1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* XTS: as defined in IEEE1619/D16 3 * http://grouper.ieee.org/groups/1619/email/pdf00086.pdf 4 * 5 * Copyright (c) 2007 Rik Snel <rsnel@cube.dyndns.org> 6 * 7 * Based on ecb.c 8 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 9 */ 10 #include <crypto/internal/skcipher.h> 11 #include <crypto/scatterwalk.h> 12 #include <linux/err.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/scatterlist.h> 17 #include <linux/slab.h> 18 19 #include <crypto/xts.h> 20 #include <crypto/b128ops.h> 21 #include <crypto/gf128mul.h> 22 23 struct priv { 24 struct crypto_skcipher *child; 25 struct crypto_cipher *tweak; 26 }; 27 28 struct xts_instance_ctx { 29 struct crypto_skcipher_spawn spawn; 30 char name[CRYPTO_MAX_ALG_NAME]; 31 }; 32 33 struct rctx { 34 le128 t; 35 struct scatterlist *tail; 36 struct scatterlist sg[2]; 37 struct skcipher_request subreq; 38 }; 39 40 static int setkey(struct crypto_skcipher *parent, const u8 *key, 41 unsigned int keylen) 42 { 43 struct priv *ctx = crypto_skcipher_ctx(parent); 44 struct crypto_skcipher *child; 45 struct crypto_cipher *tweak; 46 int err; 47 48 err = xts_verify_key(parent, key, keylen); 49 if (err) 50 return err; 51 52 keylen /= 2; 53 54 /* we need two cipher instances: one to compute the initial 'tweak' 55 * by encrypting the IV (usually the 'plain' iv) and the other 56 * one to encrypt and decrypt the data */ 57 58 /* tweak cipher, uses Key2 i.e. the second half of *key */ 59 tweak = ctx->tweak; 60 crypto_cipher_clear_flags(tweak, CRYPTO_TFM_REQ_MASK); 61 crypto_cipher_set_flags(tweak, crypto_skcipher_get_flags(parent) & 62 CRYPTO_TFM_REQ_MASK); 63 err = crypto_cipher_setkey(tweak, key + keylen, keylen); 64 crypto_skcipher_set_flags(parent, crypto_cipher_get_flags(tweak) & 65 CRYPTO_TFM_RES_MASK); 66 if (err) 67 return err; 68 69 /* data cipher, uses Key1 i.e. the first half of *key */ 70 child = ctx->child; 71 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); 72 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & 73 CRYPTO_TFM_REQ_MASK); 74 err = crypto_skcipher_setkey(child, key, keylen); 75 crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) & 76 CRYPTO_TFM_RES_MASK); 77 78 return err; 79 } 80 81 /* 82 * We compute the tweak masks twice (both before and after the ECB encryption or 83 * decryption) to avoid having to allocate a temporary buffer and/or make 84 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than 85 * just doing the gf128mul_x_ble() calls again. 86 */ 87 static int xor_tweak(struct skcipher_request *req, bool second_pass, bool enc) 88 { 89 struct rctx *rctx = skcipher_request_ctx(req); 90 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 91 const bool cts = (req->cryptlen % XTS_BLOCK_SIZE); 92 const int bs = XTS_BLOCK_SIZE; 93 struct skcipher_walk w; 94 le128 t = rctx->t; 95 int err; 96 97 if (second_pass) { 98 req = &rctx->subreq; 99 /* set to our TFM to enforce correct alignment: */ 100 skcipher_request_set_tfm(req, tfm); 101 } 102 err = skcipher_walk_virt(&w, req, false); 103 104 while (w.nbytes) { 105 unsigned int avail = w.nbytes; 106 le128 *wsrc; 107 le128 *wdst; 108 109 wsrc = w.src.virt.addr; 110 wdst = w.dst.virt.addr; 111 112 do { 113 if (unlikely(cts) && 114 w.total - w.nbytes + avail < 2 * XTS_BLOCK_SIZE) { 115 if (!enc) { 116 if (second_pass) 117 rctx->t = t; 118 gf128mul_x_ble(&t, &t); 119 } 120 le128_xor(wdst, &t, wsrc); 121 if (enc && second_pass) 122 gf128mul_x_ble(&rctx->t, &t); 123 skcipher_walk_done(&w, avail - bs); 124 return 0; 125 } 126 127 le128_xor(wdst++, &t, wsrc++); 128 gf128mul_x_ble(&t, &t); 129 } while ((avail -= bs) >= bs); 130 131 err = skcipher_walk_done(&w, avail); 132 } 133 134 return err; 135 } 136 137 static int xor_tweak_pre(struct skcipher_request *req, bool enc) 138 { 139 return xor_tweak(req, false, enc); 140 } 141 142 static int xor_tweak_post(struct skcipher_request *req, bool enc) 143 { 144 return xor_tweak(req, true, enc); 145 } 146 147 static void cts_done(struct crypto_async_request *areq, int err) 148 { 149 struct skcipher_request *req = areq->data; 150 le128 b; 151 152 if (!err) { 153 struct rctx *rctx = skcipher_request_ctx(req); 154 155 scatterwalk_map_and_copy(&b, rctx->tail, 0, XTS_BLOCK_SIZE, 0); 156 le128_xor(&b, &rctx->t, &b); 157 scatterwalk_map_and_copy(&b, rctx->tail, 0, XTS_BLOCK_SIZE, 1); 158 } 159 160 skcipher_request_complete(req, err); 161 } 162 163 static int cts_final(struct skcipher_request *req, 164 int (*crypt)(struct skcipher_request *req)) 165 { 166 struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 167 int offset = req->cryptlen & ~(XTS_BLOCK_SIZE - 1); 168 struct rctx *rctx = skcipher_request_ctx(req); 169 struct skcipher_request *subreq = &rctx->subreq; 170 int tail = req->cryptlen % XTS_BLOCK_SIZE; 171 le128 b[2]; 172 int err; 173 174 rctx->tail = scatterwalk_ffwd(rctx->sg, req->dst, 175 offset - XTS_BLOCK_SIZE); 176 177 scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 0); 178 memcpy(b + 1, b, tail); 179 scatterwalk_map_and_copy(b, req->src, offset, tail, 0); 180 181 le128_xor(b, &rctx->t, b); 182 183 scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE + tail, 1); 184 185 skcipher_request_set_tfm(subreq, ctx->child); 186 skcipher_request_set_callback(subreq, req->base.flags, cts_done, req); 187 skcipher_request_set_crypt(subreq, rctx->tail, rctx->tail, 188 XTS_BLOCK_SIZE, NULL); 189 190 err = crypt(subreq); 191 if (err) 192 return err; 193 194 scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 0); 195 le128_xor(b, &rctx->t, b); 196 scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 1); 197 198 return 0; 199 } 200 201 static void encrypt_done(struct crypto_async_request *areq, int err) 202 { 203 struct skcipher_request *req = areq->data; 204 205 if (!err) { 206 struct rctx *rctx = skcipher_request_ctx(req); 207 208 rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; 209 err = xor_tweak_post(req, true); 210 211 if (!err && unlikely(req->cryptlen % XTS_BLOCK_SIZE)) { 212 err = cts_final(req, crypto_skcipher_encrypt); 213 if (err == -EINPROGRESS) 214 return; 215 } 216 } 217 218 skcipher_request_complete(req, err); 219 } 220 221 static void decrypt_done(struct crypto_async_request *areq, int err) 222 { 223 struct skcipher_request *req = areq->data; 224 225 if (!err) { 226 struct rctx *rctx = skcipher_request_ctx(req); 227 228 rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; 229 err = xor_tweak_post(req, false); 230 231 if (!err && unlikely(req->cryptlen % XTS_BLOCK_SIZE)) { 232 err = cts_final(req, crypto_skcipher_decrypt); 