1 /* XTS: as defined in IEEE1619/D16 2 * http://grouper.ieee.org/groups/1619/email/pdf00086.pdf 3 * (sector sizes which are not a multiple of 16 bytes are, 4 * however currently unsupported) 5 * 6 * Copyright (c) 2007 Rik Snel <rsnel@cube.dyndns.org> 7 * 8 * Based on ecb.c 9 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 */ 16 #include <crypto/internal/skcipher.h> 17 #include <crypto/scatterwalk.h> 18 #include <linux/err.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/scatterlist.h> 23 #include <linux/slab.h> 24 25 #include <crypto/xts.h> 26 #include <crypto/b128ops.h> 27 #include <crypto/gf128mul.h> 28 29 #define XTS_BUFFER_SIZE 128u 30 31 struct priv { 32 struct crypto_skcipher *child; 33 struct crypto_cipher *tweak; 34 }; 35 36 struct xts_instance_ctx { 37 struct crypto_skcipher_spawn spawn; 38 char name[CRYPTO_MAX_ALG_NAME]; 39 }; 40 41 struct rctx { 42 le128 buf[XTS_BUFFER_SIZE / sizeof(le128)]; 43 44 le128 t; 45 46 le128 *ext; 47 48 struct scatterlist srcbuf[2]; 49 struct scatterlist dstbuf[2]; 50 struct scatterlist *src; 51 struct scatterlist *dst; 52 53 unsigned int left; 54 55 struct skcipher_request subreq; 56 }; 57 58 static int setkey(struct crypto_skcipher *parent, const u8 *key, 59 unsigned int keylen) 60 { 61 struct priv *ctx = crypto_skcipher_ctx(parent); 62 struct crypto_skcipher *child; 63 struct crypto_cipher *tweak; 64 int err; 65 66 err = xts_verify_key(parent, key, keylen); 67 if (err) 68 return err; 69 70 keylen /= 2; 71 72 /* we need two cipher instances: one to compute the initial 'tweak' 73 * by encrypting the IV (usually the 'plain' iv) and the other 74 * one to encrypt and decrypt the data */ 75 76 /* tweak cipher, uses Key2 i.e. the second half of *key */ 77 tweak = ctx->tweak; 78 crypto_cipher_clear_flags(tweak, CRYPTO_TFM_REQ_MASK); 79 crypto_cipher_set_flags(tweak, crypto_skcipher_get_flags(parent) & 80 CRYPTO_TFM_REQ_MASK); 81 err = crypto_cipher_setkey(tweak, key + keylen, keylen); 82 crypto_skcipher_set_flags(parent, crypto_cipher_get_flags(tweak) & 83 CRYPTO_TFM_RES_MASK); 84 if (err) 85 return err; 86 87 /* data cipher, uses Key1 i.e. the first half of *key */ 88 child = ctx->child; 89 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); 90 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & 91 CRYPTO_TFM_REQ_MASK); 92 err = crypto_skcipher_setkey(child, key, keylen); 93 crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) & 94 CRYPTO_TFM_RES_MASK); 95 96 return err; 97 } 98 99 static int post_crypt(struct skcipher_request *req) 100 { 101 struct rctx *rctx = skcipher_request_ctx(req); 102 le128 *buf = rctx->ext ?: rctx->buf; 103 struct skcipher_request *subreq; 104 const int bs = XTS_BLOCK_SIZE; 105 struct skcipher_walk w; 106 struct scatterlist *sg; 107 unsigned offset; 108 int err; 109 110 subreq = &rctx->subreq; 111 err = skcipher_walk_virt(&w, subreq, false); 112 113 while (w.nbytes) { 114 unsigned int avail = w.nbytes; 115 le128 *wdst; 116 117 wdst = w.dst.virt.addr; 118 119 do { 120 le128_xor(wdst, buf++, wdst); 121 wdst++; 122 } while ((avail -= bs) >= bs); 123 124 err = skcipher_walk_done(&w, avail); 125 } 126 127 rctx->left -= subreq->cryptlen; 128 129 if (err || !rctx->left) 130 goto out; 131 132 rctx->dst = rctx->dstbuf; 133 134 scatterwalk_done(&w.out, 0, 1); 135 sg = w.out.sg; 136 offset = w.out.offset; 137 138 if (rctx->dst != sg) { 139 rctx->dst[0] = *sg; 140 sg_unmark_end(rctx->dst); 141 scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 2); 142 } 143 rctx->dst[0].length -= offset - sg->offset; 144 rctx->dst[0].offset = offset; 145 146 out: 147 return err; 148 } 149 150 static int pre_crypt(struct skcipher_request *req) 151 { 152 struct rctx *rctx = skcipher_request_ctx(req); 153 le128 *buf = rctx->ext ?: rctx->buf; 154 struct skcipher_request *subreq; 155 const int bs = XTS_BLOCK_SIZE; 156 struct skcipher_walk w; 157 struct scatterlist *sg; 158 unsigned cryptlen; 159 unsigned offset; 160 bool more; 161 int err; 162 163 subreq = &rctx->subreq; 164 cryptlen = subreq->cryptlen; 165 166 more = rctx->left > cryptlen; 167 if (!more) 168 cryptlen = rctx->left; 169 170 skcipher_request_set_crypt(subreq, rctx->src, rctx->dst, 171 cryptlen, NULL); 172 173 err = skcipher_walk_virt(&w, subreq, false); 174 175 while (w.nbytes) { 176 unsigned int avail = w.nbytes; 177 le128 *wsrc; 178 le128 *wdst; 179 180 wsrc = w.src.virt.addr; 181 wdst = w.dst.virt.addr; 182 183 do { 184 *buf++ = rctx->t; 185 le128_xor(wdst++, &rctx->t, wsrc++); 186 gf128mul_x_ble(&rctx->t, &rctx->t); 187 } while ((avail -= bs) >= bs); 188 189 err = skcipher_walk_done(&w, avail); 190 } 191 192 skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst, 193 cryptlen, NULL); 194 195 if (err || !more) 196 goto out; 197 198 rctx->src = rctx->srcbuf; 199 200 scatterwalk_done(&w.in, 0, 1); 201 sg = w.in.sg; 202 offset = w.in.offset; 203 204 if (rctx->src != sg) { 205 rctx->src[0] = *sg; 206 sg_unmark_end(rctx->src); 207 scatterwalk_crypto_chain(rctx->src, sg_next(sg), 2); 208 } 209 rctx->src[0].length -= offset - sg->offset; 210 rctx->src[0].offset = offset; 211 212 out: 213 return err; 214 } 215 216 static int init_crypt(struct skcipher_request *req, crypto_completion_t done) 217 { 218 struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 219 struct rctx *rctx = skcipher_request_ctx(req); 220 struct skcipher_request *subreq; 221 gfp_t gfp; 222 223 subreq = &rctx->subreq; 224 skcipher_request_set_tfm(subreq, ctx->child); 225 skcipher_request_set_callback(subreq, req->base.flags, done, req); 226 227 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : 228 GFP_ATOMIC; 229 rctx->ext = NULL; 230 231 subreq->cryptlen = XTS_BUFFER_SIZE; 232 if (req->cryptlen > XTS_BUFFER_SIZE) { 233 unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE); 234 235 rctx->ext = kmalloc(n, gfp); 236 if (rctx->ext) 237 subreq->cryptlen = n; 238 } 239 240 rctx->src = req->src; 241 rctx->dst = req->dst; 242 rctx->left = req->cryptlen; 243 244 /* calculate first value of T */ 245 crypto_cipher_encrypt_one(ctx->tweak, (u8 *)&rctx->t, req->iv); 246 247 return 0; 248 } 249 250 static void exit_crypt(struct skcipher_request *req) 251 { 252 struct rctx *rctx = skcipher_request_ctx(req); 253 254 rctx->left = 0; 255 256 if (rctx->ext) 257 kzfree(rctx->ext); 258 } 259 260 static int do_encrypt(struct skcipher_request *req, int err) 261 { 262 struct rctx *rctx = skcipher_request_ctx(req); 263 struct skcipher_request *subreq; 264 265 subreq = &rctx->subreq; 266 267 while (!err && rctx->left) { 268 err = pre_crypt(req) ?: 269 crypto_skcipher_encrypt(subreq) ?: 270 post_crypt(req); 271 272 if (err == -EINPROGRESS || err == -EBUSY) 273 return err; 274 } 275 276 exit_crypt(req); 