functions 1059 */ 1060 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) 1061 flush_workqueue(hdev->cq_wq[i]); 1062 1063 flush_workqueue(hdev->cs_cmplt_wq); 1064 } 1065 1066 /* Make sure we don't have leftovers in the CS mirror list */ 1067 list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) { 1068 cs_get(cs); 1069 cs->aborted = true; 1070 dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n", 1071 cs->ctx->asid, cs->sequence); 1072 cs_rollback(hdev, cs); 1073 cs_put(cs); 1074 } 1075 1076 force_complete_multi_cs(hdev); 1077 1078 release_reserved_encaps_signals(hdev); 1079 } 1080 1081 static void 1082 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt) 1083 { 1084 struct hl_user_pending_interrupt *pend, *temp; 1085 1086 spin_lock(&interrupt->wait_list_lock); 1087 list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) { 1088 if (pend->ts_reg_info.buf) { 1089 list_del(&pend->wait_list_node); 1090 hl_mmap_mem_buf_put(pend->ts_reg_info.buf); 1091 hl_cb_put(pend->ts_reg_info.cq_cb); 1092 } else { 1093 pend->fence.error = -EIO; 1094 complete_all(&pend->fence.completion); 1095 } 1096 } 1097 spin_unlock(&interrupt->wait_list_lock); 1098 } 1099 1100 void hl_release_pending_user_interrupts(struct hl_device *hdev) 1101 { 1102 struct asic_fixed_properties *prop = &hdev->asic_prop; 1103 struct hl_user_interrupt *interrupt; 1104 int i; 1105 1106 if (!prop->user_interrupt_count) 1107 return; 1108 1109 /* We iterate through the user interrupt requests and waking up all 1110 * user threads waiting for interrupt completion. We iterate the 1111 * list under a lock, this is why all user threads, once awake, 1112 * will wait on the same lock and will release the waiting object upon 1113 * unlock. 1114 */ 1115 1116 for (i = 0 ; i < prop->user_interrupt_count ; i++) { 1117 interrupt = &hdev->user_interrupt[i]; 1118 wake_pending_user_interrupt_threads(interrupt); 1119 } 1120 1121 interrupt = &hdev->common_user_cq_interrupt; 1122 wake_pending_user_interrupt_threads(interrupt); 1123 1124 interrupt = &hdev->common_decoder_interrupt; 1125 wake_pending_user_interrupt_threads(interrupt); 1126 } 1127 1128 static void force_complete_cs(struct hl_device *hdev) 1129 { 1130 struct hl_cs *cs; 1131 1132 spin_lock(&hdev->cs_mirror_lock); 1133 1134 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) { 1135 cs->fence->error = -EIO; 1136 complete_all(&cs->fence->completion); 1137 } 1138 1139 spin_unlock(&hdev->cs_mirror_lock); 1140 } 1141 1142 void hl_abort_waitings_for_completion(struct hl_device *hdev) 1143 { 1144 force_complete_cs(hdev); 1145 force_complete_multi_cs(hdev); 1146 hl_release_pending_user_interrupts(hdev); 1147 } 1148 1149 static void job_wq_completion(struct work_struct *work) 1150 { 1151 struct hl_cs_job *job = container_of(work, struct hl_cs_job, 1152 finish_work); 1153 struct hl_cs *cs = job->cs; 1154 struct hl_device *hdev = cs->ctx->hdev; 1155 1156 /* job is no longer needed */ 1157 hl_complete_job(hdev, job); 1158 } 1159 1160 static void cs_completion(struct work_struct *work) 1161 { 1162 struct hl_cs *cs = container_of(work, struct hl_cs, finish_work); 1163 struct hl_device *hdev = cs->ctx->hdev; 1164 struct hl_cs_job *job, *tmp; 1165 1166 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 1167 hl_complete_job(hdev, job); 1168 } 1169 1170 u32 hl_get_active_cs_num(struct hl_device *hdev) 1171 { 1172 u32 active_cs_num = 0; 1173 struct hl_cs *cs; 1174 1175 spin_lock(&hdev->cs_mirror_lock); 1176 1177 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) 1178 if (!cs->completed) 1179 active_cs_num++; 1180 1181 spin_unlock(&hdev->cs_mirror_lock); 1182 1183 return active_cs_num; 1184 } 1185 1186 static int validate_queue_index(struct hl_device *hdev, 1187 struct hl_cs_chunk *chunk, 1188 enum hl_queue_type *queue_type, 1189 bool *is_kernel_allocated_cb) 1190 { 1191 struct asic_fixed_properties *asic = &hdev->asic_prop; 1192 struct hw_queue_properties *hw_queue_prop; 1193 1194 /* This must be checked here to prevent out-of-bounds access to 1195 * hw_queues_props array 1196 */ 1197 if (chunk->queue_index >= asic->max_queues) { 1198 dev_err(hdev->dev, "Queue index %d is invalid\n", 1199 chunk->queue_index); 1200 return -EINVAL; 1201 } 1202 1203 hw_queue_prop = &asic->hw_queues_props[chunk->queue_index]; 1204 1205 if (hw_queue_prop->type == QUEUE_TYPE_NA) { 1206 dev_err(hdev->dev, "Queue index %d is not applicable\n", 1207 chunk->queue_index); 1208 return -EINVAL; 1209 } 1210 1211 if (hw_queue_prop->binned) { 1212 dev_err(hdev->dev, "Queue index %d is binned out\n", 1213 chunk->queue_index); 1214 return -EINVAL; 1215 } 1216 1217 if (hw_queue_prop->driver_only) { 1218 dev_err(hdev->dev, 1219 "Queue index %d is restricted for the kernel driver\n", 1220 chunk->queue_index); 1221 return -EINVAL; 1222 } 1223 1224 /* When hw queue type isn't QUEUE_TYPE_HW, 1225 * USER_ALLOC_CB flag shall be referred as "don't care". 1226 */ 1227 if (hw_queue_prop->type == QUEUE_TYPE_HW) { 1228 if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) { 1229 if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) { 1230 dev_err(hdev->dev, 1231 "Queue index %d doesn't support user CB\n", 1232 chunk->queue_index); 1233 return -EINVAL; 1234 } 1235 1236 *is_kernel_allocated_cb = false; 1237 } else { 1238 if (!(hw_queue_prop->cb_alloc_flags & 1239 CB_ALLOC_KERNEL)) { 1240 dev_err(hdev->dev, 1241 "Queue index %d doesn't support kernel CB\n", 1242 chunk->queue_index); 1243 return -EINVAL; 1244 } 1245 1246 *is_kernel_allocated_cb = true; 1247 } 1248 } else { 1249 *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags 1250 & CB_ALLOC_KERNEL); 1251 } 1252 1253 *queue_type = hw_queue_prop->type; 1254 return 0; 1255 } 1256 1257 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev, 1258 struct hl_mem_mgr *mmg, 1259 struct hl_cs_chunk *chunk) 1260 { 1261 struct hl_cb *cb; 1262 1263 cb = hl_cb_get(mmg, chunk->cb_handle); 1264 if (!cb) { 1265 dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle); 1266 return NULL; 1267 } 1268 1269 if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) { 1270 dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size); 1271 goto release_cb; 1272 } 1273 1274 atomic_inc(&cb->cs_cnt); 1275 1276 return cb; 1277 1278 release_cb: 1279 hl_cb_put(cb); 1280 return NULL; 1281 } 1282 1283 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 1284 enum hl_queue_type queue_type, bool is_kernel_allocated_cb) 1285 { 1286 struct hl_cs_job *job; 1287 1288 job = kzalloc(sizeof(*job), GFP_ATOMIC); 1289 if (!job) 1290 job = kzalloc(sizeof(*job), GFP_KERNEL); 1291 1292 if (!job) 1293 return NULL; 1294 1295 kref_init(&job->refcount); 1296 job->queue_type = queue_type; 1297 job->is_kernel_allocated_cb = is_kernel_allocated_cb; 1298 1299 if (is_cb_patched(hdev, job)) 1300 INIT_LIST_HEAD(&job->userptr_list); 1301 1302 if (job->queue_type == QUEUE_TYPE_EXT) 1303 INIT_WORK(&job->finish_work, job_wq_completion); 1304 1305 return job; 1306 } 1307 1308 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags) 1309 { 1310 if (cs_type_flags & HL_CS_FLAGS_SIGNAL) 1311 return CS_TYPE_SIGNAL; 1312 else if (cs_type_flags & HL_CS_FLAGS_WAIT) 1313 return CS_TYPE_WAIT; 1314 else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT) 1315 return CS_TYPE_COLLECTIVE_WAIT; 1316 else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY) 1317 return CS_RESERVE_SIGNALS; 1318 else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY) 1319 return CS_UNRESERVE_SIGNALS; 1320 else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND) 1321 return CS_TYPE_ENGINE_CORE; 1322 else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) 1323 return CS_TYPE_FLUSH_PCI_HBW_WRITES; 1324 else 1325 return CS_TYPE_DEFAULT; 1326 } 1327 1328 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args) 1329 { 1330 struct hl_device *hdev = hpriv->hdev; 1331 struct hl_ctx *ctx = hpriv->ctx; 1332 u32 cs_type_flags, num_chunks; 1333 enum hl_device_status status; 1334 enum hl_cs_type cs_type; 1335 bool is_sync_stream; 1336 int i; 1337 1338 for (i = 0 ; i < sizeof(args->in.pad) ; i++) 1339 if (args->in.pad[i]) { 1340 dev_dbg(hdev->dev, "Padding bytes must be 0\n"); 1341 return -EINVAL; 1342 } 1343 1344 if (!hl_device_operational(hdev, &status)) { 1345 return -EBUSY; 1346 } 1347 1348 if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 1349 !hdev->supports_staged_submission) { 1350 dev_err(hdev->dev, "staged submission not supported"); 1351 return -EPERM; 1352 } 1353 1354 cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK; 1355 1356 if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) { 1357 dev_err(hdev->dev, 1358 "CS type flags are mutually exclusive, context %d\n", 1359 ctx->asid); 1360 return -EINVAL; 1361 } 1362 1363 cs_type = hl_cs_get_cs_type(cs_type_flags); 1364 num_chunks = args->in.num_chunks_execute; 1365 1366 is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT || 1367 cs_type == CS_TYPE_COLLECTIVE_WAIT); 1368 1369 if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) { 1370 dev_err(hdev->dev, "Sync stream CS is not supported\n"); 1371 return -EINVAL; 1372 } 1373 1374 if (cs_type == CS_TYPE_DEFAULT) { 1375 if (!num_chunks) { 1376 dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid); 1377 return -EINVAL; 1378 } 1379 } else if (is_sync_stream && num_chunks != 1) { 1380 dev_err(hdev->dev, 1381 "Sync stream CS mandates one chunk only, context %d\n", 1382 ctx->asid); 1383 return -EINVAL; 1384 } 1385 1386 return 0; 1387 } 1388 1389 static int hl_cs_copy_chunk_array(struct hl_device *hdev, 1390 struct hl_cs_chunk **cs_chunk_array, 1391 void __user *chunks, u32 num_chunks, 1392 struct hl_ctx *ctx) 1393 { 1394 u32 size_to_copy; 1395 1396 if (num_chunks > HL_MAX_JOBS_PER_CS) { 1397 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1398 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1399 dev_err(hdev->dev, 1400 "Number of chunks can NOT be larger than %d\n", 1401 HL_MAX_JOBS_PER_CS); 1402 return -EINVAL; 1403 } 1404 1405 *cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array), 1406 GFP_ATOMIC); 1407 if (!