xref: /openbmc/linux/crypto/xctr.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * XCTR: XOR Counter mode - Adapted from ctr.c
4  *
5  * (C) Copyright IBM Corp. 2007 - Joy Latten <latten@us.ibm.com>
6  * Copyright 2021 Google LLC
7  */
8 
9 /*
10  * XCTR mode is a blockcipher mode of operation used to implement HCTR2. XCTR is
11  * closely related to the CTR mode of operation; the main difference is that CTR
12  * generates the keystream using E(CTR + IV) whereas XCTR generates the
13  * keystream using E(CTR ^ IV). This allows implementations to avoid dealing
14  * with multi-limb integers (as is required in CTR mode). XCTR is also specified
15  * using little-endian arithmetic which makes it slightly faster on LE machines.
16  *
17  * See the HCTR2 paper for more details:
18  *	Length-preserving encryption with HCTR2
19  *      (https://eprint.iacr.org/2021/1441.pdf)
20  */
21 
22 #include <crypto/algapi.h>
23 #include <crypto/internal/cipher.h>
24 #include <crypto/internal/skcipher.h>
25 #include <linux/err.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 
31 /* For now this implementation is limited to 16-byte blocks for simplicity */
32 #define XCTR_BLOCKSIZE 16
33 
34 static void crypto_xctr_crypt_final(struct skcipher_walk *walk,
35 				   struct crypto_cipher *tfm, u32 byte_ctr)
36 {
37 	u8 keystream[XCTR_BLOCKSIZE];
38 	const u8 *src = walk->src.virt.addr;
39 	u8 *dst = walk->dst.virt.addr;
40 	unsigned int nbytes = walk->nbytes;
41 	__le32 ctr32 = cpu_to_le32(byte_ctr / XCTR_BLOCKSIZE + 1);
42 
43 	crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
44 	crypto_cipher_encrypt_one(tfm, keystream, walk->iv);
45 	crypto_xor_cpy(dst, keystream, src, nbytes);
46 	crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
47 }
48 
49 static int crypto_xctr_crypt_segment(struct skcipher_walk *walk,
50 				    struct crypto_cipher *tfm, u32 byte_ctr)
51 {
52 	void (*fn)(struct crypto_tfm *, u8 *, const u8 *) =
53 		   crypto_cipher_alg(tfm)->cia_encrypt;
54 	const u8 *src = walk->src.virt.addr;
55 	u8 *dst = walk->dst.virt.addr;
56 	unsigned int nbytes = walk->nbytes;
57 	__le32 ctr32 = cpu_to_le32(byte_ctr / XCTR_BLOCKSIZE + 1);
58 
59 	do {
60 		crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
61 		fn(crypto_cipher_tfm(tfm), dst, walk->iv);
62 		crypto_xor(dst, src, XCTR_BLOCKSIZE);
63 		crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
64 
65 		le32_add_cpu(&ctr32, 1);
66 
67 		src += XCTR_BLOCKSIZE;
68 		dst += XCTR_BLOCKSIZE;
69 	} while ((nbytes -= XCTR_BLOCKSIZE) >= XCTR_BLOCKSIZE);
70 
71 	return nbytes;
72 }
73 
74 static int crypto_xctr_crypt_inplace(struct skcipher_walk *walk,
75 				    struct crypto_cipher *tfm, u32 byte_ctr)
76 {
77 	void (*fn)(struct crypto_tfm *, u8 *, const u8 *) =
78 		   crypto_cipher_alg(tfm)->cia_encrypt;
79 	unsigned long alignmask = crypto_cipher_alignmask(tfm);
80 	unsigned int nbytes = walk->nbytes;
81 	u8 *data = walk->src.virt.addr;
82 	u8 tmp[XCTR_BLOCKSIZE + MAX_CIPHER_ALIGNMASK];
83 	u8 *keystream = PTR_ALIGN(tmp + 0, alignmask + 1);
