xref: /openbmc/linux/crypto/xcbc.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C)2006 USAGI/WIDE Project
4  *
5  * Author:
6  * 	Kazunori Miyazawa <miyazawa@linux-ipv6.org>
7  */
8 
9 #include <crypto/internal/hash.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 
14 static u_int32_t ks[12] = {0x01010101, 0x01010101, 0x01010101, 0x01010101,
15 			   0x02020202, 0x02020202, 0x02020202, 0x02020202,
16 			   0x03030303, 0x03030303, 0x03030303, 0x03030303};
17 
18 /*
19  * +------------------------
20  * | <parent tfm>
21  * +------------------------
22  * | xcbc_tfm_ctx
23  * +------------------------
24  * | consts (block size * 2)
25  * +------------------------
26  */
27 struct xcbc_tfm_ctx {
28 	struct crypto_cipher *child;
29 	u8 ctx[];
30 };
31 
32 /*
33  * +------------------------
34  * | <shash desc>
35  * +------------------------
36  * | xcbc_desc_ctx
37  * +------------------------
38  * | odds (block size)
39  * +------------------------
40  * | prev (block size)
41  * +------------------------
42  */
43 struct xcbc_desc_ctx {
44 	unsigned int len;
45 	u8 ctx[];
46 };
47 
48 #define XCBC_BLOCKSIZE	16
49 
50 static int crypto_xcbc_digest_setkey(struct crypto_shash *parent,
51 				     const u8 *inkey, unsigned int keylen)
52 {
53 	unsigned long alignmask = crypto_shash_alignmask(parent);
54 	struct xcbc_tfm_ctx *ctx = crypto_shash_ctx(parent);
55 	u8 *consts = PTR_ALIGN(&ctx->ctx[0], alignmask + 1);
56 	int err = 0;
57 	u8 key1[XCBC_BLOCKSIZE];
58 	int bs = sizeof(key1);
59 
60 	if ((err = crypto_cipher_setkey(ctx->child, inkey, keylen)))
61 		return err;
62 
63 	crypto_cipher_encrypt_one(ctx->child, consts, (u8 *)ks + bs);
64 	crypto_cipher_encrypt_one(ctx->child, consts + bs, (u8 *)ks + bs * 2);
65 	crypto_cipher_encrypt_one(ctx->child, key1, (u8 *)ks);
66 
67 	return crypto_cipher_setkey(ctx->child, key1, bs);
68 
69 }
70 
71 static int crypto_xcbc_digest_init(struct shash_desc *pdesc)
72 {
73 	unsigned long alignmask = crypto_shash_alignmask(pdesc->tfm);
74 	struct xcbc_desc_ctx *ctx = shash_desc_ctx(pdesc);
75 	int bs = crypto_shash_blocksize(pdesc->tfm);
76 	u8 *prev = PTR_ALIGN(&ctx->ctx[0], alignmask + 1) + bs;
77 
78 	ctx->len = 0;
79 	memset(prev, 0, bs);
80 
81 	return 0;
82 }
83 
84 static int crypto_xcbc_digest_update(struct shash_desc *pdesc, const u8 *p,
85 				     unsigned int len)
86 {
87 	struct crypto_shash *parent = pdesc->tfm;
88 	unsigned long alignmask = crypto_shash_alignmask(parent);
89 	struct xcbc_tfm_ctx *tctx = crypto_shash_ctx(parent);
90 	struct xcbc_desc_ctx *ctx = shash_desc_ctx(pdesc);
91 	struct crypto_cipher *tfm = tctx->child;
92 	int bs = crypto_shash_blocksize(parent);
93 	u8 *odds = PTR_ALIGN(&ctx->ctx[0], alignmask + 1);
94 	u8 *prev = odds + bs;
95 
96 	/* checking the data can fill the block */
97 	if ((ctx->len + len) <= bs) {
98 		memcpy(odds + ctx->len, p, len);
99 		ctx->len += len;
100 		return 0;
101 	}
102 
103 	/* filling odds with new data and encrypting it */
104 	memcpy(odds + ctx->len, p, bs - ctx->len);
105 	len -= bs - ctx->len;
106 	p += bs - ctx->len;
107 
108 	crypto_xor(prev, odds, bs);
109 	crypto_cipher_encrypt_one(tfm, prev, prev);
110 
111 	/* clearing the length */
112 	ctx->len = 0;
113 
114 	/* encrypting the rest of data */
115 	while (len > bs) {
116 		crypto_xor(prev, p, bs);
117 		crypto_cipher_encrypt_one(tfm, prev, prev);
118 		p += bs;
119 		len -= bs;
120 	}
121 
122 	/* keeping the surplus of blocksize */
123 	if (len) {
124 		memcpy(odds, p, len);
125 		ctx->len = len;
126 	}
127 
128 	return 0;
129 }
130 
131 static int crypto_xcbc_digest_final(struct shash_desc *pdesc, u8 *out)
132 {
133 	struct crypto_shash *parent = pdesc->tfm;
134 	unsigned long alignmask = crypto_shash_alignmask(parent);
135 	struct xcbc_tfm_ctx *tctx = crypto_shash_ctx(parent);
136 	struct xcbc_desc_ctx *ctx = shash_desc_ctx(pdesc);