233 if (err == -EINPROGRESS) 234 return; 235 } 236 } 237 238 skcipher_request_complete(req, err); 239 } 240 241 static int init_crypt(struct skcipher_request *req, crypto_completion_t compl) 242 { 243 struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 244 struct rctx *rctx = skcipher_request_ctx(req); 245 struct skcipher_request *subreq = &rctx->subreq; 246 247 if (req->cryptlen < XTS_BLOCK_SIZE) 248 return -EINVAL; 249 250 skcipher_request_set_tfm(subreq, ctx->child); 251 skcipher_request_set_callback(subreq, req->base.flags, compl, req); 252 skcipher_request_set_crypt(subreq, req->dst, req->dst, 253 req->cryptlen & ~(XTS_BLOCK_SIZE - 1), NULL); 254 255 /* calculate first value of T */ 256 crypto_cipher_encrypt_one(ctx->tweak, (u8 *)&rctx->t, req->iv); 257 258 return 0; 259 } 260 261 static int encrypt(struct skcipher_request *req) 262 { 263 struct rctx *rctx = skcipher_request_ctx(req); 264 struct skcipher_request *subreq = &rctx->subreq; 265 int err; 266 267 err = init_crypt(req, encrypt_done) ?: 268 xor_tweak_pre(req, true) ?: 269 crypto_skcipher_encrypt(subreq) ?: 270 xor_tweak_post(req, true); 271 272 if (err || likely((req->cryptlen % XTS_BLOCK_SIZE) == 0)) 273 return err; 274 275 return cts_final(req, crypto_skcipher_encrypt); 276 } 277 278 static int decrypt(struct skcipher_request *req) 279 { 280 struct rctx *rctx = skcipher_request_ctx(req); 281 struct skcipher_request *subreq = &rctx->subreq; 282 int err; 283 284 err = init_crypt(req, decrypt_done) ?: 285 xor_tweak_pre(req, false) ?: 286 crypto_skcipher_decrypt(subreq) ?: 287 xor_tweak_post(req, false); 288 289 if (err || likely((req->cryptlen % XTS_BLOCK_SIZE) == 0)) 290 return err; 291 292 return cts_final(req, crypto_skcipher_decrypt); 293 } 294 295 static int init_tfm(struct crypto_skcipher *tfm) 296 { 297 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 298 struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst); 299 struct priv *ctx = crypto_skcipher_ctx(tfm); 300 struct crypto_skcipher *child; 301 struct crypto_cipher *tweak; 302 303 child = crypto_spawn_skcipher(&ictx->spawn); 304 if (IS_ERR(child)) 305 return PTR_ERR(child); 306 307 ctx->child = child; 308 309 tweak = crypto_alloc_cipher(ictx->name, 0, 0); 310 if (IS_ERR(tweak)) { 311 crypto_free_skcipher(ctx->child); 312 return PTR_ERR(tweak); 313 } 314 315 ctx->tweak = tweak; 316 317 crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) + 318 sizeof(struct rctx)); 319 320 return 0; 321 } 322 323 static void exit_tfm(struct crypto_skcipher *tfm) 324 { 325 struct priv *ctx = crypto_skcipher_ctx(tfm); 326 327 crypto_free_skcipher(ctx->child); 328 crypto_free_cipher(ctx->tweak); 329 } 330 331 static void free(struct skcipher_instance *inst) 332 { 333 crypto_drop_skcipher(skcipher_instance_ctx(inst)); 334 kfree(inst); 335 } 336 337 static int create(struct crypto_template *tmpl, struct rtattr **tb) 338 { 339 struct skcipher_instance *inst; 340 struct crypto_attr_type *algt; 341 struct xts_instance_ctx *ctx; 342 struct skcipher_alg *alg; 343 const char *cipher_name; 344 u32 mask; 345 int err; 346 347 algt = crypto_get_attr_type(tb); 348 if (IS_ERR(algt)) 349 return PTR_ERR(algt); 350 351 if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) 352 return -EINVAL; 353 354 cipher_name = crypto_attr_alg_name(tb[1]); 355 if (IS_ERR(cipher_name)) 356 return PTR_ERR(cipher_name); 357 358 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 359 if (!inst) 360 return -ENOMEM; 361 362 ctx = skcipher_instance_ctx(inst); 363 364 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst)); 365 366 mask = crypto_requires_off(algt->type, algt->mask, 367 CRYPTO_ALG_NEED_FALLBACK | 368 CRYPTO_ALG_ASYNC); 369 370 err = crypto_grab_skcipher(&ctx->spawn, cipher_name, 0, mask); 371 if (err == -ENOENT) { 372 err = -ENAMETOOLONG; 373 if (snprintf(ctx->name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", 374 cipher_name) >= CRYPTO_MAX_ALG_NAME) 375 goto err_free_inst; 376 377 err = crypto_grab_skcipher(&ctx->spawn, ctx->name, 0, mask); 378 } 379 380 if (err) 381 goto err_free_inst; 382 383 alg = crypto_skcipher_spawn_alg(&ctx->spawn); 384 385 err = -EINVAL; 386 if (alg->base.cra_blocksize != XTS_BLOCK_SIZE) 387 goto err_drop_spawn; 388 389 if (crypto_skcipher_alg_ivsize(alg)) 390 goto err_drop_spawn; 391 392 err = crypto_inst_setname(skcipher_crypto_instance(inst), "xts", 393 &alg->base); 394 if (err) 395 goto err_drop_spawn; 396 397 err = -EINVAL; 398 cipher_name = alg->base.cra_name; 399 400 /* Alas we screwed up the naming so we have to mangle the 401 * cipher name. 402 */ 403 if (!strncmp(cipher_name, "ecb(", 4)) { 404 unsigned len; 405 406 len = strlcpy(ctx->name, cipher_name + 4, sizeof(ctx->name)); 407 if (len < 2 || len >= sizeof(ctx->name)) 408 goto err_drop_spawn; 409 410 if (ctx->name[len - 1] != ')') 411 goto err_drop_spawn; 412 413 ctx->name[len - 1] = 0; 414 415 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 416 "xts(%s)", ctx->name) >= CRYPTO_MAX_ALG_NAME) { 417 err = -ENAMETOOLONG; 418 goto err_drop_spawn; 419 } 420 } else 421 goto err_drop_spawn; 422 423 inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC; 424 inst->alg.base.cra_priority = alg->base.cra_priority; 425 inst->alg.base.cra_blocksize = XTS_BLOCK_SIZE; 426 inst->alg.base.cra_alignmask = alg->base.cra_alignmask | 427 (__alignof__(u64) - 1); 428 429 inst->alg.ivsize = XTS_BLOCK_SIZE; 430 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) * 2; 431 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) * 2; 432 433 inst->alg.base.cra_ctxsize = sizeof(struct priv); 434 435 inst->alg.init = init_tfm; 436 inst->alg.exit = exit_tfm; 437 438 inst->alg.setkey = setkey; 439 inst->alg.encrypt = encrypt; 440 inst->alg.decrypt = decrypt; 441 442 inst->free = free; 443 444 err = skcipher_register_instance(tmpl, inst); 445 if (err) 446 goto err_drop_spawn; 447 448 out: 449 return err; 450 451 err_drop_spawn: 452 crypto_drop_skcipher(&ctx->spawn); 453 err_free_inst: 454 kfree(inst); 455 goto out; 456 } 457 458 static struct crypto_template crypto_tmpl = { 459 .name = "xts", 460 .create = create, 461 .module = THIS_MODULE, 462 }; 463 464 static int __init crypto_module_init(void) 465 { 466 return crypto_register_template(&crypto_tmpl); 467 } 468 469 static void __exit crypto_module_exit(void) 470 { 471 crypto_unregister_template(&crypto_tmpl); 472 } 473 474 subsys_initcall(crypto_module_init); 475 module_exit(crypto_module_exit); 476 477 MODULE_LICENSE("GPL"); 478 MODULE_DESCRIPTION("XTS block cipher mode"); 479 MODULE_ALIAS_CRYPTO("xts"); 480