*cs_chunk_array) 1408 *cs_chunk_array = kmalloc_array(num_chunks, 1409 sizeof(**cs_chunk_array), GFP_KERNEL); 1410 if (!*cs_chunk_array) { 1411 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1412 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); 1413 return -ENOMEM; 1414 } 1415 1416 size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); 1417 if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) { 1418 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1419 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1420 dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); 1421 kfree(*cs_chunk_array); 1422 return -EFAULT; 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs, 1429 u64 sequence, u32 flags, 1430 u32 encaps_signal_handle) 1431 { 1432 if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION)) 1433 return 0; 1434 1435 cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST); 1436 cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST); 1437 1438 if (cs->staged_first) { 1439 /* Staged CS sequence is the first CS sequence */ 1440 INIT_LIST_HEAD(&cs->staged_cs_node); 1441 cs->staged_sequence = cs->sequence; 1442 1443 if (cs->encaps_signals) 1444 cs->encaps_sig_hdl_id = encaps_signal_handle; 1445 } else { 1446 /* User sequence will be validated in 'hl_hw_queue_schedule_cs' 1447 * under the cs_mirror_lock 1448 */ 1449 cs->staged_sequence = sequence; 1450 } 1451 1452 /* Increment CS reference if needed */ 1453 staged_cs_get(hdev, cs); 1454 1455 cs->staged_cs = true; 1456 1457 return 0; 1458 } 1459 1460 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid) 1461 { 1462 int i; 1463 1464 for (i = 0; i < hdev->stream_master_qid_arr_size; i++) 1465 if (qid == hdev->stream_master_qid_arr[i]) 1466 return BIT(i); 1467 1468 return 0; 1469 } 1470 1471 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks, 1472 u32 num_chunks, u64 *cs_seq, u32 flags, 1473 u32 encaps_signals_handle, u32 timeout, 1474 u16 *signal_initial_sob_count) 1475 { 1476 bool staged_mid, int_queues_only = true, using_hw_queues = false; 1477 struct hl_device *hdev = hpriv->hdev; 1478 struct hl_cs_chunk *cs_chunk_array; 1479 struct hl_cs_counters_atomic *cntr; 1480 struct hl_ctx *ctx = hpriv->ctx; 1481 struct hl_cs_job *job; 1482 struct hl_cs *cs; 1483 struct hl_cb *cb; 1484 u64 user_sequence; 1485 u8 stream_master_qid_map = 0; 1486 int rc, i; 1487 1488 cntr = &hdev->aggregated_cs_counters; 1489 user_sequence = *cs_seq; 1490 *cs_seq = ULLONG_MAX; 1491 1492 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, 1493 hpriv->ctx); 1494 if (rc) 1495 goto out; 1496 1497 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 1498 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) 1499 staged_mid = true; 1500 else 1501 staged_mid = false; 1502 1503 rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, 1504 staged_mid ? user_sequence : ULLONG_MAX, &cs, flags, 1505 timeout); 1506 if (rc) 1507 goto free_cs_chunk_array; 1508 1509 *cs_seq = cs->sequence; 1510 1511 hl_debugfs_add_cs(cs); 1512 1513 rc = cs_staged_submission(hdev, cs, user_sequence, flags, 1514 encaps_signals_handle); 1515 if (rc) 1516 goto free_cs_object; 1517 1518 /* If this is a staged submission we must return the staged sequence 1519 * rather than the internal CS sequence 1520 */ 1521 if (cs->staged_cs) 1522 *cs_seq = cs->staged_sequence; 1523 1524 /* Validate ALL the CS chunks before submitting the CS */ 1525 for (i = 0 ; i < num_chunks ; i++) { 1526 struct hl_cs_chunk *chunk = &cs_chunk_array[i]; 1527 enum hl_queue_type queue_type; 1528 bool is_kernel_allocated_cb; 1529 1530 rc = validate_queue_index(hdev, chunk, &queue_type, 1531 &is_kernel_allocated_cb); 1532 if (rc) { 1533 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1534 atomic64_inc(&cntr->validation_drop_cnt); 1535 goto free_cs_object; 1536 } 1537 1538 if (is_kernel_allocated_cb) { 1539 cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk); 1540 if (!cb) { 1541 atomic64_inc( 1542 &ctx->cs_counters.validation_drop_cnt); 1543 atomic64_inc(&cntr->validation_drop_cnt); 1544 rc = -EINVAL; 1545 goto free_cs_object; 1546 } 1547 } else { 1548 cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle; 1549 } 1550 1551 if (queue_type == QUEUE_TYPE_EXT || 1552 queue_type == QUEUE_TYPE_HW) { 1553 int_queues_only = false; 1554 1555 /* 1556 * store which stream are being used for external/HW 1557 * queues of this CS 1558 */ 1559 if (hdev->supports_wait_for_multi_cs) 1560 stream_master_qid_map |= 1561 get_stream_master_qid_mask(hdev, 1562 chunk->queue_index); 1563 } 1564 1565 if (queue_type == QUEUE_TYPE_HW) 1566 using_hw_queues = true; 1567 1568 job = hl_cs_allocate_job(hdev, queue_type, 1569 is_kernel_allocated_cb); 1570 if (!job) { 1571 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1572 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1573 dev_err(hdev->dev, "Failed to allocate a new job\n"); 1574 rc = -ENOMEM; 1575 if (is_kernel_allocated_cb) 1576 goto release_cb; 1577 1578 goto free_cs_object; 1579 } 1580 1581 job->id = i + 1; 1582 job->cs = cs; 1583 job->user_cb = cb; 1584 job->user_cb_size = chunk->cb_size; 1585 job->hw_queue_id = chunk->queue_index; 1586 1587 cs->jobs_in_queue_cnt[job->hw_queue_id]++; 1588 cs->jobs_cnt++; 1589 1590 list_add_tail(&job->cs_node, &cs->job_list); 1591 1592 /* 1593 * Increment CS reference. When CS reference is 0, CS is 1594 * done and can be signaled to user and free all its resources 1595 * Only increment for JOB on external or H/W queues, because 1596 * only for those JOBs we get completion 1597 */ 1598 if (cs_needs_completion(cs) && 1599 (job->queue_type == QUEUE_TYPE_EXT || 1600 job->queue_type == QUEUE_TYPE_HW)) 1601 cs_get(cs); 1602 1603 hl_debugfs_add_job(hdev, job); 1604 1605 rc = cs_parser(hpriv, job); 1606 if (rc) { 1607 atomic64_inc(&ctx->cs_counters.parsing_drop_cnt); 1608 atomic64_inc(&cntr->parsing_drop_cnt); 1609 dev_err(hdev->dev, 1610 "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n", 1611 cs->ctx->asid, cs->sequence, job->id, rc); 1612 goto free_cs_object; 1613 } 1614 } 1615 1616 /* We allow a CS with any queue type combination as long as it does 1617 * not get a completion 1618 */ 1619 if (int_queues_only && cs_needs_completion(cs)) { 1620 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1621 atomic64_inc(&cntr->validation_drop_cnt); 1622 dev_err(hdev->dev, 1623 "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n", 1624 cs->ctx->asid, cs->sequence); 1625 rc = -EINVAL; 1626 goto free_cs_object; 1627 } 1628 1629 if (using_hw_queues) 1630 INIT_WORK(&cs->finish_work, cs_completion); 1631 1632 /* 1633 * store the (external/HW queues) streams used by the CS in the 1634 * fence object for multi-CS completion 1635 */ 1636 if (hdev->supports_wait_for_multi_cs) 1637 cs->fence->stream_master_qid_map = stream_master_qid_map; 1638 1639 rc = hl_hw_queue_schedule_cs(cs); 1640 if (rc) { 1641 if (rc != -EAGAIN) 1642 dev_err(hdev->dev, 1643 "Failed to submit CS %d.%llu to H/W queues, error %d\n", 1644 cs->ctx->asid, cs->sequence, rc); 1645 goto free_cs_object; 1646 } 1647 1648 *signal_initial_sob_count = cs->initial_sob_count; 1649 1650 rc = HL_CS_STATUS_SUCCESS; 1651 goto put_cs; 1652 1653 release_cb: 1654 atomic_dec(&cb->cs_cnt); 1655 hl_cb_put(cb); 1656 free_cs_object: 1657 cs_rollback(hdev, cs); 1658 *cs_seq = ULLONG_MAX; 1659 /* The path below is both for good and erroneous exits */ 1660 put_cs: 1661 /* We finished with the CS in this function, so put the ref */ 1662 cs_put(cs); 1663 free_cs_chunk_array: 1664 kfree(cs_chunk_array); 1665 out: 1666 return rc; 1667 } 1668 1669 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args, 1670 u64 *cs_seq) 1671 { 1672 struct hl_device *hdev = hpriv->hdev; 1673 struct hl_ctx *ctx = hpriv->ctx; 1674 bool need_soft_reset = false; 1675 int rc = 0, do_ctx_switch = 0; 1676 void __user *chunks; 1677 u32 num_chunks, tmp; 1678 u16 sob_count; 1679 int ret; 1680 1681 if (hdev->supports_ctx_switch) 1682 do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0); 1683 1684 if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) { 1685 mutex_lock(&hpriv->restore_phase_mutex); 1686 1687 if (do_ctx_switch) { 1688 rc = hdev->asic_funcs->context_switch(hdev, ctx->asid); 1689 if (rc) { 1690 dev_err_ratelimited(hdev->dev, 1691 "Failed to switch to context %d, rejecting CS! %d\n", 1692 ctx->asid, rc); 1693 /* 1694 * If we timedout, or if the device is not IDLE 1695 * while we want to do context-switch (-EBUSY), 1696 * we need to soft-reset because QMAN is 1697 * probably stuck. However, we can't call to 1698 * reset here directly because of deadlock, so 1699 * need to do it at the very end of this 1700 * function 1701 */ 1702 if ((rc == -ETIMEDOUT) || (rc == -EBUSY)) 1703 need_soft_reset = true; 1704 mutex_unlock(&hpriv->restore_phase_mutex); 1705 goto out; 1706 } 1707 } 1708 1709 hdev->asic_funcs->restore_phase_topology(hdev); 1710 1711 chunks = (void __user *) (uintptr_t) args->in.chunks_restore; 1712 num_chunks = args->in.num_chunks_restore; 1713 1714 if (!num_chunks) { 1715 dev_dbg(hdev->dev, 1716 "Need to run restore phase but restore CS is empty\n"); 1717 rc = 0; 1718 } else { 1719 rc = cs_ioctl_default(hpriv, chunks, num_chunks, 1720 cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count); 1721 } 1722 1723 mutex_unlock(&hpriv->restore_phase_mutex); 1724 1725 if (rc) { 1726 dev_err(hdev->dev, 1727 "Failed to submit restore CS for context %d (%d)\n", 1728 ctx->asid, rc); 1729 goto out; 1730 } 1731 1732 /* Need to wait for restore completion before execution phase */ 1733 if (num_chunks) { 1734 enum hl_cs_wait_status status; 1735 wait_again: 1736 ret = _hl_cs_wait_ioctl(hdev, ctx, 1737 jiffies_to_usecs(hdev->timeout_jiffies), 1738 *cs_seq, &status, NULL); 1739 if (ret) { 1740 if (ret == -ERESTARTSYS) { 1741 usleep_range(100, 200); 1742 goto wait_again; 1743 } 1744 1745 dev_err(hdev->dev, 1746 "Restore CS for context %d failed to complete %d\n", 1747 ctx->asid, ret); 1748 rc = -ENOEXEC; 1749 goto out; 1750 } 1751 } 1752 1753 if (hdev->supports_ctx_switch) 1754 ctx->thread_ctx_switch_wait_token = 1; 1755 1756 } else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) { 1757 rc = hl_poll_timeout_memory(hdev, 1758 &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1), 1759 100, jiffies_to_usecs(hdev->timeout_jiffies), false); 1760 1761 if (rc == -ETIMEDOUT) { 1762 dev_err(hdev->dev, 1763 "context switch phase timeout (%d)\n", tmp); 1764 goto out; 1765 } 1766 } 1767 1768 out: 1769 if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset)) 1770 hl_device_reset(hdev, 0); 1771 1772 return rc; 1773 } 1774 1775 /* 1776 * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case. 1777 * if the SOB value reaches the max value move to the other SOB reserved 1778 * to the queue. 