277 return err; 278 } 279 280 static void encrypt_done(struct crypto_async_request *areq, int err) 281 { 282 struct skcipher_request *req = areq->data; 283 struct skcipher_request *subreq; 284 struct rctx *rctx; 285 286 rctx = skcipher_request_ctx(req); 287 288 if (err == -EINPROGRESS) { 289 if (rctx->left != req->cryptlen) 290 return; 291 goto out; 292 } 293 294 subreq = &rctx->subreq; 295 subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG; 296 297 err = do_encrypt(req, err ?: post_crypt(req)); 298 if (rctx->left) 299 return; 300 301 out: 302 skcipher_request_complete(req, err); 303 } 304 305 static int encrypt(struct skcipher_request *req) 306 { 307 return do_encrypt(req, init_crypt(req, encrypt_done)); 308 } 309 310 static int do_decrypt(struct skcipher_request *req, int err) 311 { 312 struct rctx *rctx = skcipher_request_ctx(req); 313 struct skcipher_request *subreq; 314 315 subreq = &rctx->subreq; 316 317 while (!err && rctx->left) { 318 err = pre_crypt(req) ?: 319 crypto_skcipher_decrypt(subreq) ?: 320 post_crypt(req); 321 322 if (err == -EINPROGRESS || err == -EBUSY) 323 return err; 324 } 325 326 exit_crypt(req); 327 return err; 328 } 329 330 static void decrypt_done(struct crypto_async_request *areq, int err) 331 { 332 struct skcipher_request *req = areq->data; 333 struct skcipher_request *subreq; 334 struct rctx *rctx; 335 336 rctx = skcipher_request_ctx(req); 337 338 if (err == -EINPROGRESS) { 339 if (rctx->left != req->cryptlen) 340 return; 341 goto out; 342 } 343 344 subreq = &rctx->subreq; 345 subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG; 346 347 err = do_decrypt(req, err ?: post_crypt(req)); 348 if (rctx->left) 349 return; 350 351 out: 352 skcipher_request_complete(req, err); 353 } 354 355 static int decrypt(struct skcipher_request *req) 356 { 357 return do_decrypt(req, init_crypt(req, decrypt_done)); 358 } 359 360 static int init_tfm(struct crypto_skcipher *tfm) 361 { 362 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 363 struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst); 364 struct priv *ctx = crypto_skcipher_ctx(tfm); 365 struct crypto_skcipher *child; 366 struct crypto_cipher *tweak; 367 368 child = crypto_spawn_skcipher(&ictx->spawn); 369 if (IS_ERR(child)) 370 return PTR_ERR(child); 371 372 ctx->child = child; 373 374 tweak = crypto_alloc_cipher(ictx->name, 0, 0); 375 if (IS_ERR(tweak)) { 376 crypto_free_skcipher(ctx->child); 377 return PTR_ERR(tweak); 378 } 379 380 ctx->tweak = tweak; 381 382 crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) + 383 sizeof(struct rctx)); 384 385 return 0; 386 } 387 388 static void exit_tfm(struct crypto_skcipher *tfm) 389 { 390 struct priv *ctx = crypto_skcipher_ctx(tfm); 391 392 crypto_free_skcipher(ctx->child); 393 crypto_free_cipher(ctx->tweak); 394 } 395 396 static void free(struct skcipher_instance *inst) 397 { 398 crypto_drop_skcipher(skcipher_instance_ctx(inst)); 399 kfree(inst); 400 } 401 402 static int create(struct crypto_template *tmpl, struct rtattr **tb) 403 { 404 struct skcipher_instance *inst; 405 struct crypto_attr_type *algt; 406 struct xts_instance_ctx *ctx; 407 struct skcipher_alg *alg; 408 const char *cipher_name; 409 u32 mask; 410 int err; 411 412 algt = crypto_get_attr_type(tb); 413 if (IS_ERR(algt)) 414 return PTR_ERR(algt); 415 416 if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) 