84 	__le32 ctr32 = cpu_to_le32(byte_ctr / XCTR_BLOCKSIZE + 1);
85 
86 	do {
87 		crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
88 		fn(crypto_cipher_tfm(tfm), keystream, walk->iv);
89 		crypto_xor(data, keystream, XCTR_BLOCKSIZE);
90 		crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
91 
92 		le32_add_cpu(&ctr32, 1);
93 
94 		data += XCTR_BLOCKSIZE;
95 	} while ((nbytes -= XCTR_BLOCKSIZE) >= XCTR_BLOCKSIZE);
96 
97 	return nbytes;
98 }
99 
100 static int crypto_xctr_crypt(struct skcipher_request *req)
101 {
102 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
103 	struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
104 	struct skcipher_walk walk;
105 	unsigned int nbytes;
106 	int err;
107 	u32 byte_ctr = 0;
108 
109 	err = skcipher_walk_virt(&walk, req, false);
110 
111 	while (walk.nbytes >= XCTR_BLOCKSIZE) {
112 		if (walk.src.virt.addr == walk.dst.virt.addr)
113 			nbytes = crypto_xctr_crypt_inplace(&walk, cipher,
114 							   byte_ctr);
115 		else
116 			nbytes = crypto_xctr_crypt_segment(&walk, cipher,
117 							   byte_ctr);
118 
119 		byte_ctr += walk.nbytes - nbytes;
120 		err = skcipher_walk_done(&walk, nbytes);
121 	}
122 
123 	if (walk.nbytes) {
124 		crypto_xctr_crypt_final(&walk, cipher, byte_ctr);
125 		err = skcipher_walk_done(&walk, 0);
126 	}
127 
128 	return err;
129 }
130 
131 static int crypto_xctr_create(struct crypto_template *tmpl, struct rtattr **tb)
132 {
133 	struct skcipher_instance *inst;
134 	struct crypto_alg *alg;
135 	int err;
136 
137 	inst = skcipher_alloc_instance_simple(tmpl, tb);
138 	if (IS_ERR(inst))
139 		return PTR_ERR(inst);
140 
141 	alg = skcipher_ialg_simple(inst);
142 
143 	/* Block size must be 16 bytes. */
144 	err = -EINVAL;
145 	if (alg->cra_blocksize != XCTR_BLOCKSIZE)
146 		goto out_free_inst;
147 
148 	/* XCTR mode is a stream cipher. */
149 	inst->alg.base.cra_blocksize = 1;
150 
151 	/*
152 	 * To simplify the implementation, configure the skcipher walk to only
153 	 * give a partial block at the very end, never earlier.
154 	 */
155 	inst->alg.chunksize = alg->cra_blocksize;
156 
157 	inst->alg.encrypt = crypto_xctr_crypt;
158 	inst->alg.decrypt = crypto_xctr_crypt;
159 
160 	err = skcipher_register_instance(tmpl, inst);
161 	if (err) {
162 out_free_inst:
163 		inst->free(inst);
164 	}
165 
166 	return err;
167 }
168 
169 static struct crypto_template crypto_xctr_tmpl = {
170 	.name = "xctr",
171 	.create = crypto_xctr_create,
172 	.module = THIS_MODULE,
173 };
174 
175 static int __init crypto_xctr_module_init(void)
176 {
177 	return crypto_register_template(&crypto_xctr_tmpl);
178 }
179 
180 static void __exit crypto_xctr_module_exit(void)
181 {
182 	crypto_unregister_template(&crypto_xctr_tmpl);
183 }
184 
185 subsys_initcall(crypto_xctr_module_init);
186 module_exit(crypto_xctr_module_exit);
187 
188 MODULE_LICENSE("GPL");
189 MODULE_DESCRIPTION("XCTR block cipher mode of operation");
190 MODULE_ALIAS_CRYPTO("xctr");
191 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
192