1779 * @hdev: pointer to device structure 1780 * @q_idx: stream queue index 1781 * @hw_sob: the H/W SOB used in this signal CS. 1782 * @count: signals count 1783 * @encaps_sig: tells whether it's reservation for encaps signals or not. 1784 * 1785 * Note that this function must be called while hw_queues_lock is taken. 1786 */ 1787 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 1788 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig) 1789 1790 { 1791 struct hl_sync_stream_properties *prop; 1792 struct hl_hw_sob *sob = *hw_sob, *other_sob; 1793 u8 other_sob_offset; 1794 1795 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 1796 1797 hw_sob_get(sob); 1798 1799 /* check for wraparound */ 1800 if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) { 1801 /* 1802 * Decrement as we reached the max value. 1803 * The release function won't be called here as we've 1804 * just incremented the refcount right before calling this 1805 * function. 1806 */ 1807 hw_sob_put_err(sob); 1808 1809 /* 1810 * check the other sob value, if it still in use then fail 1811 * otherwise make the switch 1812 */ 1813 other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS; 1814 other_sob = &prop->hw_sob[other_sob_offset]; 1815 1816 if (kref_read(&other_sob->kref) != 1) { 1817 dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n", 1818 q_idx); 1819 return -EINVAL; 1820 } 1821 1822 /* 1823 * next_sob_val always points to the next available signal 1824 * in the sob, so in encaps signals it will be the next one 1825 * after reserving the required amount. 1826 */ 1827 if (encaps_sig) 1828 prop->next_sob_val = count + 1; 1829 else 1830 prop->next_sob_val = count; 1831 1832 /* only two SOBs are currently in use */ 1833 prop->curr_sob_offset = other_sob_offset; 1834 *hw_sob = other_sob; 1835 1836 /* 1837 * check if other_sob needs reset, then do it before using it 1838 * for the reservation or the next signal cs. 1839 * we do it here, and for both encaps and regular signal cs 1840 * cases in order to avoid possible races of two kref_put 1841 * of the sob which can occur at the same time if we move the 1842 * sob reset(kref_put) to cs_do_release function. 1843 * in addition, if we have combination of cs signal and 1844 * encaps, and at the point we need to reset the sob there was 1845 * no more reservations and only signal cs keep coming, 1846 * in such case we need signal_cs to put the refcount and 1847 * reset the sob. 1848 */ 1849 if (other_sob->need_reset) 1850 hw_sob_put(other_sob); 1851 1852 if (encaps_sig) { 1853 /* set reset indication for the sob */ 1854 sob->need_reset = true; 1855 hw_sob_get(other_sob); 1856 } 1857 1858 dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n", 1859 prop->curr_sob_offset, q_idx); 1860 } else { 1861 prop->next_sob_val += count; 1862 } 1863 1864 return 0; 1865 } 1866 1867 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev, 1868 struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx, 1869 bool encaps_signals) 1870 { 1871 u64 *signal_seq_arr = NULL; 1872 u32 size_to_copy, signal_seq_arr_len; 1873 int rc = 0; 1874 1875 if (encaps_signals) { 1876 *signal_seq = chunk->encaps_signal_seq; 1877 return 0; 1878 } 1879 1880 signal_seq_arr_len = chunk->num_signal_seq_arr; 1881 1882 /* currently only one signal seq is supported */ 1883 if (signal_seq_arr_len != 1) { 1884 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1885 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1886 dev_err(hdev->dev, 1887 "Wait for signal CS supports only one signal CS seq\n"); 1888 return -EINVAL; 1889 } 1890 1891 signal_seq_arr = kmalloc_array(signal_seq_arr_len, 1892 sizeof(*signal_seq_arr), 1893 GFP_ATOMIC); 1894 if (!signal_seq_arr) 1895 signal_seq_arr = kmalloc_array(signal_seq_arr_len, 1896 sizeof(*signal_seq_arr), 1897 GFP_KERNEL); 1898 if (!signal_seq_arr) { 1899 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1900 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); 1901 return -ENOMEM; 1902 } 1903 1904 size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr); 1905 if (copy_from_user(signal_seq_arr, 1906 u64_to_user_ptr(chunk->signal_seq_arr), 1907 size_to_copy)) { 1908 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1909 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1910 dev_err(hdev->dev, 1911 "Failed to copy signal seq array from user\n"); 1912 rc = -EFAULT; 1913 goto out; 1914 } 1915 1916 /* currently it is guaranteed to have only one signal seq */ 1917 *signal_seq = signal_seq_arr[0]; 1918 1919 out: 1920 kfree(signal_seq_arr); 1921 1922 return rc; 1923 } 1924 1925 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev, 1926 struct hl_ctx *ctx, struct hl_cs *cs, 1927 enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset) 1928 { 1929 struct hl_cs_counters_atomic *cntr; 1930 struct hl_cs_job *job; 1931 struct hl_cb *cb; 1932 u32 cb_size; 1933 1934 cntr = &hdev->aggregated_cs_counters; 1935 1936 job = hl_cs_allocate_job(hdev, q_type, true); 1937 if (!job) { 1938 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1939 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1940 dev_err(hdev->dev, "Failed to allocate a new job\n"); 1941 return -ENOMEM; 1942 } 1943 1944 if (cs->type == CS_TYPE_WAIT) 1945 cb_size = hdev->asic_funcs->get_wait_cb_size(hdev); 1946 else 1947 cb_size = hdev->asic_funcs->get_signal_cb_size(hdev); 1948 1949 cb = hl_cb_kernel_create(hdev, cb_size, 1950 q_type == QUEUE_TYPE_HW && hdev->mmu_enable); 1951 if (!cb) { 1952 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1953 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1954 kfree(job); 1955 return -EFAULT; 1956 } 1957 1958 job->id = 0; 1959 job->cs = cs; 1960 job->user_cb = cb; 1961 atomic_inc(&job->user_cb->cs_cnt); 1962 job->user_cb_size = cb_size; 1963 job->hw_queue_id = q_idx; 1964 1965 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) 1966 && cs->encaps_signals) 1967 job->encaps_sig_wait_offset = encaps_signal_offset; 1968 /* 1969 * No need in parsing, user CB is the patched CB. 1970 * We call hl_cb_destroy() out of two reasons - we don't need the CB in 1971 * the CB idr anymore and to decrement its refcount as it was 1972 * incremented inside hl_cb_kernel_create(). 1973 */ 1974 job->patched_cb = job->user_cb; 1975 job->job_cb_size = job->user_cb_size; 1976 hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle); 1977 1978 /* increment refcount as for external queues we get completion */ 1979 cs_get(cs); 1980 1981 cs->jobs_in_queue_cnt[job->hw_queue_id]++; 1982 cs->jobs_cnt++; 1983 1984 list_add_tail(&job->cs_node, &cs->job_list); 1985 1986 hl_debugfs_add_job(hdev, job); 1987 1988 return 0; 1989 } 1990 1991 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv, 1992 u32 q_idx, u32 count, 1993 u32 *handle_id, u32 *sob_addr, 1994 u32 *signals_count) 1995 { 1996 struct hw_queue_properties *hw_queue_prop; 1997 struct hl_sync_stream_properties *prop; 1998 struct hl_device *hdev = hpriv->hdev; 1999 struct hl_cs_encaps_sig_handle *handle; 2000 struct hl_encaps_signals_mgr *mgr; 2001 struct hl_hw_sob *hw_sob; 2002 int hdl_id; 2003 int rc = 0; 2004 2005 if (count >= HL_MAX_SOB_VAL) { 2006 dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n", 2007 count); 2008 rc = -EINVAL; 2009 goto out; 2010 } 2011 2012 if (q_idx >= hdev->asic_prop.max_queues) { 2013 dev_err(hdev->dev, "Queue index %d is invalid\n", 2014 q_idx); 2015 rc = -EINVAL; 2016 goto out; 2017 } 2018 2019 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; 2020 2021 if (!hw_queue_prop->supports_sync_stream) { 2022 dev_err(hdev->dev, 2023 "Queue index %d does not support sync stream operations\n", 2024 q_idx); 2025 rc = -EINVAL; 2026 goto out; 2027 } 2028 2029 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 2030 2031 handle = kzalloc(sizeof(*handle), GFP_KERNEL); 2032 if (!handle) { 2033 rc = -ENOMEM; 2034 goto out; 2035 } 2036 2037 handle->count = count; 2038 2039 hl_ctx_get(hpriv->ctx); 2040 handle->ctx = hpriv->ctx; 2041 mgr = &hpriv->ctx->sig_mgr; 2042 2043 spin_lock(&mgr->lock); 2044 hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC); 2045 spin_unlock(&mgr->lock); 2046 2047 if (hdl_id < 0) { 2048 dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n"); 2049 rc = -EINVAL; 2050 goto put_ctx; 2051 } 2052 2053 handle->id = hdl_id; 2054 handle->q_idx = q_idx; 2055 handle->hdev = hdev; 2056 kref_init(&handle->refcount); 2057 2058 hdev->asic_funcs->hw_queues_lock(hdev); 2059 2060 hw_sob = &prop->hw_sob[prop->curr_sob_offset]; 2061 2062 /* 2063 * Increment the SOB value by count by user request 2064 * to reserve those signals 2065 * check if the signals amount to reserve is not exceeding the max sob 2066 * value, if yes then switch sob. 2067 */ 2068 rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count, 2069 true); 2070 if (rc) { 2071 dev_err(hdev->dev, "Failed to switch SOB\n"); 2072 hdev->asic_funcs->hw_queues_unlock(hdev); 2073 rc = -EINVAL; 2074 goto remove_idr; 2075 } 2076 /* set the hw_sob to the handle after calling the sob wraparound handler 2077 * since sob could have changed. 