417 return -EINVAL; 418 419 cipher_name = crypto_attr_alg_name(tb[1]); 420 if (IS_ERR(cipher_name)) 421 return PTR_ERR(cipher_name); 422 423 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 424 if (!inst) 425 return -ENOMEM; 426 427 ctx = skcipher_instance_ctx(inst); 428 429 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst)); 430 431 mask = crypto_requires_off(algt->type, algt->mask, 432 CRYPTO_ALG_NEED_FALLBACK | 433 CRYPTO_ALG_ASYNC); 434 435 err = crypto_grab_skcipher(&ctx->spawn, cipher_name, 0, mask); 436 if (err == -ENOENT) { 437 err = -ENAMETOOLONG; 438 if (snprintf(ctx->name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", 439 cipher_name) >= CRYPTO_MAX_ALG_NAME) 440 goto err_free_inst; 441 442 err = crypto_grab_skcipher(&ctx->spawn, ctx->name, 0, mask); 443 } 444 445 if (err) 446 goto err_free_inst; 447 448 alg = crypto_skcipher_spawn_alg(&ctx->spawn); 449 450 err = -EINVAL; 451 if (alg->base.cra_blocksize != XTS_BLOCK_SIZE) 452 goto err_drop_spawn; 453 454 if (crypto_skcipher_alg_ivsize(alg)) 455 goto err_drop_spawn; 456 457 err = crypto_inst_setname(skcipher_crypto_instance(inst), "xts", 458 &alg->base); 459 if (err) 460 goto err_drop_spawn; 461 462 err = -EINVAL; 463 cipher_name = alg->base.cra_name; 464 465 /* Alas we screwed up the naming so we have to mangle the 466 * cipher name. 467 */ 468 if (!strncmp(cipher_name, "ecb(", 4)) { 469 unsigned len; 470 471 len = strlcpy(ctx->name, cipher_name + 4, sizeof(ctx->name)); 472 if (len < 2 || len >= sizeof(ctx->name)) 473 goto err_drop_spawn; 474 475 if (ctx->name[len - 1] != ')') 476 goto err_drop_spawn; 477 478 ctx->name[len - 1] = 0; 479 480 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 481 "xts(%s)", ctx->name) >= CRYPTO_MAX_ALG_NAME) { 482 err = -ENAMETOOLONG; 483 goto err_drop_spawn; 484 } 485 } else 486 goto err_drop_spawn; 487 488 inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC; 489 inst->alg.base.cra_priority = alg->base.cra_priority; 490 inst->alg.base.cra_blocksize = XTS_BLOCK_SIZE; 491 inst->alg.base.cra_alignmask = alg->base.cra_alignmask | 492 (__alignof__(u64) - 1); 493 494 inst->alg.ivsize = XTS_BLOCK_SIZE; 495 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) * 2; 496 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) * 2; 497 498 inst->alg.base.cra_ctxsize = sizeof(struct priv); 499 500 inst->alg.init = init_tfm; 501 inst->alg.exit = exit_tfm; 502 503 inst->alg.setkey = setkey; 504 inst->alg.encrypt = encrypt; 505 inst->alg.decrypt = decrypt; 506 507 inst->free = free; 508 509 err = skcipher_register_instance(tmpl, inst); 510 if (err) 511 goto err_drop_spawn; 512 513 out: 514 return err; 515 516 err_drop_spawn: 517 crypto_drop_skcipher(&ctx->spawn); 518 err_free_inst: 519 kfree(inst); 520 goto out; 521 } 522 523 static struct crypto_template crypto_tmpl = { 524 .name = "xts", 525 .create = create, 526 .module = THIS_MODULE, 527 }; 528 529 static int __init crypto_module_init(void) 530 { 531 return crypto_register_template(&crypto_tmpl); 532 } 533 534 static void __exit crypto_module_exit(void) 535 { 536 crypto_unregister_template(&crypto_tmpl); 537 } 538 539 module_init(crypto_module_init); 540 module_exit(crypto_module_exit); 541 542 MODULE_LICENSE("GPL"); 543 MODULE_DESCRIPTION("XTS block cipher mode"); 544 MODULE_ALIAS_CRYPTO("xts"); 545