137 	struct crypto_cipher *tfm = tctx->child;
138 	int bs = crypto_shash_blocksize(parent);
139 	u8 *consts = PTR_ALIGN(&tctx->ctx[0], alignmask + 1);
140 	u8 *odds = PTR_ALIGN(&ctx->ctx[0], alignmask + 1);
141 	u8 *prev = odds + bs;
142 	unsigned int offset = 0;
143 
144 	if (ctx->len != bs) {
145 		unsigned int rlen;
146 		u8 *p = odds + ctx->len;
147 
148 		*p = 0x80;
149 		p++;
150 
151 		rlen = bs - ctx->len -1;
152 		if (rlen)
153 			memset(p, 0, rlen);
154 
155 		offset += bs;
156 	}
157 
158 	crypto_xor(prev, odds, bs);
159 	crypto_xor(prev, consts + offset, bs);
160 
161 	crypto_cipher_encrypt_one(tfm, out, prev);
162 
163 	return 0;
164 }
165 
166 static int xcbc_init_tfm(struct crypto_tfm *tfm)
167 {
168 	struct crypto_cipher *cipher;
169 	struct crypto_instance *inst = (void *)tfm->__crt_alg;
170 	struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
171 	struct xcbc_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
172 
173 	cipher = crypto_spawn_cipher(spawn);
174 	if (IS_ERR(cipher))
175 		return PTR_ERR(cipher);
176 
177 	ctx->child = cipher;
178 
179 	return 0;
180 };
181 
182 static void xcbc_exit_tfm(struct crypto_tfm *tfm)
183 {
184 	struct xcbc_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
185 	crypto_free_cipher(ctx->child);
186 }
187 
188 static int xcbc_create(struct crypto_template *tmpl, struct rtattr **tb)
189 {
190 	struct shash_instance *inst;
191 	struct crypto_cipher_spawn *spawn;
192 	struct crypto_alg *alg;
193 	unsigned long alignmask;
194 	int err;
195 
196 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
197 	if (err)
198 		return err;
199 
200 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
201 	if (!inst)
202 		return -ENOMEM;
203 	spawn = shash_instance_ctx(inst);
204 
205 	err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
206 				 crypto_attr_alg_name(tb[1]), 0, 0);
207 	if (err)
208 		goto err_free_inst;
209 	alg = crypto_spawn_cipher_alg(spawn);
210 
211 	err = -EINVAL;
212 	if (alg->cra_blocksize != XCBC_BLOCKSIZE)
213 		goto err_free_inst;
214 
215 	err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
216 	if (err)
217 		goto err_free_inst;
218 
219 	alignmask = alg->cra_alignmask | 3;
220 	inst->alg.base.cra_alignmask = alignmask;
221 	inst->alg.base.cra_priority = alg->cra_priority;
222 	inst->alg.base.cra_blocksize = alg->cra_blocksize;
223 
224 	inst->alg.digestsize = alg->cra_blocksize;
225 	inst->alg.descsize = ALIGN(sizeof(struct xcbc_desc_ctx),
226 				   crypto_tfm_ctx_alignment()) +
227 			     (alignmask &
228 			      ~(crypto_tfm_ctx_alignment() - 1)) +
229 			     alg->cra_blocksize * 2;
230 
231 	inst->alg.base.cra_ctxsize = ALIGN(sizeof(struct xcbc_tfm_ctx),
232 					   alignmask + 1) +
233 				     alg->cra_blocksize * 2;
234 	inst->alg.base.cra_init = xcbc_init_tfm;
235 	inst->alg.base.cra_exit = xcbc_exit_tfm;
236 
237 	inst->alg.init = crypto_xcbc_digest_init;
238 	inst->alg.update = crypto_xcbc_digest_update;
239 	inst->alg.final = crypto_xcbc_digest_final;
240 	inst->alg.setkey = crypto_xcbc_digest_setkey;
241 
242 	inst->free = shash_free_singlespawn_instance;
243 
244 	err = shash_register_instance(tmpl, inst);
245 	if (err) {
246 err_free_inst:
247 		shash_free_singlespawn_instance(inst);
248 	}
249 	return err;
250 }
251 
252 static struct crypto_template crypto_xcbc_tmpl = {
253 	.name = "xcbc",
254 	.create = xcbc_create,
255 	.module = THIS_MODULE,
256 };
257 
258 static int __init crypto_xcbc_module_init(void)
259 {
260 	return crypto_register_template(&crypto_xcbc_tmpl);
261 }
262 
263 static void __exit crypto_xcbc_module_exit(void)
264 {
265 	crypto_unregister_template(&crypto_xcbc_tmpl);
266 }
267 
268 subsys_initcall(crypto_xcbc_module_init);
269 module_exit(crypto_xcbc_module_exit);
270 
271 MODULE_LICENSE("GPL");
272 MODULE_DESCRIPTION("XCBC keyed hash algorithm");
273 MODULE_ALIAS_CRYPTO("xcbc");
274