2078 */ 2079 handle->hw_sob = hw_sob; 2080 2081 /* store the current sob value for unreserve validity check, and 2082 * signal offset support 2083 */ 2084 handle->pre_sob_val = prop->next_sob_val - handle->count; 2085 2086 handle->cs_seq = ULLONG_MAX; 2087 2088 *signals_count = prop->next_sob_val; 2089 hdev->asic_funcs->hw_queues_unlock(hdev); 2090 2091 *sob_addr = handle->hw_sob->sob_addr; 2092 *handle_id = hdl_id; 2093 2094 dev_dbg(hdev->dev, 2095 "Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n", 2096 hw_sob->sob_id, handle->hw_sob->sob_addr, 2097 prop->next_sob_val - 1, q_idx, hdl_id); 2098 goto out; 2099 2100 remove_idr: 2101 spin_lock(&mgr->lock); 2102 idr_remove(&mgr->handles, hdl_id); 2103 spin_unlock(&mgr->lock); 2104 2105 put_ctx: 2106 hl_ctx_put(handle->ctx); 2107 kfree(handle); 2108 2109 out: 2110 return rc; 2111 } 2112 2113 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id) 2114 { 2115 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 2116 struct hl_sync_stream_properties *prop; 2117 struct hl_device *hdev = hpriv->hdev; 2118 struct hl_encaps_signals_mgr *mgr; 2119 struct hl_hw_sob *hw_sob; 2120 u32 q_idx, sob_addr; 2121 int rc = 0; 2122 2123 mgr = &hpriv->ctx->sig_mgr; 2124 2125 spin_lock(&mgr->lock); 2126 encaps_sig_hdl = idr_find(&mgr->handles, handle_id); 2127 if (encaps_sig_hdl) { 2128 dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n", 2129 handle_id, encaps_sig_hdl->hw_sob->sob_addr, 2130 encaps_sig_hdl->count); 2131 2132 hdev->asic_funcs->hw_queues_lock(hdev); 2133 2134 q_idx = encaps_sig_hdl->q_idx; 2135 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 2136 hw_sob = &prop->hw_sob[prop->curr_sob_offset]; 2137 sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id); 2138 2139 /* Check if sob_val got out of sync due to other 2140 * signal submission requests which were handled 2141 * between the reserve-unreserve calls or SOB switch 2142 * upon reaching SOB max value. 2143 */ 2144 if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count 2145 != prop->next_sob_val || 2146 sob_addr != encaps_sig_hdl->hw_sob->sob_addr) { 2147 dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n", 2148 encaps_sig_hdl->pre_sob_val, 2149 (prop->next_sob_val - encaps_sig_hdl->count)); 2150 2151 hdev->asic_funcs->hw_queues_unlock(hdev); 2152 rc = -EINVAL; 2153 goto out; 2154 } 2155 2156 /* 2157 * Decrement the SOB value by count by user request 2158 * to unreserve those signals 2159 */ 2160 prop->next_sob_val -= encaps_sig_hdl->count; 2161 2162 hdev->asic_funcs->hw_queues_unlock(hdev); 2163 2164 hw_sob_put(hw_sob); 2165 2166 /* Release the id and free allocated memory of the handle */ 2167 idr_remove(&mgr->handles, handle_id); 2168 hl_ctx_put(encaps_sig_hdl->ctx); 2169 kfree(encaps_sig_hdl); 2170 } else { 2171 rc = -EINVAL; 2172 dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n"); 2173 } 2174 out: 2175 spin_unlock(&mgr->lock); 2176 2177 return rc; 2178 } 2179 2180 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type, 2181 void __user *chunks, u32 num_chunks, 2182 u64 *cs_seq, u32 flags, u32 timeout, 2183 u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count) 2184 { 2185 struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL; 2186 bool handle_found = false, is_wait_cs = false, 2187 wait_cs_submitted = false, 2188 cs_encaps_signals = false; 2189 struct hl_cs_chunk *cs_chunk_array, *chunk; 2190 bool staged_cs_with_encaps_signals = false; 2191 struct hw_queue_properties *hw_queue_prop; 2192 struct hl_device *hdev = hpriv->hdev; 2193 struct hl_cs_compl *sig_waitcs_cmpl; 2194 u32 q_idx, collective_engine_id = 0; 2195 struct hl_cs_counters_atomic *cntr; 2196 struct hl_fence *sig_fence = NULL; 2197 struct hl_ctx *ctx = hpriv->ctx; 2198 enum hl_queue_type q_type; 2199 struct hl_cs *cs; 2200 u64 signal_seq; 2201 int rc; 2202 2203 cntr = &hdev->aggregated_cs_counters; 2204 *cs_seq = ULLONG_MAX; 2205 2206 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, 2207 ctx); 2208 if (rc) 2209 goto out; 2210 2211 /* currently it is guaranteed to have only one chunk */ 2212 chunk = &cs_chunk_array[0]; 2213 2214 if (chunk->queue_index >= hdev->asic_prop.max_queues) { 2215 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2216 atomic64_inc(&cntr->validation_drop_cnt); 2217 dev_err(hdev->dev, "Queue index %d is invalid\n", 2218 chunk->queue_index); 2219 rc = -EINVAL; 2220 goto free_cs_chunk_array; 2221 } 2222 2223 q_idx = chunk->queue_index; 2224 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; 2225 q_type = hw_queue_prop->type; 2226 2227 if (!hw_queue_prop->supports_sync_stream) { 2228 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2229 atomic64_inc(&cntr->validation_drop_cnt); 2230 dev_err(hdev->dev, 2231 "Queue index %d does not support sync stream operations\n", 2232 q_idx); 2233 rc = -EINVAL; 2234 goto free_cs_chunk_array; 2235 } 2236 2237 if (cs_type == CS_TYPE_COLLECTIVE_WAIT) { 2238 if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) { 2239 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2240 atomic64_inc(&cntr->validation_drop_cnt); 2241 dev_err(hdev->dev, 2242 "Queue index %d is invalid\n", q_idx); 2243 rc = -EINVAL; 2244 goto free_cs_chunk_array; 2245 } 2246 2247 if (!hdev->nic_ports_mask) { 2248 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2249 atomic64_inc(&cntr->validation_drop_cnt); 2250 dev_err(hdev->dev, 2251 "Collective operations not supported when NIC ports are disabled"); 2252 rc = -EINVAL; 2253 goto free_cs_chunk_array; 2254 } 2255 2256 collective_engine_id = chunk->collective_engine_id; 2257 } 2258 2259 is_wait_cs = !!(cs_type == CS_TYPE_WAIT || 2260 cs_type == CS_TYPE_COLLECTIVE_WAIT); 2261 2262 cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); 2263 2264 if (is_wait_cs) { 2265 rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq, 2266 ctx, cs_encaps_signals); 2267 if (rc) 2268 goto free_cs_chunk_array; 2269 2270 if (cs_encaps_signals) { 2271 /* check if cs sequence has encapsulated 2272 * signals handle 2273 */ 2274 struct idr *idp; 2275 u32 id; 2276 2277 spin_lock(&ctx->sig_mgr.lock); 2278 idp = &ctx->sig_mgr.handles; 2279 idr_for_each_entry(idp, encaps_sig_hdl, id) { 2280 if (encaps_sig_hdl->cs_seq == signal_seq) { 2281 /* get refcount to protect removing this handle from idr, 2282 * needed when multiple wait cs are used with offset 2283 * to wait on reserved encaps signals. 2284 * Since kref_put of this handle is executed outside the 2285 * current lock, it is possible that the handle refcount 2286 * is 0 but it yet to be removed from the list. In this 2287 * case need to consider the handle as not valid. 2288 */ 2289 if (kref_get_unless_zero(&encaps_sig_hdl->refcount)) 2290 handle_found = true; 2291 break; 2292 } 2293 } 2294 spin_unlock(&ctx->sig_mgr.lock); 2295 2296 if (!handle_found) { 2297 /* treat as signal CS already finished */ 2298 dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n", 2299 signal_seq); 2300 rc = 0; 2301 goto free_cs_chunk_array; 2302 } 2303 2304 /* validate also the signal offset value */ 2305 if (chunk->encaps_signal_offset > 2306 encaps_sig_hdl->count) { 2307 dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n", 2308 chunk->encaps_signal_offset, 2309 encaps_sig_hdl->count); 2310 rc = -EINVAL; 2311 goto free_cs_chunk_array; 2312 } 2313 } 2314 2315 sig_fence = hl_ctx_get_fence(ctx, signal_seq); 2316 if (IS_ERR(sig_fence)) { 2317 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2318 atomic64_inc(&cntr->validation_drop_cnt); 2319 dev_err(hdev->dev, 2320 "Failed to get signal CS with seq 0x%llx\n", 2321 signal_seq); 2322 rc = PTR_ERR(sig_fence); 2323 goto free_cs_chunk_array; 2324 } 2325 2326 if (!sig_fence) { 2327 /* signal CS already finished */ 2328 rc = 0; 2329 goto free_cs_chunk_array; 2330 } 2331 2332 sig_waitcs_cmpl = 2333 container_of(sig_fence, struct hl_cs_compl, base_fence); 2334 2335 staged_cs_with_encaps_signals = !! 2336 (sig_waitcs_cmpl->type == CS_TYPE_DEFAULT && 2337 (flags & HL_CS_FLAGS_ENCAP_SIGNALS)); 2338 2339 if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL && 2340 !staged_cs_with_encaps_signals) { 2341 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2342 atomic64_inc(&cntr->validation_drop_cnt); 2343 dev_err(hdev->dev, 2344 "CS seq 0x%llx is not of a signal/encaps-signal CS\n", 2345 signal_seq); 2346 hl_fence_put(sig_fence); 2347 rc = -EINVAL; 2348 goto free_cs_chunk_array; 2349 } 2350 2351 if (completion_done(&sig_fence->completion)) { 2352 /* signal CS already finished */ 2353 hl_fence_put(sig_fence); 2354 rc = 0; 2355 goto free_cs_chunk_array; 2356 } 2357 } 2358 2359 rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout); 2360 if (rc) { 2361 if (is_wait_cs) 2362 hl_fence_put(sig_fence); 2363 2364 goto free_cs_chunk_array; 2365 } 2366 2367 /* 2368 * Save the signal CS fence for later initialization right before 2369 * hanging the wait CS on the queue. 2370 * for encaps signals case, we save the cs sequence and handle pointer 2371 * for later initialization. 2372 */ 2373 if (is_wait_cs) { 2374 cs->signal_fence = sig_fence; 2375 /* store the handle pointer, so we don't have to 2376 * look for it again, later on the flow 2377 * when we need to set SOB info in hw_queue. 2378 */ 2379 if (cs->encaps_signals) 2380 cs->encaps_sig_hdl = encaps_sig_hdl; 2381 } 2382 2383 hl_debugfs_add_cs(cs); 2384 2385 *cs_seq = cs->sequence; 2386 2387 if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL) 2388 rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type, 2389 q_idx, chunk->encaps_signal_offset); 2390 else if (cs_type == CS_TYPE_COLLECTIVE_WAIT) 2391 rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx, 2392 cs, q_idx, collective_engine_id, 2393 chunk->encaps_signal_offset); 2394 else { 2395 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2396 atomic64_inc(&cntr->validation_drop_cnt); 2397 rc = -EINVAL; 2398 } 2399 2400 if (rc) 2401 goto free_cs_object; 2402 2403 if (q_type == QUEUE_TYPE_HW) 2404 INIT_WORK(&cs->finish_work, cs_completion); 2405 2406 rc = hl_hw_queue_schedule_cs(cs); 2407 if (rc) { 2408 /* In case wait cs failed here, it means the signal cs 2409 * already completed. we want to free all it's related objects 2410 * but we don't want to fail the ioctl. 2411 */ 2412 if (is_wait_cs) 2413 rc = 0; 2414 else if (rc != -EAGAIN) 2415 dev_err(hdev->dev, 2416 "Failed to submit CS %d.%llu to H/W queues, error %d\n", 2417 ctx->asid, cs->sequence, rc); 2418 goto free_cs_object; 2419 } 2420 2421 *signal_sob_addr_offset = cs->sob_addr_offset; 2422 *signal_initial_sob_count = cs->initial_sob_count; 2423 2424 rc = HL_CS_STATUS_SUCCESS; 2425 if (is_wait_cs) 2426 wait_cs_submitted = true; 2427 goto put_cs; 2428 2429 free_cs_object: 2430 cs_rollback(hdev, cs); 2431 *cs_seq = ULLONG_MAX; 2432 /* The path below is both for good and erroneous exits */ 2433 put_cs: 2434 /* We finished with the CS in this function, so put the ref */ 2435 cs_put(cs); 2436 free_cs_chunk_array: 2437 if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs) 2438 kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); 2439 kfree(cs_chunk_array); 2440 out: 2441 return rc; 2442 } 2443 2444 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores, 2445 u32 num_engine_cores, u32 core_command) 2446 { 2447 int rc; 2448 struct hl_device *hdev = hpriv->hdev; 2449 void __user *engine_cores_arr; 2450 u32 *cores; 2451 2452 if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) { 2453 dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores); 2454 return -EINVAL; 2455 } 2456 2457 if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) { 2458 dev_err(hdev->dev, "Engine core command is invalid\n"); 2459 return -EINVAL; 2460 } 2461 2462 engine_cores_arr = (void __user *) (uintptr_t) engine_cores; 2463 cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL); 2464 if (!cores) 2465 return -ENOMEM; 2466 2467 if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) { 2468 dev_err(hdev->dev, "Failed to copy core-ids array from user\n"); 2469 kfree(cores); 2470 return -EFAULT; 2471 } 2472 2473 rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command); 2474 kfree(cores); 2475 2476 return rc; 2477 } 2478 2479 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv) 2480 { 2481 struct hl_device *hdev = hpriv->hdev; 2482 struct asic_fixed_properties *prop = &hdev->asic_prop; 2483 2484 if (!prop->hbw_flush_reg) { 2485 dev_dbg(hdev->dev, "HBW flush is not supported\n"); 2486 return -EOPNOTSUPP; 2487 } 2488 2489 RREG32(prop->hbw_flush_reg); 2490 2491 return 0; 2492 } 2493 2494 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data) 2495 { 2496 union hl_cs_args *args = data; 2497 enum hl_cs_type cs_type = 0; 2498 u64 cs_seq = ULONG_MAX; 2499 void __user *chunks; 2500 u32 num_chunks, flags, timeout, 2501 signals_count = 0, sob_addr = 0, handle_id = 0; 2502 u16 sob_initial_count = 0; 2503 int rc; 2504 2505 rc = hl_cs_sanity_checks(hpriv, args); 2506 if (rc) 2507 goto out; 2508 2509 rc = hl_cs_ctx_switch(hpriv, args, &cs_seq); 2510 if (rc) 2511 goto out; 2512 2513 cs_type = hl_cs_get_cs_type(args->in.cs_flags & 2514 ~HL_CS_FLAGS_FORCE_RESTORE); 2515 chunks = (void __user *) (uintptr_t) args->in.chunks_execute; 2516 num_chunks = args->in.num_chunks_execute; 2517 flags = args->in.cs_flags; 2518 2519 /* In case this is a staged CS, user should supply the CS sequence */ 2520 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 2521 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) 2522 cs_seq = args->in.seq; 2523 2524 timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT 2525 ? msecs_to_jiffies(args->in.timeout * 1000) 2526 : hpriv->hdev->timeout_jiffies; 2527 2528 switch (cs_type) { 2529 case CS_TYPE_SIGNAL: 2530 case CS_TYPE_WAIT: 2531 case CS_TYPE_COLLECTIVE_WAIT: 2532 rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks, 2533 &cs_seq, args->in.cs_flags, timeout, 2534 &sob_addr, &sob_initial_count); 2535 break; 2536 case CS_RESERVE_SIGNALS: 2537 rc = cs_ioctl_reserve_signals(hpriv, 2538 args->in.encaps_signals_q_idx, 2539 args->in.encaps_signals_count, 2540 &handle_id, &sob_addr, &signals_count); 2541 break; 2542 case CS_UNRESERVE_SIGNALS: 2543 rc = cs_ioctl_unreserve_signals(hpriv, 2544 args->in.encaps_sig_handle_id); 2545 break; 2546 case CS_TYPE_ENGINE_CORE: 2547 rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores, 2548 args->in.num_engine_cores, args->in.core_command); 2549 break; 2550 case CS_TYPE_FLUSH_PCI_HBW_WRITES: 2551 rc = cs_ioctl_flush_pci_hbw_writes(hpriv); 2552 break; 2553 default: 2554 rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq, 2555 args->in.cs_flags, 2556 args->in.encaps_sig_handle_id, 2557 timeout, &sob_initial_count); 2558 break; 2559 } 2560 out: 2561 if (rc != -EAGAIN) { 2562 memset(args, 0, sizeof(*args)); 2563 2564 switch (cs_type) { 2565 case CS_RESERVE_SIGNALS: 2566 args->out.handle_id = handle_id; 2567 args->out.sob_base_addr_offset = sob_addr; 2568 args->out.count = signals_count; 2569 break; 2570 case CS_TYPE_SIGNAL: 2571 args->out.sob_base_addr_offset = sob_addr; 2572 args->out.sob_count_before_submission = sob_initial_count; 2573 args->out.seq = cs_seq; 2574 break; 2575 case CS_TYPE_DEFAULT: 2576 args->out.sob_count_before_submission = sob_initial_count; 2577 args->out.seq = cs_seq; 2578 break; 2579 default: 2580 args->out.seq = cs_seq; 2581 break; 2582 } 2583 2584 args->out.status = rc; 2585 } 2586 2587 return rc; 2588 } 2589 2590 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence, 2591 enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp) 2592 { 2593 struct hl_device *hdev = ctx->hdev; 2594 ktime_t timestamp_kt; 2595 long completion_rc; 2596 int rc = 0, error; 2597 2598 if (IS_ERR(fence)) { 2599 rc = PTR_ERR(fence); 2600 if (rc == -EINVAL) 2601 dev_notice_ratelimited(hdev->dev, 2602 "Can't wait on CS %llu because current CS is at seq %llu\n", 2603 seq, ctx->cs_sequence); 2604 return rc; 2605 } 2606 2607 if (!fence) { 2608 if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, ×tamp_kt, &error)) { 2609 dev_dbg(hdev->dev, 2610 "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n", 2611 seq, ctx->cs_sequence); 2612 *status = CS_WAIT_STATUS_GONE; 2613 return 0; 2614 } 2615 2616 completion_rc = 1; 2617 goto report_results; 2618 } 2619 2620 if (!timeout_us) { 2621 completion_rc = completion_done(&fence->completion); 2622 } else { 2623 unsigned long timeout; 2624 2625 timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ? 2626 timeout_us : usecs_to_jiffies(timeout_us); 2627 completion_rc = 2628 wait_for_completion_interruptible_timeout( 2629 &fence->completion, timeout); 2630 } 2631 2632 error = fence->error; 2633 timestamp_kt = fence->timestamp; 2634 2635 report_results: 2636 if (completion_rc > 0) { 2637 *status = CS_WAIT_STATUS_COMPLETED; 2638 if (timestamp) 2639 *timestamp = ktime_to_ns(timestamp_kt); 2640 } else { 2641 *status = CS_WAIT_STATUS_BUSY; 2642 } 2643 2644 if (completion_rc == -ERESTARTSYS) 2645 rc = completion_rc; 2646 else if (error == -ETIMEDOUT || error == -EIO) 2647 rc = error; 2648 2649 return rc; 2650 } 2651 2652 /* 2653 * hl_cs_poll_fences - iterate CS fences to check for CS completion 2654 * 2655 * @mcs_data: multi-CS internal data 2656 * @mcs_compl: multi-CS completion structure 2657 * 2658 * @return 0 on success, otherwise non 0 error code 2659 * 2660 * The function iterates on all CS sequence in the list and set bit in 2661 * completion_bitmap for each completed CS. 2662 * While iterating, the function sets the stream map of each fence in the fence 2663 * array in the completion QID stream map to be used by CSs to perform 2664 * completion to the multi-CS context. 2665 * This function shall be called after taking context ref 2666 */ 2667 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl) 2668 { 2669 struct hl_fence **fence_ptr = mcs_data->fence_arr; 2670 struct hl_device *hdev = mcs_data->ctx->hdev; 2671 int i, rc, arr_len = mcs_data->arr_len; 2672 u64 *seq_arr = mcs_data->seq_arr; 2673 ktime_t max_ktime, first_cs_time; 2674 enum hl_cs_wait_status status; 2675 2676 memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *)); 2677 2678 /* get all fences under the same lock */ 2679 rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len); 2680 if (rc) 2681 return rc; 2682 2683 /* 2684 * re-initialize the completion here to handle 2 possible cases: 2685 * 1. CS will complete the multi-CS prior clearing the completion. in which 2686 * case the fence iteration is guaranteed to catch the CS completion. 2687 * 2. the completion will occur after re-init of the completion. 2688 * in which case we will wake up immediately in wait_for_completion. 2689 */ 2690 reinit_completion(&mcs_compl->completion); 2691 2692 /* 2693 * set to maximum time to verify timestamp is valid: if at the end 2694 * this value is maintained- no timestamp was updated 2695 */ 2696 max_ktime = ktime_set(KTIME_SEC_MAX, 0); 2697 first_cs_time = max_ktime; 2698 2699 for (i = 0; i < arr_len; i++, fence_ptr++) { 2700 struct hl_fence *fence = *fence_ptr; 2701 2702 /* 2703 * In order to prevent case where we wait until timeout even though a CS associated 2704 * with the multi-CS actually completed we do things in the below order: 2705 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way 2706 * any CS can, potentially, complete the multi CS for the specific QID (note 2707 * that once completion is initialized, calling complete* and then wait on the 2708 * completion will cause it to return at once) 2709 * 2. only after allowing multi-CS completion for the specific QID we check whether 2710 * the specific CS already completed (and thus the wait for completion part will 2711 * be skipped). if the CS not completed it is guaranteed that completing CS will 2712 * wake up the completion. 2713 */ 2714 if (fence) 2715 mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map; 2716 2717 /* 2718 * function won't sleep as it is called with timeout 0 (i.e. 2719 * poll the fence) 2720 */ 2721 rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL); 2722 if (rc) { 2723 dev_err(hdev->dev, 2724 "wait_for_fence error :%d for CS seq %llu\n", 2725 rc, seq_arr[i]); 2726 break; 2727 } 2728 2729 switch (status) { 2730 case CS_WAIT_STATUS_BUSY: 2731 /* CS did not finished, QID to wait on already stored */ 2732 break; 2733 case CS_WAIT_STATUS_COMPLETED: 2734 /* 2735 * Using mcs_handling_done to avoid possibility of mcs_data 2736 * returns to user indicating CS completed before it finished 2737 * all of its mcs handling, to avoid race the next time the 2738 * user waits for mcs. 2739 * note: when reaching this case fence is definitely not NULL 2740 * but NULL check was added to overcome static analysis 2741 */ 2742 if (fence && !fence->mcs_handling_done) { 2743 /* 2744 * in case multi CS is completed but MCS handling not done 2745 * we "complete" the multi CS to prevent it from waiting 2746 * until time-out and the "multi-CS handling done" will have 2747 * another chance at the next iteration 2748 */ 2749 complete_all(&mcs_compl->completion); 2750 break; 2751 } 2752 2753 mcs_data->completion_bitmap |= BIT(i); 2754 /* 2755 * For all completed CSs we take the earliest timestamp. 2756 * For this we have to validate that the timestamp is 2757 * earliest of all timestamps so far. 2758 */ 2759 if (fence && mcs_data->update_ts && 2760 (ktime_compare(fence->timestamp, first_cs_time) < 0)) 2761 first_cs_time = fence->timestamp; 2762 break; 2763 case CS_WAIT_STATUS_GONE: 2764 mcs_data->update_ts = false; 2765 mcs_data->gone_cs = true; 2766 /* 2767 * It is possible to get an old sequence numbers from user 2768 * which related to already completed CSs and their fences 2769 * already gone. In this case, CS set as completed but 2770 * no need to consider its QID for mcs completion. 2771 */ 2772 mcs_data->completion_bitmap |= BIT(i); 2773 break; 2774 default: 2775 dev_err(hdev->dev, "Invalid fence status\n"); 2776 rc = -EINVAL; 2777 break; 2778 } 2779 2780 } 2781 2782 hl_fences_put(mcs_data->fence_arr, arr_len); 2783 2784 if (mcs_data->update_ts && 2785 (ktime_compare(first_cs_time, max_ktime) != 0)) 2786 mcs_data->timestamp = ktime_to_ns(first_cs_time); 2787 2788 return rc; 2789 } 2790 2791 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, 2792 enum hl_cs_wait_status *status, s64 *timestamp) 2793 { 2794 struct hl_fence *fence; 2795 int rc = 0; 2796 2797 if (timestamp) 2798 *timestamp = 0; 2799 2800 hl_ctx_get(ctx); 2801 2802 fence = hl_ctx_get_fence(ctx, seq); 2803 2804 rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp); 2805 hl_fence_put(fence); 2806 hl_ctx_put(ctx); 2807 2808 return rc; 2809 } 2810 2811 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs) 2812 { 2813 if (usecs <= U32_MAX) 2814 return usecs_to_jiffies(usecs); 2815 2816 /* 2817 * If the value in nanoseconds is larger than 64 bit, use the largest 2818 * 64 bit value. 2819 */ 2820 if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC))) 2821 return nsecs_to_jiffies(U64_MAX); 2822 2823 return nsecs_to_jiffies(usecs * NSEC_PER_USEC); 2824 } 2825 2826 /* 2827 * hl_wait_multi_cs_completion_init - init completion structure 2828 * 2829 * @hdev: pointer to habanalabs device structure 2830 * @stream_master_bitmap: stream master QIDs map, set bit indicates stream 2831 * master QID to wait on 2832 * 2833 * @return valid completion struct pointer on success, otherwise error pointer 2834 * 2835 * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver. 2836 * the function gets the first available completion (by marking it "used") 2837 * and initialize its values. 2838 */ 2839 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev) 2840 { 2841 struct multi_cs_completion *mcs_compl; 2842 int i; 2843 2844 /* find free multi_cs completion structure */ 2845 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 2846 mcs_compl = &hdev->multi_cs_completion[i]; 2847 spin_lock(&mcs_compl->lock); 2848 if (!mcs_compl->used) { 2849 mcs_compl->used = 1; 2850 mcs_compl->timestamp = 0; 2851 /* 2852 * init QID map to 0 to avoid completion by CSs. the actual QID map 2853 * to multi-CS CSs will be set incrementally at a later stage 2854 */ 2855 mcs_compl->stream_master_qid_map = 0; 2856 spin_unlock(&mcs_compl->lock); 2857 break; 2858 } 2859 spin_unlock(&mcs_compl->lock); 2860 } 2861 2862 if (i == MULTI_CS_MAX_USER_CTX) { 2863 dev_err(hdev->dev, "no available multi-CS completion structure\n"); 2864 return ERR_PTR(-ENOMEM); 2865 } 2866 return mcs_compl; 2867 } 2868 2869 /* 2870 * hl_wait_multi_cs_completion_fini - return completion structure and set as 2871 * unused 2872 * 2873 * @mcs_compl: pointer to the completion structure 2874 */ 2875 static void hl_wait_multi_cs_completion_fini( 2876 struct multi_cs_completion *mcs_compl) 2877 { 2878 /* 2879 * free completion structure, do it under lock to be in-sync with the 2880 * thread that signals completion 2881 */ 2882 spin_lock(&mcs_compl->lock); 2883 mcs_compl->used = 0; 2884 spin_unlock(&mcs_compl->lock); 2885 } 2886 2887 /* 2888 * hl_wait_multi_cs_completion - wait for first CS to complete 2889 * 2890 * @mcs_data: multi-CS internal data 2891 * 2892 * @return 0 on success, otherwise non 0 error code 2893 */ 2894 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data, 2895 struct multi_cs_completion *mcs_compl) 2896 { 2897 long completion_rc; 2898 2899 completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion, 2900 mcs_data->timeout_jiffies); 2901 2902 /* update timestamp */ 2903 if (completion_rc > 0) 2904 mcs_data->timestamp = mcs_compl->timestamp; 2905 2906 if (completion_rc == -ERESTARTSYS) 2907 return completion_rc; 2908 2909 mcs_data->wait_status = completion_rc; 2910 2911 return 0; 2912 } 2913 2914 /* 2915 * hl_multi_cs_completion_init - init array of multi-CS completion structures 2916 * 2917 * @hdev: pointer to habanalabs device structure 2918 */ 2919 void hl_multi_cs_completion_init(struct hl_device *hdev) 2920 { 2921 struct multi_cs_completion *mcs_cmpl; 2922 int i; 2923 2924 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 2925 mcs_cmpl = &hdev->multi_cs_completion[i]; 2926 mcs_cmpl->used = 0; 2927 spin_lock_init(&mcs_cmpl->lock); 2928 init_completion(&mcs_cmpl->completion); 2929 } 2930 } 2931 2932 /* 2933 * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl 2934 * 2935 * @hpriv: pointer to the private data of the fd 2936 * @data: pointer to multi-CS wait ioctl in/out args 2937 * 2938 */ 2939 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) 2940 { 2941 struct multi_cs_completion *mcs_compl; 2942 struct hl_device *hdev = hpriv->hdev; 2943 struct multi_cs_data mcs_data = {}; 2944 union hl_wait_cs_args *args = data; 2945 struct hl_ctx *ctx = hpriv->ctx; 2946 struct hl_fence **fence_arr; 2947 void __user *seq_arr; 2948 u32 size_to_copy; 2949 u64 *cs_seq_arr; 2950 u8 seq_arr_len; 2951 int rc, i; 2952 2953 for (i = 0 ; i < sizeof(args->in.pad) ; i++) 2954 if (args->in.pad[i]) { 2955 dev_dbg(hdev->dev, "Padding bytes must be 0\n"); 2956 return -EINVAL; 2957 } 2958 2959 if (!hdev->supports_wait_for_multi_cs) { 2960 dev_err(hdev->dev, "Wait for multi CS is not supported\n"); 2961 return -EPERM; 2962 } 2963 2964 seq_arr_len = args->in.seq_arr_len; 2965 2966 if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) { 2967 dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n", 2968 HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len); 2969 return -EINVAL; 2970 } 2971 2972 /* allocate memory for sequence array */ 2973 cs_seq_arr = 2974 kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL); 2975 if (!cs_seq_arr) 2976 return -ENOMEM; 2977 2978 /* copy CS sequence array from user */ 2979 seq_arr = (void __user *) (uintptr_t) args->in.seq; 2980 size_to_copy = seq_arr_len * sizeof(*cs_seq_arr); 2981 if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) { 2982 dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n"); 2983 rc = -EFAULT; 2984 goto free_seq_arr; 2985 } 2986 2987 /* allocate array for the fences */ 2988 fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL); 2989 if (!fence_arr) { 2990 rc = -ENOMEM; 2991 goto free_seq_arr; 2992 } 2993 2994 /* initialize the multi-CS internal data */ 2995 mcs_data.ctx = ctx; 2996 mcs_data.seq_arr = cs_seq_arr; 2997 mcs_data.fence_arr = fence_arr; 2998 mcs_data.arr_len = seq_arr_len; 2999 3000 hl_ctx_get(ctx); 3001 3002 /* wait (with timeout) for the first CS to be completed */ 3003 mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us); 3004 mcs_compl = hl_wait_multi_cs_completion_init(hdev); 3005 if (IS_ERR(mcs_compl)) { 3006 rc = PTR_ERR(mcs_compl); 3007 goto put_ctx; 3008 } 3009 3010 /* poll all CS fences, extract timestamp */ 3011 mcs_data.update_ts = true; 3012 rc = hl_cs_poll_fences(&mcs_data, mcs_compl); 3013 /* 3014 * skip wait for CS completion when one of the below is true: 3015 * - an error on the poll function 3016 * - one or more CS in the list completed 3017 * - the user called ioctl with timeout 0 3018 */ 3019 if (rc || mcs_data.completion_bitmap || !args->in.timeout_us) 3020 goto completion_fini; 3021 3022 while (true) { 3023 rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl); 3024 if (rc || (mcs_data.wait_status == 0)) 3025 break; 3026 3027 /* 3028 * poll fences once again to update the CS map. 3029 * no timestamp should be updated this time. 3030 */ 3031 mcs_data.update_ts = false; 3032 rc = hl_cs_poll_fences(&mcs_data, mcs_compl); 3033 3034 if (rc || mcs_data.completion_bitmap) 3035 break; 3036 3037 /* 3038 * if hl_wait_multi_cs_completion returned before timeout (i.e. 3039 * it got a completion) it either got completed by CS in the multi CS list 3040 * (in which case the indication will be non empty completion_bitmap) or it 3041 * got completed by CS submitted to one of the shared stream master but 3042 * not in the multi CS list (in which case we should wait again but modify 3043 * the timeout and set timestamp as zero to let a CS related to the current 3044 * multi-CS set a new, relevant, timestamp) 3045 */ 3046 mcs_data.timeout_jiffies = mcs_data.wait_status; 3047 mcs_compl->timestamp = 0; 3048 } 3049 3050 completion_fini: 3051 hl_wait_multi_cs_completion_fini(mcs_compl); 3052 3053 put_ctx: 3054 hl_ctx_put(ctx); 3055 kfree(fence_arr); 3056 3057 free_seq_arr: 3058 kfree(cs_seq_arr); 3059 3060 if (rc == -ERESTARTSYS) { 3061 dev_err_ratelimited(hdev->dev, 3062 "user process got signal while waiting for Multi-CS\n"); 3063 rc = -EINTR; 3064 } 3065 3066 if (rc) 3067 return rc; 3068 3069 /* update output args */ 3070 memset(args, 0, sizeof(*args)); 3071 3072 if (mcs_data.completion_bitmap) { 3073 args->out.status = HL_WAIT_CS_STATUS_COMPLETED; 3074 args->out.cs_completion_map = mcs_data.completion_bitmap; 3075 3076 /* if timestamp not 0- it's valid */ 3077 if (mcs_data.timestamp) { 3078 args->out.timestamp_nsec = mcs_data.timestamp; 3079 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3080 } 3081 3082 /* update if some CS was gone */ 3083 if (!mcs_data.timestamp) 3084 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; 3085 } else { 3086 args->out.status = HL_WAIT_CS_STATUS_BUSY; 3087 } 3088 3089 return 0; 3090 } 3091 3092 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3093 { 3094 struct hl_device *hdev = hpriv->hdev; 3095 union hl_wait_cs_args *args = data; 3096 enum hl_cs_wait_status status; 3097 u64 seq = args->in.seq; 3098 s64 timestamp; 3099 int rc; 3100 3101 rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, ×tamp); 3102 3103 if (rc == -ERESTARTSYS) { 3104 dev_err_ratelimited(hdev->dev, 3105 "user process got signal while waiting for CS handle %llu\n", 3106 seq); 3107 return -EINTR; 3108 } 3109 3110 memset(args, 0, sizeof(*args)); 3111 3112 if (rc) { 3113 if (rc == -ETIMEDOUT) { 3114 dev_err_ratelimited(hdev->dev, 3115 "CS %llu has timed-out while user process is waiting for it\n", 3116 seq); 3117 args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT; 3118 } else if (rc == -EIO) { 3119 dev_err_ratelimited(hdev->dev, 3120 "CS %llu has been aborted while user process is waiting for it\n", 3121 seq); 3122 args->out.status = HL_WAIT_CS_STATUS_ABORTED; 3123 } 3124 return rc; 3125 } 3126 3127 if (timestamp) { 3128 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3129 args->out.timestamp_nsec = timestamp; 3130 } 3131 3132 switch (status) { 3133 case CS_WAIT_STATUS_GONE: 3134 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; 3135 fallthrough; 3136 case CS_WAIT_STATUS_COMPLETED: 3137 args->out.status = HL_WAIT_CS_STATUS_COMPLETED; 3138 break; 3139 case CS_WAIT_STATUS_BUSY: 3140 default: 3141 args->out.status = HL_WAIT_CS_STATUS_BUSY; 3142 break; 3143 } 3144 3145 return 0; 3146 } 3147 3148 static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf, 3149 struct hl_cb *cq_cb, 3150 u64 ts_offset, u64 cq_offset, u64 target_value, 3151 spinlock_t *wait_list_lock, 3152 struct hl_user_pending_interrupt **pend) 3153 { 3154 struct hl_ts_buff *ts_buff = buf->private; 3155 struct hl_user_pending_interrupt *requested_offset_record = 3156 (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + 3157 ts_offset; 3158 struct hl_user_pending_interrupt *cb_last = 3159 (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + 3160 (ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt)); 3161 unsigned long iter_counter = 0; 3162 u64 current_cq_counter; 3163 ktime_t timestamp; 3164 3165 /* Validate ts_offset not exceeding last max */ 3166 if (requested_offset_record >= cb_last) { 3167 dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n", 3168 (u64)(uintptr_t)cb_last); 3169 return -EINVAL; 3170 } 3171 3172 timestamp = ktime_get(); 3173 3174 start_over: 3175 spin_lock(wait_list_lock); 3176 3177 /* Unregister only if we didn't reach the target value 3178 * since in this case there will be no handling in irq context 3179 * and then it's safe to delete the node out of the interrupt list 3180 * then re-use it on other interrupt 3181 */ 3182 if (requested_offset_record->ts_reg_info.in_use) { 3183 current_cq_counter = *requested_offset_record->cq_kernel_addr; 3184 if (current_cq_counter < requested_offset_record->cq_target_value) { 3185 list_del(&requested_offset_record->wait_list_node); 3186 spin_unlock(wait_list_lock); 3187 3188 hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf); 3189 hl_cb_put(requested_offset_record->ts_reg_info.cq_cb); 3190 3191 dev_dbg(buf->mmg->dev, 3192 "ts node removed from interrupt list now can re-use\n"); 3193 } else { 3194 dev_dbg(buf->mmg->dev, 3195 "ts node in middle of irq handling\n"); 3196 3197 /* irq thread handling in the middle give it time to finish */ 3198 spin_unlock(wait_list_lock); 3199 usleep_range(100, 1000); 3200 if (++iter_counter == MAX_TS_ITER_NUM) { 3201 dev_err(buf->mmg->dev, 3202 "Timestamp offset processing reached timeout of %lld ms\n", 3203 ktime_ms_delta(ktime_get(), timestamp)); 3204 return -EAGAIN; 3205 } 3206 3207 goto start_over; 3208 } 3209 } else { 3210 /* Fill up the new registration node info */ 3211 requested_offset_record->ts_reg_info.buf = buf; 3212 requested_offset_record->ts_reg_info.cq_cb = cq_cb; 3213 requested_offset_record->ts_reg_info.timestamp_kernel_addr = 3214 (u64 *) ts_buff->user_buff_address + ts_offset; 3215 requested_offset_record->cq_kernel_addr = 3216 (u64 *) cq_cb->kernel_address + cq_offset; 3217 requested_offset_record->cq_target_value = target_value; 3218 3219 spin_unlock(wait_list_lock); 3220 } 3221 3222 *pend = requested_offset_record; 3223 3224 dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n", 3225 requested_offset_record); 3226 return 0; 3227 } 3228 3229 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, 3230 struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg, 3231 u64 timeout_us, u64 cq_counters_handle, u64 cq_counters_offset, 3232 u64 target_value, struct hl_user_interrupt *interrupt, 3233 bool register_ts_record, u64 ts_handle, u64 ts_offset, 3234 u32 *status, u64 *timestamp) 3235 { 3236 struct hl_user_pending_interrupt *pend; 3237 struct hl_mmap_mem_buf *buf; 3238 struct hl_cb *cq_cb; 3239 unsigned long timeout; 3240 long completion_rc; 3241 int rc = 0; 3242 3243 timeout = hl_usecs64_to_jiffies(timeout_us); 3244 3245 hl_ctx_get(ctx); 3246 3247 cq_cb = hl_cb_get(cb_mmg, cq_counters_handle); 3248 if (!cq_cb) { 3249 rc = -EINVAL; 3250 goto put_ctx; 3251 } 3252 3253 /* Validate the cq offset */ 3254 if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >= 3255 ((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) { 3256 rc = -EINVAL; 3257 goto put_cq_cb; 3258 } 3259 3260 if (register_ts_record) { 3261 dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n", 3262 interrupt->interrupt_id, ts_offset, cq_counters_offset); 3263 buf = hl_mmap_mem_buf_get(mmg, ts_handle); 3264 if (!buf) { 3265 rc = -EINVAL; 3266 goto put_cq_cb; 3267 } 3268 3269 /* get ts buffer record */ 3270 rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset, 3271 cq_counters_offset, target_value, 3272 &interrupt->wait_list_lock, &pend); 3273 if (rc) 3274 goto put_ts_buff; 3275 } else { 3276 pend = kzalloc(sizeof(*pend), GFP_KERNEL); 3277 if (!pend) { 3278 rc = -ENOMEM; 3279 goto put_cq_cb; 3280 } 3281 hl_fence_init(&pend->fence, ULONG_MAX); 3282 pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset; 3283 pend->cq_target_value = target_value; 3284 } 3285 3286 spin_lock(&interrupt->wait_list_lock); 3287 3288 /* We check for completion value as interrupt could have been received 3289 * before we added the node to the wait list 3290 */ 3291 if (*pend->cq_kernel_addr >= target_value) { 3292 if (register_ts_record) 3293 pend->ts_reg_info.in_use = 0; 3294 spin_unlock(&interrupt->wait_list_lock); 3295 3296 *status = HL_WAIT_CS_STATUS_COMPLETED; 3297 3298 if (register_ts_record) { 3299 *pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns(); 3300 goto put_ts_buff; 3301 } else { 3302 pend->fence.timestamp = ktime_get(); 3303 goto set_timestamp; 3304 } 3305 } else if (!timeout_us) { 3306 spin_unlock(&interrupt->wait_list_lock); 3307 *status = HL_WAIT_CS_STATUS_BUSY; 3308 pend->fence.timestamp = ktime_get(); 3309 goto set_timestamp; 3310 } 3311 3312 /* Add pending user interrupt to relevant list for the interrupt 3313 * handler to monitor. 3314 * Note that we cannot have sorted list by target value, 3315 * in order to shorten the list pass loop, since 3316 * same list could have nodes for different cq counter handle. 3317 * Note: 3318 * Mark ts buff offset as in use here in the spinlock protection area 3319 * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record 3320 * before adding the node to the list. this scenario might happen when 3321 * multiple threads are racing on same offset and one thread could 3322 * set the ts buff in ts_buff_get_kernel_ts_record then the other thread 3323 * takes over and get to ts_buff_get_kernel_ts_record and then we will try 3324 * to re-use the same ts buff offset, and will try to delete a non existing 3325 * node from the list. 3326 */ 3327 if (register_ts_record) 3328 pend->ts_reg_info.in_use = 1; 3329 3330 list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); 3331 spin_unlock(&interrupt->wait_list_lock); 3332 3333 if (register_ts_record) { 3334 rc = *status = HL_WAIT_CS_STATUS_COMPLETED; 3335 goto ts_registration_exit; 3336 } 3337 3338 /* Wait for interrupt handler to signal completion */ 3339 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, 3340 timeout); 3341 if (completion_rc > 0) { 3342 *status = HL_WAIT_CS_STATUS_COMPLETED; 3343 } else { 3344 if (completion_rc == -ERESTARTSYS) { 3345 dev_err_ratelimited(hdev->dev, 3346 "user process got signal while waiting for interrupt ID %d\n", 3347 interrupt->interrupt_id); 3348 rc = -EINTR; 3349 *status = HL_WAIT_CS_STATUS_ABORTED; 3350 } else { 3351 if (pend->fence.error == -EIO) { 3352 dev_err_ratelimited(hdev->dev, 3353 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", 3354 pend->fence.error); 3355 rc = -EIO; 3356 *status = HL_WAIT_CS_STATUS_ABORTED; 3357 } else { 3358 /* The wait has timed-out. We don't know anything beyond that 3359 * because the workload wasn't submitted through the driver. 3360 * Therefore, from driver's perspective, the workload is still 3361 * executing. 3362 */ 3363 rc = 0; 3364 *status = HL_WAIT_CS_STATUS_BUSY; 3365 } 3366 } 3367 } 3368 3369 /* 3370 * We keep removing the node from list here, and not at the irq handler 3371 * for completion timeout case. and if it's a registration 3372 * for ts record, the node will be deleted in the irq handler after 3373 * we reach the target value. 3374 */ 3375 spin_lock(&interrupt->wait_list_lock); 3376 list_del(&pend->wait_list_node); 3377 spin_unlock(&interrupt->wait_list_lock); 3378 3379 set_timestamp: 3380 *timestamp = ktime_to_ns(pend->fence.timestamp); 3381 kfree(pend); 3382 hl_cb_put(cq_cb); 3383 ts_registration_exit: 3384 hl_ctx_put(ctx); 3385 3386 return rc; 3387 3388 put_ts_buff: 3389 hl_mmap_mem_buf_put(buf); 3390 put_cq_cb: 3391 hl_cb_put(cq_cb); 3392 put_ctx: 3393 hl_ctx_put(ctx); 3394 3395 return rc; 3396 } 3397 3398 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx, 3399 u64 timeout_us, u64 user_address, 3400 u64 target_value, struct hl_user_interrupt *interrupt, 3401 u32 *status, 3402 u64 *timestamp) 3403 { 3404 struct hl_user_pending_interrupt *pend; 3405 unsigned long timeout; 3406 u64 completion_value; 3407 long completion_rc; 3408 int rc = 0; 3409 3410 timeout = hl_usecs64_to_jiffies(timeout_us); 3411 3412 hl_ctx_get(ctx); 3413 3414 pend = kzalloc(sizeof(*pend), GFP_KERNEL); 3415 if (!pend) { 3416 hl_ctx_put(ctx); 3417 return -ENOMEM; 3418 } 3419 3420 hl_fence_init(&pend->fence, ULONG_MAX); 3421 3422 /* Add pending user interrupt to relevant list for the interrupt 3423 * handler to monitor 3424 */ 3425 spin_lock(&interrupt->wait_list_lock); 3426 list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); 3427 spin_unlock(&interrupt->wait_list_lock); 3428 3429 /* We check for completion value as interrupt could have been received 3430 * before we added the node to the wait list 3431 */ 3432 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { 3433 dev_err(hdev->dev, "Failed to copy completion value from user\n"); 3434 rc = -EFAULT; 3435 goto remove_pending_user_interrupt; 3436 } 3437 3438 if (completion_value >= target_value) { 3439 *status = HL_WAIT_CS_STATUS_COMPLETED; 3440 /* There was no interrupt, we assume the completion is now. */ 3441 pend->fence.timestamp = ktime_get(); 3442 } else { 3443 *status = HL_WAIT_CS_STATUS_BUSY; 3444 } 3445 3446 if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED)) 3447 goto remove_pending_user_interrupt; 3448 3449 wait_again: 3450 /* Wait for interrupt handler to signal completion */ 3451 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, 3452 timeout); 3453 3454 /* If timeout did not expire we need to perform the comparison. 3455 * If comparison fails, keep waiting until timeout expires 3456 */ 3457 if (completion_rc > 0) { 3458 spin_lock(&interrupt->wait_list_lock); 3459 /* reinit_completion must be called before we check for user 3460 * completion value, otherwise, if interrupt is received after 3461 * the comparison and before the next wait_for_completion, 3462 * we will reach timeout and fail 3463 */ 3464 reinit_completion(&pend->fence.completion); 3465 spin_unlock(&interrupt->wait_list_lock); 3466 3467 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { 3468 dev_err(hdev->dev, "Failed to copy completion value from user\n"); 3469 rc = -EFAULT; 3470 3471 goto remove_pending_user_interrupt; 3472 } 3473 3474 if (completion_value >= target_value) { 3475 *status = HL_WAIT_CS_STATUS_COMPLETED; 3476 } else if (pend->fence.error) { 3477 dev_err_ratelimited(hdev->dev, 3478 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", 3479 pend->fence.error); 3480 /* set the command completion status as ABORTED */ 3481 *status = HL_WAIT_CS_STATUS_ABORTED; 3482 } else { 3483 timeout = completion_rc; 3484 goto wait_again; 3485 } 3486 } else if (completion_rc == -ERESTARTSYS) { 3487 dev_err_ratelimited(hdev->dev, 3488 "user process got signal while waiting for interrupt ID %d\n", 3489 interrupt->interrupt_id); 3490 rc = -EINTR; 3491 } else { 3492 /* The wait has timed-out. We don't know anything beyond that 3493 * because the workload wasn't submitted through the driver. 3494 * Therefore, from driver's perspective, the workload is still 3495 * executing. 3496 */ 3497 rc = 0; 3498 *status = HL_WAIT_CS_STATUS_BUSY; 3499 } 3500 3501 remove_pending_user_interrupt: 3502 spin_lock(&interrupt->wait_list_lock); 3503 list_del(&pend->wait_list_node); 3504 spin_unlock(&interrupt->wait_list_lock); 3505 3506 *timestamp = ktime_to_ns(pend->fence.timestamp); 3507 3508 kfree(pend); 3509 hl_ctx_put(ctx); 3510 3511 return rc; 3512 } 3513 3514 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3515 { 3516 u16 interrupt_id, first_interrupt, last_interrupt; 3517 struct hl_device *hdev = hpriv->hdev; 3518 struct asic_fixed_properties *prop; 3519 struct hl_user_interrupt *interrupt; 3520 union hl_wait_cs_args *args = data; 3521 u32 status = HL_WAIT_CS_STATUS_BUSY; 3522 u64 timestamp = 0; 3523 int rc, int_idx; 3524 3525 prop = &hdev->asic_prop; 3526 3527 if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) { 3528 dev_err(hdev->dev, "no user interrupts allowed"); 3529 return -EPERM; 3530 } 3531 3532 interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags); 3533 3534 first_interrupt = prop->first_available_user_interrupt; 3535 last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1; 3536 3537 if (interrupt_id < prop->user_dec_intr_count) { 3538 3539 /* Check if the requested core is enabled */ 3540 if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) { 3541 dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed", 3542 interrupt_id); 3543 return -EINVAL; 3544 } 3545 3546 interrupt = &hdev->user_interrupt[interrupt_id]; 3547 3548 } else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) { 3549 3550 int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count; 3551 interrupt = &hdev->user_interrupt[int_idx]; 3552 3553 } else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) { 3554 interrupt = &hdev->common_user_cq_interrupt; 3555 } else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) { 3556 interrupt = &hdev->common_decoder_interrupt; 3557 } else { 3558 dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id); 3559 return -EINVAL; 3560 } 3561 3562 if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) 3563 rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr, 3564 args->in.interrupt_timeout_us, args->in.cq_counters_handle, 3565 args->in.cq_counters_offset, 3566 args->in.target, interrupt, 3567 !!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT), 3568 args->in.timestamp_handle, args->in.timestamp_offset, 3569 &status, ×tamp); 3570 else 3571 rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx, 3572 args->in.interrupt_timeout_us, args->in.addr, 3573 args->in.target, interrupt, &status, 3574 ×tamp); 3575 if (rc) 3576 return rc; 3577 3578 memset(args, 0, sizeof(*args)); 3579 args->out.status = status; 3580 3581 if (timestamp) { 3582 args->out.timestamp_nsec = timestamp; 3583 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3584 } 3585 3586 return 0; 3587 } 3588 3589 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3590 { 3591 struct hl_device *hdev = hpriv->hdev; 3592 union hl_wait_cs_args *args = data; 3593 u32 flags = args->in.flags; 3594 int rc; 3595 3596 /* If the device is not operational, or if an error has happened and user should release the 3597 * device, there is no point in waiting for any command submission or user interrupt. 3598 */ 3599 if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active) 3600 return -EBUSY; 3601 3602 if (flags & HL_WAIT_CS_FLAGS_INTERRUPT) 3603 rc = hl_interrupt_wait_ioctl(hpriv, data); 3604 else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS) 3605 rc = hl_multi_cs_wait_ioctl(hpriv, data); 3606 else 3607 rc = hl_cs_wait_ioctl(hpriv, data); 3608 3609 return rc; 3610 } 3611